]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
sched: keep total / count stats in addition to the max for
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30
31 /*
32 * Scheduling policies
33 */
34 #define SCHED_NORMAL 0
35 #define SCHED_FIFO 1
36 #define SCHED_RR 2
37 #define SCHED_BATCH 3
38 /* SCHED_ISO: reserved but not implemented yet */
39 #define SCHED_IDLE 5
40
41 #ifdef __KERNEL__
42
43 struct sched_param {
44 int sched_priority;
45 };
46
47 #include <asm/param.h> /* for HZ */
48
49 #include <linux/capability.h>
50 #include <linux/threads.h>
51 #include <linux/kernel.h>
52 #include <linux/types.h>
53 #include <linux/timex.h>
54 #include <linux/jiffies.h>
55 #include <linux/rbtree.h>
56 #include <linux/thread_info.h>
57 #include <linux/cpumask.h>
58 #include <linux/errno.h>
59 #include <linux/nodemask.h>
60 #include <linux/mm_types.h>
61
62 #include <asm/system.h>
63 #include <asm/semaphore.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/securebits.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91
92 #include <asm/processor.h>
93
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
98
99 /*
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
102 */
103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
104
105 /*
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 * a load-average precision of 10 bits integer + 11 bits fractional
110 * - if you want to count load-averages more often, you need more
111 * precision, or rounding will get you. With 2-second counting freq,
112 * the EXP_n values would be 1981, 2034 and 2043 if still using only
113 * 11 bit fractions.
114 */
115 extern unsigned long avenrun[]; /* Load averages */
116
117 #define FSHIFT 11 /* nr of bits of precision */
118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5 2014 /* 1/exp(5sec/5min) */
122 #define EXP_15 2037 /* 1/exp(5sec/15min) */
123
124 #define CALC_LOAD(load,exp,n) \
125 load *= exp; \
126 load += n*(FIXED_1-exp); \
127 load >>= FSHIFT;
128
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137 extern unsigned long weighted_cpuload(const int cpu);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 /*
162 * Task state bitmask. NOTE! These bits are also
163 * encoded in fs/proc/array.c: get_task_state().
164 *
165 * We have two separate sets of flags: task->state
166 * is about runnability, while task->exit_state are
167 * about the task exiting. Confusing, but this way
168 * modifying one set can't modify the other one by
169 * mistake.
170 */
171 #define TASK_RUNNING 0
172 #define TASK_INTERRUPTIBLE 1
173 #define TASK_UNINTERRUPTIBLE 2
174 #define TASK_STOPPED 4
175 #define TASK_TRACED 8
176 /* in tsk->exit_state */
177 #define EXIT_ZOMBIE 16
178 #define EXIT_DEAD 32
179 /* in tsk->state again */
180 #define TASK_DEAD 64
181
182 #define __set_task_state(tsk, state_value) \
183 do { (tsk)->state = (state_value); } while (0)
184 #define set_task_state(tsk, state_value) \
185 set_mb((tsk)->state, (state_value))
186
187 /*
188 * set_current_state() includes a barrier so that the write of current->state
189 * is correctly serialised wrt the caller's subsequent test of whether to
190 * actually sleep:
191 *
192 * set_current_state(TASK_UNINTERRUPTIBLE);
193 * if (do_i_need_to_sleep())
194 * schedule();
195 *
196 * If the caller does not need such serialisation then use __set_current_state()
197 */
198 #define __set_current_state(state_value) \
199 do { current->state = (state_value); } while (0)
200 #define set_current_state(state_value) \
201 set_mb(current->state, (state_value))
202
203 /* Task command name length */
204 #define TASK_COMM_LEN 16
205
206 #include <linux/spinlock.h>
207
208 /*
209 * This serializes "schedule()" and also protects
210 * the run-queue from deletions/modifications (but
211 * _adding_ to the beginning of the run-queue has
212 * a separate lock).
213 */
214 extern rwlock_t tasklist_lock;
215 extern spinlock_t mmlist_lock;
216
217 struct task_struct;
218
219 extern void sched_init(void);
220 extern void sched_init_smp(void);
221 extern void init_idle(struct task_struct *idle, int cpu);
222 extern void init_idle_bootup_task(struct task_struct *idle);
223
224 extern cpumask_t nohz_cpu_mask;
225 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
226 extern int select_nohz_load_balancer(int cpu);
227 #else
228 static inline int select_nohz_load_balancer(int cpu)
229 {
230 return 0;
231 }
232 #endif
233
234 extern unsigned long rt_needs_cpu(int cpu);
235
236 /*
237 * Only dump TASK_* tasks. (0 for all tasks)
238 */
239 extern void show_state_filter(unsigned long state_filter);
240
241 static inline void show_state(void)
242 {
243 show_state_filter(0);
244 }
245
246 extern void show_regs(struct pt_regs *);
247
248 /*
249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250 * task), SP is the stack pointer of the first frame that should be shown in the back
251 * trace (or NULL if the entire call-chain of the task should be shown).
252 */
253 extern void show_stack(struct task_struct *task, unsigned long *sp);
254
255 void io_schedule(void);
256 long io_schedule_timeout(long timeout);
257
258 extern void cpu_init (void);
259 extern void trap_init(void);
260 extern void account_process_tick(struct task_struct *task, int user);
261 extern void update_process_times(int user);
262 extern void scheduler_tick(void);
263 extern void hrtick_resched(void);
264
265 extern void sched_show_task(struct task_struct *p);
266
267 #ifdef CONFIG_DETECT_SOFTLOCKUP
268 extern void softlockup_tick(void);
269 extern void spawn_softlockup_task(void);
270 extern void touch_softlockup_watchdog(void);
271 extern void touch_all_softlockup_watchdogs(void);
272 extern unsigned long softlockup_thresh;
273 extern unsigned long sysctl_hung_task_check_count;
274 extern unsigned long sysctl_hung_task_timeout_secs;
275 extern unsigned long sysctl_hung_task_warnings;
276 #else
277 static inline void softlockup_tick(void)
278 {
279 }
280 static inline void spawn_softlockup_task(void)
281 {
282 }
283 static inline void touch_softlockup_watchdog(void)
284 {
285 }
286 static inline void touch_all_softlockup_watchdogs(void)
287 {
288 }
289 #endif
290
291
292 /* Attach to any functions which should be ignored in wchan output. */
293 #define __sched __attribute__((__section__(".sched.text")))
294
295 /* Linker adds these: start and end of __sched functions */
296 extern char __sched_text_start[], __sched_text_end[];
297
298 /* Is this address in the __sched functions? */
299 extern int in_sched_functions(unsigned long addr);
300
301 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
302 extern signed long FASTCALL(schedule_timeout(signed long timeout));
303 extern signed long schedule_timeout_interruptible(signed long timeout);
304 extern signed long schedule_timeout_uninterruptible(signed long timeout);
305 asmlinkage void schedule(void);
306
307 struct nsproxy;
308 struct user_namespace;
309
310 /* Maximum number of active map areas.. This is a random (large) number */
311 #define DEFAULT_MAX_MAP_COUNT 65536
312
313 extern int sysctl_max_map_count;
314
315 #include <linux/aio.h>
316
317 extern unsigned long
318 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
319 unsigned long, unsigned long);
320 extern unsigned long
321 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
322 unsigned long len, unsigned long pgoff,
323 unsigned long flags);
324 extern void arch_unmap_area(struct mm_struct *, unsigned long);
325 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
326
327 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
328 /*
329 * The mm counters are not protected by its page_table_lock,
330 * so must be incremented atomically.
331 */
332 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
333 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
334 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
335 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
336 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
337
338 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
339 /*
340 * The mm counters are protected by its page_table_lock,
341 * so can be incremented directly.
342 */
343 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
344 #define get_mm_counter(mm, member) ((mm)->_##member)
345 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
346 #define inc_mm_counter(mm, member) (mm)->_##member++
347 #define dec_mm_counter(mm, member) (mm)->_##member--
348
349 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
350
351 #define get_mm_rss(mm) \
352 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
353 #define update_hiwater_rss(mm) do { \
354 unsigned long _rss = get_mm_rss(mm); \
355 if ((mm)->hiwater_rss < _rss) \
356 (mm)->hiwater_rss = _rss; \
357 } while (0)
358 #define update_hiwater_vm(mm) do { \
359 if ((mm)->hiwater_vm < (mm)->total_vm) \
360 (mm)->hiwater_vm = (mm)->total_vm; \
361 } while (0)
362
363 extern void set_dumpable(struct mm_struct *mm, int value);
364 extern int get_dumpable(struct mm_struct *mm);
365
366 /* mm flags */
367 /* dumpable bits */
368 #define MMF_DUMPABLE 0 /* core dump is permitted */
369 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
370 #define MMF_DUMPABLE_BITS 2
371
372 /* coredump filter bits */
373 #define MMF_DUMP_ANON_PRIVATE 2
374 #define MMF_DUMP_ANON_SHARED 3
375 #define MMF_DUMP_MAPPED_PRIVATE 4
376 #define MMF_DUMP_MAPPED_SHARED 5
377 #define MMF_DUMP_ELF_HEADERS 6
378 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
379 #define MMF_DUMP_FILTER_BITS 5
380 #define MMF_DUMP_FILTER_MASK \
381 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
382 #define MMF_DUMP_FILTER_DEFAULT \
383 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
384
385 struct sighand_struct {
386 atomic_t count;
387 struct k_sigaction action[_NSIG];
388 spinlock_t siglock;
389 wait_queue_head_t signalfd_wqh;
390 };
391
392 struct pacct_struct {
393 int ac_flag;
394 long ac_exitcode;
395 unsigned long ac_mem;
396 cputime_t ac_utime, ac_stime;
397 unsigned long ac_minflt, ac_majflt;
398 };
399
400 /*
401 * NOTE! "signal_struct" does not have it's own
402 * locking, because a shared signal_struct always
403 * implies a shared sighand_struct, so locking
404 * sighand_struct is always a proper superset of
405 * the locking of signal_struct.
406 */
407 struct signal_struct {
408 atomic_t count;
409 atomic_t live;
410
411 wait_queue_head_t wait_chldexit; /* for wait4() */
412
413 /* current thread group signal load-balancing target: */
414 struct task_struct *curr_target;
415
416 /* shared signal handling: */
417 struct sigpending shared_pending;
418
419 /* thread group exit support */
420 int group_exit_code;
421 /* overloaded:
422 * - notify group_exit_task when ->count is equal to notify_count
423 * - everyone except group_exit_task is stopped during signal delivery
424 * of fatal signals, group_exit_task processes the signal.
425 */
426 struct task_struct *group_exit_task;
427 int notify_count;
428
429 /* thread group stop support, overloads group_exit_code too */
430 int group_stop_count;
431 unsigned int flags; /* see SIGNAL_* flags below */
432
433 /* POSIX.1b Interval Timers */
434 struct list_head posix_timers;
435
436 /* ITIMER_REAL timer for the process */
437 struct hrtimer real_timer;
438 struct task_struct *tsk;
439 ktime_t it_real_incr;
440
441 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
442 cputime_t it_prof_expires, it_virt_expires;
443 cputime_t it_prof_incr, it_virt_incr;
444
445 /* job control IDs */
446
447 /*
448 * pgrp and session fields are deprecated.
449 * use the task_session_Xnr and task_pgrp_Xnr routines below
450 */
451
452 union {
453 pid_t pgrp __deprecated;
454 pid_t __pgrp;
455 };
456
457 struct pid *tty_old_pgrp;
458
459 union {
460 pid_t session __deprecated;
461 pid_t __session;
462 };
463
464 /* boolean value for session group leader */
465 int leader;
466
467 struct tty_struct *tty; /* NULL if no tty */
468
469 /*
470 * Cumulative resource counters for dead threads in the group,
471 * and for reaped dead child processes forked by this group.
472 * Live threads maintain their own counters and add to these
473 * in __exit_signal, except for the group leader.
474 */
475 cputime_t utime, stime, cutime, cstime;
476 cputime_t gtime;
477 cputime_t cgtime;
478 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
479 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
480 unsigned long inblock, oublock, cinblock, coublock;
481
482 /*
483 * Cumulative ns of scheduled CPU time for dead threads in the
484 * group, not including a zombie group leader. (This only differs
485 * from jiffies_to_ns(utime + stime) if sched_clock uses something
486 * other than jiffies.)
487 */
488 unsigned long long sum_sched_runtime;
489
490 /*
491 * We don't bother to synchronize most readers of this at all,
492 * because there is no reader checking a limit that actually needs
493 * to get both rlim_cur and rlim_max atomically, and either one
494 * alone is a single word that can safely be read normally.
495 * getrlimit/setrlimit use task_lock(current->group_leader) to
496 * protect this instead of the siglock, because they really
497 * have no need to disable irqs.
498 */
499 struct rlimit rlim[RLIM_NLIMITS];
500
501 struct list_head cpu_timers[3];
502
503 /* keep the process-shared keyrings here so that they do the right
504 * thing in threads created with CLONE_THREAD */
505 #ifdef CONFIG_KEYS
506 struct key *session_keyring; /* keyring inherited over fork */
507 struct key *process_keyring; /* keyring private to this process */
508 #endif
509 #ifdef CONFIG_BSD_PROCESS_ACCT
510 struct pacct_struct pacct; /* per-process accounting information */
511 #endif
512 #ifdef CONFIG_TASKSTATS
513 struct taskstats *stats;
514 #endif
515 #ifdef CONFIG_AUDIT
516 unsigned audit_tty;
517 struct tty_audit_buf *tty_audit_buf;
518 #endif
519 };
520
521 /* Context switch must be unlocked if interrupts are to be enabled */
522 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
523 # define __ARCH_WANT_UNLOCKED_CTXSW
524 #endif
525
526 /*
527 * Bits in flags field of signal_struct.
528 */
529 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
530 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
531 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
532 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
533
534 /*
535 * Some day this will be a full-fledged user tracking system..
536 */
537 struct user_struct {
538 atomic_t __count; /* reference count */
539 atomic_t processes; /* How many processes does this user have? */
540 atomic_t files; /* How many open files does this user have? */
541 atomic_t sigpending; /* How many pending signals does this user have? */
542 #ifdef CONFIG_INOTIFY_USER
543 atomic_t inotify_watches; /* How many inotify watches does this user have? */
544 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
545 #endif
546 #ifdef CONFIG_POSIX_MQUEUE
547 /* protected by mq_lock */
548 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
549 #endif
550 unsigned long locked_shm; /* How many pages of mlocked shm ? */
551
552 #ifdef CONFIG_KEYS
553 struct key *uid_keyring; /* UID specific keyring */
554 struct key *session_keyring; /* UID's default session keyring */
555 #endif
556
557 /* Hash table maintenance information */
558 struct hlist_node uidhash_node;
559 uid_t uid;
560
561 #ifdef CONFIG_FAIR_USER_SCHED
562 struct task_group *tg;
563 #ifdef CONFIG_SYSFS
564 struct kobject kobj;
565 struct work_struct work;
566 #endif
567 #endif
568 };
569
570 extern int uids_sysfs_init(void);
571
572 extern struct user_struct *find_user(uid_t);
573
574 extern struct user_struct root_user;
575 #define INIT_USER (&root_user)
576
577 struct backing_dev_info;
578 struct reclaim_state;
579
580 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
581 struct sched_info {
582 /* cumulative counters */
583 unsigned long pcount; /* # of times run on this cpu */
584 unsigned long long cpu_time, /* time spent on the cpu */
585 run_delay; /* time spent waiting on a runqueue */
586
587 /* timestamps */
588 unsigned long long last_arrival,/* when we last ran on a cpu */
589 last_queued; /* when we were last queued to run */
590 #ifdef CONFIG_SCHEDSTATS
591 /* BKL stats */
592 unsigned int bkl_count;
593 #endif
594 };
595 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
596
597 #ifdef CONFIG_SCHEDSTATS
598 extern const struct file_operations proc_schedstat_operations;
599 #endif /* CONFIG_SCHEDSTATS */
600
601 #ifdef CONFIG_TASK_DELAY_ACCT
602 struct task_delay_info {
603 spinlock_t lock;
604 unsigned int flags; /* Private per-task flags */
605
606 /* For each stat XXX, add following, aligned appropriately
607 *
608 * struct timespec XXX_start, XXX_end;
609 * u64 XXX_delay;
610 * u32 XXX_count;
611 *
612 * Atomicity of updates to XXX_delay, XXX_count protected by
613 * single lock above (split into XXX_lock if contention is an issue).
614 */
615
616 /*
617 * XXX_count is incremented on every XXX operation, the delay
618 * associated with the operation is added to XXX_delay.
619 * XXX_delay contains the accumulated delay time in nanoseconds.
620 */
621 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
622 u64 blkio_delay; /* wait for sync block io completion */
623 u64 swapin_delay; /* wait for swapin block io completion */
624 u32 blkio_count; /* total count of the number of sync block */
625 /* io operations performed */
626 u32 swapin_count; /* total count of the number of swapin block */
627 /* io operations performed */
628 };
629 #endif /* CONFIG_TASK_DELAY_ACCT */
630
631 static inline int sched_info_on(void)
632 {
633 #ifdef CONFIG_SCHEDSTATS
634 return 1;
635 #elif defined(CONFIG_TASK_DELAY_ACCT)
636 extern int delayacct_on;
637 return delayacct_on;
638 #else
639 return 0;
640 #endif
641 }
642
643 enum cpu_idle_type {
644 CPU_IDLE,
645 CPU_NOT_IDLE,
646 CPU_NEWLY_IDLE,
647 CPU_MAX_IDLE_TYPES
648 };
649
650 /*
651 * sched-domains (multiprocessor balancing) declarations:
652 */
653
654 /*
655 * Increase resolution of nice-level calculations:
656 */
657 #define SCHED_LOAD_SHIFT 10
658 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
659
660 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
661
662 #ifdef CONFIG_SMP
663 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
664 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
665 #define SD_BALANCE_EXEC 4 /* Balance on exec */
666 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
667 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
668 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
669 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
670 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
671 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
672 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
673 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
674
675 #define BALANCE_FOR_MC_POWER \
676 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
677
678 #define BALANCE_FOR_PKG_POWER \
679 ((sched_mc_power_savings || sched_smt_power_savings) ? \
680 SD_POWERSAVINGS_BALANCE : 0)
681
682 #define test_sd_parent(sd, flag) ((sd->parent && \
683 (sd->parent->flags & flag)) ? 1 : 0)
684
685
686 struct sched_group {
687 struct sched_group *next; /* Must be a circular list */
688 cpumask_t cpumask;
689
690 /*
691 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
692 * single CPU. This is read only (except for setup, hotplug CPU).
693 * Note : Never change cpu_power without recompute its reciprocal
694 */
695 unsigned int __cpu_power;
696 /*
697 * reciprocal value of cpu_power to avoid expensive divides
698 * (see include/linux/reciprocal_div.h)
699 */
700 u32 reciprocal_cpu_power;
701 };
702
703 struct sched_domain {
704 /* These fields must be setup */
705 struct sched_domain *parent; /* top domain must be null terminated */
706 struct sched_domain *child; /* bottom domain must be null terminated */
707 struct sched_group *groups; /* the balancing groups of the domain */
708 cpumask_t span; /* span of all CPUs in this domain */
709 unsigned long min_interval; /* Minimum balance interval ms */
710 unsigned long max_interval; /* Maximum balance interval ms */
711 unsigned int busy_factor; /* less balancing by factor if busy */
712 unsigned int imbalance_pct; /* No balance until over watermark */
713 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
714 unsigned int busy_idx;
715 unsigned int idle_idx;
716 unsigned int newidle_idx;
717 unsigned int wake_idx;
718 unsigned int forkexec_idx;
719 int flags; /* See SD_* */
720
721 /* Runtime fields. */
722 unsigned long last_balance; /* init to jiffies. units in jiffies */
723 unsigned int balance_interval; /* initialise to 1. units in ms. */
724 unsigned int nr_balance_failed; /* initialise to 0 */
725
726 #ifdef CONFIG_SCHEDSTATS
727 /* load_balance() stats */
728 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
729 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
730 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
731 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
732 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
733 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
734 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
735 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
736
737 /* Active load balancing */
738 unsigned int alb_count;
739 unsigned int alb_failed;
740 unsigned int alb_pushed;
741
742 /* SD_BALANCE_EXEC stats */
743 unsigned int sbe_count;
744 unsigned int sbe_balanced;
745 unsigned int sbe_pushed;
746
747 /* SD_BALANCE_FORK stats */
748 unsigned int sbf_count;
749 unsigned int sbf_balanced;
750 unsigned int sbf_pushed;
751
752 /* try_to_wake_up() stats */
753 unsigned int ttwu_wake_remote;
754 unsigned int ttwu_move_affine;
755 unsigned int ttwu_move_balance;
756 #endif
757 };
758
759 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
760
761 #endif /* CONFIG_SMP */
762
763 /*
764 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
765 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
766 * task of nice 0 or enough lower priority tasks to bring up the
767 * weighted_cpuload
768 */
769 static inline int above_background_load(void)
770 {
771 unsigned long cpu;
772
773 for_each_online_cpu(cpu) {
774 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
775 return 1;
776 }
777 return 0;
778 }
779
780 struct io_context; /* See blkdev.h */
781 #define NGROUPS_SMALL 32
782 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
783 struct group_info {
784 int ngroups;
785 atomic_t usage;
786 gid_t small_block[NGROUPS_SMALL];
787 int nblocks;
788 gid_t *blocks[0];
789 };
790
791 /*
792 * get_group_info() must be called with the owning task locked (via task_lock())
793 * when task != current. The reason being that the vast majority of callers are
794 * looking at current->group_info, which can not be changed except by the
795 * current task. Changing current->group_info requires the task lock, too.
796 */
797 #define get_group_info(group_info) do { \
798 atomic_inc(&(group_info)->usage); \
799 } while (0)
800
801 #define put_group_info(group_info) do { \
802 if (atomic_dec_and_test(&(group_info)->usage)) \
803 groups_free(group_info); \
804 } while (0)
805
806 extern struct group_info *groups_alloc(int gidsetsize);
807 extern void groups_free(struct group_info *group_info);
808 extern int set_current_groups(struct group_info *group_info);
809 extern int groups_search(struct group_info *group_info, gid_t grp);
810 /* access the groups "array" with this macro */
811 #define GROUP_AT(gi, i) \
812 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
813
814 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
815 extern void prefetch_stack(struct task_struct *t);
816 #else
817 static inline void prefetch_stack(struct task_struct *t) { }
818 #endif
819
820 struct audit_context; /* See audit.c */
821 struct mempolicy;
822 struct pipe_inode_info;
823 struct uts_namespace;
824
825 struct rq;
826 struct sched_domain;
827
828 struct sched_class {
829 const struct sched_class *next;
830
831 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
832 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
833 void (*yield_task) (struct rq *rq);
834 int (*select_task_rq)(struct task_struct *p, int sync);
835
836 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
837
838 struct task_struct * (*pick_next_task) (struct rq *rq);
839 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
840
841 #ifdef CONFIG_SMP
842 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
843 struct rq *busiest, unsigned long max_load_move,
844 struct sched_domain *sd, enum cpu_idle_type idle,
845 int *all_pinned, int *this_best_prio);
846
847 int (*move_one_task) (struct rq *this_rq, int this_cpu,
848 struct rq *busiest, struct sched_domain *sd,
849 enum cpu_idle_type idle);
850 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
851 void (*post_schedule) (struct rq *this_rq);
852 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
853 #endif
854
855 void (*set_curr_task) (struct rq *rq);
856 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
857 void (*task_new) (struct rq *rq, struct task_struct *p);
858 void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask);
859
860 void (*join_domain)(struct rq *rq);
861 void (*leave_domain)(struct rq *rq);
862
863 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
864 int running);
865 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
866 int running);
867 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
868 int oldprio, int running);
869 };
870
871 struct load_weight {
872 unsigned long weight, inv_weight;
873 };
874
875 /*
876 * CFS stats for a schedulable entity (task, task-group etc)
877 *
878 * Current field usage histogram:
879 *
880 * 4 se->block_start
881 * 4 se->run_node
882 * 4 se->sleep_start
883 * 6 se->load.weight
884 */
885 struct sched_entity {
886 struct load_weight load; /* for load-balancing */
887 struct rb_node run_node;
888 unsigned int on_rq;
889
890 u64 exec_start;
891 u64 sum_exec_runtime;
892 u64 vruntime;
893 u64 prev_sum_exec_runtime;
894
895 #ifdef CONFIG_SCHEDSTATS
896 u64 wait_start;
897 u64 wait_max;
898 u64 wait_count;
899 u64 wait_sum;
900
901 u64 sleep_start;
902 u64 sleep_max;
903 s64 sum_sleep_runtime;
904
905 u64 block_start;
906 u64 block_max;
907 u64 exec_max;
908 u64 slice_max;
909
910 u64 nr_migrations;
911 u64 nr_migrations_cold;
912 u64 nr_failed_migrations_affine;
913 u64 nr_failed_migrations_running;
914 u64 nr_failed_migrations_hot;
915 u64 nr_forced_migrations;
916 u64 nr_forced2_migrations;
917
918 u64 nr_wakeups;
919 u64 nr_wakeups_sync;
920 u64 nr_wakeups_migrate;
921 u64 nr_wakeups_local;
922 u64 nr_wakeups_remote;
923 u64 nr_wakeups_affine;
924 u64 nr_wakeups_affine_attempts;
925 u64 nr_wakeups_passive;
926 u64 nr_wakeups_idle;
927 #endif
928
929 #ifdef CONFIG_FAIR_GROUP_SCHED
930 struct sched_entity *parent;
931 /* rq on which this entity is (to be) queued: */
932 struct cfs_rq *cfs_rq;
933 /* rq "owned" by this entity/group: */
934 struct cfs_rq *my_q;
935 #endif
936 };
937
938 struct sched_rt_entity {
939 struct list_head run_list;
940 unsigned int time_slice;
941 unsigned long timeout;
942 int nr_cpus_allowed;
943
944 #ifdef CONFIG_FAIR_GROUP_SCHED
945 struct sched_rt_entity *parent;
946 /* rq on which this entity is (to be) queued: */
947 struct rt_rq *rt_rq;
948 /* rq "owned" by this entity/group: */
949 struct rt_rq *my_q;
950 #endif
951 };
952
953 struct task_struct {
954 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
955 void *stack;
956 atomic_t usage;
957 unsigned int flags; /* per process flags, defined below */
958 unsigned int ptrace;
959
960 int lock_depth; /* BKL lock depth */
961
962 #ifdef CONFIG_SMP
963 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
964 int oncpu;
965 #endif
966 #endif
967
968 int prio, static_prio, normal_prio;
969 const struct sched_class *sched_class;
970 struct sched_entity se;
971 struct sched_rt_entity rt;
972
973 #ifdef CONFIG_PREEMPT_NOTIFIERS
974 /* list of struct preempt_notifier: */
975 struct hlist_head preempt_notifiers;
976 #endif
977
978 unsigned short ioprio;
979 /*
980 * fpu_counter contains the number of consecutive context switches
981 * that the FPU is used. If this is over a threshold, the lazy fpu
982 * saving becomes unlazy to save the trap. This is an unsigned char
983 * so that after 256 times the counter wraps and the behavior turns
984 * lazy again; this to deal with bursty apps that only use FPU for
985 * a short time
986 */
987 unsigned char fpu_counter;
988 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
989 #ifdef CONFIG_BLK_DEV_IO_TRACE
990 unsigned int btrace_seq;
991 #endif
992
993 unsigned int policy;
994 cpumask_t cpus_allowed;
995
996 #ifdef CONFIG_PREEMPT_RCU
997 int rcu_read_lock_nesting;
998 int rcu_flipctr_idx;
999 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1000
1001 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1002 struct sched_info sched_info;
1003 #endif
1004
1005 struct list_head tasks;
1006 /*
1007 * ptrace_list/ptrace_children forms the list of my children
1008 * that were stolen by a ptracer.
1009 */
1010 struct list_head ptrace_children;
1011 struct list_head ptrace_list;
1012
1013 struct mm_struct *mm, *active_mm;
1014
1015 /* task state */
1016 struct linux_binfmt *binfmt;
1017 int exit_state;
1018 int exit_code, exit_signal;
1019 int pdeath_signal; /* The signal sent when the parent dies */
1020 /* ??? */
1021 unsigned int personality;
1022 unsigned did_exec:1;
1023 pid_t pid;
1024 pid_t tgid;
1025
1026 #ifdef CONFIG_CC_STACKPROTECTOR
1027 /* Canary value for the -fstack-protector gcc feature */
1028 unsigned long stack_canary;
1029 #endif
1030 /*
1031 * pointers to (original) parent process, youngest child, younger sibling,
1032 * older sibling, respectively. (p->father can be replaced with
1033 * p->parent->pid)
1034 */
1035 struct task_struct *real_parent; /* real parent process (when being debugged) */
1036 struct task_struct *parent; /* parent process */
1037 /*
1038 * children/sibling forms the list of my children plus the
1039 * tasks I'm ptracing.
1040 */
1041 struct list_head children; /* list of my children */
1042 struct list_head sibling; /* linkage in my parent's children list */
1043 struct task_struct *group_leader; /* threadgroup leader */
1044
1045 /* PID/PID hash table linkage. */
1046 struct pid_link pids[PIDTYPE_MAX];
1047 struct list_head thread_group;
1048
1049 struct completion *vfork_done; /* for vfork() */
1050 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1051 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1052
1053 unsigned int rt_priority;
1054 cputime_t utime, stime, utimescaled, stimescaled;
1055 cputime_t gtime;
1056 cputime_t prev_utime, prev_stime;
1057 unsigned long nvcsw, nivcsw; /* context switch counts */
1058 struct timespec start_time; /* monotonic time */
1059 struct timespec real_start_time; /* boot based time */
1060 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1061 unsigned long min_flt, maj_flt;
1062
1063 cputime_t it_prof_expires, it_virt_expires;
1064 unsigned long long it_sched_expires;
1065 struct list_head cpu_timers[3];
1066
1067 /* process credentials */
1068 uid_t uid,euid,suid,fsuid;
1069 gid_t gid,egid,sgid,fsgid;
1070 struct group_info *group_info;
1071 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1072 unsigned keep_capabilities:1;
1073 struct user_struct *user;
1074 #ifdef CONFIG_KEYS
1075 struct key *request_key_auth; /* assumed request_key authority */
1076 struct key *thread_keyring; /* keyring private to this thread */
1077 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1078 #endif
1079 char comm[TASK_COMM_LEN]; /* executable name excluding path
1080 - access with [gs]et_task_comm (which lock
1081 it with task_lock())
1082 - initialized normally by flush_old_exec */
1083 /* file system info */
1084 int link_count, total_link_count;
1085 #ifdef CONFIG_SYSVIPC
1086 /* ipc stuff */
1087 struct sysv_sem sysvsem;
1088 #endif
1089 #ifdef CONFIG_DETECT_SOFTLOCKUP
1090 /* hung task detection */
1091 unsigned long last_switch_timestamp;
1092 unsigned long last_switch_count;
1093 #endif
1094 /* CPU-specific state of this task */
1095 struct thread_struct thread;
1096 /* filesystem information */
1097 struct fs_struct *fs;
1098 /* open file information */
1099 struct files_struct *files;
1100 /* namespaces */
1101 struct nsproxy *nsproxy;
1102 /* signal handlers */
1103 struct signal_struct *signal;
1104 struct sighand_struct *sighand;
1105
1106 sigset_t blocked, real_blocked;
1107 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1108 struct sigpending pending;
1109
1110 unsigned long sas_ss_sp;
1111 size_t sas_ss_size;
1112 int (*notifier)(void *priv);
1113 void *notifier_data;
1114 sigset_t *notifier_mask;
1115 #ifdef CONFIG_SECURITY
1116 void *security;
1117 #endif
1118 struct audit_context *audit_context;
1119 seccomp_t seccomp;
1120
1121 /* Thread group tracking */
1122 u32 parent_exec_id;
1123 u32 self_exec_id;
1124 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1125 spinlock_t alloc_lock;
1126
1127 /* Protection of the PI data structures: */
1128 spinlock_t pi_lock;
1129
1130 #ifdef CONFIG_RT_MUTEXES
1131 /* PI waiters blocked on a rt_mutex held by this task */
1132 struct plist_head pi_waiters;
1133 /* Deadlock detection and priority inheritance handling */
1134 struct rt_mutex_waiter *pi_blocked_on;
1135 #endif
1136
1137 #ifdef CONFIG_DEBUG_MUTEXES
1138 /* mutex deadlock detection */
1139 struct mutex_waiter *blocked_on;
1140 #endif
1141 #ifdef CONFIG_TRACE_IRQFLAGS
1142 unsigned int irq_events;
1143 int hardirqs_enabled;
1144 unsigned long hardirq_enable_ip;
1145 unsigned int hardirq_enable_event;
1146 unsigned long hardirq_disable_ip;
1147 unsigned int hardirq_disable_event;
1148 int softirqs_enabled;
1149 unsigned long softirq_disable_ip;
1150 unsigned int softirq_disable_event;
1151 unsigned long softirq_enable_ip;
1152 unsigned int softirq_enable_event;
1153 int hardirq_context;
1154 int softirq_context;
1155 #endif
1156 #ifdef CONFIG_LOCKDEP
1157 # define MAX_LOCK_DEPTH 30UL
1158 u64 curr_chain_key;
1159 int lockdep_depth;
1160 struct held_lock held_locks[MAX_LOCK_DEPTH];
1161 unsigned int lockdep_recursion;
1162 #endif
1163
1164 /* journalling filesystem info */
1165 void *journal_info;
1166
1167 /* stacked block device info */
1168 struct bio *bio_list, **bio_tail;
1169
1170 /* VM state */
1171 struct reclaim_state *reclaim_state;
1172
1173 struct backing_dev_info *backing_dev_info;
1174
1175 struct io_context *io_context;
1176
1177 unsigned long ptrace_message;
1178 siginfo_t *last_siginfo; /* For ptrace use. */
1179 #ifdef CONFIG_TASK_XACCT
1180 /* i/o counters(bytes read/written, #syscalls */
1181 u64 rchar, wchar, syscr, syscw;
1182 #endif
1183 struct task_io_accounting ioac;
1184 #if defined(CONFIG_TASK_XACCT)
1185 u64 acct_rss_mem1; /* accumulated rss usage */
1186 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1187 cputime_t acct_stimexpd;/* stime since last update */
1188 #endif
1189 #ifdef CONFIG_NUMA
1190 struct mempolicy *mempolicy;
1191 short il_next;
1192 #endif
1193 #ifdef CONFIG_CPUSETS
1194 nodemask_t mems_allowed;
1195 int cpuset_mems_generation;
1196 int cpuset_mem_spread_rotor;
1197 #endif
1198 #ifdef CONFIG_CGROUPS
1199 /* Control Group info protected by css_set_lock */
1200 struct css_set *cgroups;
1201 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1202 struct list_head cg_list;
1203 #endif
1204 #ifdef CONFIG_FUTEX
1205 struct robust_list_head __user *robust_list;
1206 #ifdef CONFIG_COMPAT
1207 struct compat_robust_list_head __user *compat_robust_list;
1208 #endif
1209 struct list_head pi_state_list;
1210 struct futex_pi_state *pi_state_cache;
1211 #endif
1212 atomic_t fs_excl; /* holding fs exclusive resources */
1213 struct rcu_head rcu;
1214
1215 /*
1216 * cache last used pipe for splice
1217 */
1218 struct pipe_inode_info *splice_pipe;
1219 #ifdef CONFIG_TASK_DELAY_ACCT
1220 struct task_delay_info *delays;
1221 #endif
1222 #ifdef CONFIG_FAULT_INJECTION
1223 int make_it_fail;
1224 #endif
1225 struct prop_local_single dirties;
1226 #ifdef CONFIG_LATENCYTOP
1227 int latency_record_count;
1228 struct latency_record latency_record[LT_SAVECOUNT];
1229 #endif
1230 };
1231
1232 /*
1233 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1234 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1235 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1236 * values are inverted: lower p->prio value means higher priority.
1237 *
1238 * The MAX_USER_RT_PRIO value allows the actual maximum
1239 * RT priority to be separate from the value exported to
1240 * user-space. This allows kernel threads to set their
1241 * priority to a value higher than any user task. Note:
1242 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1243 */
1244
1245 #define MAX_USER_RT_PRIO 100
1246 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1247
1248 #define MAX_PRIO (MAX_RT_PRIO + 40)
1249 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1250
1251 static inline int rt_prio(int prio)
1252 {
1253 if (unlikely(prio < MAX_RT_PRIO))
1254 return 1;
1255 return 0;
1256 }
1257
1258 static inline int rt_task(struct task_struct *p)
1259 {
1260 return rt_prio(p->prio);
1261 }
1262
1263 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1264 {
1265 tsk->signal->__session = session;
1266 }
1267
1268 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1269 {
1270 tsk->signal->__pgrp = pgrp;
1271 }
1272
1273 static inline struct pid *task_pid(struct task_struct *task)
1274 {
1275 return task->pids[PIDTYPE_PID].pid;
1276 }
1277
1278 static inline struct pid *task_tgid(struct task_struct *task)
1279 {
1280 return task->group_leader->pids[PIDTYPE_PID].pid;
1281 }
1282
1283 static inline struct pid *task_pgrp(struct task_struct *task)
1284 {
1285 return task->group_leader->pids[PIDTYPE_PGID].pid;
1286 }
1287
1288 static inline struct pid *task_session(struct task_struct *task)
1289 {
1290 return task->group_leader->pids[PIDTYPE_SID].pid;
1291 }
1292
1293 struct pid_namespace;
1294
1295 /*
1296 * the helpers to get the task's different pids as they are seen
1297 * from various namespaces
1298 *
1299 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1300 * task_xid_vnr() : virtual id, i.e. the id seen from the namespace the task
1301 * belongs to. this only makes sence when called in the
1302 * context of the task that belongs to the same namespace;
1303 * task_xid_nr_ns() : id seen from the ns specified;
1304 *
1305 * set_task_vxid() : assigns a virtual id to a task;
1306 *
1307 * see also pid_nr() etc in include/linux/pid.h
1308 */
1309
1310 static inline pid_t task_pid_nr(struct task_struct *tsk)
1311 {
1312 return tsk->pid;
1313 }
1314
1315 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1316
1317 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1318 {
1319 return pid_vnr(task_pid(tsk));
1320 }
1321
1322
1323 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1324 {
1325 return tsk->tgid;
1326 }
1327
1328 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1329
1330 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1331 {
1332 return pid_vnr(task_tgid(tsk));
1333 }
1334
1335
1336 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1337 {
1338 return tsk->signal->__pgrp;
1339 }
1340
1341 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1342
1343 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1344 {
1345 return pid_vnr(task_pgrp(tsk));
1346 }
1347
1348
1349 static inline pid_t task_session_nr(struct task_struct *tsk)
1350 {
1351 return tsk->signal->__session;
1352 }
1353
1354 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1355
1356 static inline pid_t task_session_vnr(struct task_struct *tsk)
1357 {
1358 return pid_vnr(task_session(tsk));
1359 }
1360
1361
1362 /**
1363 * pid_alive - check that a task structure is not stale
1364 * @p: Task structure to be checked.
1365 *
1366 * Test if a process is not yet dead (at most zombie state)
1367 * If pid_alive fails, then pointers within the task structure
1368 * can be stale and must not be dereferenced.
1369 */
1370 static inline int pid_alive(struct task_struct *p)
1371 {
1372 return p->pids[PIDTYPE_PID].pid != NULL;
1373 }
1374
1375 /**
1376 * is_global_init - check if a task structure is init
1377 * @tsk: Task structure to be checked.
1378 *
1379 * Check if a task structure is the first user space task the kernel created.
1380 */
1381 static inline int is_global_init(struct task_struct *tsk)
1382 {
1383 return tsk->pid == 1;
1384 }
1385
1386 /*
1387 * is_container_init:
1388 * check whether in the task is init in its own pid namespace.
1389 */
1390 extern int is_container_init(struct task_struct *tsk);
1391
1392 extern struct pid *cad_pid;
1393
1394 extern void free_task(struct task_struct *tsk);
1395 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1396
1397 extern void __put_task_struct(struct task_struct *t);
1398
1399 static inline void put_task_struct(struct task_struct *t)
1400 {
1401 if (atomic_dec_and_test(&t->usage))
1402 __put_task_struct(t);
1403 }
1404
1405 /*
1406 * Per process flags
1407 */
1408 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1409 /* Not implemented yet, only for 486*/
1410 #define PF_STARTING 0x00000002 /* being created */
1411 #define PF_EXITING 0x00000004 /* getting shut down */
1412 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1413 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1414 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1415 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1416 #define PF_DUMPCORE 0x00000200 /* dumped core */
1417 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1418 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1419 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1420 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1421 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1422 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1423 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1424 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1425 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1426 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1427 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1428 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1429 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1430 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1431 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1432 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1433 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1434 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1435
1436 /*
1437 * Only the _current_ task can read/write to tsk->flags, but other
1438 * tasks can access tsk->flags in readonly mode for example
1439 * with tsk_used_math (like during threaded core dumping).
1440 * There is however an exception to this rule during ptrace
1441 * or during fork: the ptracer task is allowed to write to the
1442 * child->flags of its traced child (same goes for fork, the parent
1443 * can write to the child->flags), because we're guaranteed the
1444 * child is not running and in turn not changing child->flags
1445 * at the same time the parent does it.
1446 */
1447 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1448 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1449 #define clear_used_math() clear_stopped_child_used_math(current)
1450 #define set_used_math() set_stopped_child_used_math(current)
1451 #define conditional_stopped_child_used_math(condition, child) \
1452 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1453 #define conditional_used_math(condition) \
1454 conditional_stopped_child_used_math(condition, current)
1455 #define copy_to_stopped_child_used_math(child) \
1456 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1457 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1458 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1459 #define used_math() tsk_used_math(current)
1460
1461 #ifdef CONFIG_SMP
1462 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1463 #else
1464 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1465 {
1466 if (!cpu_isset(0, new_mask))
1467 return -EINVAL;
1468 return 0;
1469 }
1470 #endif
1471
1472 extern unsigned long long sched_clock(void);
1473
1474 /*
1475 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1476 * clock constructed from sched_clock():
1477 */
1478 extern unsigned long long cpu_clock(int cpu);
1479
1480 extern unsigned long long
1481 task_sched_runtime(struct task_struct *task);
1482
1483 /* sched_exec is called by processes performing an exec */
1484 #ifdef CONFIG_SMP
1485 extern void sched_exec(void);
1486 #else
1487 #define sched_exec() {}
1488 #endif
1489
1490 extern void sched_clock_idle_sleep_event(void);
1491 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1492
1493 #ifdef CONFIG_HOTPLUG_CPU
1494 extern void idle_task_exit(void);
1495 #else
1496 static inline void idle_task_exit(void) {}
1497 #endif
1498
1499 extern void sched_idle_next(void);
1500
1501 #ifdef CONFIG_SCHED_DEBUG
1502 extern unsigned int sysctl_sched_latency;
1503 extern unsigned int sysctl_sched_min_granularity;
1504 extern unsigned int sysctl_sched_wakeup_granularity;
1505 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1506 extern unsigned int sysctl_sched_child_runs_first;
1507 extern unsigned int sysctl_sched_features;
1508 extern unsigned int sysctl_sched_migration_cost;
1509 extern unsigned int sysctl_sched_nr_migrate;
1510 extern unsigned int sysctl_sched_rt_period;
1511 extern unsigned int sysctl_sched_rt_ratio;
1512 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
1513 extern unsigned int sysctl_sched_min_bal_int_shares;
1514 extern unsigned int sysctl_sched_max_bal_int_shares;
1515 #endif
1516
1517 int sched_nr_latency_handler(struct ctl_table *table, int write,
1518 struct file *file, void __user *buffer, size_t *length,
1519 loff_t *ppos);
1520 #endif
1521
1522 extern unsigned int sysctl_sched_compat_yield;
1523
1524 #ifdef CONFIG_RT_MUTEXES
1525 extern int rt_mutex_getprio(struct task_struct *p);
1526 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1527 extern void rt_mutex_adjust_pi(struct task_struct *p);
1528 #else
1529 static inline int rt_mutex_getprio(struct task_struct *p)
1530 {
1531 return p->normal_prio;
1532 }
1533 # define rt_mutex_adjust_pi(p) do { } while (0)
1534 #endif
1535
1536 extern void set_user_nice(struct task_struct *p, long nice);
1537 extern int task_prio(const struct task_struct *p);
1538 extern int task_nice(const struct task_struct *p);
1539 extern int can_nice(const struct task_struct *p, const int nice);
1540 extern int task_curr(const struct task_struct *p);
1541 extern int idle_cpu(int cpu);
1542 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1543 extern struct task_struct *idle_task(int cpu);
1544 extern struct task_struct *curr_task(int cpu);
1545 extern void set_curr_task(int cpu, struct task_struct *p);
1546
1547 void yield(void);
1548
1549 /*
1550 * The default (Linux) execution domain.
1551 */
1552 extern struct exec_domain default_exec_domain;
1553
1554 union thread_union {
1555 struct thread_info thread_info;
1556 unsigned long stack[THREAD_SIZE/sizeof(long)];
1557 };
1558
1559 #ifndef __HAVE_ARCH_KSTACK_END
1560 static inline int kstack_end(void *addr)
1561 {
1562 /* Reliable end of stack detection:
1563 * Some APM bios versions misalign the stack
1564 */
1565 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1566 }
1567 #endif
1568
1569 extern union thread_union init_thread_union;
1570 extern struct task_struct init_task;
1571
1572 extern struct mm_struct init_mm;
1573
1574 extern struct pid_namespace init_pid_ns;
1575
1576 /*
1577 * find a task by one of its numerical ids
1578 *
1579 * find_task_by_pid_type_ns():
1580 * it is the most generic call - it finds a task by all id,
1581 * type and namespace specified
1582 * find_task_by_pid_ns():
1583 * finds a task by its pid in the specified namespace
1584 * find_task_by_vpid():
1585 * finds a task by its virtual pid
1586 * find_task_by_pid():
1587 * finds a task by its global pid
1588 *
1589 * see also find_pid() etc in include/linux/pid.h
1590 */
1591
1592 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1593 struct pid_namespace *ns);
1594
1595 extern struct task_struct *find_task_by_pid(pid_t nr);
1596 extern struct task_struct *find_task_by_vpid(pid_t nr);
1597 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1598 struct pid_namespace *ns);
1599
1600 extern void __set_special_pids(pid_t session, pid_t pgrp);
1601
1602 /* per-UID process charging. */
1603 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1604 static inline struct user_struct *get_uid(struct user_struct *u)
1605 {
1606 atomic_inc(&u->__count);
1607 return u;
1608 }
1609 extern void free_uid(struct user_struct *);
1610 extern void switch_uid(struct user_struct *);
1611 extern void release_uids(struct user_namespace *ns);
1612
1613 #include <asm/current.h>
1614
1615 extern void do_timer(unsigned long ticks);
1616
1617 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1618 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1619 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1620 unsigned long clone_flags));
1621 #ifdef CONFIG_SMP
1622 extern void kick_process(struct task_struct *tsk);
1623 #else
1624 static inline void kick_process(struct task_struct *tsk) { }
1625 #endif
1626 extern void sched_fork(struct task_struct *p, int clone_flags);
1627 extern void sched_dead(struct task_struct *p);
1628
1629 extern int in_group_p(gid_t);
1630 extern int in_egroup_p(gid_t);
1631
1632 extern void proc_caches_init(void);
1633 extern void flush_signals(struct task_struct *);
1634 extern void ignore_signals(struct task_struct *);
1635 extern void flush_signal_handlers(struct task_struct *, int force_default);
1636 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1637
1638 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1639 {
1640 unsigned long flags;
1641 int ret;
1642
1643 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1644 ret = dequeue_signal(tsk, mask, info);
1645 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1646
1647 return ret;
1648 }
1649
1650 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1651 sigset_t *mask);
1652 extern void unblock_all_signals(void);
1653 extern void release_task(struct task_struct * p);
1654 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1655 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1656 extern int force_sigsegv(int, struct task_struct *);
1657 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1658 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1659 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1660 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1661 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1662 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1663 extern int kill_pid(struct pid *pid, int sig, int priv);
1664 extern int kill_proc_info(int, struct siginfo *, pid_t);
1665 extern void do_notify_parent(struct task_struct *, int);
1666 extern void force_sig(int, struct task_struct *);
1667 extern void force_sig_specific(int, struct task_struct *);
1668 extern int send_sig(int, struct task_struct *, int);
1669 extern void zap_other_threads(struct task_struct *p);
1670 extern int kill_proc(pid_t, int, int);
1671 extern struct sigqueue *sigqueue_alloc(void);
1672 extern void sigqueue_free(struct sigqueue *);
1673 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1674 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1675 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1676 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1677
1678 static inline int kill_cad_pid(int sig, int priv)
1679 {
1680 return kill_pid(cad_pid, sig, priv);
1681 }
1682
1683 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1684 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1685 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1686 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1687
1688 static inline int is_si_special(const struct siginfo *info)
1689 {
1690 return info <= SEND_SIG_FORCED;
1691 }
1692
1693 /* True if we are on the alternate signal stack. */
1694
1695 static inline int on_sig_stack(unsigned long sp)
1696 {
1697 return (sp - current->sas_ss_sp < current->sas_ss_size);
1698 }
1699
1700 static inline int sas_ss_flags(unsigned long sp)
1701 {
1702 return (current->sas_ss_size == 0 ? SS_DISABLE
1703 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1704 }
1705
1706 /*
1707 * Routines for handling mm_structs
1708 */
1709 extern struct mm_struct * mm_alloc(void);
1710
1711 /* mmdrop drops the mm and the page tables */
1712 extern void FASTCALL(__mmdrop(struct mm_struct *));
1713 static inline void mmdrop(struct mm_struct * mm)
1714 {
1715 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1716 __mmdrop(mm);
1717 }
1718
1719 /* mmput gets rid of the mappings and all user-space */
1720 extern void mmput(struct mm_struct *);
1721 /* Grab a reference to a task's mm, if it is not already going away */
1722 extern struct mm_struct *get_task_mm(struct task_struct *task);
1723 /* Remove the current tasks stale references to the old mm_struct */
1724 extern void mm_release(struct task_struct *, struct mm_struct *);
1725
1726 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1727 extern void flush_thread(void);
1728 extern void exit_thread(void);
1729
1730 extern void exit_files(struct task_struct *);
1731 extern void __cleanup_signal(struct signal_struct *);
1732 extern void __cleanup_sighand(struct sighand_struct *);
1733 extern void exit_itimers(struct signal_struct *);
1734
1735 extern NORET_TYPE void do_group_exit(int);
1736
1737 extern void daemonize(const char *, ...);
1738 extern int allow_signal(int);
1739 extern int disallow_signal(int);
1740
1741 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1742 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1743 struct task_struct *fork_idle(int);
1744
1745 extern void set_task_comm(struct task_struct *tsk, char *from);
1746 extern void get_task_comm(char *to, struct task_struct *tsk);
1747
1748 #ifdef CONFIG_SMP
1749 extern void wait_task_inactive(struct task_struct * p);
1750 #else
1751 #define wait_task_inactive(p) do { } while (0)
1752 #endif
1753
1754 #define remove_parent(p) list_del_init(&(p)->sibling)
1755 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1756
1757 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1758
1759 #define for_each_process(p) \
1760 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1761
1762 /*
1763 * Careful: do_each_thread/while_each_thread is a double loop so
1764 * 'break' will not work as expected - use goto instead.
1765 */
1766 #define do_each_thread(g, t) \
1767 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1768
1769 #define while_each_thread(g, t) \
1770 while ((t = next_thread(t)) != g)
1771
1772 /* de_thread depends on thread_group_leader not being a pid based check */
1773 #define thread_group_leader(p) (p == p->group_leader)
1774
1775 /* Do to the insanities of de_thread it is possible for a process
1776 * to have the pid of the thread group leader without actually being
1777 * the thread group leader. For iteration through the pids in proc
1778 * all we care about is that we have a task with the appropriate
1779 * pid, we don't actually care if we have the right task.
1780 */
1781 static inline int has_group_leader_pid(struct task_struct *p)
1782 {
1783 return p->pid == p->tgid;
1784 }
1785
1786 static inline
1787 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1788 {
1789 return p1->tgid == p2->tgid;
1790 }
1791
1792 static inline struct task_struct *next_thread(const struct task_struct *p)
1793 {
1794 return list_entry(rcu_dereference(p->thread_group.next),
1795 struct task_struct, thread_group);
1796 }
1797
1798 static inline int thread_group_empty(struct task_struct *p)
1799 {
1800 return list_empty(&p->thread_group);
1801 }
1802
1803 #define delay_group_leader(p) \
1804 (thread_group_leader(p) && !thread_group_empty(p))
1805
1806 /*
1807 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1808 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1809 * pins the final release of task.io_context. Also protects ->cpuset and
1810 * ->cgroup.subsys[].
1811 *
1812 * Nests both inside and outside of read_lock(&tasklist_lock).
1813 * It must not be nested with write_lock_irq(&tasklist_lock),
1814 * neither inside nor outside.
1815 */
1816 static inline void task_lock(struct task_struct *p)
1817 {
1818 spin_lock(&p->alloc_lock);
1819 }
1820
1821 static inline void task_unlock(struct task_struct *p)
1822 {
1823 spin_unlock(&p->alloc_lock);
1824 }
1825
1826 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1827 unsigned long *flags);
1828
1829 static inline void unlock_task_sighand(struct task_struct *tsk,
1830 unsigned long *flags)
1831 {
1832 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1833 }
1834
1835 #ifndef __HAVE_THREAD_FUNCTIONS
1836
1837 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1838 #define task_stack_page(task) ((task)->stack)
1839
1840 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1841 {
1842 *task_thread_info(p) = *task_thread_info(org);
1843 task_thread_info(p)->task = p;
1844 }
1845
1846 static inline unsigned long *end_of_stack(struct task_struct *p)
1847 {
1848 return (unsigned long *)(task_thread_info(p) + 1);
1849 }
1850
1851 #endif
1852
1853 /* set thread flags in other task's structures
1854 * - see asm/thread_info.h for TIF_xxxx flags available
1855 */
1856 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1857 {
1858 set_ti_thread_flag(task_thread_info(tsk), flag);
1859 }
1860
1861 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1862 {
1863 clear_ti_thread_flag(task_thread_info(tsk), flag);
1864 }
1865
1866 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1867 {
1868 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1869 }
1870
1871 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1872 {
1873 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1874 }
1875
1876 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1877 {
1878 return test_ti_thread_flag(task_thread_info(tsk), flag);
1879 }
1880
1881 static inline void set_tsk_need_resched(struct task_struct *tsk)
1882 {
1883 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1884 }
1885
1886 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1887 {
1888 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1889 }
1890
1891 static inline int signal_pending(struct task_struct *p)
1892 {
1893 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1894 }
1895
1896 static inline int need_resched(void)
1897 {
1898 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1899 }
1900
1901 /*
1902 * cond_resched() and cond_resched_lock(): latency reduction via
1903 * explicit rescheduling in places that are safe. The return
1904 * value indicates whether a reschedule was done in fact.
1905 * cond_resched_lock() will drop the spinlock before scheduling,
1906 * cond_resched_softirq() will enable bhs before scheduling.
1907 */
1908 #ifdef CONFIG_PREEMPT
1909 static inline int cond_resched(void)
1910 {
1911 return 0;
1912 }
1913 #else
1914 extern int _cond_resched(void);
1915 static inline int cond_resched(void)
1916 {
1917 return _cond_resched();
1918 }
1919 #endif
1920 extern int cond_resched_lock(spinlock_t * lock);
1921 extern int cond_resched_softirq(void);
1922
1923 /*
1924 * Does a critical section need to be broken due to another
1925 * task waiting?:
1926 */
1927 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1928 # define need_lockbreak(lock) ((lock)->break_lock)
1929 #else
1930 # define need_lockbreak(lock) 0
1931 #endif
1932
1933 /*
1934 * Does a critical section need to be broken due to another
1935 * task waiting or preemption being signalled:
1936 */
1937 static inline int lock_need_resched(spinlock_t *lock)
1938 {
1939 if (need_lockbreak(lock) || need_resched())
1940 return 1;
1941 return 0;
1942 }
1943
1944 /*
1945 * Reevaluate whether the task has signals pending delivery.
1946 * Wake the task if so.
1947 * This is required every time the blocked sigset_t changes.
1948 * callers must hold sighand->siglock.
1949 */
1950 extern void recalc_sigpending_and_wake(struct task_struct *t);
1951 extern void recalc_sigpending(void);
1952
1953 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1954
1955 /*
1956 * Wrappers for p->thread_info->cpu access. No-op on UP.
1957 */
1958 #ifdef CONFIG_SMP
1959
1960 static inline unsigned int task_cpu(const struct task_struct *p)
1961 {
1962 return task_thread_info(p)->cpu;
1963 }
1964
1965 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1966
1967 #else
1968
1969 static inline unsigned int task_cpu(const struct task_struct *p)
1970 {
1971 return 0;
1972 }
1973
1974 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1975 {
1976 }
1977
1978 #endif /* CONFIG_SMP */
1979
1980 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1981 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1982 #else
1983 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1984 {
1985 mm->mmap_base = TASK_UNMAPPED_BASE;
1986 mm->get_unmapped_area = arch_get_unmapped_area;
1987 mm->unmap_area = arch_unmap_area;
1988 }
1989 #endif
1990
1991 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1992 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1993
1994 extern int sched_mc_power_savings, sched_smt_power_savings;
1995
1996 extern void normalize_rt_tasks(void);
1997
1998 #ifdef CONFIG_FAIR_GROUP_SCHED
1999
2000 extern struct task_group init_task_group;
2001
2002 extern struct task_group *sched_create_group(void);
2003 extern void sched_destroy_group(struct task_group *tg);
2004 extern void sched_move_task(struct task_struct *tsk);
2005 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2006 extern unsigned long sched_group_shares(struct task_group *tg);
2007
2008 #endif
2009
2010 #ifdef CONFIG_TASK_XACCT
2011 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2012 {
2013 tsk->rchar += amt;
2014 }
2015
2016 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2017 {
2018 tsk->wchar += amt;
2019 }
2020
2021 static inline void inc_syscr(struct task_struct *tsk)
2022 {
2023 tsk->syscr++;
2024 }
2025
2026 static inline void inc_syscw(struct task_struct *tsk)
2027 {
2028 tsk->syscw++;
2029 }
2030 #else
2031 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2032 {
2033 }
2034
2035 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2036 {
2037 }
2038
2039 static inline void inc_syscr(struct task_struct *tsk)
2040 {
2041 }
2042
2043 static inline void inc_syscw(struct task_struct *tsk)
2044 {
2045 }
2046 #endif
2047
2048 #ifdef CONFIG_SMP
2049 void migration_init(void);
2050 #else
2051 static inline void migration_init(void)
2052 {
2053 }
2054 #endif
2055
2056 #endif /* __KERNEL__ */
2057
2058 #endif