]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/sched.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32
33 #include <linux/smp.h>
34 #include <linux/sem.h>
35 #include <linux/shm.h>
36 #include <linux/signal.h>
37 #include <linux/compiler.h>
38 #include <linux/completion.h>
39 #include <linux/pid.h>
40 #include <linux/percpu.h>
41 #include <linux/topology.h>
42 #include <linux/seccomp.h>
43 #include <linux/rcupdate.h>
44 #include <linux/rculist.h>
45 #include <linux/rtmutex.h>
46
47 #include <linux/time.h>
48 #include <linux/param.h>
49 #include <linux/resource.h>
50 #include <linux/timer.h>
51 #include <linux/hrtimer.h>
52 #include <linux/kcov.h>
53 #include <linux/task_io_accounting.h>
54 #include <linux/latencytop.h>
55 #include <linux/cred.h>
56 #include <linux/llist.h>
57 #include <linux/uidgid.h>
58 #include <linux/gfp.h>
59 #include <linux/magic.h>
60 #include <linux/cgroup-defs.h>
61
62 #include <asm/processor.h>
63
64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66 /*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
109 */
110 struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126 };
127
128 struct futex_pi_state;
129 struct robust_list_head;
130 struct bio_list;
131 struct fs_struct;
132 struct perf_event_context;
133 struct blk_plug;
134 struct filename;
135 struct nameidata;
136
137 #define VMACACHE_BITS 2
138 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
139 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
140
141 /*
142 * These are the constant used to fake the fixed-point load-average
143 * counting. Some notes:
144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
145 * a load-average precision of 10 bits integer + 11 bits fractional
146 * - if you want to count load-averages more often, you need more
147 * precision, or rounding will get you. With 2-second counting freq,
148 * the EXP_n values would be 1981, 2034 and 2043 if still using only
149 * 11 bit fractions.
150 */
151 extern unsigned long avenrun[]; /* Load averages */
152 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
153
154 #define FSHIFT 11 /* nr of bits of precision */
155 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
156 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
157 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
158 #define EXP_5 2014 /* 1/exp(5sec/5min) */
159 #define EXP_15 2037 /* 1/exp(5sec/15min) */
160
161 #define CALC_LOAD(load,exp,n) \
162 load *= exp; \
163 load += n*(FIXED_1-exp); \
164 load >>= FSHIFT;
165
166 extern unsigned long total_forks;
167 extern int nr_threads;
168 DECLARE_PER_CPU(unsigned long, process_counts);
169 extern int nr_processes(void);
170 extern unsigned long nr_running(void);
171 extern bool single_task_running(void);
172 extern unsigned long nr_iowait(void);
173 extern unsigned long nr_iowait_cpu(int cpu);
174 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
175
176 extern void calc_global_load(unsigned long ticks);
177
178 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
179 extern void cpu_load_update_nohz_start(void);
180 extern void cpu_load_update_nohz_stop(void);
181 #else
182 static inline void cpu_load_update_nohz_start(void) { }
183 static inline void cpu_load_update_nohz_stop(void) { }
184 #endif
185
186 extern void dump_cpu_task(int cpu);
187
188 struct seq_file;
189 struct cfs_rq;
190 struct task_group;
191 #ifdef CONFIG_SCHED_DEBUG
192 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193 extern void proc_sched_set_task(struct task_struct *p);
194 #endif
195
196 /*
197 * Task state bitmask. NOTE! These bits are also
198 * encoded in fs/proc/array.c: get_task_state().
199 *
200 * We have two separate sets of flags: task->state
201 * is about runnability, while task->exit_state are
202 * about the task exiting. Confusing, but this way
203 * modifying one set can't modify the other one by
204 * mistake.
205 */
206 #define TASK_RUNNING 0
207 #define TASK_INTERRUPTIBLE 1
208 #define TASK_UNINTERRUPTIBLE 2
209 #define __TASK_STOPPED 4
210 #define __TASK_TRACED 8
211 /* in tsk->exit_state */
212 #define EXIT_DEAD 16
213 #define EXIT_ZOMBIE 32
214 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
215 /* in tsk->state again */
216 #define TASK_DEAD 64
217 #define TASK_WAKEKILL 128
218 #define TASK_WAKING 256
219 #define TASK_PARKED 512
220 #define TASK_NOLOAD 1024
221 #define TASK_NEW 2048
222 #define TASK_STATE_MAX 4096
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_current_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_current_state(state_value) \
257 do { \
258 current->task_state_change = _THIS_IP_; \
259 current->state = (state_value); \
260 } while (0)
261 #define set_current_state(state_value) \
262 do { \
263 current->task_state_change = _THIS_IP_; \
264 smp_store_mb(current->state, (state_value)); \
265 } while (0)
266
267 #else
268 /*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * for (;;) {
274 * set_current_state(TASK_UNINTERRUPTIBLE);
275 * if (!need_sleep)
276 * break;
277 *
278 * schedule();
279 * }
280 * __set_current_state(TASK_RUNNING);
281 *
282 * If the caller does not need such serialisation (because, for instance, the
283 * condition test and condition change and wakeup are under the same lock) then
284 * use __set_current_state().
285 *
286 * The above is typically ordered against the wakeup, which does:
287 *
288 * need_sleep = false;
289 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
290 *
291 * Where wake_up_state() (and all other wakeup primitives) imply enough
292 * barriers to order the store of the variable against wakeup.
293 *
294 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
295 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
296 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
297 *
298 * This is obviously fine, since they both store the exact same value.
299 *
300 * Also see the comments of try_to_wake_up().
301 */
302 #define __set_current_state(state_value) \
303 do { current->state = (state_value); } while (0)
304 #define set_current_state(state_value) \
305 smp_store_mb(current->state, (state_value))
306
307 #endif
308
309 /* Task command name length */
310 #define TASK_COMM_LEN 16
311
312 #include <linux/spinlock.h>
313
314 /*
315 * This serializes "schedule()" and also protects
316 * the run-queue from deletions/modifications (but
317 * _adding_ to the beginning of the run-queue has
318 * a separate lock).
319 */
320 extern rwlock_t tasklist_lock;
321 extern spinlock_t mmlist_lock;
322
323 struct task_struct;
324
325 #ifdef CONFIG_PROVE_RCU
326 extern int lockdep_tasklist_lock_is_held(void);
327 #endif /* #ifdef CONFIG_PROVE_RCU */
328
329 extern void sched_init(void);
330 extern void sched_init_smp(void);
331 extern asmlinkage void schedule_tail(struct task_struct *prev);
332 extern void init_idle(struct task_struct *idle, int cpu);
333 extern void init_idle_bootup_task(struct task_struct *idle);
334
335 extern cpumask_var_t cpu_isolated_map;
336
337 extern int runqueue_is_locked(int cpu);
338
339 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
340 extern void nohz_balance_enter_idle(int cpu);
341 extern void set_cpu_sd_state_idle(void);
342 extern int get_nohz_timer_target(void);
343 #else
344 static inline void nohz_balance_enter_idle(int cpu) { }
345 static inline void set_cpu_sd_state_idle(void) { }
346 #endif
347
348 /*
349 * Only dump TASK_* tasks. (0 for all tasks)
350 */
351 extern void show_state_filter(unsigned long state_filter);
352
353 static inline void show_state(void)
354 {
355 show_state_filter(0);
356 }
357
358 extern void show_regs(struct pt_regs *);
359
360 /*
361 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
362 * task), SP is the stack pointer of the first frame that should be shown in the back
363 * trace (or NULL if the entire call-chain of the task should be shown).
364 */
365 extern void show_stack(struct task_struct *task, unsigned long *sp);
366
367 extern void cpu_init (void);
368 extern void trap_init(void);
369 extern void update_process_times(int user);
370 extern void scheduler_tick(void);
371 extern int sched_cpu_starting(unsigned int cpu);
372 extern int sched_cpu_activate(unsigned int cpu);
373 extern int sched_cpu_deactivate(unsigned int cpu);
374
375 #ifdef CONFIG_HOTPLUG_CPU
376 extern int sched_cpu_dying(unsigned int cpu);
377 #else
378 # define sched_cpu_dying NULL
379 #endif
380
381 extern void sched_show_task(struct task_struct *p);
382
383 #ifdef CONFIG_LOCKUP_DETECTOR
384 extern void touch_softlockup_watchdog_sched(void);
385 extern void touch_softlockup_watchdog(void);
386 extern void touch_softlockup_watchdog_sync(void);
387 extern void touch_all_softlockup_watchdogs(void);
388 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
389 void __user *buffer,
390 size_t *lenp, loff_t *ppos);
391 extern unsigned int softlockup_panic;
392 extern unsigned int hardlockup_panic;
393 void lockup_detector_init(void);
394 #else
395 static inline void touch_softlockup_watchdog_sched(void)
396 {
397 }
398 static inline void touch_softlockup_watchdog(void)
399 {
400 }
401 static inline void touch_softlockup_watchdog_sync(void)
402 {
403 }
404 static inline void touch_all_softlockup_watchdogs(void)
405 {
406 }
407 static inline void lockup_detector_init(void)
408 {
409 }
410 #endif
411
412 #ifdef CONFIG_DETECT_HUNG_TASK
413 void reset_hung_task_detector(void);
414 #else
415 static inline void reset_hung_task_detector(void)
416 {
417 }
418 #endif
419
420 /* Attach to any functions which should be ignored in wchan output. */
421 #define __sched __attribute__((__section__(".sched.text")))
422
423 /* Linker adds these: start and end of __sched functions */
424 extern char __sched_text_start[], __sched_text_end[];
425
426 /* Is this address in the __sched functions? */
427 extern int in_sched_functions(unsigned long addr);
428
429 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
430 extern signed long schedule_timeout(signed long timeout);
431 extern signed long schedule_timeout_interruptible(signed long timeout);
432 extern signed long schedule_timeout_killable(signed long timeout);
433 extern signed long schedule_timeout_uninterruptible(signed long timeout);
434 extern signed long schedule_timeout_idle(signed long timeout);
435 asmlinkage void schedule(void);
436 extern void schedule_preempt_disabled(void);
437
438 extern int __must_check io_schedule_prepare(void);
439 extern void io_schedule_finish(int token);
440 extern long io_schedule_timeout(long timeout);
441 extern void io_schedule(void);
442
443 void __noreturn do_task_dead(void);
444
445 struct nsproxy;
446 struct user_namespace;
447
448 #ifdef CONFIG_MMU
449 extern void arch_pick_mmap_layout(struct mm_struct *mm);
450 extern unsigned long
451 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
452 unsigned long, unsigned long);
453 extern unsigned long
454 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
455 unsigned long len, unsigned long pgoff,
456 unsigned long flags);
457 #else
458 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
459 #endif
460
461 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
462 #define SUID_DUMP_USER 1 /* Dump as user of process */
463 #define SUID_DUMP_ROOT 2 /* Dump as root */
464
465 /* mm flags */
466
467 /* for SUID_DUMP_* above */
468 #define MMF_DUMPABLE_BITS 2
469 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
470
471 extern void set_dumpable(struct mm_struct *mm, int value);
472 /*
473 * This returns the actual value of the suid_dumpable flag. For things
474 * that are using this for checking for privilege transitions, it must
475 * test against SUID_DUMP_USER rather than treating it as a boolean
476 * value.
477 */
478 static inline int __get_dumpable(unsigned long mm_flags)
479 {
480 return mm_flags & MMF_DUMPABLE_MASK;
481 }
482
483 static inline int get_dumpable(struct mm_struct *mm)
484 {
485 return __get_dumpable(mm->flags);
486 }
487
488 /* coredump filter bits */
489 #define MMF_DUMP_ANON_PRIVATE 2
490 #define MMF_DUMP_ANON_SHARED 3
491 #define MMF_DUMP_MAPPED_PRIVATE 4
492 #define MMF_DUMP_MAPPED_SHARED 5
493 #define MMF_DUMP_ELF_HEADERS 6
494 #define MMF_DUMP_HUGETLB_PRIVATE 7
495 #define MMF_DUMP_HUGETLB_SHARED 8
496 #define MMF_DUMP_DAX_PRIVATE 9
497 #define MMF_DUMP_DAX_SHARED 10
498
499 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
500 #define MMF_DUMP_FILTER_BITS 9
501 #define MMF_DUMP_FILTER_MASK \
502 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
503 #define MMF_DUMP_FILTER_DEFAULT \
504 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
505 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
506
507 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
508 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
509 #else
510 # define MMF_DUMP_MASK_DEFAULT_ELF 0
511 #endif
512 /* leave room for more dump flags */
513 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
514 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
515 /*
516 * This one-shot flag is dropped due to necessity of changing exe once again
517 * on NFS restore
518 */
519 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
520
521 #define MMF_HAS_UPROBES 19 /* has uprobes */
522 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
523 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
524 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
525 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
526
527 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
528
529 struct sighand_struct {
530 atomic_t count;
531 struct k_sigaction action[_NSIG];
532 spinlock_t siglock;
533 wait_queue_head_t signalfd_wqh;
534 };
535
536 struct pacct_struct {
537 int ac_flag;
538 long ac_exitcode;
539 unsigned long ac_mem;
540 u64 ac_utime, ac_stime;
541 unsigned long ac_minflt, ac_majflt;
542 };
543
544 struct cpu_itimer {
545 u64 expires;
546 u64 incr;
547 };
548
549 /**
550 * struct prev_cputime - snaphsot of system and user cputime
551 * @utime: time spent in user mode
552 * @stime: time spent in system mode
553 * @lock: protects the above two fields
554 *
555 * Stores previous user/system time values such that we can guarantee
556 * monotonicity.
557 */
558 struct prev_cputime {
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560 u64 utime;
561 u64 stime;
562 raw_spinlock_t lock;
563 #endif
564 };
565
566 static inline void prev_cputime_init(struct prev_cputime *prev)
567 {
568 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 prev->utime = prev->stime = 0;
570 raw_spin_lock_init(&prev->lock);
571 #endif
572 }
573
574 /**
575 * struct task_cputime - collected CPU time counts
576 * @utime: time spent in user mode, in nanoseconds
577 * @stime: time spent in kernel mode, in nanoseconds
578 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
579 *
580 * This structure groups together three kinds of CPU time that are tracked for
581 * threads and thread groups. Most things considering CPU time want to group
582 * these counts together and treat all three of them in parallel.
583 */
584 struct task_cputime {
585 u64 utime;
586 u64 stime;
587 unsigned long long sum_exec_runtime;
588 };
589
590 /* Alternate field names when used to cache expirations. */
591 #define virt_exp utime
592 #define prof_exp stime
593 #define sched_exp sum_exec_runtime
594
595 /*
596 * This is the atomic variant of task_cputime, which can be used for
597 * storing and updating task_cputime statistics without locking.
598 */
599 struct task_cputime_atomic {
600 atomic64_t utime;
601 atomic64_t stime;
602 atomic64_t sum_exec_runtime;
603 };
604
605 #define INIT_CPUTIME_ATOMIC \
606 (struct task_cputime_atomic) { \
607 .utime = ATOMIC64_INIT(0), \
608 .stime = ATOMIC64_INIT(0), \
609 .sum_exec_runtime = ATOMIC64_INIT(0), \
610 }
611
612 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
613
614 /*
615 * Disable preemption until the scheduler is running -- use an unconditional
616 * value so that it also works on !PREEMPT_COUNT kernels.
617 *
618 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
619 */
620 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
621
622 /*
623 * Initial preempt_count value; reflects the preempt_count schedule invariant
624 * which states that during context switches:
625 *
626 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
627 *
628 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
629 * Note: See finish_task_switch().
630 */
631 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
632
633 /**
634 * struct thread_group_cputimer - thread group interval timer counts
635 * @cputime_atomic: atomic thread group interval timers.
636 * @running: true when there are timers running and
637 * @cputime_atomic receives updates.
638 * @checking_timer: true when a thread in the group is in the
639 * process of checking for thread group timers.
640 *
641 * This structure contains the version of task_cputime, above, that is
642 * used for thread group CPU timer calculations.
643 */
644 struct thread_group_cputimer {
645 struct task_cputime_atomic cputime_atomic;
646 bool running;
647 bool checking_timer;
648 };
649
650 #include <linux/rwsem.h>
651 struct autogroup;
652
653 /*
654 * NOTE! "signal_struct" does not have its own
655 * locking, because a shared signal_struct always
656 * implies a shared sighand_struct, so locking
657 * sighand_struct is always a proper superset of
658 * the locking of signal_struct.
659 */
660 struct signal_struct {
661 atomic_t sigcnt;
662 atomic_t live;
663 int nr_threads;
664 struct list_head thread_head;
665
666 wait_queue_head_t wait_chldexit; /* for wait4() */
667
668 /* current thread group signal load-balancing target: */
669 struct task_struct *curr_target;
670
671 /* shared signal handling: */
672 struct sigpending shared_pending;
673
674 /* thread group exit support */
675 int group_exit_code;
676 /* overloaded:
677 * - notify group_exit_task when ->count is equal to notify_count
678 * - everyone except group_exit_task is stopped during signal delivery
679 * of fatal signals, group_exit_task processes the signal.
680 */
681 int notify_count;
682 struct task_struct *group_exit_task;
683
684 /* thread group stop support, overloads group_exit_code too */
685 int group_stop_count;
686 unsigned int flags; /* see SIGNAL_* flags below */
687
688 /*
689 * PR_SET_CHILD_SUBREAPER marks a process, like a service
690 * manager, to re-parent orphan (double-forking) child processes
691 * to this process instead of 'init'. The service manager is
692 * able to receive SIGCHLD signals and is able to investigate
693 * the process until it calls wait(). All children of this
694 * process will inherit a flag if they should look for a
695 * child_subreaper process at exit.
696 */
697 unsigned int is_child_subreaper:1;
698 unsigned int has_child_subreaper:1;
699
700 #ifdef CONFIG_POSIX_TIMERS
701
702 /* POSIX.1b Interval Timers */
703 int posix_timer_id;
704 struct list_head posix_timers;
705
706 /* ITIMER_REAL timer for the process */
707 struct hrtimer real_timer;
708 ktime_t it_real_incr;
709
710 /*
711 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
712 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
713 * values are defined to 0 and 1 respectively
714 */
715 struct cpu_itimer it[2];
716
717 /*
718 * Thread group totals for process CPU timers.
719 * See thread_group_cputimer(), et al, for details.
720 */
721 struct thread_group_cputimer cputimer;
722
723 /* Earliest-expiration cache. */
724 struct task_cputime cputime_expires;
725
726 struct list_head cpu_timers[3];
727
728 #endif
729
730 struct pid *leader_pid;
731
732 #ifdef CONFIG_NO_HZ_FULL
733 atomic_t tick_dep_mask;
734 #endif
735
736 struct pid *tty_old_pgrp;
737
738 /* boolean value for session group leader */
739 int leader;
740
741 struct tty_struct *tty; /* NULL if no tty */
742
743 #ifdef CONFIG_SCHED_AUTOGROUP
744 struct autogroup *autogroup;
745 #endif
746 /*
747 * Cumulative resource counters for dead threads in the group,
748 * and for reaped dead child processes forked by this group.
749 * Live threads maintain their own counters and add to these
750 * in __exit_signal, except for the group leader.
751 */
752 seqlock_t stats_lock;
753 u64 utime, stime, cutime, cstime;
754 u64 gtime;
755 u64 cgtime;
756 struct prev_cputime prev_cputime;
757 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
758 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
759 unsigned long inblock, oublock, cinblock, coublock;
760 unsigned long maxrss, cmaxrss;
761 struct task_io_accounting ioac;
762
763 /*
764 * Cumulative ns of schedule CPU time fo dead threads in the
765 * group, not including a zombie group leader, (This only differs
766 * from jiffies_to_ns(utime + stime) if sched_clock uses something
767 * other than jiffies.)
768 */
769 unsigned long long sum_sched_runtime;
770
771 /*
772 * We don't bother to synchronize most readers of this at all,
773 * because there is no reader checking a limit that actually needs
774 * to get both rlim_cur and rlim_max atomically, and either one
775 * alone is a single word that can safely be read normally.
776 * getrlimit/setrlimit use task_lock(current->group_leader) to
777 * protect this instead of the siglock, because they really
778 * have no need to disable irqs.
779 */
780 struct rlimit rlim[RLIM_NLIMITS];
781
782 #ifdef CONFIG_BSD_PROCESS_ACCT
783 struct pacct_struct pacct; /* per-process accounting information */
784 #endif
785 #ifdef CONFIG_TASKSTATS
786 struct taskstats *stats;
787 #endif
788 #ifdef CONFIG_AUDIT
789 unsigned audit_tty;
790 struct tty_audit_buf *tty_audit_buf;
791 #endif
792
793 /*
794 * Thread is the potential origin of an oom condition; kill first on
795 * oom
796 */
797 bool oom_flag_origin;
798 short oom_score_adj; /* OOM kill score adjustment */
799 short oom_score_adj_min; /* OOM kill score adjustment min value.
800 * Only settable by CAP_SYS_RESOURCE. */
801 struct mm_struct *oom_mm; /* recorded mm when the thread group got
802 * killed by the oom killer */
803
804 struct mutex cred_guard_mutex; /* guard against foreign influences on
805 * credential calculations
806 * (notably. ptrace) */
807 };
808
809 /*
810 * Bits in flags field of signal_struct.
811 */
812 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
813 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
814 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
815 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
816 /*
817 * Pending notifications to parent.
818 */
819 #define SIGNAL_CLD_STOPPED 0x00000010
820 #define SIGNAL_CLD_CONTINUED 0x00000020
821 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
822
823 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
824
825 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
826 SIGNAL_STOP_CONTINUED)
827
828 static inline void signal_set_stop_flags(struct signal_struct *sig,
829 unsigned int flags)
830 {
831 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
832 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
833 }
834
835 /* If true, all threads except ->group_exit_task have pending SIGKILL */
836 static inline int signal_group_exit(const struct signal_struct *sig)
837 {
838 return (sig->flags & SIGNAL_GROUP_EXIT) ||
839 (sig->group_exit_task != NULL);
840 }
841
842 /*
843 * Some day this will be a full-fledged user tracking system..
844 */
845 struct user_struct {
846 atomic_t __count; /* reference count */
847 atomic_t processes; /* How many processes does this user have? */
848 atomic_t sigpending; /* How many pending signals does this user have? */
849 #ifdef CONFIG_FANOTIFY
850 atomic_t fanotify_listeners;
851 #endif
852 #ifdef CONFIG_EPOLL
853 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
854 #endif
855 #ifdef CONFIG_POSIX_MQUEUE
856 /* protected by mq_lock */
857 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
858 #endif
859 unsigned long locked_shm; /* How many pages of mlocked shm ? */
860 unsigned long unix_inflight; /* How many files in flight in unix sockets */
861 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
862
863 #ifdef CONFIG_KEYS
864 struct key *uid_keyring; /* UID specific keyring */
865 struct key *session_keyring; /* UID's default session keyring */
866 #endif
867
868 /* Hash table maintenance information */
869 struct hlist_node uidhash_node;
870 kuid_t uid;
871
872 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
873 atomic_long_t locked_vm;
874 #endif
875 };
876
877 extern int uids_sysfs_init(void);
878
879 extern struct user_struct *find_user(kuid_t);
880
881 extern struct user_struct root_user;
882 #define INIT_USER (&root_user)
883
884
885 struct backing_dev_info;
886 struct reclaim_state;
887
888 #ifdef CONFIG_SCHED_INFO
889 struct sched_info {
890 /* cumulative counters */
891 unsigned long pcount; /* # of times run on this cpu */
892 unsigned long long run_delay; /* time spent waiting on a runqueue */
893
894 /* timestamps */
895 unsigned long long last_arrival,/* when we last ran on a cpu */
896 last_queued; /* when we were last queued to run */
897 };
898 #endif /* CONFIG_SCHED_INFO */
899
900 #ifdef CONFIG_TASK_DELAY_ACCT
901 struct task_delay_info {
902 spinlock_t lock;
903 unsigned int flags; /* Private per-task flags */
904
905 /* For each stat XXX, add following, aligned appropriately
906 *
907 * struct timespec XXX_start, XXX_end;
908 * u64 XXX_delay;
909 * u32 XXX_count;
910 *
911 * Atomicity of updates to XXX_delay, XXX_count protected by
912 * single lock above (split into XXX_lock if contention is an issue).
913 */
914
915 /*
916 * XXX_count is incremented on every XXX operation, the delay
917 * associated with the operation is added to XXX_delay.
918 * XXX_delay contains the accumulated delay time in nanoseconds.
919 */
920 u64 blkio_start; /* Shared by blkio, swapin */
921 u64 blkio_delay; /* wait for sync block io completion */
922 u64 swapin_delay; /* wait for swapin block io completion */
923 u32 blkio_count; /* total count of the number of sync block */
924 /* io operations performed */
925 u32 swapin_count; /* total count of the number of swapin block */
926 /* io operations performed */
927
928 u64 freepages_start;
929 u64 freepages_delay; /* wait for memory reclaim */
930 u32 freepages_count; /* total count of memory reclaim */
931 };
932 #endif /* CONFIG_TASK_DELAY_ACCT */
933
934 static inline int sched_info_on(void)
935 {
936 #ifdef CONFIG_SCHEDSTATS
937 return 1;
938 #elif defined(CONFIG_TASK_DELAY_ACCT)
939 extern int delayacct_on;
940 return delayacct_on;
941 #else
942 return 0;
943 #endif
944 }
945
946 #ifdef CONFIG_SCHEDSTATS
947 void force_schedstat_enabled(void);
948 #endif
949
950 enum cpu_idle_type {
951 CPU_IDLE,
952 CPU_NOT_IDLE,
953 CPU_NEWLY_IDLE,
954 CPU_MAX_IDLE_TYPES
955 };
956
957 /*
958 * Integer metrics need fixed point arithmetic, e.g., sched/fair
959 * has a few: load, load_avg, util_avg, freq, and capacity.
960 *
961 * We define a basic fixed point arithmetic range, and then formalize
962 * all these metrics based on that basic range.
963 */
964 # define SCHED_FIXEDPOINT_SHIFT 10
965 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
966
967 /*
968 * Increase resolution of cpu_capacity calculations
969 */
970 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
971 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
972
973 /*
974 * Wake-queues are lists of tasks with a pending wakeup, whose
975 * callers have already marked the task as woken internally,
976 * and can thus carry on. A common use case is being able to
977 * do the wakeups once the corresponding user lock as been
978 * released.
979 *
980 * We hold reference to each task in the list across the wakeup,
981 * thus guaranteeing that the memory is still valid by the time
982 * the actual wakeups are performed in wake_up_q().
983 *
984 * One per task suffices, because there's never a need for a task to be
985 * in two wake queues simultaneously; it is forbidden to abandon a task
986 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
987 * already in a wake queue, the wakeup will happen soon and the second
988 * waker can just skip it.
989 *
990 * The DEFINE_WAKE_Q macro declares and initializes the list head.
991 * wake_up_q() does NOT reinitialize the list; it's expected to be
992 * called near the end of a function. Otherwise, the list can be
993 * re-initialized for later re-use by wake_q_init().
994 *
995 * Note that this can cause spurious wakeups. schedule() callers
996 * must ensure the call is done inside a loop, confirming that the
997 * wakeup condition has in fact occurred.
998 */
999 struct wake_q_node {
1000 struct wake_q_node *next;
1001 };
1002
1003 struct wake_q_head {
1004 struct wake_q_node *first;
1005 struct wake_q_node **lastp;
1006 };
1007
1008 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1009
1010 #define DEFINE_WAKE_Q(name) \
1011 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1012
1013 static inline void wake_q_init(struct wake_q_head *head)
1014 {
1015 head->first = WAKE_Q_TAIL;
1016 head->lastp = &head->first;
1017 }
1018
1019 extern void wake_q_add(struct wake_q_head *head,
1020 struct task_struct *task);
1021 extern void wake_up_q(struct wake_q_head *head);
1022
1023 /*
1024 * sched-domains (multiprocessor balancing) declarations:
1025 */
1026 #ifdef CONFIG_SMP
1027 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1028 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1029 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1030 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1031 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1032 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1033 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1034 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1035 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1036 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1037 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1038 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1039 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1040 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1041 #define SD_NUMA 0x4000 /* cross-node balancing */
1042
1043 #ifdef CONFIG_SCHED_SMT
1044 static inline int cpu_smt_flags(void)
1045 {
1046 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1047 }
1048 #endif
1049
1050 #ifdef CONFIG_SCHED_MC
1051 static inline int cpu_core_flags(void)
1052 {
1053 return SD_SHARE_PKG_RESOURCES;
1054 }
1055 #endif
1056
1057 #ifdef CONFIG_NUMA
1058 static inline int cpu_numa_flags(void)
1059 {
1060 return SD_NUMA;
1061 }
1062 #endif
1063
1064 extern int arch_asym_cpu_priority(int cpu);
1065
1066 struct sched_domain_attr {
1067 int relax_domain_level;
1068 };
1069
1070 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1071 .relax_domain_level = -1, \
1072 }
1073
1074 extern int sched_domain_level_max;
1075
1076 struct sched_group;
1077
1078 struct sched_domain_shared {
1079 atomic_t ref;
1080 atomic_t nr_busy_cpus;
1081 int has_idle_cores;
1082 };
1083
1084 struct sched_domain {
1085 /* These fields must be setup */
1086 struct sched_domain *parent; /* top domain must be null terminated */
1087 struct sched_domain *child; /* bottom domain must be null terminated */
1088 struct sched_group *groups; /* the balancing groups of the domain */
1089 unsigned long min_interval; /* Minimum balance interval ms */
1090 unsigned long max_interval; /* Maximum balance interval ms */
1091 unsigned int busy_factor; /* less balancing by factor if busy */
1092 unsigned int imbalance_pct; /* No balance until over watermark */
1093 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1094 unsigned int busy_idx;
1095 unsigned int idle_idx;
1096 unsigned int newidle_idx;
1097 unsigned int wake_idx;
1098 unsigned int forkexec_idx;
1099 unsigned int smt_gain;
1100
1101 int nohz_idle; /* NOHZ IDLE status */
1102 int flags; /* See SD_* */
1103 int level;
1104
1105 /* Runtime fields. */
1106 unsigned long last_balance; /* init to jiffies. units in jiffies */
1107 unsigned int balance_interval; /* initialise to 1. units in ms. */
1108 unsigned int nr_balance_failed; /* initialise to 0 */
1109
1110 /* idle_balance() stats */
1111 u64 max_newidle_lb_cost;
1112 unsigned long next_decay_max_lb_cost;
1113
1114 u64 avg_scan_cost; /* select_idle_sibling */
1115
1116 #ifdef CONFIG_SCHEDSTATS
1117 /* load_balance() stats */
1118 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1119 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1120 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1121 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1122 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1123 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1124 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1125 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1126
1127 /* Active load balancing */
1128 unsigned int alb_count;
1129 unsigned int alb_failed;
1130 unsigned int alb_pushed;
1131
1132 /* SD_BALANCE_EXEC stats */
1133 unsigned int sbe_count;
1134 unsigned int sbe_balanced;
1135 unsigned int sbe_pushed;
1136
1137 /* SD_BALANCE_FORK stats */
1138 unsigned int sbf_count;
1139 unsigned int sbf_balanced;
1140 unsigned int sbf_pushed;
1141
1142 /* try_to_wake_up() stats */
1143 unsigned int ttwu_wake_remote;
1144 unsigned int ttwu_move_affine;
1145 unsigned int ttwu_move_balance;
1146 #endif
1147 #ifdef CONFIG_SCHED_DEBUG
1148 char *name;
1149 #endif
1150 union {
1151 void *private; /* used during construction */
1152 struct rcu_head rcu; /* used during destruction */
1153 };
1154 struct sched_domain_shared *shared;
1155
1156 unsigned int span_weight;
1157 /*
1158 * Span of all CPUs in this domain.
1159 *
1160 * NOTE: this field is variable length. (Allocated dynamically
1161 * by attaching extra space to the end of the structure,
1162 * depending on how many CPUs the kernel has booted up with)
1163 */
1164 unsigned long span[0];
1165 };
1166
1167 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1168 {
1169 return to_cpumask(sd->span);
1170 }
1171
1172 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1173 struct sched_domain_attr *dattr_new);
1174
1175 /* Allocate an array of sched domains, for partition_sched_domains(). */
1176 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1177 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1178
1179 bool cpus_share_cache(int this_cpu, int that_cpu);
1180
1181 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1182 typedef int (*sched_domain_flags_f)(void);
1183
1184 #define SDTL_OVERLAP 0x01
1185
1186 struct sd_data {
1187 struct sched_domain **__percpu sd;
1188 struct sched_domain_shared **__percpu sds;
1189 struct sched_group **__percpu sg;
1190 struct sched_group_capacity **__percpu sgc;
1191 };
1192
1193 struct sched_domain_topology_level {
1194 sched_domain_mask_f mask;
1195 sched_domain_flags_f sd_flags;
1196 int flags;
1197 int numa_level;
1198 struct sd_data data;
1199 #ifdef CONFIG_SCHED_DEBUG
1200 char *name;
1201 #endif
1202 };
1203
1204 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1205 extern void wake_up_if_idle(int cpu);
1206
1207 #ifdef CONFIG_SCHED_DEBUG
1208 # define SD_INIT_NAME(type) .name = #type
1209 #else
1210 # define SD_INIT_NAME(type)
1211 #endif
1212
1213 #else /* CONFIG_SMP */
1214
1215 struct sched_domain_attr;
1216
1217 static inline void
1218 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1219 struct sched_domain_attr *dattr_new)
1220 {
1221 }
1222
1223 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1224 {
1225 return true;
1226 }
1227
1228 #endif /* !CONFIG_SMP */
1229
1230
1231 struct io_context; /* See blkdev.h */
1232
1233
1234 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1235 extern void prefetch_stack(struct task_struct *t);
1236 #else
1237 static inline void prefetch_stack(struct task_struct *t) { }
1238 #endif
1239
1240 struct audit_context; /* See audit.c */
1241 struct mempolicy;
1242 struct pipe_inode_info;
1243 struct uts_namespace;
1244
1245 struct load_weight {
1246 unsigned long weight;
1247 u32 inv_weight;
1248 };
1249
1250 /*
1251 * The load_avg/util_avg accumulates an infinite geometric series
1252 * (see __update_load_avg() in kernel/sched/fair.c).
1253 *
1254 * [load_avg definition]
1255 *
1256 * load_avg = runnable% * scale_load_down(load)
1257 *
1258 * where runnable% is the time ratio that a sched_entity is runnable.
1259 * For cfs_rq, it is the aggregated load_avg of all runnable and
1260 * blocked sched_entities.
1261 *
1262 * load_avg may also take frequency scaling into account:
1263 *
1264 * load_avg = runnable% * scale_load_down(load) * freq%
1265 *
1266 * where freq% is the CPU frequency normalized to the highest frequency.
1267 *
1268 * [util_avg definition]
1269 *
1270 * util_avg = running% * SCHED_CAPACITY_SCALE
1271 *
1272 * where running% is the time ratio that a sched_entity is running on
1273 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1274 * and blocked sched_entities.
1275 *
1276 * util_avg may also factor frequency scaling and CPU capacity scaling:
1277 *
1278 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1279 *
1280 * where freq% is the same as above, and capacity% is the CPU capacity
1281 * normalized to the greatest capacity (due to uarch differences, etc).
1282 *
1283 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1284 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1285 * we therefore scale them to as large a range as necessary. This is for
1286 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1287 *
1288 * [Overflow issue]
1289 *
1290 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1291 * with the highest load (=88761), always runnable on a single cfs_rq,
1292 * and should not overflow as the number already hits PID_MAX_LIMIT.
1293 *
1294 * For all other cases (including 32-bit kernels), struct load_weight's
1295 * weight will overflow first before we do, because:
1296 *
1297 * Max(load_avg) <= Max(load.weight)
1298 *
1299 * Then it is the load_weight's responsibility to consider overflow
1300 * issues.
1301 */
1302 struct sched_avg {
1303 u64 last_update_time, load_sum;
1304 u32 util_sum, period_contrib;
1305 unsigned long load_avg, util_avg;
1306 };
1307
1308 #ifdef CONFIG_SCHEDSTATS
1309 struct sched_statistics {
1310 u64 wait_start;
1311 u64 wait_max;
1312 u64 wait_count;
1313 u64 wait_sum;
1314 u64 iowait_count;
1315 u64 iowait_sum;
1316
1317 u64 sleep_start;
1318 u64 sleep_max;
1319 s64 sum_sleep_runtime;
1320
1321 u64 block_start;
1322 u64 block_max;
1323 u64 exec_max;
1324 u64 slice_max;
1325
1326 u64 nr_migrations_cold;
1327 u64 nr_failed_migrations_affine;
1328 u64 nr_failed_migrations_running;
1329 u64 nr_failed_migrations_hot;
1330 u64 nr_forced_migrations;
1331
1332 u64 nr_wakeups;
1333 u64 nr_wakeups_sync;
1334 u64 nr_wakeups_migrate;
1335 u64 nr_wakeups_local;
1336 u64 nr_wakeups_remote;
1337 u64 nr_wakeups_affine;
1338 u64 nr_wakeups_affine_attempts;
1339 u64 nr_wakeups_passive;
1340 u64 nr_wakeups_idle;
1341 };
1342 #endif
1343
1344 struct sched_entity {
1345 struct load_weight load; /* for load-balancing */
1346 struct rb_node run_node;
1347 struct list_head group_node;
1348 unsigned int on_rq;
1349
1350 u64 exec_start;
1351 u64 sum_exec_runtime;
1352 u64 vruntime;
1353 u64 prev_sum_exec_runtime;
1354
1355 u64 nr_migrations;
1356
1357 #ifdef CONFIG_SCHEDSTATS
1358 struct sched_statistics statistics;
1359 #endif
1360
1361 #ifdef CONFIG_FAIR_GROUP_SCHED
1362 int depth;
1363 struct sched_entity *parent;
1364 /* rq on which this entity is (to be) queued: */
1365 struct cfs_rq *cfs_rq;
1366 /* rq "owned" by this entity/group: */
1367 struct cfs_rq *my_q;
1368 #endif
1369
1370 #ifdef CONFIG_SMP
1371 /*
1372 * Per entity load average tracking.
1373 *
1374 * Put into separate cache line so it does not
1375 * collide with read-mostly values above.
1376 */
1377 struct sched_avg avg ____cacheline_aligned_in_smp;
1378 #endif
1379 };
1380
1381 struct sched_rt_entity {
1382 struct list_head run_list;
1383 unsigned long timeout;
1384 unsigned long watchdog_stamp;
1385 unsigned int time_slice;
1386 unsigned short on_rq;
1387 unsigned short on_list;
1388
1389 struct sched_rt_entity *back;
1390 #ifdef CONFIG_RT_GROUP_SCHED
1391 struct sched_rt_entity *parent;
1392 /* rq on which this entity is (to be) queued: */
1393 struct rt_rq *rt_rq;
1394 /* rq "owned" by this entity/group: */
1395 struct rt_rq *my_q;
1396 #endif
1397 };
1398
1399 struct sched_dl_entity {
1400 struct rb_node rb_node;
1401
1402 /*
1403 * Original scheduling parameters. Copied here from sched_attr
1404 * during sched_setattr(), they will remain the same until
1405 * the next sched_setattr().
1406 */
1407 u64 dl_runtime; /* maximum runtime for each instance */
1408 u64 dl_deadline; /* relative deadline of each instance */
1409 u64 dl_period; /* separation of two instances (period) */
1410 u64 dl_bw; /* dl_runtime / dl_deadline */
1411
1412 /*
1413 * Actual scheduling parameters. Initialized with the values above,
1414 * they are continously updated during task execution. Note that
1415 * the remaining runtime could be < 0 in case we are in overrun.
1416 */
1417 s64 runtime; /* remaining runtime for this instance */
1418 u64 deadline; /* absolute deadline for this instance */
1419 unsigned int flags; /* specifying the scheduler behaviour */
1420
1421 /*
1422 * Some bool flags:
1423 *
1424 * @dl_throttled tells if we exhausted the runtime. If so, the
1425 * task has to wait for a replenishment to be performed at the
1426 * next firing of dl_timer.
1427 *
1428 * @dl_boosted tells if we are boosted due to DI. If so we are
1429 * outside bandwidth enforcement mechanism (but only until we
1430 * exit the critical section);
1431 *
1432 * @dl_yielded tells if task gave up the cpu before consuming
1433 * all its available runtime during the last job.
1434 */
1435 int dl_throttled, dl_boosted, dl_yielded;
1436
1437 /*
1438 * Bandwidth enforcement timer. Each -deadline task has its
1439 * own bandwidth to be enforced, thus we need one timer per task.
1440 */
1441 struct hrtimer dl_timer;
1442 };
1443
1444 union rcu_special {
1445 struct {
1446 u8 blocked;
1447 u8 need_qs;
1448 u8 exp_need_qs;
1449 u8 pad; /* Otherwise the compiler can store garbage here. */
1450 } b; /* Bits. */
1451 u32 s; /* Set of bits. */
1452 };
1453 struct rcu_node;
1454
1455 enum perf_event_task_context {
1456 perf_invalid_context = -1,
1457 perf_hw_context = 0,
1458 perf_sw_context,
1459 perf_nr_task_contexts,
1460 };
1461
1462 /* Track pages that require TLB flushes */
1463 struct tlbflush_unmap_batch {
1464 /*
1465 * Each bit set is a CPU that potentially has a TLB entry for one of
1466 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1467 */
1468 struct cpumask cpumask;
1469
1470 /* True if any bit in cpumask is set */
1471 bool flush_required;
1472
1473 /*
1474 * If true then the PTE was dirty when unmapped. The entry must be
1475 * flushed before IO is initiated or a stale TLB entry potentially
1476 * allows an update without redirtying the page.
1477 */
1478 bool writable;
1479 };
1480
1481 struct task_struct {
1482 #ifdef CONFIG_THREAD_INFO_IN_TASK
1483 /*
1484 * For reasons of header soup (see current_thread_info()), this
1485 * must be the first element of task_struct.
1486 */
1487 struct thread_info thread_info;
1488 #endif
1489 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1490 void *stack;
1491 atomic_t usage;
1492 unsigned int flags; /* per process flags, defined below */
1493 unsigned int ptrace;
1494
1495 #ifdef CONFIG_SMP
1496 struct llist_node wake_entry;
1497 int on_cpu;
1498 #ifdef CONFIG_THREAD_INFO_IN_TASK
1499 unsigned int cpu; /* current CPU */
1500 #endif
1501 unsigned int wakee_flips;
1502 unsigned long wakee_flip_decay_ts;
1503 struct task_struct *last_wakee;
1504
1505 int wake_cpu;
1506 #endif
1507 int on_rq;
1508
1509 int prio, static_prio, normal_prio;
1510 unsigned int rt_priority;
1511 const struct sched_class *sched_class;
1512 struct sched_entity se;
1513 struct sched_rt_entity rt;
1514 #ifdef CONFIG_CGROUP_SCHED
1515 struct task_group *sched_task_group;
1516 #endif
1517 struct sched_dl_entity dl;
1518
1519 #ifdef CONFIG_PREEMPT_NOTIFIERS
1520 /* list of struct preempt_notifier: */
1521 struct hlist_head preempt_notifiers;
1522 #endif
1523
1524 #ifdef CONFIG_BLK_DEV_IO_TRACE
1525 unsigned int btrace_seq;
1526 #endif
1527
1528 unsigned int policy;
1529 int nr_cpus_allowed;
1530 cpumask_t cpus_allowed;
1531
1532 #ifdef CONFIG_PREEMPT_RCU
1533 int rcu_read_lock_nesting;
1534 union rcu_special rcu_read_unlock_special;
1535 struct list_head rcu_node_entry;
1536 struct rcu_node *rcu_blocked_node;
1537 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1538 #ifdef CONFIG_TASKS_RCU
1539 unsigned long rcu_tasks_nvcsw;
1540 bool rcu_tasks_holdout;
1541 struct list_head rcu_tasks_holdout_list;
1542 int rcu_tasks_idle_cpu;
1543 #endif /* #ifdef CONFIG_TASKS_RCU */
1544
1545 #ifdef CONFIG_SCHED_INFO
1546 struct sched_info sched_info;
1547 #endif
1548
1549 struct list_head tasks;
1550 #ifdef CONFIG_SMP
1551 struct plist_node pushable_tasks;
1552 struct rb_node pushable_dl_tasks;
1553 #endif
1554
1555 struct mm_struct *mm, *active_mm;
1556 /* per-thread vma caching */
1557 u32 vmacache_seqnum;
1558 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1559 #if defined(SPLIT_RSS_COUNTING)
1560 struct task_rss_stat rss_stat;
1561 #endif
1562 /* task state */
1563 int exit_state;
1564 int exit_code, exit_signal;
1565 int pdeath_signal; /* The signal sent when the parent dies */
1566 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1567
1568 /* Used for emulating ABI behavior of previous Linux versions */
1569 unsigned int personality;
1570
1571 /* scheduler bits, serialized by scheduler locks */
1572 unsigned sched_reset_on_fork:1;
1573 unsigned sched_contributes_to_load:1;
1574 unsigned sched_migrated:1;
1575 unsigned sched_remote_wakeup:1;
1576 unsigned :0; /* force alignment to the next boundary */
1577
1578 /* unserialized, strictly 'current' */
1579 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1580 unsigned in_iowait:1;
1581 #if !defined(TIF_RESTORE_SIGMASK)
1582 unsigned restore_sigmask:1;
1583 #endif
1584 #ifdef CONFIG_MEMCG
1585 unsigned memcg_may_oom:1;
1586 #ifndef CONFIG_SLOB
1587 unsigned memcg_kmem_skip_account:1;
1588 #endif
1589 #endif
1590 #ifdef CONFIG_COMPAT_BRK
1591 unsigned brk_randomized:1;
1592 #endif
1593
1594 unsigned long atomic_flags; /* Flags needing atomic access. */
1595
1596 struct restart_block restart_block;
1597
1598 pid_t pid;
1599 pid_t tgid;
1600
1601 #ifdef CONFIG_CC_STACKPROTECTOR
1602 /* Canary value for the -fstack-protector gcc feature */
1603 unsigned long stack_canary;
1604 #endif
1605 /*
1606 * pointers to (original) parent process, youngest child, younger sibling,
1607 * older sibling, respectively. (p->father can be replaced with
1608 * p->real_parent->pid)
1609 */
1610 struct task_struct __rcu *real_parent; /* real parent process */
1611 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1612 /*
1613 * children/sibling forms the list of my natural children
1614 */
1615 struct list_head children; /* list of my children */
1616 struct list_head sibling; /* linkage in my parent's children list */
1617 struct task_struct *group_leader; /* threadgroup leader */
1618
1619 /*
1620 * ptraced is the list of tasks this task is using ptrace on.
1621 * This includes both natural children and PTRACE_ATTACH targets.
1622 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1623 */
1624 struct list_head ptraced;
1625 struct list_head ptrace_entry;
1626
1627 /* PID/PID hash table linkage. */
1628 struct pid_link pids[PIDTYPE_MAX];
1629 struct list_head thread_group;
1630 struct list_head thread_node;
1631
1632 struct completion *vfork_done; /* for vfork() */
1633 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1634 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1635
1636 u64 utime, stime;
1637 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1638 u64 utimescaled, stimescaled;
1639 #endif
1640 u64 gtime;
1641 struct prev_cputime prev_cputime;
1642 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1643 seqcount_t vtime_seqcount;
1644 unsigned long long vtime_snap;
1645 enum {
1646 /* Task is sleeping or running in a CPU with VTIME inactive */
1647 VTIME_INACTIVE = 0,
1648 /* Task runs in userspace in a CPU with VTIME active */
1649 VTIME_USER,
1650 /* Task runs in kernelspace in a CPU with VTIME active */
1651 VTIME_SYS,
1652 } vtime_snap_whence;
1653 #endif
1654
1655 #ifdef CONFIG_NO_HZ_FULL
1656 atomic_t tick_dep_mask;
1657 #endif
1658 unsigned long nvcsw, nivcsw; /* context switch counts */
1659 u64 start_time; /* monotonic time in nsec */
1660 u64 real_start_time; /* boot based time in nsec */
1661 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1662 unsigned long min_flt, maj_flt;
1663
1664 #ifdef CONFIG_POSIX_TIMERS
1665 struct task_cputime cputime_expires;
1666 struct list_head cpu_timers[3];
1667 #endif
1668
1669 /* process credentials */
1670 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1671 const struct cred __rcu *real_cred; /* objective and real subjective task
1672 * credentials (COW) */
1673 const struct cred __rcu *cred; /* effective (overridable) subjective task
1674 * credentials (COW) */
1675 char comm[TASK_COMM_LEN]; /* executable name excluding path
1676 - access with [gs]et_task_comm (which lock
1677 it with task_lock())
1678 - initialized normally by setup_new_exec */
1679 /* file system info */
1680 struct nameidata *nameidata;
1681 #ifdef CONFIG_SYSVIPC
1682 /* ipc stuff */
1683 struct sysv_sem sysvsem;
1684 struct sysv_shm sysvshm;
1685 #endif
1686 #ifdef CONFIG_DETECT_HUNG_TASK
1687 /* hung task detection */
1688 unsigned long last_switch_count;
1689 #endif
1690 /* filesystem information */
1691 struct fs_struct *fs;
1692 /* open file information */
1693 struct files_struct *files;
1694 /* namespaces */
1695 struct nsproxy *nsproxy;
1696 /* signal handlers */
1697 struct signal_struct *signal;
1698 struct sighand_struct *sighand;
1699
1700 sigset_t blocked, real_blocked;
1701 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1702 struct sigpending pending;
1703
1704 unsigned long sas_ss_sp;
1705 size_t sas_ss_size;
1706 unsigned sas_ss_flags;
1707
1708 struct callback_head *task_works;
1709
1710 struct audit_context *audit_context;
1711 #ifdef CONFIG_AUDITSYSCALL
1712 kuid_t loginuid;
1713 unsigned int sessionid;
1714 #endif
1715 struct seccomp seccomp;
1716
1717 /* Thread group tracking */
1718 u32 parent_exec_id;
1719 u32 self_exec_id;
1720 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1721 * mempolicy */
1722 spinlock_t alloc_lock;
1723
1724 /* Protection of the PI data structures: */
1725 raw_spinlock_t pi_lock;
1726
1727 struct wake_q_node wake_q;
1728
1729 #ifdef CONFIG_RT_MUTEXES
1730 /* PI waiters blocked on a rt_mutex held by this task */
1731 struct rb_root pi_waiters;
1732 struct rb_node *pi_waiters_leftmost;
1733 /* Deadlock detection and priority inheritance handling */
1734 struct rt_mutex_waiter *pi_blocked_on;
1735 #endif
1736
1737 #ifdef CONFIG_DEBUG_MUTEXES
1738 /* mutex deadlock detection */
1739 struct mutex_waiter *blocked_on;
1740 #endif
1741 #ifdef CONFIG_TRACE_IRQFLAGS
1742 unsigned int irq_events;
1743 unsigned long hardirq_enable_ip;
1744 unsigned long hardirq_disable_ip;
1745 unsigned int hardirq_enable_event;
1746 unsigned int hardirq_disable_event;
1747 int hardirqs_enabled;
1748 int hardirq_context;
1749 unsigned long softirq_disable_ip;
1750 unsigned long softirq_enable_ip;
1751 unsigned int softirq_disable_event;
1752 unsigned int softirq_enable_event;
1753 int softirqs_enabled;
1754 int softirq_context;
1755 #endif
1756 #ifdef CONFIG_LOCKDEP
1757 # define MAX_LOCK_DEPTH 48UL
1758 u64 curr_chain_key;
1759 int lockdep_depth;
1760 unsigned int lockdep_recursion;
1761 struct held_lock held_locks[MAX_LOCK_DEPTH];
1762 gfp_t lockdep_reclaim_gfp;
1763 #endif
1764 #ifdef CONFIG_UBSAN
1765 unsigned int in_ubsan;
1766 #endif
1767
1768 /* journalling filesystem info */
1769 void *journal_info;
1770
1771 /* stacked block device info */
1772 struct bio_list *bio_list;
1773
1774 #ifdef CONFIG_BLOCK
1775 /* stack plugging */
1776 struct blk_plug *plug;
1777 #endif
1778
1779 /* VM state */
1780 struct reclaim_state *reclaim_state;
1781
1782 struct backing_dev_info *backing_dev_info;
1783
1784 struct io_context *io_context;
1785
1786 unsigned long ptrace_message;
1787 siginfo_t *last_siginfo; /* For ptrace use. */
1788 struct task_io_accounting ioac;
1789 #if defined(CONFIG_TASK_XACCT)
1790 u64 acct_rss_mem1; /* accumulated rss usage */
1791 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1792 u64 acct_timexpd; /* stime + utime since last update */
1793 #endif
1794 #ifdef CONFIG_CPUSETS
1795 nodemask_t mems_allowed; /* Protected by alloc_lock */
1796 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1797 int cpuset_mem_spread_rotor;
1798 int cpuset_slab_spread_rotor;
1799 #endif
1800 #ifdef CONFIG_CGROUPS
1801 /* Control Group info protected by css_set_lock */
1802 struct css_set __rcu *cgroups;
1803 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1804 struct list_head cg_list;
1805 #endif
1806 #ifdef CONFIG_INTEL_RDT_A
1807 int closid;
1808 #endif
1809 #ifdef CONFIG_FUTEX
1810 struct robust_list_head __user *robust_list;
1811 #ifdef CONFIG_COMPAT
1812 struct compat_robust_list_head __user *compat_robust_list;
1813 #endif
1814 struct list_head pi_state_list;
1815 struct futex_pi_state *pi_state_cache;
1816 #endif
1817 #ifdef CONFIG_PERF_EVENTS
1818 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1819 struct mutex perf_event_mutex;
1820 struct list_head perf_event_list;
1821 #endif
1822 #ifdef CONFIG_DEBUG_PREEMPT
1823 unsigned long preempt_disable_ip;
1824 #endif
1825 #ifdef CONFIG_NUMA
1826 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1827 short il_next;
1828 short pref_node_fork;
1829 #endif
1830 #ifdef CONFIG_NUMA_BALANCING
1831 int numa_scan_seq;
1832 unsigned int numa_scan_period;
1833 unsigned int numa_scan_period_max;
1834 int numa_preferred_nid;
1835 unsigned long numa_migrate_retry;
1836 u64 node_stamp; /* migration stamp */
1837 u64 last_task_numa_placement;
1838 u64 last_sum_exec_runtime;
1839 struct callback_head numa_work;
1840
1841 struct list_head numa_entry;
1842 struct numa_group *numa_group;
1843
1844 /*
1845 * numa_faults is an array split into four regions:
1846 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1847 * in this precise order.
1848 *
1849 * faults_memory: Exponential decaying average of faults on a per-node
1850 * basis. Scheduling placement decisions are made based on these
1851 * counts. The values remain static for the duration of a PTE scan.
1852 * faults_cpu: Track the nodes the process was running on when a NUMA
1853 * hinting fault was incurred.
1854 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1855 * during the current scan window. When the scan completes, the counts
1856 * in faults_memory and faults_cpu decay and these values are copied.
1857 */
1858 unsigned long *numa_faults;
1859 unsigned long total_numa_faults;
1860
1861 /*
1862 * numa_faults_locality tracks if faults recorded during the last
1863 * scan window were remote/local or failed to migrate. The task scan
1864 * period is adapted based on the locality of the faults with different
1865 * weights depending on whether they were shared or private faults
1866 */
1867 unsigned long numa_faults_locality[3];
1868
1869 unsigned long numa_pages_migrated;
1870 #endif /* CONFIG_NUMA_BALANCING */
1871
1872 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1873 struct tlbflush_unmap_batch tlb_ubc;
1874 #endif
1875
1876 struct rcu_head rcu;
1877
1878 /*
1879 * cache last used pipe for splice
1880 */
1881 struct pipe_inode_info *splice_pipe;
1882
1883 struct page_frag task_frag;
1884
1885 #ifdef CONFIG_TASK_DELAY_ACCT
1886 struct task_delay_info *delays;
1887 #endif
1888 #ifdef CONFIG_FAULT_INJECTION
1889 int make_it_fail;
1890 #endif
1891 /*
1892 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1893 * balance_dirty_pages() for some dirty throttling pause
1894 */
1895 int nr_dirtied;
1896 int nr_dirtied_pause;
1897 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1898
1899 #ifdef CONFIG_LATENCYTOP
1900 int latency_record_count;
1901 struct latency_record latency_record[LT_SAVECOUNT];
1902 #endif
1903 /*
1904 * time slack values; these are used to round up poll() and
1905 * select() etc timeout values. These are in nanoseconds.
1906 */
1907 u64 timer_slack_ns;
1908 u64 default_timer_slack_ns;
1909
1910 #ifdef CONFIG_KASAN
1911 unsigned int kasan_depth;
1912 #endif
1913 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1914 /* Index of current stored address in ret_stack */
1915 int curr_ret_stack;
1916 /* Stack of return addresses for return function tracing */
1917 struct ftrace_ret_stack *ret_stack;
1918 /* time stamp for last schedule */
1919 unsigned long long ftrace_timestamp;
1920 /*
1921 * Number of functions that haven't been traced
1922 * because of depth overrun.
1923 */
1924 atomic_t trace_overrun;
1925 /* Pause for the tracing */
1926 atomic_t tracing_graph_pause;
1927 #endif
1928 #ifdef CONFIG_TRACING
1929 /* state flags for use by tracers */
1930 unsigned long trace;
1931 /* bitmask and counter of trace recursion */
1932 unsigned long trace_recursion;
1933 #endif /* CONFIG_TRACING */
1934 #ifdef CONFIG_KCOV
1935 /* Coverage collection mode enabled for this task (0 if disabled). */
1936 enum kcov_mode kcov_mode;
1937 /* Size of the kcov_area. */
1938 unsigned kcov_size;
1939 /* Buffer for coverage collection. */
1940 void *kcov_area;
1941 /* kcov desciptor wired with this task or NULL. */
1942 struct kcov *kcov;
1943 #endif
1944 #ifdef CONFIG_MEMCG
1945 struct mem_cgroup *memcg_in_oom;
1946 gfp_t memcg_oom_gfp_mask;
1947 int memcg_oom_order;
1948
1949 /* number of pages to reclaim on returning to userland */
1950 unsigned int memcg_nr_pages_over_high;
1951 #endif
1952 #ifdef CONFIG_UPROBES
1953 struct uprobe_task *utask;
1954 #endif
1955 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1956 unsigned int sequential_io;
1957 unsigned int sequential_io_avg;
1958 #endif
1959 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1960 unsigned long task_state_change;
1961 #endif
1962 int pagefault_disabled;
1963 #ifdef CONFIG_MMU
1964 struct task_struct *oom_reaper_list;
1965 #endif
1966 #ifdef CONFIG_VMAP_STACK
1967 struct vm_struct *stack_vm_area;
1968 #endif
1969 #ifdef CONFIG_THREAD_INFO_IN_TASK
1970 /* A live task holds one reference. */
1971 atomic_t stack_refcount;
1972 #endif
1973 /* CPU-specific state of this task */
1974 struct thread_struct thread;
1975 /*
1976 * WARNING: on x86, 'thread_struct' contains a variable-sized
1977 * structure. It *MUST* be at the end of 'task_struct'.
1978 *
1979 * Do not put anything below here!
1980 */
1981 };
1982
1983 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1984 extern int arch_task_struct_size __read_mostly;
1985 #else
1986 # define arch_task_struct_size (sizeof(struct task_struct))
1987 #endif
1988
1989 #ifdef CONFIG_VMAP_STACK
1990 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1991 {
1992 return t->stack_vm_area;
1993 }
1994 #else
1995 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1996 {
1997 return NULL;
1998 }
1999 #endif
2000
2001 /* Future-safe accessor for struct task_struct's cpus_allowed. */
2002 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2003
2004 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2005 {
2006 return p->nr_cpus_allowed;
2007 }
2008
2009 #define TNF_MIGRATED 0x01
2010 #define TNF_NO_GROUP 0x02
2011 #define TNF_SHARED 0x04
2012 #define TNF_FAULT_LOCAL 0x08
2013 #define TNF_MIGRATE_FAIL 0x10
2014
2015 static inline bool in_vfork(struct task_struct *tsk)
2016 {
2017 bool ret;
2018
2019 /*
2020 * need RCU to access ->real_parent if CLONE_VM was used along with
2021 * CLONE_PARENT.
2022 *
2023 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2024 * imply CLONE_VM
2025 *
2026 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2027 * ->real_parent is not necessarily the task doing vfork(), so in
2028 * theory we can't rely on task_lock() if we want to dereference it.
2029 *
2030 * And in this case we can't trust the real_parent->mm == tsk->mm
2031 * check, it can be false negative. But we do not care, if init or
2032 * another oom-unkillable task does this it should blame itself.
2033 */
2034 rcu_read_lock();
2035 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2036 rcu_read_unlock();
2037
2038 return ret;
2039 }
2040
2041 #ifdef CONFIG_NUMA_BALANCING
2042 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2043 extern pid_t task_numa_group_id(struct task_struct *p);
2044 extern void set_numabalancing_state(bool enabled);
2045 extern void task_numa_free(struct task_struct *p);
2046 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2047 int src_nid, int dst_cpu);
2048 #else
2049 static inline void task_numa_fault(int last_node, int node, int pages,
2050 int flags)
2051 {
2052 }
2053 static inline pid_t task_numa_group_id(struct task_struct *p)
2054 {
2055 return 0;
2056 }
2057 static inline void set_numabalancing_state(bool enabled)
2058 {
2059 }
2060 static inline void task_numa_free(struct task_struct *p)
2061 {
2062 }
2063 static inline bool should_numa_migrate_memory(struct task_struct *p,
2064 struct page *page, int src_nid, int dst_cpu)
2065 {
2066 return true;
2067 }
2068 #endif
2069
2070 static inline struct pid *task_pid(struct task_struct *task)
2071 {
2072 return task->pids[PIDTYPE_PID].pid;
2073 }
2074
2075 static inline struct pid *task_tgid(struct task_struct *task)
2076 {
2077 return task->group_leader->pids[PIDTYPE_PID].pid;
2078 }
2079
2080 /*
2081 * Without tasklist or rcu lock it is not safe to dereference
2082 * the result of task_pgrp/task_session even if task == current,
2083 * we can race with another thread doing sys_setsid/sys_setpgid.
2084 */
2085 static inline struct pid *task_pgrp(struct task_struct *task)
2086 {
2087 return task->group_leader->pids[PIDTYPE_PGID].pid;
2088 }
2089
2090 static inline struct pid *task_session(struct task_struct *task)
2091 {
2092 return task->group_leader->pids[PIDTYPE_SID].pid;
2093 }
2094
2095 struct pid_namespace;
2096
2097 /*
2098 * the helpers to get the task's different pids as they are seen
2099 * from various namespaces
2100 *
2101 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2102 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2103 * current.
2104 * task_xid_nr_ns() : id seen from the ns specified;
2105 *
2106 * set_task_vxid() : assigns a virtual id to a task;
2107 *
2108 * see also pid_nr() etc in include/linux/pid.h
2109 */
2110 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2111 struct pid_namespace *ns);
2112
2113 static inline pid_t task_pid_nr(struct task_struct *tsk)
2114 {
2115 return tsk->pid;
2116 }
2117
2118 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2119 struct pid_namespace *ns)
2120 {
2121 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2122 }
2123
2124 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2125 {
2126 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2127 }
2128
2129
2130 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2131 {
2132 return tsk->tgid;
2133 }
2134
2135 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2136
2137 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2138 {
2139 return pid_vnr(task_tgid(tsk));
2140 }
2141
2142
2143 static inline int pid_alive(const struct task_struct *p);
2144 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2145 {
2146 pid_t pid = 0;
2147
2148 rcu_read_lock();
2149 if (pid_alive(tsk))
2150 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2151 rcu_read_unlock();
2152
2153 return pid;
2154 }
2155
2156 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2157 {
2158 return task_ppid_nr_ns(tsk, &init_pid_ns);
2159 }
2160
2161 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2162 struct pid_namespace *ns)
2163 {
2164 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2165 }
2166
2167 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2168 {
2169 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2170 }
2171
2172
2173 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2174 struct pid_namespace *ns)
2175 {
2176 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2177 }
2178
2179 static inline pid_t task_session_vnr(struct task_struct *tsk)
2180 {
2181 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2182 }
2183
2184 /* obsolete, do not use */
2185 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2186 {
2187 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2188 }
2189
2190 /**
2191 * pid_alive - check that a task structure is not stale
2192 * @p: Task structure to be checked.
2193 *
2194 * Test if a process is not yet dead (at most zombie state)
2195 * If pid_alive fails, then pointers within the task structure
2196 * can be stale and must not be dereferenced.
2197 *
2198 * Return: 1 if the process is alive. 0 otherwise.
2199 */
2200 static inline int pid_alive(const struct task_struct *p)
2201 {
2202 return p->pids[PIDTYPE_PID].pid != NULL;
2203 }
2204
2205 /**
2206 * is_global_init - check if a task structure is init. Since init
2207 * is free to have sub-threads we need to check tgid.
2208 * @tsk: Task structure to be checked.
2209 *
2210 * Check if a task structure is the first user space task the kernel created.
2211 *
2212 * Return: 1 if the task structure is init. 0 otherwise.
2213 */
2214 static inline int is_global_init(struct task_struct *tsk)
2215 {
2216 return task_tgid_nr(tsk) == 1;
2217 }
2218
2219 extern struct pid *cad_pid;
2220
2221 extern void free_task(struct task_struct *tsk);
2222 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2223
2224 extern void __put_task_struct(struct task_struct *t);
2225
2226 static inline void put_task_struct(struct task_struct *t)
2227 {
2228 if (atomic_dec_and_test(&t->usage))
2229 __put_task_struct(t);
2230 }
2231
2232 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2233 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2234
2235 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2236 extern void task_cputime(struct task_struct *t,
2237 u64 *utime, u64 *stime);
2238 extern u64 task_gtime(struct task_struct *t);
2239 #else
2240 static inline void task_cputime(struct task_struct *t,
2241 u64 *utime, u64 *stime)
2242 {
2243 *utime = t->utime;
2244 *stime = t->stime;
2245 }
2246
2247 static inline u64 task_gtime(struct task_struct *t)
2248 {
2249 return t->gtime;
2250 }
2251 #endif
2252
2253 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2254 static inline void task_cputime_scaled(struct task_struct *t,
2255 u64 *utimescaled,
2256 u64 *stimescaled)
2257 {
2258 *utimescaled = t->utimescaled;
2259 *stimescaled = t->stimescaled;
2260 }
2261 #else
2262 static inline void task_cputime_scaled(struct task_struct *t,
2263 u64 *utimescaled,
2264 u64 *stimescaled)
2265 {
2266 task_cputime(t, utimescaled, stimescaled);
2267 }
2268 #endif
2269
2270 extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2271 extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2272
2273 /*
2274 * Per process flags
2275 */
2276 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
2277 #define PF_EXITING 0x00000004 /* getting shut down */
2278 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2279 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2280 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2281 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2282 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2283 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2284 #define PF_DUMPCORE 0x00000200 /* dumped core */
2285 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2286 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2287 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2288 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2289 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2290 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2291 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2292 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2293 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2294 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2295 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2296 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2297 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2298 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2299 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2300 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2301 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2302 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2303 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2304
2305 /*
2306 * Only the _current_ task can read/write to tsk->flags, but other
2307 * tasks can access tsk->flags in readonly mode for example
2308 * with tsk_used_math (like during threaded core dumping).
2309 * There is however an exception to this rule during ptrace
2310 * or during fork: the ptracer task is allowed to write to the
2311 * child->flags of its traced child (same goes for fork, the parent
2312 * can write to the child->flags), because we're guaranteed the
2313 * child is not running and in turn not changing child->flags
2314 * at the same time the parent does it.
2315 */
2316 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2317 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2318 #define clear_used_math() clear_stopped_child_used_math(current)
2319 #define set_used_math() set_stopped_child_used_math(current)
2320 #define conditional_stopped_child_used_math(condition, child) \
2321 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2322 #define conditional_used_math(condition) \
2323 conditional_stopped_child_used_math(condition, current)
2324 #define copy_to_stopped_child_used_math(child) \
2325 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2326 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2327 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2328 #define used_math() tsk_used_math(current)
2329
2330 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2331 * __GFP_FS is also cleared as it implies __GFP_IO.
2332 */
2333 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2334 {
2335 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2336 flags &= ~(__GFP_IO | __GFP_FS);
2337 return flags;
2338 }
2339
2340 static inline unsigned int memalloc_noio_save(void)
2341 {
2342 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2343 current->flags |= PF_MEMALLOC_NOIO;
2344 return flags;
2345 }
2346
2347 static inline void memalloc_noio_restore(unsigned int flags)
2348 {
2349 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2350 }
2351
2352 /* Per-process atomic flags. */
2353 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2354 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2355 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2356 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2357
2358
2359 #define TASK_PFA_TEST(name, func) \
2360 static inline bool task_##func(struct task_struct *p) \
2361 { return test_bit(PFA_##name, &p->atomic_flags); }
2362 #define TASK_PFA_SET(name, func) \
2363 static inline void task_set_##func(struct task_struct *p) \
2364 { set_bit(PFA_##name, &p->atomic_flags); }
2365 #define TASK_PFA_CLEAR(name, func) \
2366 static inline void task_clear_##func(struct task_struct *p) \
2367 { clear_bit(PFA_##name, &p->atomic_flags); }
2368
2369 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2370 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2371
2372 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2373 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2374 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2375
2376 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2377 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2378 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2379
2380 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2381 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2382
2383 /*
2384 * task->jobctl flags
2385 */
2386 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2387
2388 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2389 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2390 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2391 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2392 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2393 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2394 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2395
2396 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2397 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2398 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2399 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2400 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2401 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2402 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2403
2404 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2405 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2406
2407 extern bool task_set_jobctl_pending(struct task_struct *task,
2408 unsigned long mask);
2409 extern void task_clear_jobctl_trapping(struct task_struct *task);
2410 extern void task_clear_jobctl_pending(struct task_struct *task,
2411 unsigned long mask);
2412
2413 static inline void rcu_copy_process(struct task_struct *p)
2414 {
2415 #ifdef CONFIG_PREEMPT_RCU
2416 p->rcu_read_lock_nesting = 0;
2417 p->rcu_read_unlock_special.s = 0;
2418 p->rcu_blocked_node = NULL;
2419 INIT_LIST_HEAD(&p->rcu_node_entry);
2420 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2421 #ifdef CONFIG_TASKS_RCU
2422 p->rcu_tasks_holdout = false;
2423 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2424 p->rcu_tasks_idle_cpu = -1;
2425 #endif /* #ifdef CONFIG_TASKS_RCU */
2426 }
2427
2428 static inline void tsk_restore_flags(struct task_struct *task,
2429 unsigned long orig_flags, unsigned long flags)
2430 {
2431 task->flags &= ~flags;
2432 task->flags |= orig_flags & flags;
2433 }
2434
2435 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2436 const struct cpumask *trial);
2437 extern int task_can_attach(struct task_struct *p,
2438 const struct cpumask *cs_cpus_allowed);
2439 #ifdef CONFIG_SMP
2440 extern void do_set_cpus_allowed(struct task_struct *p,
2441 const struct cpumask *new_mask);
2442
2443 extern int set_cpus_allowed_ptr(struct task_struct *p,
2444 const struct cpumask *new_mask);
2445 #else
2446 static inline void do_set_cpus_allowed(struct task_struct *p,
2447 const struct cpumask *new_mask)
2448 {
2449 }
2450 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2451 const struct cpumask *new_mask)
2452 {
2453 if (!cpumask_test_cpu(0, new_mask))
2454 return -EINVAL;
2455 return 0;
2456 }
2457 #endif
2458
2459 #ifdef CONFIG_NO_HZ_COMMON
2460 void calc_load_enter_idle(void);
2461 void calc_load_exit_idle(void);
2462 #else
2463 static inline void calc_load_enter_idle(void) { }
2464 static inline void calc_load_exit_idle(void) { }
2465 #endif /* CONFIG_NO_HZ_COMMON */
2466
2467 #ifndef cpu_relax_yield
2468 #define cpu_relax_yield() cpu_relax()
2469 #endif
2470
2471 /*
2472 * Do not use outside of architecture code which knows its limitations.
2473 *
2474 * sched_clock() has no promise of monotonicity or bounded drift between
2475 * CPUs, use (which you should not) requires disabling IRQs.
2476 *
2477 * Please use one of the three interfaces below.
2478 */
2479 extern unsigned long long notrace sched_clock(void);
2480 /*
2481 * See the comment in kernel/sched/clock.c
2482 */
2483 extern u64 running_clock(void);
2484 extern u64 sched_clock_cpu(int cpu);
2485
2486
2487 extern void sched_clock_init(void);
2488
2489 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2490 static inline void sched_clock_init_late(void)
2491 {
2492 }
2493
2494 static inline void sched_clock_tick(void)
2495 {
2496 }
2497
2498 static inline void clear_sched_clock_stable(void)
2499 {
2500 }
2501
2502 static inline void sched_clock_idle_sleep_event(void)
2503 {
2504 }
2505
2506 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2507 {
2508 }
2509
2510 static inline u64 cpu_clock(int cpu)
2511 {
2512 return sched_clock();
2513 }
2514
2515 static inline u64 local_clock(void)
2516 {
2517 return sched_clock();
2518 }
2519 #else
2520 extern void sched_clock_init_late(void);
2521 /*
2522 * Architectures can set this to 1 if they have specified
2523 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2524 * but then during bootup it turns out that sched_clock()
2525 * is reliable after all:
2526 */
2527 extern int sched_clock_stable(void);
2528 extern void clear_sched_clock_stable(void);
2529
2530 extern void sched_clock_tick(void);
2531 extern void sched_clock_idle_sleep_event(void);
2532 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2533
2534 /*
2535 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2536 * time source that is monotonic per cpu argument and has bounded drift
2537 * between cpus.
2538 *
2539 * ######################### BIG FAT WARNING ##########################
2540 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2541 * # go backwards !! #
2542 * ####################################################################
2543 */
2544 static inline u64 cpu_clock(int cpu)
2545 {
2546 return sched_clock_cpu(cpu);
2547 }
2548
2549 static inline u64 local_clock(void)
2550 {
2551 return sched_clock_cpu(raw_smp_processor_id());
2552 }
2553 #endif
2554
2555 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2556 /*
2557 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2558 * The reason for this explicit opt-in is not to have perf penalty with
2559 * slow sched_clocks.
2560 */
2561 extern void enable_sched_clock_irqtime(void);
2562 extern void disable_sched_clock_irqtime(void);
2563 #else
2564 static inline void enable_sched_clock_irqtime(void) {}
2565 static inline void disable_sched_clock_irqtime(void) {}
2566 #endif
2567
2568 extern unsigned long long
2569 task_sched_runtime(struct task_struct *task);
2570
2571 /* sched_exec is called by processes performing an exec */
2572 #ifdef CONFIG_SMP
2573 extern void sched_exec(void);
2574 #else
2575 #define sched_exec() {}
2576 #endif
2577
2578 extern void sched_clock_idle_sleep_event(void);
2579 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2580
2581 #ifdef CONFIG_HOTPLUG_CPU
2582 extern void idle_task_exit(void);
2583 #else
2584 static inline void idle_task_exit(void) {}
2585 #endif
2586
2587 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2588 extern void wake_up_nohz_cpu(int cpu);
2589 #else
2590 static inline void wake_up_nohz_cpu(int cpu) { }
2591 #endif
2592
2593 #ifdef CONFIG_NO_HZ_FULL
2594 extern u64 scheduler_tick_max_deferment(void);
2595 #endif
2596
2597 #ifdef CONFIG_SCHED_AUTOGROUP
2598 extern void sched_autogroup_create_attach(struct task_struct *p);
2599 extern void sched_autogroup_detach(struct task_struct *p);
2600 extern void sched_autogroup_fork(struct signal_struct *sig);
2601 extern void sched_autogroup_exit(struct signal_struct *sig);
2602 extern void sched_autogroup_exit_task(struct task_struct *p);
2603 #ifdef CONFIG_PROC_FS
2604 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2605 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2606 #endif
2607 #else
2608 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2609 static inline void sched_autogroup_detach(struct task_struct *p) { }
2610 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2611 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2612 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2613 #endif
2614
2615 extern int yield_to(struct task_struct *p, bool preempt);
2616 extern void set_user_nice(struct task_struct *p, long nice);
2617 extern int task_prio(const struct task_struct *p);
2618 /**
2619 * task_nice - return the nice value of a given task.
2620 * @p: the task in question.
2621 *
2622 * Return: The nice value [ -20 ... 0 ... 19 ].
2623 */
2624 static inline int task_nice(const struct task_struct *p)
2625 {
2626 return PRIO_TO_NICE((p)->static_prio);
2627 }
2628 extern int can_nice(const struct task_struct *p, const int nice);
2629 extern int task_curr(const struct task_struct *p);
2630 extern int idle_cpu(int cpu);
2631 extern int sched_setscheduler(struct task_struct *, int,
2632 const struct sched_param *);
2633 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2634 const struct sched_param *);
2635 extern int sched_setattr(struct task_struct *,
2636 const struct sched_attr *);
2637 extern struct task_struct *idle_task(int cpu);
2638 /**
2639 * is_idle_task - is the specified task an idle task?
2640 * @p: the task in question.
2641 *
2642 * Return: 1 if @p is an idle task. 0 otherwise.
2643 */
2644 static inline bool is_idle_task(const struct task_struct *p)
2645 {
2646 return !!(p->flags & PF_IDLE);
2647 }
2648 extern struct task_struct *curr_task(int cpu);
2649 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2650
2651 void yield(void);
2652
2653 union thread_union {
2654 #ifndef CONFIG_THREAD_INFO_IN_TASK
2655 struct thread_info thread_info;
2656 #endif
2657 unsigned long stack[THREAD_SIZE/sizeof(long)];
2658 };
2659
2660 #ifndef __HAVE_ARCH_KSTACK_END
2661 static inline int kstack_end(void *addr)
2662 {
2663 /* Reliable end of stack detection:
2664 * Some APM bios versions misalign the stack
2665 */
2666 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2667 }
2668 #endif
2669
2670 extern union thread_union init_thread_union;
2671 extern struct task_struct init_task;
2672
2673 extern struct mm_struct init_mm;
2674
2675 extern struct pid_namespace init_pid_ns;
2676
2677 /*
2678 * find a task by one of its numerical ids
2679 *
2680 * find_task_by_pid_ns():
2681 * finds a task by its pid in the specified namespace
2682 * find_task_by_vpid():
2683 * finds a task by its virtual pid
2684 *
2685 * see also find_vpid() etc in include/linux/pid.h
2686 */
2687
2688 extern struct task_struct *find_task_by_vpid(pid_t nr);
2689 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2690 struct pid_namespace *ns);
2691
2692 /* per-UID process charging. */
2693 extern struct user_struct * alloc_uid(kuid_t);
2694 static inline struct user_struct *get_uid(struct user_struct *u)
2695 {
2696 atomic_inc(&u->__count);
2697 return u;
2698 }
2699 extern void free_uid(struct user_struct *);
2700
2701 #include <asm/current.h>
2702
2703 extern void xtime_update(unsigned long ticks);
2704
2705 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2706 extern int wake_up_process(struct task_struct *tsk);
2707 extern void wake_up_new_task(struct task_struct *tsk);
2708 #ifdef CONFIG_SMP
2709 extern void kick_process(struct task_struct *tsk);
2710 #else
2711 static inline void kick_process(struct task_struct *tsk) { }
2712 #endif
2713 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2714 extern void sched_dead(struct task_struct *p);
2715
2716 extern void proc_caches_init(void);
2717 extern void flush_signals(struct task_struct *);
2718 extern void ignore_signals(struct task_struct *);
2719 extern void flush_signal_handlers(struct task_struct *, int force_default);
2720 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2721
2722 static inline int kernel_dequeue_signal(siginfo_t *info)
2723 {
2724 struct task_struct *tsk = current;
2725 siginfo_t __info;
2726 int ret;
2727
2728 spin_lock_irq(&tsk->sighand->siglock);
2729 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2730 spin_unlock_irq(&tsk->sighand->siglock);
2731
2732 return ret;
2733 }
2734
2735 static inline void kernel_signal_stop(void)
2736 {
2737 spin_lock_irq(&current->sighand->siglock);
2738 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2739 __set_current_state(TASK_STOPPED);
2740 spin_unlock_irq(&current->sighand->siglock);
2741
2742 schedule();
2743 }
2744
2745 extern void release_task(struct task_struct * p);
2746 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2747 extern int force_sigsegv(int, struct task_struct *);
2748 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2749 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2750 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2751 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2752 const struct cred *, u32);
2753 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2754 extern int kill_pid(struct pid *pid, int sig, int priv);
2755 extern int kill_proc_info(int, struct siginfo *, pid_t);
2756 extern __must_check bool do_notify_parent(struct task_struct *, int);
2757 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2758 extern void force_sig(int, struct task_struct *);
2759 extern int send_sig(int, struct task_struct *, int);
2760 extern int zap_other_threads(struct task_struct *p);
2761 extern struct sigqueue *sigqueue_alloc(void);
2762 extern void sigqueue_free(struct sigqueue *);
2763 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2764 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2765
2766 #ifdef TIF_RESTORE_SIGMASK
2767 /*
2768 * Legacy restore_sigmask accessors. These are inefficient on
2769 * SMP architectures because they require atomic operations.
2770 */
2771
2772 /**
2773 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2774 *
2775 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2776 * will run before returning to user mode, to process the flag. For
2777 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2778 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2779 * arch code will notice on return to user mode, in case those bits
2780 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2781 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2782 */
2783 static inline void set_restore_sigmask(void)
2784 {
2785 set_thread_flag(TIF_RESTORE_SIGMASK);
2786 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2787 }
2788 static inline void clear_restore_sigmask(void)
2789 {
2790 clear_thread_flag(TIF_RESTORE_SIGMASK);
2791 }
2792 static inline bool test_restore_sigmask(void)
2793 {
2794 return test_thread_flag(TIF_RESTORE_SIGMASK);
2795 }
2796 static inline bool test_and_clear_restore_sigmask(void)
2797 {
2798 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2799 }
2800
2801 #else /* TIF_RESTORE_SIGMASK */
2802
2803 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2804 static inline void set_restore_sigmask(void)
2805 {
2806 current->restore_sigmask = true;
2807 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2808 }
2809 static inline void clear_restore_sigmask(void)
2810 {
2811 current->restore_sigmask = false;
2812 }
2813 static inline bool test_restore_sigmask(void)
2814 {
2815 return current->restore_sigmask;
2816 }
2817 static inline bool test_and_clear_restore_sigmask(void)
2818 {
2819 if (!current->restore_sigmask)
2820 return false;
2821 current->restore_sigmask = false;
2822 return true;
2823 }
2824 #endif
2825
2826 static inline void restore_saved_sigmask(void)
2827 {
2828 if (test_and_clear_restore_sigmask())
2829 __set_current_blocked(&current->saved_sigmask);
2830 }
2831
2832 static inline sigset_t *sigmask_to_save(void)
2833 {
2834 sigset_t *res = &current->blocked;
2835 if (unlikely(test_restore_sigmask()))
2836 res = &current->saved_sigmask;
2837 return res;
2838 }
2839
2840 static inline int kill_cad_pid(int sig, int priv)
2841 {
2842 return kill_pid(cad_pid, sig, priv);
2843 }
2844
2845 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2846 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2847 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2848 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2849
2850 /*
2851 * True if we are on the alternate signal stack.
2852 */
2853 static inline int on_sig_stack(unsigned long sp)
2854 {
2855 /*
2856 * If the signal stack is SS_AUTODISARM then, by construction, we
2857 * can't be on the signal stack unless user code deliberately set
2858 * SS_AUTODISARM when we were already on it.
2859 *
2860 * This improves reliability: if user state gets corrupted such that
2861 * the stack pointer points very close to the end of the signal stack,
2862 * then this check will enable the signal to be handled anyway.
2863 */
2864 if (current->sas_ss_flags & SS_AUTODISARM)
2865 return 0;
2866
2867 #ifdef CONFIG_STACK_GROWSUP
2868 return sp >= current->sas_ss_sp &&
2869 sp - current->sas_ss_sp < current->sas_ss_size;
2870 #else
2871 return sp > current->sas_ss_sp &&
2872 sp - current->sas_ss_sp <= current->sas_ss_size;
2873 #endif
2874 }
2875
2876 static inline int sas_ss_flags(unsigned long sp)
2877 {
2878 if (!current->sas_ss_size)
2879 return SS_DISABLE;
2880
2881 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2882 }
2883
2884 static inline void sas_ss_reset(struct task_struct *p)
2885 {
2886 p->sas_ss_sp = 0;
2887 p->sas_ss_size = 0;
2888 p->sas_ss_flags = SS_DISABLE;
2889 }
2890
2891 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2892 {
2893 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2894 #ifdef CONFIG_STACK_GROWSUP
2895 return current->sas_ss_sp;
2896 #else
2897 return current->sas_ss_sp + current->sas_ss_size;
2898 #endif
2899 return sp;
2900 }
2901
2902 /*
2903 * Routines for handling mm_structs
2904 */
2905 extern struct mm_struct * mm_alloc(void);
2906
2907 /* mmdrop drops the mm and the page tables */
2908 extern void __mmdrop(struct mm_struct *);
2909 static inline void mmdrop(struct mm_struct *mm)
2910 {
2911 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2912 __mmdrop(mm);
2913 }
2914
2915 static inline void mmdrop_async_fn(struct work_struct *work)
2916 {
2917 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2918 __mmdrop(mm);
2919 }
2920
2921 static inline void mmdrop_async(struct mm_struct *mm)
2922 {
2923 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2924 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2925 schedule_work(&mm->async_put_work);
2926 }
2927 }
2928
2929 static inline bool mmget_not_zero(struct mm_struct *mm)
2930 {
2931 return atomic_inc_not_zero(&mm->mm_users);
2932 }
2933
2934 /* mmput gets rid of the mappings and all user-space */
2935 extern void mmput(struct mm_struct *);
2936 #ifdef CONFIG_MMU
2937 /* same as above but performs the slow path from the async context. Can
2938 * be called from the atomic context as well
2939 */
2940 extern void mmput_async(struct mm_struct *);
2941 #endif
2942
2943 /* Grab a reference to a task's mm, if it is not already going away */
2944 extern struct mm_struct *get_task_mm(struct task_struct *task);
2945 /*
2946 * Grab a reference to a task's mm, if it is not already going away
2947 * and ptrace_may_access with the mode parameter passed to it
2948 * succeeds.
2949 */
2950 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2951 /* Remove the current tasks stale references to the old mm_struct */
2952 extern void mm_release(struct task_struct *, struct mm_struct *);
2953
2954 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2955 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2956 struct task_struct *, unsigned long);
2957 #else
2958 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2959 struct task_struct *);
2960
2961 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2962 * via pt_regs, so ignore the tls argument passed via C. */
2963 static inline int copy_thread_tls(
2964 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2965 struct task_struct *p, unsigned long tls)
2966 {
2967 return copy_thread(clone_flags, sp, arg, p);
2968 }
2969 #endif
2970 extern void flush_thread(void);
2971
2972 #ifdef CONFIG_HAVE_EXIT_THREAD
2973 extern void exit_thread(struct task_struct *tsk);
2974 #else
2975 static inline void exit_thread(struct task_struct *tsk)
2976 {
2977 }
2978 #endif
2979
2980 extern void exit_files(struct task_struct *);
2981 extern void __cleanup_sighand(struct sighand_struct *);
2982
2983 extern void exit_itimers(struct signal_struct *);
2984 extern void flush_itimer_signals(void);
2985
2986 extern void do_group_exit(int);
2987
2988 extern int do_execve(struct filename *,
2989 const char __user * const __user *,
2990 const char __user * const __user *);
2991 extern int do_execveat(int, struct filename *,
2992 const char __user * const __user *,
2993 const char __user * const __user *,
2994 int);
2995 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2996 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2997 struct task_struct *fork_idle(int);
2998 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2999
3000 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3001 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3002 {
3003 __set_task_comm(tsk, from, false);
3004 }
3005 extern char *get_task_comm(char *to, struct task_struct *tsk);
3006
3007 #ifdef CONFIG_SMP
3008 void scheduler_ipi(void);
3009 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3010 #else
3011 static inline void scheduler_ipi(void) { }
3012 static inline unsigned long wait_task_inactive(struct task_struct *p,
3013 long match_state)
3014 {
3015 return 1;
3016 }
3017 #endif
3018
3019 #define tasklist_empty() \
3020 list_empty(&init_task.tasks)
3021
3022 #define next_task(p) \
3023 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3024
3025 #define for_each_process(p) \
3026 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3027
3028 extern bool current_is_single_threaded(void);
3029
3030 /*
3031 * Careful: do_each_thread/while_each_thread is a double loop so
3032 * 'break' will not work as expected - use goto instead.
3033 */
3034 #define do_each_thread(g, t) \
3035 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3036
3037 #define while_each_thread(g, t) \
3038 while ((t = next_thread(t)) != g)
3039
3040 #define __for_each_thread(signal, t) \
3041 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3042
3043 #define for_each_thread(p, t) \
3044 __for_each_thread((p)->signal, t)
3045
3046 /* Careful: this is a double loop, 'break' won't work as expected. */
3047 #define for_each_process_thread(p, t) \
3048 for_each_process(p) for_each_thread(p, t)
3049
3050 typedef int (*proc_visitor)(struct task_struct *p, void *data);
3051 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
3052
3053 static inline int get_nr_threads(struct task_struct *tsk)
3054 {
3055 return tsk->signal->nr_threads;
3056 }
3057
3058 static inline bool thread_group_leader(struct task_struct *p)
3059 {
3060 return p->exit_signal >= 0;
3061 }
3062
3063 /* Do to the insanities of de_thread it is possible for a process
3064 * to have the pid of the thread group leader without actually being
3065 * the thread group leader. For iteration through the pids in proc
3066 * all we care about is that we have a task with the appropriate
3067 * pid, we don't actually care if we have the right task.
3068 */
3069 static inline bool has_group_leader_pid(struct task_struct *p)
3070 {
3071 return task_pid(p) == p->signal->leader_pid;
3072 }
3073
3074 static inline
3075 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3076 {
3077 return p1->signal == p2->signal;
3078 }
3079
3080 static inline struct task_struct *next_thread(const struct task_struct *p)
3081 {
3082 return list_entry_rcu(p->thread_group.next,
3083 struct task_struct, thread_group);
3084 }
3085
3086 static inline int thread_group_empty(struct task_struct *p)
3087 {
3088 return list_empty(&p->thread_group);
3089 }
3090
3091 #define delay_group_leader(p) \
3092 (thread_group_leader(p) && !thread_group_empty(p))
3093
3094 /*
3095 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3096 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3097 * pins the final release of task.io_context. Also protects ->cpuset and
3098 * ->cgroup.subsys[]. And ->vfork_done.
3099 *
3100 * Nests both inside and outside of read_lock(&tasklist_lock).
3101 * It must not be nested with write_lock_irq(&tasklist_lock),
3102 * neither inside nor outside.
3103 */
3104 static inline void task_lock(struct task_struct *p)
3105 {
3106 spin_lock(&p->alloc_lock);
3107 }
3108
3109 static inline void task_unlock(struct task_struct *p)
3110 {
3111 spin_unlock(&p->alloc_lock);
3112 }
3113
3114 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3115 unsigned long *flags);
3116
3117 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3118 unsigned long *flags)
3119 {
3120 struct sighand_struct *ret;
3121
3122 ret = __lock_task_sighand(tsk, flags);
3123 (void)__cond_lock(&tsk->sighand->siglock, ret);
3124 return ret;
3125 }
3126
3127 static inline void unlock_task_sighand(struct task_struct *tsk,
3128 unsigned long *flags)
3129 {
3130 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3131 }
3132
3133 /**
3134 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3135 * @tsk: task causing the changes
3136 *
3137 * All operations which modify a threadgroup - a new thread joining the
3138 * group, death of a member thread (the assertion of PF_EXITING) and
3139 * exec(2) dethreading the process and replacing the leader - are wrapped
3140 * by threadgroup_change_{begin|end}(). This is to provide a place which
3141 * subsystems needing threadgroup stability can hook into for
3142 * synchronization.
3143 */
3144 static inline void threadgroup_change_begin(struct task_struct *tsk)
3145 {
3146 might_sleep();
3147 cgroup_threadgroup_change_begin(tsk);
3148 }
3149
3150 /**
3151 * threadgroup_change_end - mark the end of changes to a threadgroup
3152 * @tsk: task causing the changes
3153 *
3154 * See threadgroup_change_begin().
3155 */
3156 static inline void threadgroup_change_end(struct task_struct *tsk)
3157 {
3158 cgroup_threadgroup_change_end(tsk);
3159 }
3160
3161 #ifdef CONFIG_THREAD_INFO_IN_TASK
3162
3163 static inline struct thread_info *task_thread_info(struct task_struct *task)
3164 {
3165 return &task->thread_info;
3166 }
3167
3168 /*
3169 * When accessing the stack of a non-current task that might exit, use
3170 * try_get_task_stack() instead. task_stack_page will return a pointer
3171 * that could get freed out from under you.
3172 */
3173 static inline void *task_stack_page(const struct task_struct *task)
3174 {
3175 return task->stack;
3176 }
3177
3178 #define setup_thread_stack(new,old) do { } while(0)
3179
3180 static inline unsigned long *end_of_stack(const struct task_struct *task)
3181 {
3182 return task->stack;
3183 }
3184
3185 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3186
3187 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
3188 #define task_stack_page(task) ((void *)(task)->stack)
3189
3190 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3191 {
3192 *task_thread_info(p) = *task_thread_info(org);
3193 task_thread_info(p)->task = p;
3194 }
3195
3196 /*
3197 * Return the address of the last usable long on the stack.
3198 *
3199 * When the stack grows down, this is just above the thread
3200 * info struct. Going any lower will corrupt the threadinfo.
3201 *
3202 * When the stack grows up, this is the highest address.
3203 * Beyond that position, we corrupt data on the next page.
3204 */
3205 static inline unsigned long *end_of_stack(struct task_struct *p)
3206 {
3207 #ifdef CONFIG_STACK_GROWSUP
3208 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3209 #else
3210 return (unsigned long *)(task_thread_info(p) + 1);
3211 #endif
3212 }
3213
3214 #endif
3215
3216 #ifdef CONFIG_THREAD_INFO_IN_TASK
3217 static inline void *try_get_task_stack(struct task_struct *tsk)
3218 {
3219 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3220 task_stack_page(tsk) : NULL;
3221 }
3222
3223 extern void put_task_stack(struct task_struct *tsk);
3224 #else
3225 static inline void *try_get_task_stack(struct task_struct *tsk)
3226 {
3227 return task_stack_page(tsk);
3228 }
3229
3230 static inline void put_task_stack(struct task_struct *tsk) {}
3231 #endif
3232
3233 #define task_stack_end_corrupted(task) \
3234 (*(end_of_stack(task)) != STACK_END_MAGIC)
3235
3236 static inline int object_is_on_stack(void *obj)
3237 {
3238 void *stack = task_stack_page(current);
3239
3240 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3241 }
3242
3243 extern void thread_stack_cache_init(void);
3244
3245 #ifdef CONFIG_DEBUG_STACK_USAGE
3246 static inline unsigned long stack_not_used(struct task_struct *p)
3247 {
3248 unsigned long *n = end_of_stack(p);
3249
3250 do { /* Skip over canary */
3251 # ifdef CONFIG_STACK_GROWSUP
3252 n--;
3253 # else
3254 n++;
3255 # endif
3256 } while (!*n);
3257
3258 # ifdef CONFIG_STACK_GROWSUP
3259 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3260 # else
3261 return (unsigned long)n - (unsigned long)end_of_stack(p);
3262 # endif
3263 }
3264 #endif
3265 extern void set_task_stack_end_magic(struct task_struct *tsk);
3266
3267 /* set thread flags in other task's structures
3268 * - see asm/thread_info.h for TIF_xxxx flags available
3269 */
3270 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3271 {
3272 set_ti_thread_flag(task_thread_info(tsk), flag);
3273 }
3274
3275 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3276 {
3277 clear_ti_thread_flag(task_thread_info(tsk), flag);
3278 }
3279
3280 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3281 {
3282 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3283 }
3284
3285 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3286 {
3287 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3288 }
3289
3290 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3291 {
3292 return test_ti_thread_flag(task_thread_info(tsk), flag);
3293 }
3294
3295 static inline void set_tsk_need_resched(struct task_struct *tsk)
3296 {
3297 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3298 }
3299
3300 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3301 {
3302 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3303 }
3304
3305 static inline int test_tsk_need_resched(struct task_struct *tsk)
3306 {
3307 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3308 }
3309
3310 static inline int restart_syscall(void)
3311 {
3312 set_tsk_thread_flag(current, TIF_SIGPENDING);
3313 return -ERESTARTNOINTR;
3314 }
3315
3316 static inline int signal_pending(struct task_struct *p)
3317 {
3318 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3319 }
3320
3321 static inline int __fatal_signal_pending(struct task_struct *p)
3322 {
3323 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3324 }
3325
3326 static inline int fatal_signal_pending(struct task_struct *p)
3327 {
3328 return signal_pending(p) && __fatal_signal_pending(p);
3329 }
3330
3331 static inline int signal_pending_state(long state, struct task_struct *p)
3332 {
3333 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3334 return 0;
3335 if (!signal_pending(p))
3336 return 0;
3337
3338 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3339 }
3340
3341 /*
3342 * cond_resched() and cond_resched_lock(): latency reduction via
3343 * explicit rescheduling in places that are safe. The return
3344 * value indicates whether a reschedule was done in fact.
3345 * cond_resched_lock() will drop the spinlock before scheduling,
3346 * cond_resched_softirq() will enable bhs before scheduling.
3347 */
3348 #ifndef CONFIG_PREEMPT
3349 extern int _cond_resched(void);
3350 #else
3351 static inline int _cond_resched(void) { return 0; }
3352 #endif
3353
3354 #define cond_resched() ({ \
3355 ___might_sleep(__FILE__, __LINE__, 0); \
3356 _cond_resched(); \
3357 })
3358
3359 extern int __cond_resched_lock(spinlock_t *lock);
3360
3361 #define cond_resched_lock(lock) ({ \
3362 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3363 __cond_resched_lock(lock); \
3364 })
3365
3366 extern int __cond_resched_softirq(void);
3367
3368 #define cond_resched_softirq() ({ \
3369 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3370 __cond_resched_softirq(); \
3371 })
3372
3373 static inline void cond_resched_rcu(void)
3374 {
3375 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3376 rcu_read_unlock();
3377 cond_resched();
3378 rcu_read_lock();
3379 #endif
3380 }
3381
3382 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3383 {
3384 #ifdef CONFIG_DEBUG_PREEMPT
3385 return p->preempt_disable_ip;
3386 #else
3387 return 0;
3388 #endif
3389 }
3390
3391 /*
3392 * Does a critical section need to be broken due to another
3393 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3394 * but a general need for low latency)
3395 */
3396 static inline int spin_needbreak(spinlock_t *lock)
3397 {
3398 #ifdef CONFIG_PREEMPT
3399 return spin_is_contended(lock);
3400 #else
3401 return 0;
3402 #endif
3403 }
3404
3405 /*
3406 * Idle thread specific functions to determine the need_resched
3407 * polling state.
3408 */
3409 #ifdef TIF_POLLING_NRFLAG
3410 static inline int tsk_is_polling(struct task_struct *p)
3411 {
3412 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3413 }
3414
3415 static inline void __current_set_polling(void)
3416 {
3417 set_thread_flag(TIF_POLLING_NRFLAG);
3418 }
3419
3420 static inline bool __must_check current_set_polling_and_test(void)
3421 {
3422 __current_set_polling();
3423
3424 /*
3425 * Polling state must be visible before we test NEED_RESCHED,
3426 * paired by resched_curr()
3427 */
3428 smp_mb__after_atomic();
3429
3430 return unlikely(tif_need_resched());
3431 }
3432
3433 static inline void __current_clr_polling(void)
3434 {
3435 clear_thread_flag(TIF_POLLING_NRFLAG);
3436 }
3437
3438 static inline bool __must_check current_clr_polling_and_test(void)
3439 {
3440 __current_clr_polling();
3441
3442 /*
3443 * Polling state must be visible before we test NEED_RESCHED,
3444 * paired by resched_curr()
3445 */
3446 smp_mb__after_atomic();
3447
3448 return unlikely(tif_need_resched());
3449 }
3450
3451 #else
3452 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3453 static inline void __current_set_polling(void) { }
3454 static inline void __current_clr_polling(void) { }
3455
3456 static inline bool __must_check current_set_polling_and_test(void)
3457 {
3458 return unlikely(tif_need_resched());
3459 }
3460 static inline bool __must_check current_clr_polling_and_test(void)
3461 {
3462 return unlikely(tif_need_resched());
3463 }
3464 #endif
3465
3466 static inline void current_clr_polling(void)
3467 {
3468 __current_clr_polling();
3469
3470 /*
3471 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3472 * Once the bit is cleared, we'll get IPIs with every new
3473 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3474 * fold.
3475 */
3476 smp_mb(); /* paired with resched_curr() */
3477
3478 preempt_fold_need_resched();
3479 }
3480
3481 static __always_inline bool need_resched(void)
3482 {
3483 return unlikely(tif_need_resched());
3484 }
3485
3486 /*
3487 * Thread group CPU time accounting.
3488 */
3489 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3490 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3491
3492 /*
3493 * Reevaluate whether the task has signals pending delivery.
3494 * Wake the task if so.
3495 * This is required every time the blocked sigset_t changes.
3496 * callers must hold sighand->siglock.
3497 */
3498 extern void recalc_sigpending_and_wake(struct task_struct *t);
3499 extern void recalc_sigpending(void);
3500
3501 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3502
3503 static inline void signal_wake_up(struct task_struct *t, bool resume)
3504 {
3505 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3506 }
3507 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3508 {
3509 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3510 }
3511
3512 /*
3513 * Wrappers for p->thread_info->cpu access. No-op on UP.
3514 */
3515 #ifdef CONFIG_SMP
3516
3517 static inline unsigned int task_cpu(const struct task_struct *p)
3518 {
3519 #ifdef CONFIG_THREAD_INFO_IN_TASK
3520 return p->cpu;
3521 #else
3522 return task_thread_info(p)->cpu;
3523 #endif
3524 }
3525
3526 static inline int task_node(const struct task_struct *p)
3527 {
3528 return cpu_to_node(task_cpu(p));
3529 }
3530
3531 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3532
3533 #else
3534
3535 static inline unsigned int task_cpu(const struct task_struct *p)
3536 {
3537 return 0;
3538 }
3539
3540 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3541 {
3542 }
3543
3544 #endif /* CONFIG_SMP */
3545
3546 /*
3547 * In order to reduce various lock holder preemption latencies provide an
3548 * interface to see if a vCPU is currently running or not.
3549 *
3550 * This allows us to terminate optimistic spin loops and block, analogous to
3551 * the native optimistic spin heuristic of testing if the lock owner task is
3552 * running or not.
3553 */
3554 #ifndef vcpu_is_preempted
3555 # define vcpu_is_preempted(cpu) false
3556 #endif
3557
3558 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3559 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3560
3561 #ifdef CONFIG_CGROUP_SCHED
3562 extern struct task_group root_task_group;
3563 #endif /* CONFIG_CGROUP_SCHED */
3564
3565 extern int task_can_switch_user(struct user_struct *up,
3566 struct task_struct *tsk);
3567
3568 #ifdef CONFIG_TASK_XACCT
3569 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3570 {
3571 tsk->ioac.rchar += amt;
3572 }
3573
3574 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3575 {
3576 tsk->ioac.wchar += amt;
3577 }
3578
3579 static inline void inc_syscr(struct task_struct *tsk)
3580 {
3581 tsk->ioac.syscr++;
3582 }
3583
3584 static inline void inc_syscw(struct task_struct *tsk)
3585 {
3586 tsk->ioac.syscw++;
3587 }
3588 #else
3589 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3590 {
3591 }
3592
3593 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3594 {
3595 }
3596
3597 static inline void inc_syscr(struct task_struct *tsk)
3598 {
3599 }
3600
3601 static inline void inc_syscw(struct task_struct *tsk)
3602 {
3603 }
3604 #endif
3605
3606 #ifndef TASK_SIZE_OF
3607 #define TASK_SIZE_OF(tsk) TASK_SIZE
3608 #endif
3609
3610 #ifdef CONFIG_MEMCG
3611 extern void mm_update_next_owner(struct mm_struct *mm);
3612 #else
3613 static inline void mm_update_next_owner(struct mm_struct *mm)
3614 {
3615 }
3616 #endif /* CONFIG_MEMCG */
3617
3618 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3619 unsigned int limit)
3620 {
3621 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3622 }
3623
3624 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3625 unsigned int limit)
3626 {
3627 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3628 }
3629
3630 static inline unsigned long rlimit(unsigned int limit)
3631 {
3632 return task_rlimit(current, limit);
3633 }
3634
3635 static inline unsigned long rlimit_max(unsigned int limit)
3636 {
3637 return task_rlimit_max(current, limit);
3638 }
3639
3640 #define SCHED_CPUFREQ_RT (1U << 0)
3641 #define SCHED_CPUFREQ_DL (1U << 1)
3642 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
3643
3644 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3645
3646 #ifdef CONFIG_CPU_FREQ
3647 struct update_util_data {
3648 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3649 };
3650
3651 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3652 void (*func)(struct update_util_data *data, u64 time,
3653 unsigned int flags));
3654 void cpufreq_remove_update_util_hook(int cpu);
3655 #endif /* CONFIG_CPU_FREQ */
3656
3657 #endif