]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
Merge tag 'leds-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewsk...
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(int active);
181 #else
182 static inline void update_cpu_load_nohz(int active) { }
183 #endif
184
185 extern unsigned long get_parent_ip(unsigned long addr);
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261 #define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267 /*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278 #define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283 #define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296 /*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356 extern void show_state_filter(unsigned long state_filter);
357
358 static inline void show_state(void)
359 {
360 show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376
377 extern void sched_show_task(struct task_struct *p);
378
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog_sched(void);
381 extern void touch_softlockup_watchdog(void);
382 extern void touch_softlockup_watchdog_sync(void);
383 extern void touch_all_softlockup_watchdogs(void);
384 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
385 void __user *buffer,
386 size_t *lenp, loff_t *ppos);
387 extern unsigned int softlockup_panic;
388 extern unsigned int hardlockup_panic;
389 void lockup_detector_init(void);
390 #else
391 static inline void touch_softlockup_watchdog_sched(void)
392 {
393 }
394 static inline void touch_softlockup_watchdog(void)
395 {
396 }
397 static inline void touch_softlockup_watchdog_sync(void)
398 {
399 }
400 static inline void touch_all_softlockup_watchdogs(void)
401 {
402 }
403 static inline void lockup_detector_init(void)
404 {
405 }
406 #endif
407
408 #ifdef CONFIG_DETECT_HUNG_TASK
409 void reset_hung_task_detector(void);
410 #else
411 static inline void reset_hung_task_detector(void)
412 {
413 }
414 #endif
415
416 /* Attach to any functions which should be ignored in wchan output. */
417 #define __sched __attribute__((__section__(".sched.text")))
418
419 /* Linker adds these: start and end of __sched functions */
420 extern char __sched_text_start[], __sched_text_end[];
421
422 /* Is this address in the __sched functions? */
423 extern int in_sched_functions(unsigned long addr);
424
425 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
426 extern signed long schedule_timeout(signed long timeout);
427 extern signed long schedule_timeout_interruptible(signed long timeout);
428 extern signed long schedule_timeout_killable(signed long timeout);
429 extern signed long schedule_timeout_uninterruptible(signed long timeout);
430 asmlinkage void schedule(void);
431 extern void schedule_preempt_disabled(void);
432
433 extern long io_schedule_timeout(long timeout);
434
435 static inline void io_schedule(void)
436 {
437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
438 }
439
440 struct nsproxy;
441 struct user_namespace;
442
443 #ifdef CONFIG_MMU
444 extern void arch_pick_mmap_layout(struct mm_struct *mm);
445 extern unsigned long
446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447 unsigned long, unsigned long);
448 extern unsigned long
449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450 unsigned long len, unsigned long pgoff,
451 unsigned long flags);
452 #else
453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454 #endif
455
456 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
457 #define SUID_DUMP_USER 1 /* Dump as user of process */
458 #define SUID_DUMP_ROOT 2 /* Dump as root */
459
460 /* mm flags */
461
462 /* for SUID_DUMP_* above */
463 #define MMF_DUMPABLE_BITS 2
464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
465
466 extern void set_dumpable(struct mm_struct *mm, int value);
467 /*
468 * This returns the actual value of the suid_dumpable flag. For things
469 * that are using this for checking for privilege transitions, it must
470 * test against SUID_DUMP_USER rather than treating it as a boolean
471 * value.
472 */
473 static inline int __get_dumpable(unsigned long mm_flags)
474 {
475 return mm_flags & MMF_DUMPABLE_MASK;
476 }
477
478 static inline int get_dumpable(struct mm_struct *mm)
479 {
480 return __get_dumpable(mm->flags);
481 }
482
483 /* coredump filter bits */
484 #define MMF_DUMP_ANON_PRIVATE 2
485 #define MMF_DUMP_ANON_SHARED 3
486 #define MMF_DUMP_MAPPED_PRIVATE 4
487 #define MMF_DUMP_MAPPED_SHARED 5
488 #define MMF_DUMP_ELF_HEADERS 6
489 #define MMF_DUMP_HUGETLB_PRIVATE 7
490 #define MMF_DUMP_HUGETLB_SHARED 8
491 #define MMF_DUMP_DAX_PRIVATE 9
492 #define MMF_DUMP_DAX_SHARED 10
493
494 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
495 #define MMF_DUMP_FILTER_BITS 9
496 #define MMF_DUMP_FILTER_MASK \
497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498 #define MMF_DUMP_FILTER_DEFAULT \
499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
504 #else
505 # define MMF_DUMP_MASK_DEFAULT_ELF 0
506 #endif
507 /* leave room for more dump flags */
508 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
509 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
510 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
511
512 #define MMF_HAS_UPROBES 19 /* has uprobes */
513 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
514
515 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
516
517 struct sighand_struct {
518 atomic_t count;
519 struct k_sigaction action[_NSIG];
520 spinlock_t siglock;
521 wait_queue_head_t signalfd_wqh;
522 };
523
524 struct pacct_struct {
525 int ac_flag;
526 long ac_exitcode;
527 unsigned long ac_mem;
528 cputime_t ac_utime, ac_stime;
529 unsigned long ac_minflt, ac_majflt;
530 };
531
532 struct cpu_itimer {
533 cputime_t expires;
534 cputime_t incr;
535 u32 error;
536 u32 incr_error;
537 };
538
539 /**
540 * struct prev_cputime - snaphsot of system and user cputime
541 * @utime: time spent in user mode
542 * @stime: time spent in system mode
543 * @lock: protects the above two fields
544 *
545 * Stores previous user/system time values such that we can guarantee
546 * monotonicity.
547 */
548 struct prev_cputime {
549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
550 cputime_t utime;
551 cputime_t stime;
552 raw_spinlock_t lock;
553 #endif
554 };
555
556 static inline void prev_cputime_init(struct prev_cputime *prev)
557 {
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 prev->utime = prev->stime = 0;
560 raw_spin_lock_init(&prev->lock);
561 #endif
562 }
563
564 /**
565 * struct task_cputime - collected CPU time counts
566 * @utime: time spent in user mode, in &cputime_t units
567 * @stime: time spent in kernel mode, in &cputime_t units
568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
569 *
570 * This structure groups together three kinds of CPU time that are tracked for
571 * threads and thread groups. Most things considering CPU time want to group
572 * these counts together and treat all three of them in parallel.
573 */
574 struct task_cputime {
575 cputime_t utime;
576 cputime_t stime;
577 unsigned long long sum_exec_runtime;
578 };
579
580 /* Alternate field names when used to cache expirations. */
581 #define virt_exp utime
582 #define prof_exp stime
583 #define sched_exp sum_exec_runtime
584
585 #define INIT_CPUTIME \
586 (struct task_cputime) { \
587 .utime = 0, \
588 .stime = 0, \
589 .sum_exec_runtime = 0, \
590 }
591
592 /*
593 * This is the atomic variant of task_cputime, which can be used for
594 * storing and updating task_cputime statistics without locking.
595 */
596 struct task_cputime_atomic {
597 atomic64_t utime;
598 atomic64_t stime;
599 atomic64_t sum_exec_runtime;
600 };
601
602 #define INIT_CPUTIME_ATOMIC \
603 (struct task_cputime_atomic) { \
604 .utime = ATOMIC64_INIT(0), \
605 .stime = ATOMIC64_INIT(0), \
606 .sum_exec_runtime = ATOMIC64_INIT(0), \
607 }
608
609 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
610
611 /*
612 * Disable preemption until the scheduler is running -- use an unconditional
613 * value so that it also works on !PREEMPT_COUNT kernels.
614 *
615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
616 */
617 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
618
619 /*
620 * Initial preempt_count value; reflects the preempt_count schedule invariant
621 * which states that during context switches:
622 *
623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
624 *
625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
626 * Note: See finish_task_switch().
627 */
628 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
629
630 /**
631 * struct thread_group_cputimer - thread group interval timer counts
632 * @cputime_atomic: atomic thread group interval timers.
633 * @running: true when there are timers running and
634 * @cputime_atomic receives updates.
635 * @checking_timer: true when a thread in the group is in the
636 * process of checking for thread group timers.
637 *
638 * This structure contains the version of task_cputime, above, that is
639 * used for thread group CPU timer calculations.
640 */
641 struct thread_group_cputimer {
642 struct task_cputime_atomic cputime_atomic;
643 bool running;
644 bool checking_timer;
645 };
646
647 #include <linux/rwsem.h>
648 struct autogroup;
649
650 /*
651 * NOTE! "signal_struct" does not have its own
652 * locking, because a shared signal_struct always
653 * implies a shared sighand_struct, so locking
654 * sighand_struct is always a proper superset of
655 * the locking of signal_struct.
656 */
657 struct signal_struct {
658 atomic_t sigcnt;
659 atomic_t live;
660 int nr_threads;
661 struct list_head thread_head;
662
663 wait_queue_head_t wait_chldexit; /* for wait4() */
664
665 /* current thread group signal load-balancing target: */
666 struct task_struct *curr_target;
667
668 /* shared signal handling: */
669 struct sigpending shared_pending;
670
671 /* thread group exit support */
672 int group_exit_code;
673 /* overloaded:
674 * - notify group_exit_task when ->count is equal to notify_count
675 * - everyone except group_exit_task is stopped during signal delivery
676 * of fatal signals, group_exit_task processes the signal.
677 */
678 int notify_count;
679 struct task_struct *group_exit_task;
680
681 /* thread group stop support, overloads group_exit_code too */
682 int group_stop_count;
683 unsigned int flags; /* see SIGNAL_* flags below */
684
685 /*
686 * PR_SET_CHILD_SUBREAPER marks a process, like a service
687 * manager, to re-parent orphan (double-forking) child processes
688 * to this process instead of 'init'. The service manager is
689 * able to receive SIGCHLD signals and is able to investigate
690 * the process until it calls wait(). All children of this
691 * process will inherit a flag if they should look for a
692 * child_subreaper process at exit.
693 */
694 unsigned int is_child_subreaper:1;
695 unsigned int has_child_subreaper:1;
696
697 /* POSIX.1b Interval Timers */
698 int posix_timer_id;
699 struct list_head posix_timers;
700
701 /* ITIMER_REAL timer for the process */
702 struct hrtimer real_timer;
703 struct pid *leader_pid;
704 ktime_t it_real_incr;
705
706 /*
707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
709 * values are defined to 0 and 1 respectively
710 */
711 struct cpu_itimer it[2];
712
713 /*
714 * Thread group totals for process CPU timers.
715 * See thread_group_cputimer(), et al, for details.
716 */
717 struct thread_group_cputimer cputimer;
718
719 /* Earliest-expiration cache. */
720 struct task_cputime cputime_expires;
721
722 struct list_head cpu_timers[3];
723
724 struct pid *tty_old_pgrp;
725
726 /* boolean value for session group leader */
727 int leader;
728
729 struct tty_struct *tty; /* NULL if no tty */
730
731 #ifdef CONFIG_SCHED_AUTOGROUP
732 struct autogroup *autogroup;
733 #endif
734 /*
735 * Cumulative resource counters for dead threads in the group,
736 * and for reaped dead child processes forked by this group.
737 * Live threads maintain their own counters and add to these
738 * in __exit_signal, except for the group leader.
739 */
740 seqlock_t stats_lock;
741 cputime_t utime, stime, cutime, cstime;
742 cputime_t gtime;
743 cputime_t cgtime;
744 struct prev_cputime prev_cputime;
745 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
746 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
747 unsigned long inblock, oublock, cinblock, coublock;
748 unsigned long maxrss, cmaxrss;
749 struct task_io_accounting ioac;
750
751 /*
752 * Cumulative ns of schedule CPU time fo dead threads in the
753 * group, not including a zombie group leader, (This only differs
754 * from jiffies_to_ns(utime + stime) if sched_clock uses something
755 * other than jiffies.)
756 */
757 unsigned long long sum_sched_runtime;
758
759 /*
760 * We don't bother to synchronize most readers of this at all,
761 * because there is no reader checking a limit that actually needs
762 * to get both rlim_cur and rlim_max atomically, and either one
763 * alone is a single word that can safely be read normally.
764 * getrlimit/setrlimit use task_lock(current->group_leader) to
765 * protect this instead of the siglock, because they really
766 * have no need to disable irqs.
767 */
768 struct rlimit rlim[RLIM_NLIMITS];
769
770 #ifdef CONFIG_BSD_PROCESS_ACCT
771 struct pacct_struct pacct; /* per-process accounting information */
772 #endif
773 #ifdef CONFIG_TASKSTATS
774 struct taskstats *stats;
775 #endif
776 #ifdef CONFIG_AUDIT
777 unsigned audit_tty;
778 unsigned audit_tty_log_passwd;
779 struct tty_audit_buf *tty_audit_buf;
780 #endif
781
782 oom_flags_t oom_flags;
783 short oom_score_adj; /* OOM kill score adjustment */
784 short oom_score_adj_min; /* OOM kill score adjustment min value.
785 * Only settable by CAP_SYS_RESOURCE. */
786
787 struct mutex cred_guard_mutex; /* guard against foreign influences on
788 * credential calculations
789 * (notably. ptrace) */
790 };
791
792 /*
793 * Bits in flags field of signal_struct.
794 */
795 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
796 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
797 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
798 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
799 /*
800 * Pending notifications to parent.
801 */
802 #define SIGNAL_CLD_STOPPED 0x00000010
803 #define SIGNAL_CLD_CONTINUED 0x00000020
804 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
805
806 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
807
808 /* If true, all threads except ->group_exit_task have pending SIGKILL */
809 static inline int signal_group_exit(const struct signal_struct *sig)
810 {
811 return (sig->flags & SIGNAL_GROUP_EXIT) ||
812 (sig->group_exit_task != NULL);
813 }
814
815 /*
816 * Some day this will be a full-fledged user tracking system..
817 */
818 struct user_struct {
819 atomic_t __count; /* reference count */
820 atomic_t processes; /* How many processes does this user have? */
821 atomic_t sigpending; /* How many pending signals does this user have? */
822 #ifdef CONFIG_INOTIFY_USER
823 atomic_t inotify_watches; /* How many inotify watches does this user have? */
824 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
825 #endif
826 #ifdef CONFIG_FANOTIFY
827 atomic_t fanotify_listeners;
828 #endif
829 #ifdef CONFIG_EPOLL
830 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
831 #endif
832 #ifdef CONFIG_POSIX_MQUEUE
833 /* protected by mq_lock */
834 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
835 #endif
836 unsigned long locked_shm; /* How many pages of mlocked shm ? */
837
838 #ifdef CONFIG_KEYS
839 struct key *uid_keyring; /* UID specific keyring */
840 struct key *session_keyring; /* UID's default session keyring */
841 #endif
842
843 /* Hash table maintenance information */
844 struct hlist_node uidhash_node;
845 kuid_t uid;
846
847 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
848 atomic_long_t locked_vm;
849 #endif
850 };
851
852 extern int uids_sysfs_init(void);
853
854 extern struct user_struct *find_user(kuid_t);
855
856 extern struct user_struct root_user;
857 #define INIT_USER (&root_user)
858
859
860 struct backing_dev_info;
861 struct reclaim_state;
862
863 #ifdef CONFIG_SCHED_INFO
864 struct sched_info {
865 /* cumulative counters */
866 unsigned long pcount; /* # of times run on this cpu */
867 unsigned long long run_delay; /* time spent waiting on a runqueue */
868
869 /* timestamps */
870 unsigned long long last_arrival,/* when we last ran on a cpu */
871 last_queued; /* when we were last queued to run */
872 };
873 #endif /* CONFIG_SCHED_INFO */
874
875 #ifdef CONFIG_TASK_DELAY_ACCT
876 struct task_delay_info {
877 spinlock_t lock;
878 unsigned int flags; /* Private per-task flags */
879
880 /* For each stat XXX, add following, aligned appropriately
881 *
882 * struct timespec XXX_start, XXX_end;
883 * u64 XXX_delay;
884 * u32 XXX_count;
885 *
886 * Atomicity of updates to XXX_delay, XXX_count protected by
887 * single lock above (split into XXX_lock if contention is an issue).
888 */
889
890 /*
891 * XXX_count is incremented on every XXX operation, the delay
892 * associated with the operation is added to XXX_delay.
893 * XXX_delay contains the accumulated delay time in nanoseconds.
894 */
895 u64 blkio_start; /* Shared by blkio, swapin */
896 u64 blkio_delay; /* wait for sync block io completion */
897 u64 swapin_delay; /* wait for swapin block io completion */
898 u32 blkio_count; /* total count of the number of sync block */
899 /* io operations performed */
900 u32 swapin_count; /* total count of the number of swapin block */
901 /* io operations performed */
902
903 u64 freepages_start;
904 u64 freepages_delay; /* wait for memory reclaim */
905 u32 freepages_count; /* total count of memory reclaim */
906 };
907 #endif /* CONFIG_TASK_DELAY_ACCT */
908
909 static inline int sched_info_on(void)
910 {
911 #ifdef CONFIG_SCHEDSTATS
912 return 1;
913 #elif defined(CONFIG_TASK_DELAY_ACCT)
914 extern int delayacct_on;
915 return delayacct_on;
916 #else
917 return 0;
918 #endif
919 }
920
921 enum cpu_idle_type {
922 CPU_IDLE,
923 CPU_NOT_IDLE,
924 CPU_NEWLY_IDLE,
925 CPU_MAX_IDLE_TYPES
926 };
927
928 /*
929 * Increase resolution of cpu_capacity calculations
930 */
931 #define SCHED_CAPACITY_SHIFT 10
932 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
933
934 /*
935 * Wake-queues are lists of tasks with a pending wakeup, whose
936 * callers have already marked the task as woken internally,
937 * and can thus carry on. A common use case is being able to
938 * do the wakeups once the corresponding user lock as been
939 * released.
940 *
941 * We hold reference to each task in the list across the wakeup,
942 * thus guaranteeing that the memory is still valid by the time
943 * the actual wakeups are performed in wake_up_q().
944 *
945 * One per task suffices, because there's never a need for a task to be
946 * in two wake queues simultaneously; it is forbidden to abandon a task
947 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
948 * already in a wake queue, the wakeup will happen soon and the second
949 * waker can just skip it.
950 *
951 * The WAKE_Q macro declares and initializes the list head.
952 * wake_up_q() does NOT reinitialize the list; it's expected to be
953 * called near the end of a function, where the fact that the queue is
954 * not used again will be easy to see by inspection.
955 *
956 * Note that this can cause spurious wakeups. schedule() callers
957 * must ensure the call is done inside a loop, confirming that the
958 * wakeup condition has in fact occurred.
959 */
960 struct wake_q_node {
961 struct wake_q_node *next;
962 };
963
964 struct wake_q_head {
965 struct wake_q_node *first;
966 struct wake_q_node **lastp;
967 };
968
969 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
970
971 #define WAKE_Q(name) \
972 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
973
974 extern void wake_q_add(struct wake_q_head *head,
975 struct task_struct *task);
976 extern void wake_up_q(struct wake_q_head *head);
977
978 /*
979 * sched-domains (multiprocessor balancing) declarations:
980 */
981 #ifdef CONFIG_SMP
982 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
983 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
984 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
985 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
986 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
987 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
988 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
989 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
990 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
991 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
992 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
993 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
994 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
995 #define SD_NUMA 0x4000 /* cross-node balancing */
996
997 #ifdef CONFIG_SCHED_SMT
998 static inline int cpu_smt_flags(void)
999 {
1000 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1001 }
1002 #endif
1003
1004 #ifdef CONFIG_SCHED_MC
1005 static inline int cpu_core_flags(void)
1006 {
1007 return SD_SHARE_PKG_RESOURCES;
1008 }
1009 #endif
1010
1011 #ifdef CONFIG_NUMA
1012 static inline int cpu_numa_flags(void)
1013 {
1014 return SD_NUMA;
1015 }
1016 #endif
1017
1018 struct sched_domain_attr {
1019 int relax_domain_level;
1020 };
1021
1022 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1023 .relax_domain_level = -1, \
1024 }
1025
1026 extern int sched_domain_level_max;
1027
1028 struct sched_group;
1029
1030 struct sched_domain {
1031 /* These fields must be setup */
1032 struct sched_domain *parent; /* top domain must be null terminated */
1033 struct sched_domain *child; /* bottom domain must be null terminated */
1034 struct sched_group *groups; /* the balancing groups of the domain */
1035 unsigned long min_interval; /* Minimum balance interval ms */
1036 unsigned long max_interval; /* Maximum balance interval ms */
1037 unsigned int busy_factor; /* less balancing by factor if busy */
1038 unsigned int imbalance_pct; /* No balance until over watermark */
1039 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1040 unsigned int busy_idx;
1041 unsigned int idle_idx;
1042 unsigned int newidle_idx;
1043 unsigned int wake_idx;
1044 unsigned int forkexec_idx;
1045 unsigned int smt_gain;
1046
1047 int nohz_idle; /* NOHZ IDLE status */
1048 int flags; /* See SD_* */
1049 int level;
1050
1051 /* Runtime fields. */
1052 unsigned long last_balance; /* init to jiffies. units in jiffies */
1053 unsigned int balance_interval; /* initialise to 1. units in ms. */
1054 unsigned int nr_balance_failed; /* initialise to 0 */
1055
1056 /* idle_balance() stats */
1057 u64 max_newidle_lb_cost;
1058 unsigned long next_decay_max_lb_cost;
1059
1060 #ifdef CONFIG_SCHEDSTATS
1061 /* load_balance() stats */
1062 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1063 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1064 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1065 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1066 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1067 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1068 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1069 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1070
1071 /* Active load balancing */
1072 unsigned int alb_count;
1073 unsigned int alb_failed;
1074 unsigned int alb_pushed;
1075
1076 /* SD_BALANCE_EXEC stats */
1077 unsigned int sbe_count;
1078 unsigned int sbe_balanced;
1079 unsigned int sbe_pushed;
1080
1081 /* SD_BALANCE_FORK stats */
1082 unsigned int sbf_count;
1083 unsigned int sbf_balanced;
1084 unsigned int sbf_pushed;
1085
1086 /* try_to_wake_up() stats */
1087 unsigned int ttwu_wake_remote;
1088 unsigned int ttwu_move_affine;
1089 unsigned int ttwu_move_balance;
1090 #endif
1091 #ifdef CONFIG_SCHED_DEBUG
1092 char *name;
1093 #endif
1094 union {
1095 void *private; /* used during construction */
1096 struct rcu_head rcu; /* used during destruction */
1097 };
1098
1099 unsigned int span_weight;
1100 /*
1101 * Span of all CPUs in this domain.
1102 *
1103 * NOTE: this field is variable length. (Allocated dynamically
1104 * by attaching extra space to the end of the structure,
1105 * depending on how many CPUs the kernel has booted up with)
1106 */
1107 unsigned long span[0];
1108 };
1109
1110 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1111 {
1112 return to_cpumask(sd->span);
1113 }
1114
1115 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1116 struct sched_domain_attr *dattr_new);
1117
1118 /* Allocate an array of sched domains, for partition_sched_domains(). */
1119 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1120 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1121
1122 bool cpus_share_cache(int this_cpu, int that_cpu);
1123
1124 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1125 typedef int (*sched_domain_flags_f)(void);
1126
1127 #define SDTL_OVERLAP 0x01
1128
1129 struct sd_data {
1130 struct sched_domain **__percpu sd;
1131 struct sched_group **__percpu sg;
1132 struct sched_group_capacity **__percpu sgc;
1133 };
1134
1135 struct sched_domain_topology_level {
1136 sched_domain_mask_f mask;
1137 sched_domain_flags_f sd_flags;
1138 int flags;
1139 int numa_level;
1140 struct sd_data data;
1141 #ifdef CONFIG_SCHED_DEBUG
1142 char *name;
1143 #endif
1144 };
1145
1146 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1147 extern void wake_up_if_idle(int cpu);
1148
1149 #ifdef CONFIG_SCHED_DEBUG
1150 # define SD_INIT_NAME(type) .name = #type
1151 #else
1152 # define SD_INIT_NAME(type)
1153 #endif
1154
1155 #else /* CONFIG_SMP */
1156
1157 struct sched_domain_attr;
1158
1159 static inline void
1160 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1161 struct sched_domain_attr *dattr_new)
1162 {
1163 }
1164
1165 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1166 {
1167 return true;
1168 }
1169
1170 #endif /* !CONFIG_SMP */
1171
1172
1173 struct io_context; /* See blkdev.h */
1174
1175
1176 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1177 extern void prefetch_stack(struct task_struct *t);
1178 #else
1179 static inline void prefetch_stack(struct task_struct *t) { }
1180 #endif
1181
1182 struct audit_context; /* See audit.c */
1183 struct mempolicy;
1184 struct pipe_inode_info;
1185 struct uts_namespace;
1186
1187 struct load_weight {
1188 unsigned long weight;
1189 u32 inv_weight;
1190 };
1191
1192 /*
1193 * The load_avg/util_avg accumulates an infinite geometric series.
1194 * 1) load_avg factors frequency scaling into the amount of time that a
1195 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1196 * aggregated such weights of all runnable and blocked sched_entities.
1197 * 2) util_avg factors frequency and cpu scaling into the amount of time
1198 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1199 * For cfs_rq, it is the aggregated such times of all runnable and
1200 * blocked sched_entities.
1201 * The 64 bit load_sum can:
1202 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1203 * the highest weight (=88761) always runnable, we should not overflow
1204 * 2) for entity, support any load.weight always runnable
1205 */
1206 struct sched_avg {
1207 u64 last_update_time, load_sum;
1208 u32 util_sum, period_contrib;
1209 unsigned long load_avg, util_avg;
1210 };
1211
1212 #ifdef CONFIG_SCHEDSTATS
1213 struct sched_statistics {
1214 u64 wait_start;
1215 u64 wait_max;
1216 u64 wait_count;
1217 u64 wait_sum;
1218 u64 iowait_count;
1219 u64 iowait_sum;
1220
1221 u64 sleep_start;
1222 u64 sleep_max;
1223 s64 sum_sleep_runtime;
1224
1225 u64 block_start;
1226 u64 block_max;
1227 u64 exec_max;
1228 u64 slice_max;
1229
1230 u64 nr_migrations_cold;
1231 u64 nr_failed_migrations_affine;
1232 u64 nr_failed_migrations_running;
1233 u64 nr_failed_migrations_hot;
1234 u64 nr_forced_migrations;
1235
1236 u64 nr_wakeups;
1237 u64 nr_wakeups_sync;
1238 u64 nr_wakeups_migrate;
1239 u64 nr_wakeups_local;
1240 u64 nr_wakeups_remote;
1241 u64 nr_wakeups_affine;
1242 u64 nr_wakeups_affine_attempts;
1243 u64 nr_wakeups_passive;
1244 u64 nr_wakeups_idle;
1245 };
1246 #endif
1247
1248 struct sched_entity {
1249 struct load_weight load; /* for load-balancing */
1250 struct rb_node run_node;
1251 struct list_head group_node;
1252 unsigned int on_rq;
1253
1254 u64 exec_start;
1255 u64 sum_exec_runtime;
1256 u64 vruntime;
1257 u64 prev_sum_exec_runtime;
1258
1259 u64 nr_migrations;
1260
1261 #ifdef CONFIG_SCHEDSTATS
1262 struct sched_statistics statistics;
1263 #endif
1264
1265 #ifdef CONFIG_FAIR_GROUP_SCHED
1266 int depth;
1267 struct sched_entity *parent;
1268 /* rq on which this entity is (to be) queued: */
1269 struct cfs_rq *cfs_rq;
1270 /* rq "owned" by this entity/group: */
1271 struct cfs_rq *my_q;
1272 #endif
1273
1274 #ifdef CONFIG_SMP
1275 /*
1276 * Per entity load average tracking.
1277 *
1278 * Put into separate cache line so it does not
1279 * collide with read-mostly values above.
1280 */
1281 struct sched_avg avg ____cacheline_aligned_in_smp;
1282 #endif
1283 };
1284
1285 struct sched_rt_entity {
1286 struct list_head run_list;
1287 unsigned long timeout;
1288 unsigned long watchdog_stamp;
1289 unsigned int time_slice;
1290
1291 struct sched_rt_entity *back;
1292 #ifdef CONFIG_RT_GROUP_SCHED
1293 struct sched_rt_entity *parent;
1294 /* rq on which this entity is (to be) queued: */
1295 struct rt_rq *rt_rq;
1296 /* rq "owned" by this entity/group: */
1297 struct rt_rq *my_q;
1298 #endif
1299 };
1300
1301 struct sched_dl_entity {
1302 struct rb_node rb_node;
1303
1304 /*
1305 * Original scheduling parameters. Copied here from sched_attr
1306 * during sched_setattr(), they will remain the same until
1307 * the next sched_setattr().
1308 */
1309 u64 dl_runtime; /* maximum runtime for each instance */
1310 u64 dl_deadline; /* relative deadline of each instance */
1311 u64 dl_period; /* separation of two instances (period) */
1312 u64 dl_bw; /* dl_runtime / dl_deadline */
1313
1314 /*
1315 * Actual scheduling parameters. Initialized with the values above,
1316 * they are continously updated during task execution. Note that
1317 * the remaining runtime could be < 0 in case we are in overrun.
1318 */
1319 s64 runtime; /* remaining runtime for this instance */
1320 u64 deadline; /* absolute deadline for this instance */
1321 unsigned int flags; /* specifying the scheduler behaviour */
1322
1323 /*
1324 * Some bool flags:
1325 *
1326 * @dl_throttled tells if we exhausted the runtime. If so, the
1327 * task has to wait for a replenishment to be performed at the
1328 * next firing of dl_timer.
1329 *
1330 * @dl_new tells if a new instance arrived. If so we must
1331 * start executing it with full runtime and reset its absolute
1332 * deadline;
1333 *
1334 * @dl_boosted tells if we are boosted due to DI. If so we are
1335 * outside bandwidth enforcement mechanism (but only until we
1336 * exit the critical section);
1337 *
1338 * @dl_yielded tells if task gave up the cpu before consuming
1339 * all its available runtime during the last job.
1340 */
1341 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1342
1343 /*
1344 * Bandwidth enforcement timer. Each -deadline task has its
1345 * own bandwidth to be enforced, thus we need one timer per task.
1346 */
1347 struct hrtimer dl_timer;
1348 };
1349
1350 union rcu_special {
1351 struct {
1352 u8 blocked;
1353 u8 need_qs;
1354 u8 exp_need_qs;
1355 u8 pad; /* Otherwise the compiler can store garbage here. */
1356 } b; /* Bits. */
1357 u32 s; /* Set of bits. */
1358 };
1359 struct rcu_node;
1360
1361 enum perf_event_task_context {
1362 perf_invalid_context = -1,
1363 perf_hw_context = 0,
1364 perf_sw_context,
1365 perf_nr_task_contexts,
1366 };
1367
1368 /* Track pages that require TLB flushes */
1369 struct tlbflush_unmap_batch {
1370 /*
1371 * Each bit set is a CPU that potentially has a TLB entry for one of
1372 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1373 */
1374 struct cpumask cpumask;
1375
1376 /* True if any bit in cpumask is set */
1377 bool flush_required;
1378
1379 /*
1380 * If true then the PTE was dirty when unmapped. The entry must be
1381 * flushed before IO is initiated or a stale TLB entry potentially
1382 * allows an update without redirtying the page.
1383 */
1384 bool writable;
1385 };
1386
1387 struct task_struct {
1388 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1389 void *stack;
1390 atomic_t usage;
1391 unsigned int flags; /* per process flags, defined below */
1392 unsigned int ptrace;
1393
1394 #ifdef CONFIG_SMP
1395 struct llist_node wake_entry;
1396 int on_cpu;
1397 unsigned int wakee_flips;
1398 unsigned long wakee_flip_decay_ts;
1399 struct task_struct *last_wakee;
1400
1401 int wake_cpu;
1402 #endif
1403 int on_rq;
1404
1405 int prio, static_prio, normal_prio;
1406 unsigned int rt_priority;
1407 const struct sched_class *sched_class;
1408 struct sched_entity se;
1409 struct sched_rt_entity rt;
1410 #ifdef CONFIG_CGROUP_SCHED
1411 struct task_group *sched_task_group;
1412 #endif
1413 struct sched_dl_entity dl;
1414
1415 #ifdef CONFIG_PREEMPT_NOTIFIERS
1416 /* list of struct preempt_notifier: */
1417 struct hlist_head preempt_notifiers;
1418 #endif
1419
1420 #ifdef CONFIG_BLK_DEV_IO_TRACE
1421 unsigned int btrace_seq;
1422 #endif
1423
1424 unsigned int policy;
1425 int nr_cpus_allowed;
1426 cpumask_t cpus_allowed;
1427
1428 #ifdef CONFIG_PREEMPT_RCU
1429 int rcu_read_lock_nesting;
1430 union rcu_special rcu_read_unlock_special;
1431 struct list_head rcu_node_entry;
1432 struct rcu_node *rcu_blocked_node;
1433 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1434 #ifdef CONFIG_TASKS_RCU
1435 unsigned long rcu_tasks_nvcsw;
1436 bool rcu_tasks_holdout;
1437 struct list_head rcu_tasks_holdout_list;
1438 int rcu_tasks_idle_cpu;
1439 #endif /* #ifdef CONFIG_TASKS_RCU */
1440
1441 #ifdef CONFIG_SCHED_INFO
1442 struct sched_info sched_info;
1443 #endif
1444
1445 struct list_head tasks;
1446 #ifdef CONFIG_SMP
1447 struct plist_node pushable_tasks;
1448 struct rb_node pushable_dl_tasks;
1449 #endif
1450
1451 struct mm_struct *mm, *active_mm;
1452 /* per-thread vma caching */
1453 u32 vmacache_seqnum;
1454 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1455 #if defined(SPLIT_RSS_COUNTING)
1456 struct task_rss_stat rss_stat;
1457 #endif
1458 /* task state */
1459 int exit_state;
1460 int exit_code, exit_signal;
1461 int pdeath_signal; /* The signal sent when the parent dies */
1462 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1463
1464 /* Used for emulating ABI behavior of previous Linux versions */
1465 unsigned int personality;
1466
1467 /* scheduler bits, serialized by scheduler locks */
1468 unsigned sched_reset_on_fork:1;
1469 unsigned sched_contributes_to_load:1;
1470 unsigned sched_migrated:1;
1471 unsigned :0; /* force alignment to the next boundary */
1472
1473 /* unserialized, strictly 'current' */
1474 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1475 unsigned in_iowait:1;
1476 #ifdef CONFIG_MEMCG
1477 unsigned memcg_may_oom:1;
1478 #endif
1479 #ifdef CONFIG_MEMCG_KMEM
1480 unsigned memcg_kmem_skip_account:1;
1481 #endif
1482 #ifdef CONFIG_COMPAT_BRK
1483 unsigned brk_randomized:1;
1484 #endif
1485
1486 unsigned long atomic_flags; /* Flags needing atomic access. */
1487
1488 struct restart_block restart_block;
1489
1490 pid_t pid;
1491 pid_t tgid;
1492
1493 #ifdef CONFIG_CC_STACKPROTECTOR
1494 /* Canary value for the -fstack-protector gcc feature */
1495 unsigned long stack_canary;
1496 #endif
1497 /*
1498 * pointers to (original) parent process, youngest child, younger sibling,
1499 * older sibling, respectively. (p->father can be replaced with
1500 * p->real_parent->pid)
1501 */
1502 struct task_struct __rcu *real_parent; /* real parent process */
1503 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1504 /*
1505 * children/sibling forms the list of my natural children
1506 */
1507 struct list_head children; /* list of my children */
1508 struct list_head sibling; /* linkage in my parent's children list */
1509 struct task_struct *group_leader; /* threadgroup leader */
1510
1511 /*
1512 * ptraced is the list of tasks this task is using ptrace on.
1513 * This includes both natural children and PTRACE_ATTACH targets.
1514 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1515 */
1516 struct list_head ptraced;
1517 struct list_head ptrace_entry;
1518
1519 /* PID/PID hash table linkage. */
1520 struct pid_link pids[PIDTYPE_MAX];
1521 struct list_head thread_group;
1522 struct list_head thread_node;
1523
1524 struct completion *vfork_done; /* for vfork() */
1525 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1526 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1527
1528 cputime_t utime, stime, utimescaled, stimescaled;
1529 cputime_t gtime;
1530 struct prev_cputime prev_cputime;
1531 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1532 seqcount_t vtime_seqcount;
1533 unsigned long long vtime_snap;
1534 enum {
1535 /* Task is sleeping or running in a CPU with VTIME inactive */
1536 VTIME_INACTIVE = 0,
1537 /* Task runs in userspace in a CPU with VTIME active */
1538 VTIME_USER,
1539 /* Task runs in kernelspace in a CPU with VTIME active */
1540 VTIME_SYS,
1541 } vtime_snap_whence;
1542 #endif
1543 unsigned long nvcsw, nivcsw; /* context switch counts */
1544 u64 start_time; /* monotonic time in nsec */
1545 u64 real_start_time; /* boot based time in nsec */
1546 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1547 unsigned long min_flt, maj_flt;
1548
1549 struct task_cputime cputime_expires;
1550 struct list_head cpu_timers[3];
1551
1552 /* process credentials */
1553 const struct cred __rcu *real_cred; /* objective and real subjective task
1554 * credentials (COW) */
1555 const struct cred __rcu *cred; /* effective (overridable) subjective task
1556 * credentials (COW) */
1557 char comm[TASK_COMM_LEN]; /* executable name excluding path
1558 - access with [gs]et_task_comm (which lock
1559 it with task_lock())
1560 - initialized normally by setup_new_exec */
1561 /* file system info */
1562 struct nameidata *nameidata;
1563 #ifdef CONFIG_SYSVIPC
1564 /* ipc stuff */
1565 struct sysv_sem sysvsem;
1566 struct sysv_shm sysvshm;
1567 #endif
1568 #ifdef CONFIG_DETECT_HUNG_TASK
1569 /* hung task detection */
1570 unsigned long last_switch_count;
1571 #endif
1572 /* filesystem information */
1573 struct fs_struct *fs;
1574 /* open file information */
1575 struct files_struct *files;
1576 /* namespaces */
1577 struct nsproxy *nsproxy;
1578 /* signal handlers */
1579 struct signal_struct *signal;
1580 struct sighand_struct *sighand;
1581
1582 sigset_t blocked, real_blocked;
1583 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1584 struct sigpending pending;
1585
1586 unsigned long sas_ss_sp;
1587 size_t sas_ss_size;
1588
1589 struct callback_head *task_works;
1590
1591 struct audit_context *audit_context;
1592 #ifdef CONFIG_AUDITSYSCALL
1593 kuid_t loginuid;
1594 unsigned int sessionid;
1595 #endif
1596 struct seccomp seccomp;
1597
1598 /* Thread group tracking */
1599 u32 parent_exec_id;
1600 u32 self_exec_id;
1601 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1602 * mempolicy */
1603 spinlock_t alloc_lock;
1604
1605 /* Protection of the PI data structures: */
1606 raw_spinlock_t pi_lock;
1607
1608 struct wake_q_node wake_q;
1609
1610 #ifdef CONFIG_RT_MUTEXES
1611 /* PI waiters blocked on a rt_mutex held by this task */
1612 struct rb_root pi_waiters;
1613 struct rb_node *pi_waiters_leftmost;
1614 /* Deadlock detection and priority inheritance handling */
1615 struct rt_mutex_waiter *pi_blocked_on;
1616 #endif
1617
1618 #ifdef CONFIG_DEBUG_MUTEXES
1619 /* mutex deadlock detection */
1620 struct mutex_waiter *blocked_on;
1621 #endif
1622 #ifdef CONFIG_TRACE_IRQFLAGS
1623 unsigned int irq_events;
1624 unsigned long hardirq_enable_ip;
1625 unsigned long hardirq_disable_ip;
1626 unsigned int hardirq_enable_event;
1627 unsigned int hardirq_disable_event;
1628 int hardirqs_enabled;
1629 int hardirq_context;
1630 unsigned long softirq_disable_ip;
1631 unsigned long softirq_enable_ip;
1632 unsigned int softirq_disable_event;
1633 unsigned int softirq_enable_event;
1634 int softirqs_enabled;
1635 int softirq_context;
1636 #endif
1637 #ifdef CONFIG_LOCKDEP
1638 # define MAX_LOCK_DEPTH 48UL
1639 u64 curr_chain_key;
1640 int lockdep_depth;
1641 unsigned int lockdep_recursion;
1642 struct held_lock held_locks[MAX_LOCK_DEPTH];
1643 gfp_t lockdep_reclaim_gfp;
1644 #endif
1645
1646 /* journalling filesystem info */
1647 void *journal_info;
1648
1649 /* stacked block device info */
1650 struct bio_list *bio_list;
1651
1652 #ifdef CONFIG_BLOCK
1653 /* stack plugging */
1654 struct blk_plug *plug;
1655 #endif
1656
1657 /* VM state */
1658 struct reclaim_state *reclaim_state;
1659
1660 struct backing_dev_info *backing_dev_info;
1661
1662 struct io_context *io_context;
1663
1664 unsigned long ptrace_message;
1665 siginfo_t *last_siginfo; /* For ptrace use. */
1666 struct task_io_accounting ioac;
1667 #if defined(CONFIG_TASK_XACCT)
1668 u64 acct_rss_mem1; /* accumulated rss usage */
1669 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1670 cputime_t acct_timexpd; /* stime + utime since last update */
1671 #endif
1672 #ifdef CONFIG_CPUSETS
1673 nodemask_t mems_allowed; /* Protected by alloc_lock */
1674 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1675 int cpuset_mem_spread_rotor;
1676 int cpuset_slab_spread_rotor;
1677 #endif
1678 #ifdef CONFIG_CGROUPS
1679 /* Control Group info protected by css_set_lock */
1680 struct css_set __rcu *cgroups;
1681 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1682 struct list_head cg_list;
1683 #endif
1684 #ifdef CONFIG_FUTEX
1685 struct robust_list_head __user *robust_list;
1686 #ifdef CONFIG_COMPAT
1687 struct compat_robust_list_head __user *compat_robust_list;
1688 #endif
1689 struct list_head pi_state_list;
1690 struct futex_pi_state *pi_state_cache;
1691 #endif
1692 #ifdef CONFIG_PERF_EVENTS
1693 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1694 struct mutex perf_event_mutex;
1695 struct list_head perf_event_list;
1696 #endif
1697 #ifdef CONFIG_DEBUG_PREEMPT
1698 unsigned long preempt_disable_ip;
1699 #endif
1700 #ifdef CONFIG_NUMA
1701 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1702 short il_next;
1703 short pref_node_fork;
1704 #endif
1705 #ifdef CONFIG_NUMA_BALANCING
1706 int numa_scan_seq;
1707 unsigned int numa_scan_period;
1708 unsigned int numa_scan_period_max;
1709 int numa_preferred_nid;
1710 unsigned long numa_migrate_retry;
1711 u64 node_stamp; /* migration stamp */
1712 u64 last_task_numa_placement;
1713 u64 last_sum_exec_runtime;
1714 struct callback_head numa_work;
1715
1716 struct list_head numa_entry;
1717 struct numa_group *numa_group;
1718
1719 /*
1720 * numa_faults is an array split into four regions:
1721 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1722 * in this precise order.
1723 *
1724 * faults_memory: Exponential decaying average of faults on a per-node
1725 * basis. Scheduling placement decisions are made based on these
1726 * counts. The values remain static for the duration of a PTE scan.
1727 * faults_cpu: Track the nodes the process was running on when a NUMA
1728 * hinting fault was incurred.
1729 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1730 * during the current scan window. When the scan completes, the counts
1731 * in faults_memory and faults_cpu decay and these values are copied.
1732 */
1733 unsigned long *numa_faults;
1734 unsigned long total_numa_faults;
1735
1736 /*
1737 * numa_faults_locality tracks if faults recorded during the last
1738 * scan window were remote/local or failed to migrate. The task scan
1739 * period is adapted based on the locality of the faults with different
1740 * weights depending on whether they were shared or private faults
1741 */
1742 unsigned long numa_faults_locality[3];
1743
1744 unsigned long numa_pages_migrated;
1745 #endif /* CONFIG_NUMA_BALANCING */
1746
1747 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1748 struct tlbflush_unmap_batch tlb_ubc;
1749 #endif
1750
1751 struct rcu_head rcu;
1752
1753 /*
1754 * cache last used pipe for splice
1755 */
1756 struct pipe_inode_info *splice_pipe;
1757
1758 struct page_frag task_frag;
1759
1760 #ifdef CONFIG_TASK_DELAY_ACCT
1761 struct task_delay_info *delays;
1762 #endif
1763 #ifdef CONFIG_FAULT_INJECTION
1764 int make_it_fail;
1765 #endif
1766 /*
1767 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1768 * balance_dirty_pages() for some dirty throttling pause
1769 */
1770 int nr_dirtied;
1771 int nr_dirtied_pause;
1772 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1773
1774 #ifdef CONFIG_LATENCYTOP
1775 int latency_record_count;
1776 struct latency_record latency_record[LT_SAVECOUNT];
1777 #endif
1778 /*
1779 * time slack values; these are used to round up poll() and
1780 * select() etc timeout values. These are in nanoseconds.
1781 */
1782 unsigned long timer_slack_ns;
1783 unsigned long default_timer_slack_ns;
1784
1785 #ifdef CONFIG_KASAN
1786 unsigned int kasan_depth;
1787 #endif
1788 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1789 /* Index of current stored address in ret_stack */
1790 int curr_ret_stack;
1791 /* Stack of return addresses for return function tracing */
1792 struct ftrace_ret_stack *ret_stack;
1793 /* time stamp for last schedule */
1794 unsigned long long ftrace_timestamp;
1795 /*
1796 * Number of functions that haven't been traced
1797 * because of depth overrun.
1798 */
1799 atomic_t trace_overrun;
1800 /* Pause for the tracing */
1801 atomic_t tracing_graph_pause;
1802 #endif
1803 #ifdef CONFIG_TRACING
1804 /* state flags for use by tracers */
1805 unsigned long trace;
1806 /* bitmask and counter of trace recursion */
1807 unsigned long trace_recursion;
1808 #endif /* CONFIG_TRACING */
1809 #ifdef CONFIG_MEMCG
1810 struct mem_cgroup *memcg_in_oom;
1811 gfp_t memcg_oom_gfp_mask;
1812 int memcg_oom_order;
1813
1814 /* number of pages to reclaim on returning to userland */
1815 unsigned int memcg_nr_pages_over_high;
1816 #endif
1817 #ifdef CONFIG_UPROBES
1818 struct uprobe_task *utask;
1819 #endif
1820 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1821 unsigned int sequential_io;
1822 unsigned int sequential_io_avg;
1823 #endif
1824 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1825 unsigned long task_state_change;
1826 #endif
1827 int pagefault_disabled;
1828 /* CPU-specific state of this task */
1829 struct thread_struct thread;
1830 /*
1831 * WARNING: on x86, 'thread_struct' contains a variable-sized
1832 * structure. It *MUST* be at the end of 'task_struct'.
1833 *
1834 * Do not put anything below here!
1835 */
1836 };
1837
1838 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1839 extern int arch_task_struct_size __read_mostly;
1840 #else
1841 # define arch_task_struct_size (sizeof(struct task_struct))
1842 #endif
1843
1844 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1845 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1846
1847 #define TNF_MIGRATED 0x01
1848 #define TNF_NO_GROUP 0x02
1849 #define TNF_SHARED 0x04
1850 #define TNF_FAULT_LOCAL 0x08
1851 #define TNF_MIGRATE_FAIL 0x10
1852
1853 #ifdef CONFIG_NUMA_BALANCING
1854 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1855 extern pid_t task_numa_group_id(struct task_struct *p);
1856 extern void set_numabalancing_state(bool enabled);
1857 extern void task_numa_free(struct task_struct *p);
1858 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1859 int src_nid, int dst_cpu);
1860 #else
1861 static inline void task_numa_fault(int last_node, int node, int pages,
1862 int flags)
1863 {
1864 }
1865 static inline pid_t task_numa_group_id(struct task_struct *p)
1866 {
1867 return 0;
1868 }
1869 static inline void set_numabalancing_state(bool enabled)
1870 {
1871 }
1872 static inline void task_numa_free(struct task_struct *p)
1873 {
1874 }
1875 static inline bool should_numa_migrate_memory(struct task_struct *p,
1876 struct page *page, int src_nid, int dst_cpu)
1877 {
1878 return true;
1879 }
1880 #endif
1881
1882 static inline struct pid *task_pid(struct task_struct *task)
1883 {
1884 return task->pids[PIDTYPE_PID].pid;
1885 }
1886
1887 static inline struct pid *task_tgid(struct task_struct *task)
1888 {
1889 return task->group_leader->pids[PIDTYPE_PID].pid;
1890 }
1891
1892 /*
1893 * Without tasklist or rcu lock it is not safe to dereference
1894 * the result of task_pgrp/task_session even if task == current,
1895 * we can race with another thread doing sys_setsid/sys_setpgid.
1896 */
1897 static inline struct pid *task_pgrp(struct task_struct *task)
1898 {
1899 return task->group_leader->pids[PIDTYPE_PGID].pid;
1900 }
1901
1902 static inline struct pid *task_session(struct task_struct *task)
1903 {
1904 return task->group_leader->pids[PIDTYPE_SID].pid;
1905 }
1906
1907 struct pid_namespace;
1908
1909 /*
1910 * the helpers to get the task's different pids as they are seen
1911 * from various namespaces
1912 *
1913 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1914 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1915 * current.
1916 * task_xid_nr_ns() : id seen from the ns specified;
1917 *
1918 * set_task_vxid() : assigns a virtual id to a task;
1919 *
1920 * see also pid_nr() etc in include/linux/pid.h
1921 */
1922 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1923 struct pid_namespace *ns);
1924
1925 static inline pid_t task_pid_nr(struct task_struct *tsk)
1926 {
1927 return tsk->pid;
1928 }
1929
1930 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1931 struct pid_namespace *ns)
1932 {
1933 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1934 }
1935
1936 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1937 {
1938 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1939 }
1940
1941
1942 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1943 {
1944 return tsk->tgid;
1945 }
1946
1947 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1948
1949 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1950 {
1951 return pid_vnr(task_tgid(tsk));
1952 }
1953
1954
1955 static inline int pid_alive(const struct task_struct *p);
1956 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1957 {
1958 pid_t pid = 0;
1959
1960 rcu_read_lock();
1961 if (pid_alive(tsk))
1962 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1963 rcu_read_unlock();
1964
1965 return pid;
1966 }
1967
1968 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1969 {
1970 return task_ppid_nr_ns(tsk, &init_pid_ns);
1971 }
1972
1973 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1974 struct pid_namespace *ns)
1975 {
1976 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1977 }
1978
1979 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1980 {
1981 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1982 }
1983
1984
1985 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1986 struct pid_namespace *ns)
1987 {
1988 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1989 }
1990
1991 static inline pid_t task_session_vnr(struct task_struct *tsk)
1992 {
1993 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1994 }
1995
1996 /* obsolete, do not use */
1997 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1998 {
1999 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2000 }
2001
2002 /**
2003 * pid_alive - check that a task structure is not stale
2004 * @p: Task structure to be checked.
2005 *
2006 * Test if a process is not yet dead (at most zombie state)
2007 * If pid_alive fails, then pointers within the task structure
2008 * can be stale and must not be dereferenced.
2009 *
2010 * Return: 1 if the process is alive. 0 otherwise.
2011 */
2012 static inline int pid_alive(const struct task_struct *p)
2013 {
2014 return p->pids[PIDTYPE_PID].pid != NULL;
2015 }
2016
2017 /**
2018 * is_global_init - check if a task structure is init. Since init
2019 * is free to have sub-threads we need to check tgid.
2020 * @tsk: Task structure to be checked.
2021 *
2022 * Check if a task structure is the first user space task the kernel created.
2023 *
2024 * Return: 1 if the task structure is init. 0 otherwise.
2025 */
2026 static inline int is_global_init(struct task_struct *tsk)
2027 {
2028 return task_tgid_nr(tsk) == 1;
2029 }
2030
2031 extern struct pid *cad_pid;
2032
2033 extern void free_task(struct task_struct *tsk);
2034 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2035
2036 extern void __put_task_struct(struct task_struct *t);
2037
2038 static inline void put_task_struct(struct task_struct *t)
2039 {
2040 if (atomic_dec_and_test(&t->usage))
2041 __put_task_struct(t);
2042 }
2043
2044 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2045 extern void task_cputime(struct task_struct *t,
2046 cputime_t *utime, cputime_t *stime);
2047 extern void task_cputime_scaled(struct task_struct *t,
2048 cputime_t *utimescaled, cputime_t *stimescaled);
2049 extern cputime_t task_gtime(struct task_struct *t);
2050 #else
2051 static inline void task_cputime(struct task_struct *t,
2052 cputime_t *utime, cputime_t *stime)
2053 {
2054 if (utime)
2055 *utime = t->utime;
2056 if (stime)
2057 *stime = t->stime;
2058 }
2059
2060 static inline void task_cputime_scaled(struct task_struct *t,
2061 cputime_t *utimescaled,
2062 cputime_t *stimescaled)
2063 {
2064 if (utimescaled)
2065 *utimescaled = t->utimescaled;
2066 if (stimescaled)
2067 *stimescaled = t->stimescaled;
2068 }
2069
2070 static inline cputime_t task_gtime(struct task_struct *t)
2071 {
2072 return t->gtime;
2073 }
2074 #endif
2075 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2076 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2077
2078 /*
2079 * Per process flags
2080 */
2081 #define PF_EXITING 0x00000004 /* getting shut down */
2082 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2083 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2084 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2085 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2086 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2087 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2088 #define PF_DUMPCORE 0x00000200 /* dumped core */
2089 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2090 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2091 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2092 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2093 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2094 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2095 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2096 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2097 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2098 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2099 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2100 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2101 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2102 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2103 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2104 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2105 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2106 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2107 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2108
2109 /*
2110 * Only the _current_ task can read/write to tsk->flags, but other
2111 * tasks can access tsk->flags in readonly mode for example
2112 * with tsk_used_math (like during threaded core dumping).
2113 * There is however an exception to this rule during ptrace
2114 * or during fork: the ptracer task is allowed to write to the
2115 * child->flags of its traced child (same goes for fork, the parent
2116 * can write to the child->flags), because we're guaranteed the
2117 * child is not running and in turn not changing child->flags
2118 * at the same time the parent does it.
2119 */
2120 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2121 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2122 #define clear_used_math() clear_stopped_child_used_math(current)
2123 #define set_used_math() set_stopped_child_used_math(current)
2124 #define conditional_stopped_child_used_math(condition, child) \
2125 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2126 #define conditional_used_math(condition) \
2127 conditional_stopped_child_used_math(condition, current)
2128 #define copy_to_stopped_child_used_math(child) \
2129 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2130 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2131 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2132 #define used_math() tsk_used_math(current)
2133
2134 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2135 * __GFP_FS is also cleared as it implies __GFP_IO.
2136 */
2137 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2138 {
2139 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2140 flags &= ~(__GFP_IO | __GFP_FS);
2141 return flags;
2142 }
2143
2144 static inline unsigned int memalloc_noio_save(void)
2145 {
2146 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2147 current->flags |= PF_MEMALLOC_NOIO;
2148 return flags;
2149 }
2150
2151 static inline void memalloc_noio_restore(unsigned int flags)
2152 {
2153 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2154 }
2155
2156 /* Per-process atomic flags. */
2157 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2158 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2159 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2160
2161
2162 #define TASK_PFA_TEST(name, func) \
2163 static inline bool task_##func(struct task_struct *p) \
2164 { return test_bit(PFA_##name, &p->atomic_flags); }
2165 #define TASK_PFA_SET(name, func) \
2166 static inline void task_set_##func(struct task_struct *p) \
2167 { set_bit(PFA_##name, &p->atomic_flags); }
2168 #define TASK_PFA_CLEAR(name, func) \
2169 static inline void task_clear_##func(struct task_struct *p) \
2170 { clear_bit(PFA_##name, &p->atomic_flags); }
2171
2172 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2173 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2174
2175 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2176 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2177 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2178
2179 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2180 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2181 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2182
2183 /*
2184 * task->jobctl flags
2185 */
2186 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2187
2188 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2189 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2190 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2191 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2192 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2193 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2194 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2195
2196 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2197 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2198 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2199 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2200 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2201 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2202 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2203
2204 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2205 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2206
2207 extern bool task_set_jobctl_pending(struct task_struct *task,
2208 unsigned long mask);
2209 extern void task_clear_jobctl_trapping(struct task_struct *task);
2210 extern void task_clear_jobctl_pending(struct task_struct *task,
2211 unsigned long mask);
2212
2213 static inline void rcu_copy_process(struct task_struct *p)
2214 {
2215 #ifdef CONFIG_PREEMPT_RCU
2216 p->rcu_read_lock_nesting = 0;
2217 p->rcu_read_unlock_special.s = 0;
2218 p->rcu_blocked_node = NULL;
2219 INIT_LIST_HEAD(&p->rcu_node_entry);
2220 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2221 #ifdef CONFIG_TASKS_RCU
2222 p->rcu_tasks_holdout = false;
2223 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2224 p->rcu_tasks_idle_cpu = -1;
2225 #endif /* #ifdef CONFIG_TASKS_RCU */
2226 }
2227
2228 static inline void tsk_restore_flags(struct task_struct *task,
2229 unsigned long orig_flags, unsigned long flags)
2230 {
2231 task->flags &= ~flags;
2232 task->flags |= orig_flags & flags;
2233 }
2234
2235 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2236 const struct cpumask *trial);
2237 extern int task_can_attach(struct task_struct *p,
2238 const struct cpumask *cs_cpus_allowed);
2239 #ifdef CONFIG_SMP
2240 extern void do_set_cpus_allowed(struct task_struct *p,
2241 const struct cpumask *new_mask);
2242
2243 extern int set_cpus_allowed_ptr(struct task_struct *p,
2244 const struct cpumask *new_mask);
2245 #else
2246 static inline void do_set_cpus_allowed(struct task_struct *p,
2247 const struct cpumask *new_mask)
2248 {
2249 }
2250 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2251 const struct cpumask *new_mask)
2252 {
2253 if (!cpumask_test_cpu(0, new_mask))
2254 return -EINVAL;
2255 return 0;
2256 }
2257 #endif
2258
2259 #ifdef CONFIG_NO_HZ_COMMON
2260 void calc_load_enter_idle(void);
2261 void calc_load_exit_idle(void);
2262 #else
2263 static inline void calc_load_enter_idle(void) { }
2264 static inline void calc_load_exit_idle(void) { }
2265 #endif /* CONFIG_NO_HZ_COMMON */
2266
2267 /*
2268 * Do not use outside of architecture code which knows its limitations.
2269 *
2270 * sched_clock() has no promise of monotonicity or bounded drift between
2271 * CPUs, use (which you should not) requires disabling IRQs.
2272 *
2273 * Please use one of the three interfaces below.
2274 */
2275 extern unsigned long long notrace sched_clock(void);
2276 /*
2277 * See the comment in kernel/sched/clock.c
2278 */
2279 extern u64 cpu_clock(int cpu);
2280 extern u64 local_clock(void);
2281 extern u64 running_clock(void);
2282 extern u64 sched_clock_cpu(int cpu);
2283
2284
2285 extern void sched_clock_init(void);
2286
2287 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2288 static inline void sched_clock_tick(void)
2289 {
2290 }
2291
2292 static inline void sched_clock_idle_sleep_event(void)
2293 {
2294 }
2295
2296 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2297 {
2298 }
2299 #else
2300 /*
2301 * Architectures can set this to 1 if they have specified
2302 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2303 * but then during bootup it turns out that sched_clock()
2304 * is reliable after all:
2305 */
2306 extern int sched_clock_stable(void);
2307 extern void set_sched_clock_stable(void);
2308 extern void clear_sched_clock_stable(void);
2309
2310 extern void sched_clock_tick(void);
2311 extern void sched_clock_idle_sleep_event(void);
2312 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2313 #endif
2314
2315 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2316 /*
2317 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2318 * The reason for this explicit opt-in is not to have perf penalty with
2319 * slow sched_clocks.
2320 */
2321 extern void enable_sched_clock_irqtime(void);
2322 extern void disable_sched_clock_irqtime(void);
2323 #else
2324 static inline void enable_sched_clock_irqtime(void) {}
2325 static inline void disable_sched_clock_irqtime(void) {}
2326 #endif
2327
2328 extern unsigned long long
2329 task_sched_runtime(struct task_struct *task);
2330
2331 /* sched_exec is called by processes performing an exec */
2332 #ifdef CONFIG_SMP
2333 extern void sched_exec(void);
2334 #else
2335 #define sched_exec() {}
2336 #endif
2337
2338 extern void sched_clock_idle_sleep_event(void);
2339 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2340
2341 #ifdef CONFIG_HOTPLUG_CPU
2342 extern void idle_task_exit(void);
2343 #else
2344 static inline void idle_task_exit(void) {}
2345 #endif
2346
2347 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2348 extern void wake_up_nohz_cpu(int cpu);
2349 #else
2350 static inline void wake_up_nohz_cpu(int cpu) { }
2351 #endif
2352
2353 #ifdef CONFIG_NO_HZ_FULL
2354 extern bool sched_can_stop_tick(void);
2355 extern u64 scheduler_tick_max_deferment(void);
2356 #else
2357 static inline bool sched_can_stop_tick(void) { return false; }
2358 #endif
2359
2360 #ifdef CONFIG_SCHED_AUTOGROUP
2361 extern void sched_autogroup_create_attach(struct task_struct *p);
2362 extern void sched_autogroup_detach(struct task_struct *p);
2363 extern void sched_autogroup_fork(struct signal_struct *sig);
2364 extern void sched_autogroup_exit(struct signal_struct *sig);
2365 #ifdef CONFIG_PROC_FS
2366 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2367 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2368 #endif
2369 #else
2370 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2371 static inline void sched_autogroup_detach(struct task_struct *p) { }
2372 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2373 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2374 #endif
2375
2376 extern int yield_to(struct task_struct *p, bool preempt);
2377 extern void set_user_nice(struct task_struct *p, long nice);
2378 extern int task_prio(const struct task_struct *p);
2379 /**
2380 * task_nice - return the nice value of a given task.
2381 * @p: the task in question.
2382 *
2383 * Return: The nice value [ -20 ... 0 ... 19 ].
2384 */
2385 static inline int task_nice(const struct task_struct *p)
2386 {
2387 return PRIO_TO_NICE((p)->static_prio);
2388 }
2389 extern int can_nice(const struct task_struct *p, const int nice);
2390 extern int task_curr(const struct task_struct *p);
2391 extern int idle_cpu(int cpu);
2392 extern int sched_setscheduler(struct task_struct *, int,
2393 const struct sched_param *);
2394 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2395 const struct sched_param *);
2396 extern int sched_setattr(struct task_struct *,
2397 const struct sched_attr *);
2398 extern struct task_struct *idle_task(int cpu);
2399 /**
2400 * is_idle_task - is the specified task an idle task?
2401 * @p: the task in question.
2402 *
2403 * Return: 1 if @p is an idle task. 0 otherwise.
2404 */
2405 static inline bool is_idle_task(const struct task_struct *p)
2406 {
2407 return p->pid == 0;
2408 }
2409 extern struct task_struct *curr_task(int cpu);
2410 extern void set_curr_task(int cpu, struct task_struct *p);
2411
2412 void yield(void);
2413
2414 union thread_union {
2415 struct thread_info thread_info;
2416 unsigned long stack[THREAD_SIZE/sizeof(long)];
2417 };
2418
2419 #ifndef __HAVE_ARCH_KSTACK_END
2420 static inline int kstack_end(void *addr)
2421 {
2422 /* Reliable end of stack detection:
2423 * Some APM bios versions misalign the stack
2424 */
2425 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2426 }
2427 #endif
2428
2429 extern union thread_union init_thread_union;
2430 extern struct task_struct init_task;
2431
2432 extern struct mm_struct init_mm;
2433
2434 extern struct pid_namespace init_pid_ns;
2435
2436 /*
2437 * find a task by one of its numerical ids
2438 *
2439 * find_task_by_pid_ns():
2440 * finds a task by its pid in the specified namespace
2441 * find_task_by_vpid():
2442 * finds a task by its virtual pid
2443 *
2444 * see also find_vpid() etc in include/linux/pid.h
2445 */
2446
2447 extern struct task_struct *find_task_by_vpid(pid_t nr);
2448 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2449 struct pid_namespace *ns);
2450
2451 /* per-UID process charging. */
2452 extern struct user_struct * alloc_uid(kuid_t);
2453 static inline struct user_struct *get_uid(struct user_struct *u)
2454 {
2455 atomic_inc(&u->__count);
2456 return u;
2457 }
2458 extern void free_uid(struct user_struct *);
2459
2460 #include <asm/current.h>
2461
2462 extern void xtime_update(unsigned long ticks);
2463
2464 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2465 extern int wake_up_process(struct task_struct *tsk);
2466 extern void wake_up_new_task(struct task_struct *tsk);
2467 #ifdef CONFIG_SMP
2468 extern void kick_process(struct task_struct *tsk);
2469 #else
2470 static inline void kick_process(struct task_struct *tsk) { }
2471 #endif
2472 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2473 extern void sched_dead(struct task_struct *p);
2474
2475 extern void proc_caches_init(void);
2476 extern void flush_signals(struct task_struct *);
2477 extern void ignore_signals(struct task_struct *);
2478 extern void flush_signal_handlers(struct task_struct *, int force_default);
2479 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2480
2481 static inline int kernel_dequeue_signal(siginfo_t *info)
2482 {
2483 struct task_struct *tsk = current;
2484 siginfo_t __info;
2485 int ret;
2486
2487 spin_lock_irq(&tsk->sighand->siglock);
2488 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2489 spin_unlock_irq(&tsk->sighand->siglock);
2490
2491 return ret;
2492 }
2493
2494 static inline void kernel_signal_stop(void)
2495 {
2496 spin_lock_irq(&current->sighand->siglock);
2497 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2498 __set_current_state(TASK_STOPPED);
2499 spin_unlock_irq(&current->sighand->siglock);
2500
2501 schedule();
2502 }
2503
2504 extern void release_task(struct task_struct * p);
2505 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2506 extern int force_sigsegv(int, struct task_struct *);
2507 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2508 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2509 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2510 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2511 const struct cred *, u32);
2512 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2513 extern int kill_pid(struct pid *pid, int sig, int priv);
2514 extern int kill_proc_info(int, struct siginfo *, pid_t);
2515 extern __must_check bool do_notify_parent(struct task_struct *, int);
2516 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2517 extern void force_sig(int, struct task_struct *);
2518 extern int send_sig(int, struct task_struct *, int);
2519 extern int zap_other_threads(struct task_struct *p);
2520 extern struct sigqueue *sigqueue_alloc(void);
2521 extern void sigqueue_free(struct sigqueue *);
2522 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2523 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2524
2525 static inline void restore_saved_sigmask(void)
2526 {
2527 if (test_and_clear_restore_sigmask())
2528 __set_current_blocked(&current->saved_sigmask);
2529 }
2530
2531 static inline sigset_t *sigmask_to_save(void)
2532 {
2533 sigset_t *res = &current->blocked;
2534 if (unlikely(test_restore_sigmask()))
2535 res = &current->saved_sigmask;
2536 return res;
2537 }
2538
2539 static inline int kill_cad_pid(int sig, int priv)
2540 {
2541 return kill_pid(cad_pid, sig, priv);
2542 }
2543
2544 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2545 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2546 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2547 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2548
2549 /*
2550 * True if we are on the alternate signal stack.
2551 */
2552 static inline int on_sig_stack(unsigned long sp)
2553 {
2554 #ifdef CONFIG_STACK_GROWSUP
2555 return sp >= current->sas_ss_sp &&
2556 sp - current->sas_ss_sp < current->sas_ss_size;
2557 #else
2558 return sp > current->sas_ss_sp &&
2559 sp - current->sas_ss_sp <= current->sas_ss_size;
2560 #endif
2561 }
2562
2563 static inline int sas_ss_flags(unsigned long sp)
2564 {
2565 if (!current->sas_ss_size)
2566 return SS_DISABLE;
2567
2568 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2569 }
2570
2571 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2572 {
2573 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2574 #ifdef CONFIG_STACK_GROWSUP
2575 return current->sas_ss_sp;
2576 #else
2577 return current->sas_ss_sp + current->sas_ss_size;
2578 #endif
2579 return sp;
2580 }
2581
2582 /*
2583 * Routines for handling mm_structs
2584 */
2585 extern struct mm_struct * mm_alloc(void);
2586
2587 /* mmdrop drops the mm and the page tables */
2588 extern void __mmdrop(struct mm_struct *);
2589 static inline void mmdrop(struct mm_struct * mm)
2590 {
2591 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2592 __mmdrop(mm);
2593 }
2594
2595 /* mmput gets rid of the mappings and all user-space */
2596 extern void mmput(struct mm_struct *);
2597 /* Grab a reference to a task's mm, if it is not already going away */
2598 extern struct mm_struct *get_task_mm(struct task_struct *task);
2599 /*
2600 * Grab a reference to a task's mm, if it is not already going away
2601 * and ptrace_may_access with the mode parameter passed to it
2602 * succeeds.
2603 */
2604 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2605 /* Remove the current tasks stale references to the old mm_struct */
2606 extern void mm_release(struct task_struct *, struct mm_struct *);
2607
2608 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2609 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2610 struct task_struct *, unsigned long);
2611 #else
2612 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2613 struct task_struct *);
2614
2615 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2616 * via pt_regs, so ignore the tls argument passed via C. */
2617 static inline int copy_thread_tls(
2618 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2619 struct task_struct *p, unsigned long tls)
2620 {
2621 return copy_thread(clone_flags, sp, arg, p);
2622 }
2623 #endif
2624 extern void flush_thread(void);
2625 extern void exit_thread(void);
2626
2627 extern void exit_files(struct task_struct *);
2628 extern void __cleanup_sighand(struct sighand_struct *);
2629
2630 extern void exit_itimers(struct signal_struct *);
2631 extern void flush_itimer_signals(void);
2632
2633 extern void do_group_exit(int);
2634
2635 extern int do_execve(struct filename *,
2636 const char __user * const __user *,
2637 const char __user * const __user *);
2638 extern int do_execveat(int, struct filename *,
2639 const char __user * const __user *,
2640 const char __user * const __user *,
2641 int);
2642 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2643 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2644 struct task_struct *fork_idle(int);
2645 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2646
2647 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2648 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2649 {
2650 __set_task_comm(tsk, from, false);
2651 }
2652 extern char *get_task_comm(char *to, struct task_struct *tsk);
2653
2654 #ifdef CONFIG_SMP
2655 void scheduler_ipi(void);
2656 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2657 #else
2658 static inline void scheduler_ipi(void) { }
2659 static inline unsigned long wait_task_inactive(struct task_struct *p,
2660 long match_state)
2661 {
2662 return 1;
2663 }
2664 #endif
2665
2666 #define tasklist_empty() \
2667 list_empty(&init_task.tasks)
2668
2669 #define next_task(p) \
2670 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2671
2672 #define for_each_process(p) \
2673 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2674
2675 extern bool current_is_single_threaded(void);
2676
2677 /*
2678 * Careful: do_each_thread/while_each_thread is a double loop so
2679 * 'break' will not work as expected - use goto instead.
2680 */
2681 #define do_each_thread(g, t) \
2682 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2683
2684 #define while_each_thread(g, t) \
2685 while ((t = next_thread(t)) != g)
2686
2687 #define __for_each_thread(signal, t) \
2688 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2689
2690 #define for_each_thread(p, t) \
2691 __for_each_thread((p)->signal, t)
2692
2693 /* Careful: this is a double loop, 'break' won't work as expected. */
2694 #define for_each_process_thread(p, t) \
2695 for_each_process(p) for_each_thread(p, t)
2696
2697 static inline int get_nr_threads(struct task_struct *tsk)
2698 {
2699 return tsk->signal->nr_threads;
2700 }
2701
2702 static inline bool thread_group_leader(struct task_struct *p)
2703 {
2704 return p->exit_signal >= 0;
2705 }
2706
2707 /* Do to the insanities of de_thread it is possible for a process
2708 * to have the pid of the thread group leader without actually being
2709 * the thread group leader. For iteration through the pids in proc
2710 * all we care about is that we have a task with the appropriate
2711 * pid, we don't actually care if we have the right task.
2712 */
2713 static inline bool has_group_leader_pid(struct task_struct *p)
2714 {
2715 return task_pid(p) == p->signal->leader_pid;
2716 }
2717
2718 static inline
2719 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2720 {
2721 return p1->signal == p2->signal;
2722 }
2723
2724 static inline struct task_struct *next_thread(const struct task_struct *p)
2725 {
2726 return list_entry_rcu(p->thread_group.next,
2727 struct task_struct, thread_group);
2728 }
2729
2730 static inline int thread_group_empty(struct task_struct *p)
2731 {
2732 return list_empty(&p->thread_group);
2733 }
2734
2735 #define delay_group_leader(p) \
2736 (thread_group_leader(p) && !thread_group_empty(p))
2737
2738 /*
2739 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2740 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2741 * pins the final release of task.io_context. Also protects ->cpuset and
2742 * ->cgroup.subsys[]. And ->vfork_done.
2743 *
2744 * Nests both inside and outside of read_lock(&tasklist_lock).
2745 * It must not be nested with write_lock_irq(&tasklist_lock),
2746 * neither inside nor outside.
2747 */
2748 static inline void task_lock(struct task_struct *p)
2749 {
2750 spin_lock(&p->alloc_lock);
2751 }
2752
2753 static inline void task_unlock(struct task_struct *p)
2754 {
2755 spin_unlock(&p->alloc_lock);
2756 }
2757
2758 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2759 unsigned long *flags);
2760
2761 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2762 unsigned long *flags)
2763 {
2764 struct sighand_struct *ret;
2765
2766 ret = __lock_task_sighand(tsk, flags);
2767 (void)__cond_lock(&tsk->sighand->siglock, ret);
2768 return ret;
2769 }
2770
2771 static inline void unlock_task_sighand(struct task_struct *tsk,
2772 unsigned long *flags)
2773 {
2774 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2775 }
2776
2777 /**
2778 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2779 * @tsk: task causing the changes
2780 *
2781 * All operations which modify a threadgroup - a new thread joining the
2782 * group, death of a member thread (the assertion of PF_EXITING) and
2783 * exec(2) dethreading the process and replacing the leader - are wrapped
2784 * by threadgroup_change_{begin|end}(). This is to provide a place which
2785 * subsystems needing threadgroup stability can hook into for
2786 * synchronization.
2787 */
2788 static inline void threadgroup_change_begin(struct task_struct *tsk)
2789 {
2790 might_sleep();
2791 cgroup_threadgroup_change_begin(tsk);
2792 }
2793
2794 /**
2795 * threadgroup_change_end - mark the end of changes to a threadgroup
2796 * @tsk: task causing the changes
2797 *
2798 * See threadgroup_change_begin().
2799 */
2800 static inline void threadgroup_change_end(struct task_struct *tsk)
2801 {
2802 cgroup_threadgroup_change_end(tsk);
2803 }
2804
2805 #ifndef __HAVE_THREAD_FUNCTIONS
2806
2807 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2808 #define task_stack_page(task) ((task)->stack)
2809
2810 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2811 {
2812 *task_thread_info(p) = *task_thread_info(org);
2813 task_thread_info(p)->task = p;
2814 }
2815
2816 /*
2817 * Return the address of the last usable long on the stack.
2818 *
2819 * When the stack grows down, this is just above the thread
2820 * info struct. Going any lower will corrupt the threadinfo.
2821 *
2822 * When the stack grows up, this is the highest address.
2823 * Beyond that position, we corrupt data on the next page.
2824 */
2825 static inline unsigned long *end_of_stack(struct task_struct *p)
2826 {
2827 #ifdef CONFIG_STACK_GROWSUP
2828 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2829 #else
2830 return (unsigned long *)(task_thread_info(p) + 1);
2831 #endif
2832 }
2833
2834 #endif
2835 #define task_stack_end_corrupted(task) \
2836 (*(end_of_stack(task)) != STACK_END_MAGIC)
2837
2838 static inline int object_is_on_stack(void *obj)
2839 {
2840 void *stack = task_stack_page(current);
2841
2842 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2843 }
2844
2845 extern void thread_info_cache_init(void);
2846
2847 #ifdef CONFIG_DEBUG_STACK_USAGE
2848 static inline unsigned long stack_not_used(struct task_struct *p)
2849 {
2850 unsigned long *n = end_of_stack(p);
2851
2852 do { /* Skip over canary */
2853 n++;
2854 } while (!*n);
2855
2856 return (unsigned long)n - (unsigned long)end_of_stack(p);
2857 }
2858 #endif
2859 extern void set_task_stack_end_magic(struct task_struct *tsk);
2860
2861 /* set thread flags in other task's structures
2862 * - see asm/thread_info.h for TIF_xxxx flags available
2863 */
2864 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2865 {
2866 set_ti_thread_flag(task_thread_info(tsk), flag);
2867 }
2868
2869 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2870 {
2871 clear_ti_thread_flag(task_thread_info(tsk), flag);
2872 }
2873
2874 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2875 {
2876 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2877 }
2878
2879 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2880 {
2881 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2882 }
2883
2884 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2885 {
2886 return test_ti_thread_flag(task_thread_info(tsk), flag);
2887 }
2888
2889 static inline void set_tsk_need_resched(struct task_struct *tsk)
2890 {
2891 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2892 }
2893
2894 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2895 {
2896 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2897 }
2898
2899 static inline int test_tsk_need_resched(struct task_struct *tsk)
2900 {
2901 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2902 }
2903
2904 static inline int restart_syscall(void)
2905 {
2906 set_tsk_thread_flag(current, TIF_SIGPENDING);
2907 return -ERESTARTNOINTR;
2908 }
2909
2910 static inline int signal_pending(struct task_struct *p)
2911 {
2912 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2913 }
2914
2915 static inline int __fatal_signal_pending(struct task_struct *p)
2916 {
2917 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2918 }
2919
2920 static inline int fatal_signal_pending(struct task_struct *p)
2921 {
2922 return signal_pending(p) && __fatal_signal_pending(p);
2923 }
2924
2925 static inline int signal_pending_state(long state, struct task_struct *p)
2926 {
2927 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2928 return 0;
2929 if (!signal_pending(p))
2930 return 0;
2931
2932 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2933 }
2934
2935 /*
2936 * cond_resched() and cond_resched_lock(): latency reduction via
2937 * explicit rescheduling in places that are safe. The return
2938 * value indicates whether a reschedule was done in fact.
2939 * cond_resched_lock() will drop the spinlock before scheduling,
2940 * cond_resched_softirq() will enable bhs before scheduling.
2941 */
2942 extern int _cond_resched(void);
2943
2944 #define cond_resched() ({ \
2945 ___might_sleep(__FILE__, __LINE__, 0); \
2946 _cond_resched(); \
2947 })
2948
2949 extern int __cond_resched_lock(spinlock_t *lock);
2950
2951 #define cond_resched_lock(lock) ({ \
2952 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2953 __cond_resched_lock(lock); \
2954 })
2955
2956 extern int __cond_resched_softirq(void);
2957
2958 #define cond_resched_softirq() ({ \
2959 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2960 __cond_resched_softirq(); \
2961 })
2962
2963 static inline void cond_resched_rcu(void)
2964 {
2965 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2966 rcu_read_unlock();
2967 cond_resched();
2968 rcu_read_lock();
2969 #endif
2970 }
2971
2972 /*
2973 * Does a critical section need to be broken due to another
2974 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2975 * but a general need for low latency)
2976 */
2977 static inline int spin_needbreak(spinlock_t *lock)
2978 {
2979 #ifdef CONFIG_PREEMPT
2980 return spin_is_contended(lock);
2981 #else
2982 return 0;
2983 #endif
2984 }
2985
2986 /*
2987 * Idle thread specific functions to determine the need_resched
2988 * polling state.
2989 */
2990 #ifdef TIF_POLLING_NRFLAG
2991 static inline int tsk_is_polling(struct task_struct *p)
2992 {
2993 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2994 }
2995
2996 static inline void __current_set_polling(void)
2997 {
2998 set_thread_flag(TIF_POLLING_NRFLAG);
2999 }
3000
3001 static inline bool __must_check current_set_polling_and_test(void)
3002 {
3003 __current_set_polling();
3004
3005 /*
3006 * Polling state must be visible before we test NEED_RESCHED,
3007 * paired by resched_curr()
3008 */
3009 smp_mb__after_atomic();
3010
3011 return unlikely(tif_need_resched());
3012 }
3013
3014 static inline void __current_clr_polling(void)
3015 {
3016 clear_thread_flag(TIF_POLLING_NRFLAG);
3017 }
3018
3019 static inline bool __must_check current_clr_polling_and_test(void)
3020 {
3021 __current_clr_polling();
3022
3023 /*
3024 * Polling state must be visible before we test NEED_RESCHED,
3025 * paired by resched_curr()
3026 */
3027 smp_mb__after_atomic();
3028
3029 return unlikely(tif_need_resched());
3030 }
3031
3032 #else
3033 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3034 static inline void __current_set_polling(void) { }
3035 static inline void __current_clr_polling(void) { }
3036
3037 static inline bool __must_check current_set_polling_and_test(void)
3038 {
3039 return unlikely(tif_need_resched());
3040 }
3041 static inline bool __must_check current_clr_polling_and_test(void)
3042 {
3043 return unlikely(tif_need_resched());
3044 }
3045 #endif
3046
3047 static inline void current_clr_polling(void)
3048 {
3049 __current_clr_polling();
3050
3051 /*
3052 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3053 * Once the bit is cleared, we'll get IPIs with every new
3054 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3055 * fold.
3056 */
3057 smp_mb(); /* paired with resched_curr() */
3058
3059 preempt_fold_need_resched();
3060 }
3061
3062 static __always_inline bool need_resched(void)
3063 {
3064 return unlikely(tif_need_resched());
3065 }
3066
3067 /*
3068 * Thread group CPU time accounting.
3069 */
3070 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3071 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3072
3073 /*
3074 * Reevaluate whether the task has signals pending delivery.
3075 * Wake the task if so.
3076 * This is required every time the blocked sigset_t changes.
3077 * callers must hold sighand->siglock.
3078 */
3079 extern void recalc_sigpending_and_wake(struct task_struct *t);
3080 extern void recalc_sigpending(void);
3081
3082 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3083
3084 static inline void signal_wake_up(struct task_struct *t, bool resume)
3085 {
3086 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3087 }
3088 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3089 {
3090 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3091 }
3092
3093 /*
3094 * Wrappers for p->thread_info->cpu access. No-op on UP.
3095 */
3096 #ifdef CONFIG_SMP
3097
3098 static inline unsigned int task_cpu(const struct task_struct *p)
3099 {
3100 return task_thread_info(p)->cpu;
3101 }
3102
3103 static inline int task_node(const struct task_struct *p)
3104 {
3105 return cpu_to_node(task_cpu(p));
3106 }
3107
3108 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3109
3110 #else
3111
3112 static inline unsigned int task_cpu(const struct task_struct *p)
3113 {
3114 return 0;
3115 }
3116
3117 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3118 {
3119 }
3120
3121 #endif /* CONFIG_SMP */
3122
3123 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3124 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3125
3126 #ifdef CONFIG_CGROUP_SCHED
3127 extern struct task_group root_task_group;
3128 #endif /* CONFIG_CGROUP_SCHED */
3129
3130 extern int task_can_switch_user(struct user_struct *up,
3131 struct task_struct *tsk);
3132
3133 #ifdef CONFIG_TASK_XACCT
3134 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3135 {
3136 tsk->ioac.rchar += amt;
3137 }
3138
3139 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3140 {
3141 tsk->ioac.wchar += amt;
3142 }
3143
3144 static inline void inc_syscr(struct task_struct *tsk)
3145 {
3146 tsk->ioac.syscr++;
3147 }
3148
3149 static inline void inc_syscw(struct task_struct *tsk)
3150 {
3151 tsk->ioac.syscw++;
3152 }
3153 #else
3154 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3155 {
3156 }
3157
3158 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3159 {
3160 }
3161
3162 static inline void inc_syscr(struct task_struct *tsk)
3163 {
3164 }
3165
3166 static inline void inc_syscw(struct task_struct *tsk)
3167 {
3168 }
3169 #endif
3170
3171 #ifndef TASK_SIZE_OF
3172 #define TASK_SIZE_OF(tsk) TASK_SIZE
3173 #endif
3174
3175 #ifdef CONFIG_MEMCG
3176 extern void mm_update_next_owner(struct mm_struct *mm);
3177 #else
3178 static inline void mm_update_next_owner(struct mm_struct *mm)
3179 {
3180 }
3181 #endif /* CONFIG_MEMCG */
3182
3183 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3184 unsigned int limit)
3185 {
3186 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3187 }
3188
3189 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3190 unsigned int limit)
3191 {
3192 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3193 }
3194
3195 static inline unsigned long rlimit(unsigned int limit)
3196 {
3197 return task_rlimit(current, limit);
3198 }
3199
3200 static inline unsigned long rlimit_max(unsigned int limit)
3201 {
3202 return task_rlimit_max(current, limit);
3203 }
3204
3205 #endif