]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/sched.h
Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh-2.6.23
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
30
31 /*
32 * Scheduling policies
33 */
34 #define SCHED_NORMAL 0
35 #define SCHED_FIFO 1
36 #define SCHED_RR 2
37 #define SCHED_BATCH 3
38 /* SCHED_ISO: reserved but not implemented yet */
39 #define SCHED_IDLE 5
40
41 #ifdef __KERNEL__
42
43 struct sched_param {
44 int sched_priority;
45 };
46
47 #include <asm/param.h> /* for HZ */
48
49 #include <linux/capability.h>
50 #include <linux/threads.h>
51 #include <linux/kernel.h>
52 #include <linux/types.h>
53 #include <linux/timex.h>
54 #include <linux/jiffies.h>
55 #include <linux/rbtree.h>
56 #include <linux/thread_info.h>
57 #include <linux/cpumask.h>
58 #include <linux/errno.h>
59 #include <linux/nodemask.h>
60
61 #include <asm/system.h>
62 #include <asm/semaphore.h>
63 #include <asm/page.h>
64 #include <asm/ptrace.h>
65 #include <asm/mmu.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/securebits.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/futex.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89
90 #include <asm/processor.h>
91
92 struct exec_domain;
93 struct futex_pi_state;
94 struct bio;
95
96 /*
97 * List of flags we want to share for kernel threads,
98 * if only because they are not used by them anyway.
99 */
100 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
101
102 /*
103 * These are the constant used to fake the fixed-point load-average
104 * counting. Some notes:
105 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
106 * a load-average precision of 10 bits integer + 11 bits fractional
107 * - if you want to count load-averages more often, you need more
108 * precision, or rounding will get you. With 2-second counting freq,
109 * the EXP_n values would be 1981, 2034 and 2043 if still using only
110 * 11 bit fractions.
111 */
112 extern unsigned long avenrun[]; /* Load averages */
113
114 #define FSHIFT 11 /* nr of bits of precision */
115 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
116 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
117 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
118 #define EXP_5 2014 /* 1/exp(5sec/5min) */
119 #define EXP_15 2037 /* 1/exp(5sec/15min) */
120
121 #define CALC_LOAD(load,exp,n) \
122 load *= exp; \
123 load += n*(FIXED_1-exp); \
124 load >>= FSHIFT;
125
126 extern unsigned long total_forks;
127 extern int nr_threads;
128 DECLARE_PER_CPU(unsigned long, process_counts);
129 extern int nr_processes(void);
130 extern unsigned long nr_running(void);
131 extern unsigned long nr_uninterruptible(void);
132 extern unsigned long nr_active(void);
133 extern unsigned long nr_iowait(void);
134 extern unsigned long weighted_cpuload(const int cpu);
135
136 struct seq_file;
137 struct cfs_rq;
138 #ifdef CONFIG_SCHED_DEBUG
139 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
140 extern void proc_sched_set_task(struct task_struct *p);
141 extern void
142 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now);
143 #else
144 static inline void
145 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
146 {
147 }
148 static inline void proc_sched_set_task(struct task_struct *p)
149 {
150 }
151 static inline void
152 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now)
153 {
154 }
155 #endif
156
157 /*
158 * Task state bitmask. NOTE! These bits are also
159 * encoded in fs/proc/array.c: get_task_state().
160 *
161 * We have two separate sets of flags: task->state
162 * is about runnability, while task->exit_state are
163 * about the task exiting. Confusing, but this way
164 * modifying one set can't modify the other one by
165 * mistake.
166 */
167 #define TASK_RUNNING 0
168 #define TASK_INTERRUPTIBLE 1
169 #define TASK_UNINTERRUPTIBLE 2
170 #define TASK_STOPPED 4
171 #define TASK_TRACED 8
172 /* in tsk->exit_state */
173 #define EXIT_ZOMBIE 16
174 #define EXIT_DEAD 32
175 /* in tsk->state again */
176 #define TASK_NONINTERACTIVE 64
177 #define TASK_DEAD 128
178
179 #define __set_task_state(tsk, state_value) \
180 do { (tsk)->state = (state_value); } while (0)
181 #define set_task_state(tsk, state_value) \
182 set_mb((tsk)->state, (state_value))
183
184 /*
185 * set_current_state() includes a barrier so that the write of current->state
186 * is correctly serialised wrt the caller's subsequent test of whether to
187 * actually sleep:
188 *
189 * set_current_state(TASK_UNINTERRUPTIBLE);
190 * if (do_i_need_to_sleep())
191 * schedule();
192 *
193 * If the caller does not need such serialisation then use __set_current_state()
194 */
195 #define __set_current_state(state_value) \
196 do { current->state = (state_value); } while (0)
197 #define set_current_state(state_value) \
198 set_mb(current->state, (state_value))
199
200 /* Task command name length */
201 #define TASK_COMM_LEN 16
202
203 #include <linux/spinlock.h>
204
205 /*
206 * This serializes "schedule()" and also protects
207 * the run-queue from deletions/modifications (but
208 * _adding_ to the beginning of the run-queue has
209 * a separate lock).
210 */
211 extern rwlock_t tasklist_lock;
212 extern spinlock_t mmlist_lock;
213
214 struct task_struct;
215
216 extern void sched_init(void);
217 extern void sched_init_smp(void);
218 extern void init_idle(struct task_struct *idle, int cpu);
219 extern void init_idle_bootup_task(struct task_struct *idle);
220
221 extern cpumask_t nohz_cpu_mask;
222 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
223 extern int select_nohz_load_balancer(int cpu);
224 #else
225 static inline int select_nohz_load_balancer(int cpu)
226 {
227 return 0;
228 }
229 #endif
230
231 /*
232 * Only dump TASK_* tasks. (0 for all tasks)
233 */
234 extern void show_state_filter(unsigned long state_filter);
235
236 static inline void show_state(void)
237 {
238 show_state_filter(0);
239 }
240
241 extern void show_regs(struct pt_regs *);
242
243 /*
244 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
245 * task), SP is the stack pointer of the first frame that should be shown in the back
246 * trace (or NULL if the entire call-chain of the task should be shown).
247 */
248 extern void show_stack(struct task_struct *task, unsigned long *sp);
249
250 void io_schedule(void);
251 long io_schedule_timeout(long timeout);
252
253 extern void cpu_init (void);
254 extern void trap_init(void);
255 extern void update_process_times(int user);
256 extern void scheduler_tick(void);
257
258 #ifdef CONFIG_DETECT_SOFTLOCKUP
259 extern void softlockup_tick(void);
260 extern void spawn_softlockup_task(void);
261 extern void touch_softlockup_watchdog(void);
262 extern void touch_all_softlockup_watchdogs(void);
263 #else
264 static inline void softlockup_tick(void)
265 {
266 }
267 static inline void spawn_softlockup_task(void)
268 {
269 }
270 static inline void touch_softlockup_watchdog(void)
271 {
272 }
273 static inline void touch_all_softlockup_watchdogs(void)
274 {
275 }
276 #endif
277
278
279 /* Attach to any functions which should be ignored in wchan output. */
280 #define __sched __attribute__((__section__(".sched.text")))
281 /* Is this address in the __sched functions? */
282 extern int in_sched_functions(unsigned long addr);
283
284 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
285 extern signed long FASTCALL(schedule_timeout(signed long timeout));
286 extern signed long schedule_timeout_interruptible(signed long timeout);
287 extern signed long schedule_timeout_uninterruptible(signed long timeout);
288 asmlinkage void schedule(void);
289
290 struct nsproxy;
291 struct user_namespace;
292
293 /* Maximum number of active map areas.. This is a random (large) number */
294 #define DEFAULT_MAX_MAP_COUNT 65536
295
296 extern int sysctl_max_map_count;
297
298 #include <linux/aio.h>
299
300 extern unsigned long
301 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
302 unsigned long, unsigned long);
303 extern unsigned long
304 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
305 unsigned long len, unsigned long pgoff,
306 unsigned long flags);
307 extern void arch_unmap_area(struct mm_struct *, unsigned long);
308 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
309
310 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
311 /*
312 * The mm counters are not protected by its page_table_lock,
313 * so must be incremented atomically.
314 */
315 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
316 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
317 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
318 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
319 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
320 typedef atomic_long_t mm_counter_t;
321
322 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
323 /*
324 * The mm counters are protected by its page_table_lock,
325 * so can be incremented directly.
326 */
327 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
328 #define get_mm_counter(mm, member) ((mm)->_##member)
329 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
330 #define inc_mm_counter(mm, member) (mm)->_##member++
331 #define dec_mm_counter(mm, member) (mm)->_##member--
332 typedef unsigned long mm_counter_t;
333
334 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
335
336 #define get_mm_rss(mm) \
337 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
338 #define update_hiwater_rss(mm) do { \
339 unsigned long _rss = get_mm_rss(mm); \
340 if ((mm)->hiwater_rss < _rss) \
341 (mm)->hiwater_rss = _rss; \
342 } while (0)
343 #define update_hiwater_vm(mm) do { \
344 if ((mm)->hiwater_vm < (mm)->total_vm) \
345 (mm)->hiwater_vm = (mm)->total_vm; \
346 } while (0)
347
348 extern void set_dumpable(struct mm_struct *mm, int value);
349 extern int get_dumpable(struct mm_struct *mm);
350
351 /* mm flags */
352 /* dumpable bits */
353 #define MMF_DUMPABLE 0 /* core dump is permitted */
354 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
355 #define MMF_DUMPABLE_BITS 2
356
357 /* coredump filter bits */
358 #define MMF_DUMP_ANON_PRIVATE 2
359 #define MMF_DUMP_ANON_SHARED 3
360 #define MMF_DUMP_MAPPED_PRIVATE 4
361 #define MMF_DUMP_MAPPED_SHARED 5
362 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
363 #define MMF_DUMP_FILTER_BITS 4
364 #define MMF_DUMP_FILTER_MASK \
365 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
366 #define MMF_DUMP_FILTER_DEFAULT \
367 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
368
369 struct mm_struct {
370 struct vm_area_struct * mmap; /* list of VMAs */
371 struct rb_root mm_rb;
372 struct vm_area_struct * mmap_cache; /* last find_vma result */
373 unsigned long (*get_unmapped_area) (struct file *filp,
374 unsigned long addr, unsigned long len,
375 unsigned long pgoff, unsigned long flags);
376 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
377 unsigned long mmap_base; /* base of mmap area */
378 unsigned long task_size; /* size of task vm space */
379 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
380 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
381 pgd_t * pgd;
382 atomic_t mm_users; /* How many users with user space? */
383 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
384 int map_count; /* number of VMAs */
385 struct rw_semaphore mmap_sem;
386 spinlock_t page_table_lock; /* Protects page tables and some counters */
387
388 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
389 * together off init_mm.mmlist, and are protected
390 * by mmlist_lock
391 */
392
393 /* Special counters, in some configurations protected by the
394 * page_table_lock, in other configurations by being atomic.
395 */
396 mm_counter_t _file_rss;
397 mm_counter_t _anon_rss;
398
399 unsigned long hiwater_rss; /* High-watermark of RSS usage */
400 unsigned long hiwater_vm; /* High-water virtual memory usage */
401
402 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
403 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
404 unsigned long start_code, end_code, start_data, end_data;
405 unsigned long start_brk, brk, start_stack;
406 unsigned long arg_start, arg_end, env_start, env_end;
407
408 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
409
410 cpumask_t cpu_vm_mask;
411
412 /* Architecture-specific MM context */
413 mm_context_t context;
414
415 /* Swap token stuff */
416 /*
417 * Last value of global fault stamp as seen by this process.
418 * In other words, this value gives an indication of how long
419 * it has been since this task got the token.
420 * Look at mm/thrash.c
421 */
422 unsigned int faultstamp;
423 unsigned int token_priority;
424 unsigned int last_interval;
425
426 unsigned long flags; /* Must use atomic bitops to access the bits */
427
428 /* coredumping support */
429 int core_waiters;
430 struct completion *core_startup_done, core_done;
431
432 /* aio bits */
433 rwlock_t ioctx_list_lock;
434 struct kioctx *ioctx_list;
435 };
436
437 struct sighand_struct {
438 atomic_t count;
439 struct k_sigaction action[_NSIG];
440 spinlock_t siglock;
441 struct list_head signalfd_list;
442 };
443
444 struct pacct_struct {
445 int ac_flag;
446 long ac_exitcode;
447 unsigned long ac_mem;
448 cputime_t ac_utime, ac_stime;
449 unsigned long ac_minflt, ac_majflt;
450 };
451
452 /*
453 * NOTE! "signal_struct" does not have it's own
454 * locking, because a shared signal_struct always
455 * implies a shared sighand_struct, so locking
456 * sighand_struct is always a proper superset of
457 * the locking of signal_struct.
458 */
459 struct signal_struct {
460 atomic_t count;
461 atomic_t live;
462
463 wait_queue_head_t wait_chldexit; /* for wait4() */
464
465 /* current thread group signal load-balancing target: */
466 struct task_struct *curr_target;
467
468 /* shared signal handling: */
469 struct sigpending shared_pending;
470
471 /* thread group exit support */
472 int group_exit_code;
473 /* overloaded:
474 * - notify group_exit_task when ->count is equal to notify_count
475 * - everyone except group_exit_task is stopped during signal delivery
476 * of fatal signals, group_exit_task processes the signal.
477 */
478 struct task_struct *group_exit_task;
479 int notify_count;
480
481 /* thread group stop support, overloads group_exit_code too */
482 int group_stop_count;
483 unsigned int flags; /* see SIGNAL_* flags below */
484
485 /* POSIX.1b Interval Timers */
486 struct list_head posix_timers;
487
488 /* ITIMER_REAL timer for the process */
489 struct hrtimer real_timer;
490 struct task_struct *tsk;
491 ktime_t it_real_incr;
492
493 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
494 cputime_t it_prof_expires, it_virt_expires;
495 cputime_t it_prof_incr, it_virt_incr;
496
497 /* job control IDs */
498 pid_t pgrp;
499 struct pid *tty_old_pgrp;
500
501 union {
502 pid_t session __deprecated;
503 pid_t __session;
504 };
505
506 /* boolean value for session group leader */
507 int leader;
508
509 struct tty_struct *tty; /* NULL if no tty */
510
511 /*
512 * Cumulative resource counters for dead threads in the group,
513 * and for reaped dead child processes forked by this group.
514 * Live threads maintain their own counters and add to these
515 * in __exit_signal, except for the group leader.
516 */
517 cputime_t utime, stime, cutime, cstime;
518 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
519 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
520 unsigned long inblock, oublock, cinblock, coublock;
521
522 /*
523 * Cumulative ns of scheduled CPU time for dead threads in the
524 * group, not including a zombie group leader. (This only differs
525 * from jiffies_to_ns(utime + stime) if sched_clock uses something
526 * other than jiffies.)
527 */
528 unsigned long long sum_sched_runtime;
529
530 /*
531 * We don't bother to synchronize most readers of this at all,
532 * because there is no reader checking a limit that actually needs
533 * to get both rlim_cur and rlim_max atomically, and either one
534 * alone is a single word that can safely be read normally.
535 * getrlimit/setrlimit use task_lock(current->group_leader) to
536 * protect this instead of the siglock, because they really
537 * have no need to disable irqs.
538 */
539 struct rlimit rlim[RLIM_NLIMITS];
540
541 struct list_head cpu_timers[3];
542
543 /* keep the process-shared keyrings here so that they do the right
544 * thing in threads created with CLONE_THREAD */
545 #ifdef CONFIG_KEYS
546 struct key *session_keyring; /* keyring inherited over fork */
547 struct key *process_keyring; /* keyring private to this process */
548 #endif
549 #ifdef CONFIG_BSD_PROCESS_ACCT
550 struct pacct_struct pacct; /* per-process accounting information */
551 #endif
552 #ifdef CONFIG_TASKSTATS
553 struct taskstats *stats;
554 #endif
555 #ifdef CONFIG_AUDIT
556 unsigned audit_tty;
557 struct tty_audit_buf *tty_audit_buf;
558 #endif
559 };
560
561 /* Context switch must be unlocked if interrupts are to be enabled */
562 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
563 # define __ARCH_WANT_UNLOCKED_CTXSW
564 #endif
565
566 /*
567 * Bits in flags field of signal_struct.
568 */
569 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
570 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
571 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
572 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
573
574 /*
575 * Some day this will be a full-fledged user tracking system..
576 */
577 struct user_struct {
578 atomic_t __count; /* reference count */
579 atomic_t processes; /* How many processes does this user have? */
580 atomic_t files; /* How many open files does this user have? */
581 atomic_t sigpending; /* How many pending signals does this user have? */
582 #ifdef CONFIG_INOTIFY_USER
583 atomic_t inotify_watches; /* How many inotify watches does this user have? */
584 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
585 #endif
586 /* protected by mq_lock */
587 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
588 unsigned long locked_shm; /* How many pages of mlocked shm ? */
589
590 #ifdef CONFIG_KEYS
591 struct key *uid_keyring; /* UID specific keyring */
592 struct key *session_keyring; /* UID's default session keyring */
593 #endif
594
595 /* Hash table maintenance information */
596 struct list_head uidhash_list;
597 uid_t uid;
598 };
599
600 extern struct user_struct *find_user(uid_t);
601
602 extern struct user_struct root_user;
603 #define INIT_USER (&root_user)
604
605 struct backing_dev_info;
606 struct reclaim_state;
607
608 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
609 struct sched_info {
610 /* cumulative counters */
611 unsigned long pcnt; /* # of times run on this cpu */
612 unsigned long long cpu_time, /* time spent on the cpu */
613 run_delay; /* time spent waiting on a runqueue */
614
615 /* timestamps */
616 unsigned long long last_arrival,/* when we last ran on a cpu */
617 last_queued; /* when we were last queued to run */
618 };
619 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
620
621 #ifdef CONFIG_SCHEDSTATS
622 extern const struct file_operations proc_schedstat_operations;
623 #endif /* CONFIG_SCHEDSTATS */
624
625 #ifdef CONFIG_TASK_DELAY_ACCT
626 struct task_delay_info {
627 spinlock_t lock;
628 unsigned int flags; /* Private per-task flags */
629
630 /* For each stat XXX, add following, aligned appropriately
631 *
632 * struct timespec XXX_start, XXX_end;
633 * u64 XXX_delay;
634 * u32 XXX_count;
635 *
636 * Atomicity of updates to XXX_delay, XXX_count protected by
637 * single lock above (split into XXX_lock if contention is an issue).
638 */
639
640 /*
641 * XXX_count is incremented on every XXX operation, the delay
642 * associated with the operation is added to XXX_delay.
643 * XXX_delay contains the accumulated delay time in nanoseconds.
644 */
645 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
646 u64 blkio_delay; /* wait for sync block io completion */
647 u64 swapin_delay; /* wait for swapin block io completion */
648 u32 blkio_count; /* total count of the number of sync block */
649 /* io operations performed */
650 u32 swapin_count; /* total count of the number of swapin block */
651 /* io operations performed */
652 };
653 #endif /* CONFIG_TASK_DELAY_ACCT */
654
655 static inline int sched_info_on(void)
656 {
657 #ifdef CONFIG_SCHEDSTATS
658 return 1;
659 #elif defined(CONFIG_TASK_DELAY_ACCT)
660 extern int delayacct_on;
661 return delayacct_on;
662 #else
663 return 0;
664 #endif
665 }
666
667 enum cpu_idle_type {
668 CPU_IDLE,
669 CPU_NOT_IDLE,
670 CPU_NEWLY_IDLE,
671 CPU_MAX_IDLE_TYPES
672 };
673
674 /*
675 * sched-domains (multiprocessor balancing) declarations:
676 */
677
678 /*
679 * Increase resolution of nice-level calculations:
680 */
681 #define SCHED_LOAD_SHIFT 10
682 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
683
684 #define SCHED_LOAD_SCALE_FUZZ (SCHED_LOAD_SCALE >> 1)
685
686 #ifdef CONFIG_SMP
687 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
688 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
689 #define SD_BALANCE_EXEC 4 /* Balance on exec */
690 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
691 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
692 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
693 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
694 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
695 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
696 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
697 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
698
699 #define BALANCE_FOR_MC_POWER \
700 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
701
702 #define BALANCE_FOR_PKG_POWER \
703 ((sched_mc_power_savings || sched_smt_power_savings) ? \
704 SD_POWERSAVINGS_BALANCE : 0)
705
706 #define test_sd_parent(sd, flag) ((sd->parent && \
707 (sd->parent->flags & flag)) ? 1 : 0)
708
709
710 struct sched_group {
711 struct sched_group *next; /* Must be a circular list */
712 cpumask_t cpumask;
713
714 /*
715 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
716 * single CPU. This is read only (except for setup, hotplug CPU).
717 * Note : Never change cpu_power without recompute its reciprocal
718 */
719 unsigned int __cpu_power;
720 /*
721 * reciprocal value of cpu_power to avoid expensive divides
722 * (see include/linux/reciprocal_div.h)
723 */
724 u32 reciprocal_cpu_power;
725 };
726
727 struct sched_domain {
728 /* These fields must be setup */
729 struct sched_domain *parent; /* top domain must be null terminated */
730 struct sched_domain *child; /* bottom domain must be null terminated */
731 struct sched_group *groups; /* the balancing groups of the domain */
732 cpumask_t span; /* span of all CPUs in this domain */
733 unsigned long min_interval; /* Minimum balance interval ms */
734 unsigned long max_interval; /* Maximum balance interval ms */
735 unsigned int busy_factor; /* less balancing by factor if busy */
736 unsigned int imbalance_pct; /* No balance until over watermark */
737 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
738 unsigned int busy_idx;
739 unsigned int idle_idx;
740 unsigned int newidle_idx;
741 unsigned int wake_idx;
742 unsigned int forkexec_idx;
743 int flags; /* See SD_* */
744
745 /* Runtime fields. */
746 unsigned long last_balance; /* init to jiffies. units in jiffies */
747 unsigned int balance_interval; /* initialise to 1. units in ms. */
748 unsigned int nr_balance_failed; /* initialise to 0 */
749
750 #ifdef CONFIG_SCHEDSTATS
751 /* load_balance() stats */
752 unsigned long lb_cnt[CPU_MAX_IDLE_TYPES];
753 unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
754 unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
755 unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
756 unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
757 unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
758 unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
759 unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
760
761 /* Active load balancing */
762 unsigned long alb_cnt;
763 unsigned long alb_failed;
764 unsigned long alb_pushed;
765
766 /* SD_BALANCE_EXEC stats */
767 unsigned long sbe_cnt;
768 unsigned long sbe_balanced;
769 unsigned long sbe_pushed;
770
771 /* SD_BALANCE_FORK stats */
772 unsigned long sbf_cnt;
773 unsigned long sbf_balanced;
774 unsigned long sbf_pushed;
775
776 /* try_to_wake_up() stats */
777 unsigned long ttwu_wake_remote;
778 unsigned long ttwu_move_affine;
779 unsigned long ttwu_move_balance;
780 #endif
781 };
782
783 extern int partition_sched_domains(cpumask_t *partition1,
784 cpumask_t *partition2);
785
786 #endif /* CONFIG_SMP */
787
788 /*
789 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
790 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
791 * task of nice 0 or enough lower priority tasks to bring up the
792 * weighted_cpuload
793 */
794 static inline int above_background_load(void)
795 {
796 unsigned long cpu;
797
798 for_each_online_cpu(cpu) {
799 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
800 return 1;
801 }
802 return 0;
803 }
804
805 struct io_context; /* See blkdev.h */
806 struct cpuset;
807
808 #define NGROUPS_SMALL 32
809 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
810 struct group_info {
811 int ngroups;
812 atomic_t usage;
813 gid_t small_block[NGROUPS_SMALL];
814 int nblocks;
815 gid_t *blocks[0];
816 };
817
818 /*
819 * get_group_info() must be called with the owning task locked (via task_lock())
820 * when task != current. The reason being that the vast majority of callers are
821 * looking at current->group_info, which can not be changed except by the
822 * current task. Changing current->group_info requires the task lock, too.
823 */
824 #define get_group_info(group_info) do { \
825 atomic_inc(&(group_info)->usage); \
826 } while (0)
827
828 #define put_group_info(group_info) do { \
829 if (atomic_dec_and_test(&(group_info)->usage)) \
830 groups_free(group_info); \
831 } while (0)
832
833 extern struct group_info *groups_alloc(int gidsetsize);
834 extern void groups_free(struct group_info *group_info);
835 extern int set_current_groups(struct group_info *group_info);
836 extern int groups_search(struct group_info *group_info, gid_t grp);
837 /* access the groups "array" with this macro */
838 #define GROUP_AT(gi, i) \
839 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
840
841 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
842 extern void prefetch_stack(struct task_struct *t);
843 #else
844 static inline void prefetch_stack(struct task_struct *t) { }
845 #endif
846
847 struct audit_context; /* See audit.c */
848 struct mempolicy;
849 struct pipe_inode_info;
850 struct uts_namespace;
851
852 struct rq;
853 struct sched_domain;
854
855 struct sched_class {
856 struct sched_class *next;
857
858 void (*enqueue_task) (struct rq *rq, struct task_struct *p,
859 int wakeup, u64 now);
860 void (*dequeue_task) (struct rq *rq, struct task_struct *p,
861 int sleep, u64 now);
862 void (*yield_task) (struct rq *rq, struct task_struct *p);
863
864 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
865
866 struct task_struct * (*pick_next_task) (struct rq *rq, u64 now);
867 void (*put_prev_task) (struct rq *rq, struct task_struct *p, u64 now);
868
869 int (*load_balance) (struct rq *this_rq, int this_cpu,
870 struct rq *busiest,
871 unsigned long max_nr_move, unsigned long max_load_move,
872 struct sched_domain *sd, enum cpu_idle_type idle,
873 int *all_pinned, unsigned long *total_load_moved);
874
875 void (*set_curr_task) (struct rq *rq);
876 void (*task_tick) (struct rq *rq, struct task_struct *p);
877 void (*task_new) (struct rq *rq, struct task_struct *p, u64 now);
878 };
879
880 struct load_weight {
881 unsigned long weight, inv_weight;
882 };
883
884 /*
885 * CFS stats for a schedulable entity (task, task-group etc)
886 *
887 * Current field usage histogram:
888 *
889 * 4 se->block_start
890 * 4 se->run_node
891 * 4 se->sleep_start
892 * 4 se->sleep_start_fair
893 * 6 se->load.weight
894 * 7 se->delta_fair
895 * 15 se->wait_runtime
896 */
897 struct sched_entity {
898 long wait_runtime;
899 unsigned long delta_fair_run;
900 unsigned long delta_fair_sleep;
901 unsigned long delta_exec;
902 s64 fair_key;
903 struct load_weight load; /* for load-balancing */
904 struct rb_node run_node;
905 unsigned int on_rq;
906
907 u64 exec_start;
908 u64 sum_exec_runtime;
909 u64 wait_start_fair;
910 u64 sleep_start_fair;
911
912 #ifdef CONFIG_SCHEDSTATS
913 u64 wait_start;
914 u64 wait_max;
915 s64 sum_wait_runtime;
916
917 u64 sleep_start;
918 u64 sleep_max;
919 s64 sum_sleep_runtime;
920
921 u64 block_start;
922 u64 block_max;
923 u64 exec_max;
924
925 unsigned long wait_runtime_overruns;
926 unsigned long wait_runtime_underruns;
927 #endif
928
929 #ifdef CONFIG_FAIR_GROUP_SCHED
930 struct sched_entity *parent;
931 /* rq on which this entity is (to be) queued: */
932 struct cfs_rq *cfs_rq;
933 /* rq "owned" by this entity/group: */
934 struct cfs_rq *my_q;
935 #endif
936 };
937
938 struct task_struct {
939 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
940 void *stack;
941 atomic_t usage;
942 unsigned int flags; /* per process flags, defined below */
943 unsigned int ptrace;
944
945 int lock_depth; /* BKL lock depth */
946
947 #ifdef CONFIG_SMP
948 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
949 int oncpu;
950 #endif
951 #endif
952
953 int prio, static_prio, normal_prio;
954 struct list_head run_list;
955 struct sched_class *sched_class;
956 struct sched_entity se;
957
958 #ifdef CONFIG_PREEMPT_NOTIFIERS
959 /* list of struct preempt_notifier: */
960 struct hlist_head preempt_notifiers;
961 #endif
962
963 unsigned short ioprio;
964 #ifdef CONFIG_BLK_DEV_IO_TRACE
965 unsigned int btrace_seq;
966 #endif
967
968 unsigned int policy;
969 cpumask_t cpus_allowed;
970 unsigned int time_slice;
971
972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
973 struct sched_info sched_info;
974 #endif
975
976 struct list_head tasks;
977 /*
978 * ptrace_list/ptrace_children forms the list of my children
979 * that were stolen by a ptracer.
980 */
981 struct list_head ptrace_children;
982 struct list_head ptrace_list;
983
984 struct mm_struct *mm, *active_mm;
985
986 /* task state */
987 struct linux_binfmt *binfmt;
988 int exit_state;
989 int exit_code, exit_signal;
990 int pdeath_signal; /* The signal sent when the parent dies */
991 /* ??? */
992 unsigned int personality;
993 unsigned did_exec:1;
994 pid_t pid;
995 pid_t tgid;
996
997 #ifdef CONFIG_CC_STACKPROTECTOR
998 /* Canary value for the -fstack-protector gcc feature */
999 unsigned long stack_canary;
1000 #endif
1001 /*
1002 * pointers to (original) parent process, youngest child, younger sibling,
1003 * older sibling, respectively. (p->father can be replaced with
1004 * p->parent->pid)
1005 */
1006 struct task_struct *real_parent; /* real parent process (when being debugged) */
1007 struct task_struct *parent; /* parent process */
1008 /*
1009 * children/sibling forms the list of my children plus the
1010 * tasks I'm ptracing.
1011 */
1012 struct list_head children; /* list of my children */
1013 struct list_head sibling; /* linkage in my parent's children list */
1014 struct task_struct *group_leader; /* threadgroup leader */
1015
1016 /* PID/PID hash table linkage. */
1017 struct pid_link pids[PIDTYPE_MAX];
1018 struct list_head thread_group;
1019
1020 struct completion *vfork_done; /* for vfork() */
1021 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1022 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1023
1024 unsigned int rt_priority;
1025 cputime_t utime, stime;
1026 unsigned long nvcsw, nivcsw; /* context switch counts */
1027 struct timespec start_time; /* monotonic time */
1028 struct timespec real_start_time; /* boot based time */
1029 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1030 unsigned long min_flt, maj_flt;
1031
1032 cputime_t it_prof_expires, it_virt_expires;
1033 unsigned long long it_sched_expires;
1034 struct list_head cpu_timers[3];
1035
1036 /* process credentials */
1037 uid_t uid,euid,suid,fsuid;
1038 gid_t gid,egid,sgid,fsgid;
1039 struct group_info *group_info;
1040 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1041 unsigned keep_capabilities:1;
1042 struct user_struct *user;
1043 #ifdef CONFIG_KEYS
1044 struct key *request_key_auth; /* assumed request_key authority */
1045 struct key *thread_keyring; /* keyring private to this thread */
1046 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1047 #endif
1048 /*
1049 * fpu_counter contains the number of consecutive context switches
1050 * that the FPU is used. If this is over a threshold, the lazy fpu
1051 * saving becomes unlazy to save the trap. This is an unsigned char
1052 * so that after 256 times the counter wraps and the behavior turns
1053 * lazy again; this to deal with bursty apps that only use FPU for
1054 * a short time
1055 */
1056 unsigned char fpu_counter;
1057 int oomkilladj; /* OOM kill score adjustment (bit shift). */
1058 char comm[TASK_COMM_LEN]; /* executable name excluding path
1059 - access with [gs]et_task_comm (which lock
1060 it with task_lock())
1061 - initialized normally by flush_old_exec */
1062 /* file system info */
1063 int link_count, total_link_count;
1064 #ifdef CONFIG_SYSVIPC
1065 /* ipc stuff */
1066 struct sysv_sem sysvsem;
1067 #endif
1068 /* CPU-specific state of this task */
1069 struct thread_struct thread;
1070 /* filesystem information */
1071 struct fs_struct *fs;
1072 /* open file information */
1073 struct files_struct *files;
1074 /* namespaces */
1075 struct nsproxy *nsproxy;
1076 /* signal handlers */
1077 struct signal_struct *signal;
1078 struct sighand_struct *sighand;
1079
1080 sigset_t blocked, real_blocked;
1081 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1082 struct sigpending pending;
1083
1084 unsigned long sas_ss_sp;
1085 size_t sas_ss_size;
1086 int (*notifier)(void *priv);
1087 void *notifier_data;
1088 sigset_t *notifier_mask;
1089
1090 void *security;
1091 struct audit_context *audit_context;
1092 seccomp_t seccomp;
1093
1094 /* Thread group tracking */
1095 u32 parent_exec_id;
1096 u32 self_exec_id;
1097 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1098 spinlock_t alloc_lock;
1099
1100 /* Protection of the PI data structures: */
1101 spinlock_t pi_lock;
1102
1103 #ifdef CONFIG_RT_MUTEXES
1104 /* PI waiters blocked on a rt_mutex held by this task */
1105 struct plist_head pi_waiters;
1106 /* Deadlock detection and priority inheritance handling */
1107 struct rt_mutex_waiter *pi_blocked_on;
1108 #endif
1109
1110 #ifdef CONFIG_DEBUG_MUTEXES
1111 /* mutex deadlock detection */
1112 struct mutex_waiter *blocked_on;
1113 #endif
1114 #ifdef CONFIG_TRACE_IRQFLAGS
1115 unsigned int irq_events;
1116 int hardirqs_enabled;
1117 unsigned long hardirq_enable_ip;
1118 unsigned int hardirq_enable_event;
1119 unsigned long hardirq_disable_ip;
1120 unsigned int hardirq_disable_event;
1121 int softirqs_enabled;
1122 unsigned long softirq_disable_ip;
1123 unsigned int softirq_disable_event;
1124 unsigned long softirq_enable_ip;
1125 unsigned int softirq_enable_event;
1126 int hardirq_context;
1127 int softirq_context;
1128 #endif
1129 #ifdef CONFIG_LOCKDEP
1130 # define MAX_LOCK_DEPTH 30UL
1131 u64 curr_chain_key;
1132 int lockdep_depth;
1133 struct held_lock held_locks[MAX_LOCK_DEPTH];
1134 unsigned int lockdep_recursion;
1135 #endif
1136
1137 /* journalling filesystem info */
1138 void *journal_info;
1139
1140 /* stacked block device info */
1141 struct bio *bio_list, **bio_tail;
1142
1143 /* VM state */
1144 struct reclaim_state *reclaim_state;
1145
1146 struct backing_dev_info *backing_dev_info;
1147
1148 struct io_context *io_context;
1149
1150 unsigned long ptrace_message;
1151 siginfo_t *last_siginfo; /* For ptrace use. */
1152 /*
1153 * current io wait handle: wait queue entry to use for io waits
1154 * If this thread is processing aio, this points at the waitqueue
1155 * inside the currently handled kiocb. It may be NULL (i.e. default
1156 * to a stack based synchronous wait) if its doing sync IO.
1157 */
1158 wait_queue_t *io_wait;
1159 #ifdef CONFIG_TASK_XACCT
1160 /* i/o counters(bytes read/written, #syscalls */
1161 u64 rchar, wchar, syscr, syscw;
1162 #endif
1163 struct task_io_accounting ioac;
1164 #if defined(CONFIG_TASK_XACCT)
1165 u64 acct_rss_mem1; /* accumulated rss usage */
1166 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1167 cputime_t acct_stimexpd;/* stime since last update */
1168 #endif
1169 #ifdef CONFIG_NUMA
1170 struct mempolicy *mempolicy;
1171 short il_next;
1172 #endif
1173 #ifdef CONFIG_CPUSETS
1174 struct cpuset *cpuset;
1175 nodemask_t mems_allowed;
1176 int cpuset_mems_generation;
1177 int cpuset_mem_spread_rotor;
1178 #endif
1179 struct robust_list_head __user *robust_list;
1180 #ifdef CONFIG_COMPAT
1181 struct compat_robust_list_head __user *compat_robust_list;
1182 #endif
1183 struct list_head pi_state_list;
1184 struct futex_pi_state *pi_state_cache;
1185
1186 atomic_t fs_excl; /* holding fs exclusive resources */
1187 struct rcu_head rcu;
1188
1189 /*
1190 * cache last used pipe for splice
1191 */
1192 struct pipe_inode_info *splice_pipe;
1193 #ifdef CONFIG_TASK_DELAY_ACCT
1194 struct task_delay_info *delays;
1195 #endif
1196 #ifdef CONFIG_FAULT_INJECTION
1197 int make_it_fail;
1198 #endif
1199 };
1200
1201 /*
1202 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1203 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1204 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1205 * values are inverted: lower p->prio value means higher priority.
1206 *
1207 * The MAX_USER_RT_PRIO value allows the actual maximum
1208 * RT priority to be separate from the value exported to
1209 * user-space. This allows kernel threads to set their
1210 * priority to a value higher than any user task. Note:
1211 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1212 */
1213
1214 #define MAX_USER_RT_PRIO 100
1215 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1216
1217 #define MAX_PRIO (MAX_RT_PRIO + 40)
1218 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1219
1220 static inline int rt_prio(int prio)
1221 {
1222 if (unlikely(prio < MAX_RT_PRIO))
1223 return 1;
1224 return 0;
1225 }
1226
1227 static inline int rt_task(struct task_struct *p)
1228 {
1229 return rt_prio(p->prio);
1230 }
1231
1232 static inline pid_t process_group(struct task_struct *tsk)
1233 {
1234 return tsk->signal->pgrp;
1235 }
1236
1237 static inline pid_t signal_session(struct signal_struct *sig)
1238 {
1239 return sig->__session;
1240 }
1241
1242 static inline pid_t process_session(struct task_struct *tsk)
1243 {
1244 return signal_session(tsk->signal);
1245 }
1246
1247 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1248 {
1249 sig->__session = session;
1250 }
1251
1252 static inline struct pid *task_pid(struct task_struct *task)
1253 {
1254 return task->pids[PIDTYPE_PID].pid;
1255 }
1256
1257 static inline struct pid *task_tgid(struct task_struct *task)
1258 {
1259 return task->group_leader->pids[PIDTYPE_PID].pid;
1260 }
1261
1262 static inline struct pid *task_pgrp(struct task_struct *task)
1263 {
1264 return task->group_leader->pids[PIDTYPE_PGID].pid;
1265 }
1266
1267 static inline struct pid *task_session(struct task_struct *task)
1268 {
1269 return task->group_leader->pids[PIDTYPE_SID].pid;
1270 }
1271
1272 /**
1273 * pid_alive - check that a task structure is not stale
1274 * @p: Task structure to be checked.
1275 *
1276 * Test if a process is not yet dead (at most zombie state)
1277 * If pid_alive fails, then pointers within the task structure
1278 * can be stale and must not be dereferenced.
1279 */
1280 static inline int pid_alive(struct task_struct *p)
1281 {
1282 return p->pids[PIDTYPE_PID].pid != NULL;
1283 }
1284
1285 /**
1286 * is_init - check if a task structure is init
1287 * @tsk: Task structure to be checked.
1288 *
1289 * Check if a task structure is the first user space task the kernel created.
1290 */
1291 static inline int is_init(struct task_struct *tsk)
1292 {
1293 return tsk->pid == 1;
1294 }
1295
1296 extern struct pid *cad_pid;
1297
1298 extern void free_task(struct task_struct *tsk);
1299 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1300
1301 extern void __put_task_struct(struct task_struct *t);
1302
1303 static inline void put_task_struct(struct task_struct *t)
1304 {
1305 if (atomic_dec_and_test(&t->usage))
1306 __put_task_struct(t);
1307 }
1308
1309 /*
1310 * Per process flags
1311 */
1312 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1313 /* Not implemented yet, only for 486*/
1314 #define PF_STARTING 0x00000002 /* being created */
1315 #define PF_EXITING 0x00000004 /* getting shut down */
1316 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1317 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1318 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1319 #define PF_DUMPCORE 0x00000200 /* dumped core */
1320 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1321 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1322 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1323 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1324 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1325 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1326 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1327 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1328 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1329 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1330 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1331 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1332 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1333 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1334 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1335 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1336 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1337 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1338
1339 /*
1340 * Only the _current_ task can read/write to tsk->flags, but other
1341 * tasks can access tsk->flags in readonly mode for example
1342 * with tsk_used_math (like during threaded core dumping).
1343 * There is however an exception to this rule during ptrace
1344 * or during fork: the ptracer task is allowed to write to the
1345 * child->flags of its traced child (same goes for fork, the parent
1346 * can write to the child->flags), because we're guaranteed the
1347 * child is not running and in turn not changing child->flags
1348 * at the same time the parent does it.
1349 */
1350 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1351 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1352 #define clear_used_math() clear_stopped_child_used_math(current)
1353 #define set_used_math() set_stopped_child_used_math(current)
1354 #define conditional_stopped_child_used_math(condition, child) \
1355 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1356 #define conditional_used_math(condition) \
1357 conditional_stopped_child_used_math(condition, current)
1358 #define copy_to_stopped_child_used_math(child) \
1359 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1360 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1361 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1362 #define used_math() tsk_used_math(current)
1363
1364 #ifdef CONFIG_SMP
1365 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1366 #else
1367 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1368 {
1369 if (!cpu_isset(0, new_mask))
1370 return -EINVAL;
1371 return 0;
1372 }
1373 #endif
1374
1375 extern unsigned long long sched_clock(void);
1376
1377 /*
1378 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1379 * clock constructed from sched_clock():
1380 */
1381 extern unsigned long long cpu_clock(int cpu);
1382
1383 extern unsigned long long
1384 task_sched_runtime(struct task_struct *task);
1385
1386 /* sched_exec is called by processes performing an exec */
1387 #ifdef CONFIG_SMP
1388 extern void sched_exec(void);
1389 #else
1390 #define sched_exec() {}
1391 #endif
1392
1393 extern void sched_clock_unstable_event(void);
1394
1395 #ifdef CONFIG_HOTPLUG_CPU
1396 extern void idle_task_exit(void);
1397 #else
1398 static inline void idle_task_exit(void) {}
1399 #endif
1400
1401 extern void sched_idle_next(void);
1402
1403 extern unsigned int sysctl_sched_granularity;
1404 extern unsigned int sysctl_sched_wakeup_granularity;
1405 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1406 extern unsigned int sysctl_sched_stat_granularity;
1407 extern unsigned int sysctl_sched_runtime_limit;
1408 extern unsigned int sysctl_sched_child_runs_first;
1409 extern unsigned int sysctl_sched_features;
1410
1411 #ifdef CONFIG_RT_MUTEXES
1412 extern int rt_mutex_getprio(struct task_struct *p);
1413 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1414 extern void rt_mutex_adjust_pi(struct task_struct *p);
1415 #else
1416 static inline int rt_mutex_getprio(struct task_struct *p)
1417 {
1418 return p->normal_prio;
1419 }
1420 # define rt_mutex_adjust_pi(p) do { } while (0)
1421 #endif
1422
1423 extern void set_user_nice(struct task_struct *p, long nice);
1424 extern int task_prio(const struct task_struct *p);
1425 extern int task_nice(const struct task_struct *p);
1426 extern int can_nice(const struct task_struct *p, const int nice);
1427 extern int task_curr(const struct task_struct *p);
1428 extern int idle_cpu(int cpu);
1429 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1430 extern struct task_struct *idle_task(int cpu);
1431 extern struct task_struct *curr_task(int cpu);
1432 extern void set_curr_task(int cpu, struct task_struct *p);
1433
1434 void yield(void);
1435
1436 /*
1437 * The default (Linux) execution domain.
1438 */
1439 extern struct exec_domain default_exec_domain;
1440
1441 union thread_union {
1442 struct thread_info thread_info;
1443 unsigned long stack[THREAD_SIZE/sizeof(long)];
1444 };
1445
1446 #ifndef __HAVE_ARCH_KSTACK_END
1447 static inline int kstack_end(void *addr)
1448 {
1449 /* Reliable end of stack detection:
1450 * Some APM bios versions misalign the stack
1451 */
1452 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1453 }
1454 #endif
1455
1456 extern union thread_union init_thread_union;
1457 extern struct task_struct init_task;
1458
1459 extern struct mm_struct init_mm;
1460
1461 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1462 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1463 extern void __set_special_pids(pid_t session, pid_t pgrp);
1464
1465 /* per-UID process charging. */
1466 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1467 static inline struct user_struct *get_uid(struct user_struct *u)
1468 {
1469 atomic_inc(&u->__count);
1470 return u;
1471 }
1472 extern void free_uid(struct user_struct *);
1473 extern void switch_uid(struct user_struct *);
1474
1475 #include <asm/current.h>
1476
1477 extern void do_timer(unsigned long ticks);
1478
1479 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1480 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1481 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1482 unsigned long clone_flags));
1483 #ifdef CONFIG_SMP
1484 extern void kick_process(struct task_struct *tsk);
1485 #else
1486 static inline void kick_process(struct task_struct *tsk) { }
1487 #endif
1488 extern void sched_fork(struct task_struct *p, int clone_flags);
1489 extern void sched_dead(struct task_struct *p);
1490
1491 extern int in_group_p(gid_t);
1492 extern int in_egroup_p(gid_t);
1493
1494 extern void proc_caches_init(void);
1495 extern void flush_signals(struct task_struct *);
1496 extern void ignore_signals(struct task_struct *);
1497 extern void flush_signal_handlers(struct task_struct *, int force_default);
1498 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1499
1500 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1501 {
1502 unsigned long flags;
1503 int ret;
1504
1505 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1506 ret = dequeue_signal(tsk, mask, info);
1507 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1508
1509 return ret;
1510 }
1511
1512 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1513 sigset_t *mask);
1514 extern void unblock_all_signals(void);
1515 extern void release_task(struct task_struct * p);
1516 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1517 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1518 extern int force_sigsegv(int, struct task_struct *);
1519 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1520 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1521 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1522 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1523 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1524 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1525 extern int kill_pid(struct pid *pid, int sig, int priv);
1526 extern int kill_proc_info(int, struct siginfo *, pid_t);
1527 extern void do_notify_parent(struct task_struct *, int);
1528 extern void force_sig(int, struct task_struct *);
1529 extern void force_sig_specific(int, struct task_struct *);
1530 extern int send_sig(int, struct task_struct *, int);
1531 extern void zap_other_threads(struct task_struct *p);
1532 extern int kill_proc(pid_t, int, int);
1533 extern struct sigqueue *sigqueue_alloc(void);
1534 extern void sigqueue_free(struct sigqueue *);
1535 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1536 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1537 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1538 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1539
1540 static inline int kill_cad_pid(int sig, int priv)
1541 {
1542 return kill_pid(cad_pid, sig, priv);
1543 }
1544
1545 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1546 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1547 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1548 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1549
1550 static inline int is_si_special(const struct siginfo *info)
1551 {
1552 return info <= SEND_SIG_FORCED;
1553 }
1554
1555 /* True if we are on the alternate signal stack. */
1556
1557 static inline int on_sig_stack(unsigned long sp)
1558 {
1559 return (sp - current->sas_ss_sp < current->sas_ss_size);
1560 }
1561
1562 static inline int sas_ss_flags(unsigned long sp)
1563 {
1564 return (current->sas_ss_size == 0 ? SS_DISABLE
1565 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1566 }
1567
1568 /*
1569 * Routines for handling mm_structs
1570 */
1571 extern struct mm_struct * mm_alloc(void);
1572
1573 /* mmdrop drops the mm and the page tables */
1574 extern void FASTCALL(__mmdrop(struct mm_struct *));
1575 static inline void mmdrop(struct mm_struct * mm)
1576 {
1577 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1578 __mmdrop(mm);
1579 }
1580
1581 /* mmput gets rid of the mappings and all user-space */
1582 extern void mmput(struct mm_struct *);
1583 /* Grab a reference to a task's mm, if it is not already going away */
1584 extern struct mm_struct *get_task_mm(struct task_struct *task);
1585 /* Remove the current tasks stale references to the old mm_struct */
1586 extern void mm_release(struct task_struct *, struct mm_struct *);
1587
1588 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1589 extern void flush_thread(void);
1590 extern void exit_thread(void);
1591
1592 extern void exit_files(struct task_struct *);
1593 extern void __cleanup_signal(struct signal_struct *);
1594 extern void __cleanup_sighand(struct sighand_struct *);
1595 extern void exit_itimers(struct signal_struct *);
1596
1597 extern NORET_TYPE void do_group_exit(int);
1598
1599 extern void daemonize(const char *, ...);
1600 extern int allow_signal(int);
1601 extern int disallow_signal(int);
1602
1603 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1604 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1605 struct task_struct *fork_idle(int);
1606
1607 extern void set_task_comm(struct task_struct *tsk, char *from);
1608 extern void get_task_comm(char *to, struct task_struct *tsk);
1609
1610 #ifdef CONFIG_SMP
1611 extern void wait_task_inactive(struct task_struct * p);
1612 #else
1613 #define wait_task_inactive(p) do { } while (0)
1614 #endif
1615
1616 #define remove_parent(p) list_del_init(&(p)->sibling)
1617 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1618
1619 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1620
1621 #define for_each_process(p) \
1622 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1623
1624 /*
1625 * Careful: do_each_thread/while_each_thread is a double loop so
1626 * 'break' will not work as expected - use goto instead.
1627 */
1628 #define do_each_thread(g, t) \
1629 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1630
1631 #define while_each_thread(g, t) \
1632 while ((t = next_thread(t)) != g)
1633
1634 /* de_thread depends on thread_group_leader not being a pid based check */
1635 #define thread_group_leader(p) (p == p->group_leader)
1636
1637 /* Do to the insanities of de_thread it is possible for a process
1638 * to have the pid of the thread group leader without actually being
1639 * the thread group leader. For iteration through the pids in proc
1640 * all we care about is that we have a task with the appropriate
1641 * pid, we don't actually care if we have the right task.
1642 */
1643 static inline int has_group_leader_pid(struct task_struct *p)
1644 {
1645 return p->pid == p->tgid;
1646 }
1647
1648 static inline struct task_struct *next_thread(const struct task_struct *p)
1649 {
1650 return list_entry(rcu_dereference(p->thread_group.next),
1651 struct task_struct, thread_group);
1652 }
1653
1654 static inline int thread_group_empty(struct task_struct *p)
1655 {
1656 return list_empty(&p->thread_group);
1657 }
1658
1659 #define delay_group_leader(p) \
1660 (thread_group_leader(p) && !thread_group_empty(p))
1661
1662 /*
1663 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1664 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1665 * pins the final release of task.io_context. Also protects ->cpuset.
1666 *
1667 * Nests both inside and outside of read_lock(&tasklist_lock).
1668 * It must not be nested with write_lock_irq(&tasklist_lock),
1669 * neither inside nor outside.
1670 */
1671 static inline void task_lock(struct task_struct *p)
1672 {
1673 spin_lock(&p->alloc_lock);
1674 }
1675
1676 static inline void task_unlock(struct task_struct *p)
1677 {
1678 spin_unlock(&p->alloc_lock);
1679 }
1680
1681 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1682 unsigned long *flags);
1683
1684 static inline void unlock_task_sighand(struct task_struct *tsk,
1685 unsigned long *flags)
1686 {
1687 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1688 }
1689
1690 #ifndef __HAVE_THREAD_FUNCTIONS
1691
1692 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1693 #define task_stack_page(task) ((task)->stack)
1694
1695 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1696 {
1697 *task_thread_info(p) = *task_thread_info(org);
1698 task_thread_info(p)->task = p;
1699 }
1700
1701 static inline unsigned long *end_of_stack(struct task_struct *p)
1702 {
1703 return (unsigned long *)(task_thread_info(p) + 1);
1704 }
1705
1706 #endif
1707
1708 /* set thread flags in other task's structures
1709 * - see asm/thread_info.h for TIF_xxxx flags available
1710 */
1711 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1712 {
1713 set_ti_thread_flag(task_thread_info(tsk), flag);
1714 }
1715
1716 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1717 {
1718 clear_ti_thread_flag(task_thread_info(tsk), flag);
1719 }
1720
1721 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1722 {
1723 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1724 }
1725
1726 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1727 {
1728 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1729 }
1730
1731 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1732 {
1733 return test_ti_thread_flag(task_thread_info(tsk), flag);
1734 }
1735
1736 static inline void set_tsk_need_resched(struct task_struct *tsk)
1737 {
1738 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1739 }
1740
1741 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1742 {
1743 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1744 }
1745
1746 static inline int signal_pending(struct task_struct *p)
1747 {
1748 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1749 }
1750
1751 static inline int need_resched(void)
1752 {
1753 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1754 }
1755
1756 /*
1757 * cond_resched() and cond_resched_lock(): latency reduction via
1758 * explicit rescheduling in places that are safe. The return
1759 * value indicates whether a reschedule was done in fact.
1760 * cond_resched_lock() will drop the spinlock before scheduling,
1761 * cond_resched_softirq() will enable bhs before scheduling.
1762 */
1763 extern int cond_resched(void);
1764 extern int cond_resched_lock(spinlock_t * lock);
1765 extern int cond_resched_softirq(void);
1766
1767 /*
1768 * Does a critical section need to be broken due to another
1769 * task waiting?:
1770 */
1771 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1772 # define need_lockbreak(lock) ((lock)->break_lock)
1773 #else
1774 # define need_lockbreak(lock) 0
1775 #endif
1776
1777 /*
1778 * Does a critical section need to be broken due to another
1779 * task waiting or preemption being signalled:
1780 */
1781 static inline int lock_need_resched(spinlock_t *lock)
1782 {
1783 if (need_lockbreak(lock) || need_resched())
1784 return 1;
1785 return 0;
1786 }
1787
1788 /*
1789 * Reevaluate whether the task has signals pending delivery.
1790 * Wake the task if so.
1791 * This is required every time the blocked sigset_t changes.
1792 * callers must hold sighand->siglock.
1793 */
1794 extern void recalc_sigpending_and_wake(struct task_struct *t);
1795 extern void recalc_sigpending(void);
1796
1797 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1798
1799 /*
1800 * Wrappers for p->thread_info->cpu access. No-op on UP.
1801 */
1802 #ifdef CONFIG_SMP
1803
1804 static inline unsigned int task_cpu(const struct task_struct *p)
1805 {
1806 return task_thread_info(p)->cpu;
1807 }
1808
1809 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1810
1811 #else
1812
1813 static inline unsigned int task_cpu(const struct task_struct *p)
1814 {
1815 return 0;
1816 }
1817
1818 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1819 {
1820 }
1821
1822 #endif /* CONFIG_SMP */
1823
1824 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1825 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1826 #else
1827 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1828 {
1829 mm->mmap_base = TASK_UNMAPPED_BASE;
1830 mm->get_unmapped_area = arch_get_unmapped_area;
1831 mm->unmap_area = arch_unmap_area;
1832 }
1833 #endif
1834
1835 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1836 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1837
1838 extern int sched_mc_power_savings, sched_smt_power_savings;
1839
1840 extern void normalize_rt_tasks(void);
1841
1842 #ifdef CONFIG_TASK_XACCT
1843 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1844 {
1845 tsk->rchar += amt;
1846 }
1847
1848 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1849 {
1850 tsk->wchar += amt;
1851 }
1852
1853 static inline void inc_syscr(struct task_struct *tsk)
1854 {
1855 tsk->syscr++;
1856 }
1857
1858 static inline void inc_syscw(struct task_struct *tsk)
1859 {
1860 tsk->syscw++;
1861 }
1862 #else
1863 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1864 {
1865 }
1866
1867 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1868 {
1869 }
1870
1871 static inline void inc_syscr(struct task_struct *tsk)
1872 {
1873 }
1874
1875 static inline void inc_syscw(struct task_struct *tsk)
1876 {
1877 }
1878 #endif
1879
1880 #endif /* __KERNEL__ */
1881
1882 #endif