]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/sched.h
Merge branch 'iommu-fixes-2.6.28' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 * a load-average precision of 10 bits integer + 11 bits fractional
111 * - if you want to count load-averages more often, you need more
112 * precision, or rounding will get you. With 2-second counting freq,
113 * the EXP_n values would be 1981, 2034 and 2043 if still using only
114 * 11 bit fractions.
115 */
116 extern unsigned long avenrun[]; /* Load averages */
117
118 #define FSHIFT 11 /* nr of bits of precision */
119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5 2014 /* 1/exp(5sec/5min) */
123 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126 load *= exp; \
127 load += n*(FIXED_1-exp); \
128 load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250 extern void task_rq_unlock_wait(struct task_struct *p);
251
252 extern cpumask_t nohz_cpu_mask;
253 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
254 extern int select_nohz_load_balancer(int cpu);
255 #else
256 static inline int select_nohz_load_balancer(int cpu)
257 {
258 return 0;
259 }
260 #endif
261
262 extern unsigned long rt_needs_cpu(int cpu);
263
264 /*
265 * Only dump TASK_* tasks. (0 for all tasks)
266 */
267 extern void show_state_filter(unsigned long state_filter);
268
269 static inline void show_state(void)
270 {
271 show_state_filter(0);
272 }
273
274 extern void show_regs(struct pt_regs *);
275
276 /*
277 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
278 * task), SP is the stack pointer of the first frame that should be shown in the back
279 * trace (or NULL if the entire call-chain of the task should be shown).
280 */
281 extern void show_stack(struct task_struct *task, unsigned long *sp);
282
283 void io_schedule(void);
284 long io_schedule_timeout(long timeout);
285
286 extern void cpu_init (void);
287 extern void trap_init(void);
288 extern void account_process_tick(struct task_struct *task, int user);
289 extern void update_process_times(int user);
290 extern void scheduler_tick(void);
291
292 extern void sched_show_task(struct task_struct *p);
293
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern unsigned int softlockup_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int softlockup_thresh;
303 #else
304 static inline void softlockup_tick(void)
305 {
306 }
307 static inline void spawn_softlockup_task(void)
308 {
309 }
310 static inline void touch_softlockup_watchdog(void)
311 {
312 }
313 static inline void touch_all_softlockup_watchdogs(void)
314 {
315 }
316 #endif
317
318
319 /* Attach to any functions which should be ignored in wchan output. */
320 #define __sched __attribute__((__section__(".sched.text")))
321
322 /* Linker adds these: start and end of __sched functions */
323 extern char __sched_text_start[], __sched_text_end[];
324
325 /* Is this address in the __sched functions? */
326 extern int in_sched_functions(unsigned long addr);
327
328 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
329 extern signed long schedule_timeout(signed long timeout);
330 extern signed long schedule_timeout_interruptible(signed long timeout);
331 extern signed long schedule_timeout_killable(signed long timeout);
332 extern signed long schedule_timeout_uninterruptible(signed long timeout);
333 asmlinkage void schedule(void);
334
335 struct nsproxy;
336 struct user_namespace;
337
338 /* Maximum number of active map areas.. This is a random (large) number */
339 #define DEFAULT_MAX_MAP_COUNT 65536
340
341 extern int sysctl_max_map_count;
342
343 #include <linux/aio.h>
344
345 extern unsigned long
346 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347 unsigned long, unsigned long);
348 extern unsigned long
349 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350 unsigned long len, unsigned long pgoff,
351 unsigned long flags);
352 extern void arch_unmap_area(struct mm_struct *, unsigned long);
353 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355 #if USE_SPLIT_PTLOCKS
356 /*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366 #else /* !USE_SPLIT_PTLOCKS */
367 /*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372 #define get_mm_counter(mm, member) ((mm)->_##member)
373 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374 #define inc_mm_counter(mm, member) (mm)->_##member++
375 #define dec_mm_counter(mm, member) (mm)->_##member--
376
377 #endif /* !USE_SPLIT_PTLOCKS */
378
379 #define get_mm_rss(mm) \
380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381 #define update_hiwater_rss(mm) do { \
382 unsigned long _rss = get_mm_rss(mm); \
383 if ((mm)->hiwater_rss < _rss) \
384 (mm)->hiwater_rss = _rss; \
385 } while (0)
386 #define update_hiwater_vm(mm) do { \
387 if ((mm)->hiwater_vm < (mm)->total_vm) \
388 (mm)->hiwater_vm = (mm)->total_vm; \
389 } while (0)
390
391 extern void set_dumpable(struct mm_struct *mm, int value);
392 extern int get_dumpable(struct mm_struct *mm);
393
394 /* mm flags */
395 /* dumpable bits */
396 #define MMF_DUMPABLE 0 /* core dump is permitted */
397 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
398 #define MMF_DUMPABLE_BITS 2
399
400 /* coredump filter bits */
401 #define MMF_DUMP_ANON_PRIVATE 2
402 #define MMF_DUMP_ANON_SHARED 3
403 #define MMF_DUMP_MAPPED_PRIVATE 4
404 #define MMF_DUMP_MAPPED_SHARED 5
405 #define MMF_DUMP_ELF_HEADERS 6
406 #define MMF_DUMP_HUGETLB_PRIVATE 7
407 #define MMF_DUMP_HUGETLB_SHARED 8
408 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
409 #define MMF_DUMP_FILTER_BITS 7
410 #define MMF_DUMP_FILTER_MASK \
411 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
412 #define MMF_DUMP_FILTER_DEFAULT \
413 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
414 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
415
416 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
417 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
418 #else
419 # define MMF_DUMP_MASK_DEFAULT_ELF 0
420 #endif
421
422 struct sighand_struct {
423 atomic_t count;
424 struct k_sigaction action[_NSIG];
425 spinlock_t siglock;
426 wait_queue_head_t signalfd_wqh;
427 };
428
429 struct pacct_struct {
430 int ac_flag;
431 long ac_exitcode;
432 unsigned long ac_mem;
433 cputime_t ac_utime, ac_stime;
434 unsigned long ac_minflt, ac_majflt;
435 };
436
437 /**
438 * struct task_cputime - collected CPU time counts
439 * @utime: time spent in user mode, in &cputime_t units
440 * @stime: time spent in kernel mode, in &cputime_t units
441 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
442 *
443 * This structure groups together three kinds of CPU time that are
444 * tracked for threads and thread groups. Most things considering
445 * CPU time want to group these counts together and treat all three
446 * of them in parallel.
447 */
448 struct task_cputime {
449 cputime_t utime;
450 cputime_t stime;
451 unsigned long long sum_exec_runtime;
452 };
453 /* Alternate field names when used to cache expirations. */
454 #define prof_exp stime
455 #define virt_exp utime
456 #define sched_exp sum_exec_runtime
457
458 /**
459 * struct thread_group_cputime - thread group interval timer counts
460 * @totals: thread group interval timers; substructure for
461 * uniprocessor kernel, per-cpu for SMP kernel.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU clock calculations.
465 */
466 struct thread_group_cputime {
467 struct task_cputime *totals;
468 };
469
470 /*
471 * NOTE! "signal_struct" does not have it's own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477 struct signal_struct {
478 atomic_t count;
479 atomic_t live;
480
481 wait_queue_head_t wait_chldexit; /* for wait4() */
482
483 /* current thread group signal load-balancing target: */
484 struct task_struct *curr_target;
485
486 /* shared signal handling: */
487 struct sigpending shared_pending;
488
489 /* thread group exit support */
490 int group_exit_code;
491 /* overloaded:
492 * - notify group_exit_task when ->count is equal to notify_count
493 * - everyone except group_exit_task is stopped during signal delivery
494 * of fatal signals, group_exit_task processes the signal.
495 */
496 int notify_count;
497 struct task_struct *group_exit_task;
498
499 /* thread group stop support, overloads group_exit_code too */
500 int group_stop_count;
501 unsigned int flags; /* see SIGNAL_* flags below */
502
503 /* POSIX.1b Interval Timers */
504 struct list_head posix_timers;
505
506 /* ITIMER_REAL timer for the process */
507 struct hrtimer real_timer;
508 struct pid *leader_pid;
509 ktime_t it_real_incr;
510
511 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
512 cputime_t it_prof_expires, it_virt_expires;
513 cputime_t it_prof_incr, it_virt_incr;
514
515 /*
516 * Thread group totals for process CPU clocks.
517 * See thread_group_cputime(), et al, for details.
518 */
519 struct thread_group_cputime cputime;
520
521 /* Earliest-expiration cache. */
522 struct task_cputime cputime_expires;
523
524 struct list_head cpu_timers[3];
525
526 /* job control IDs */
527
528 /*
529 * pgrp and session fields are deprecated.
530 * use the task_session_Xnr and task_pgrp_Xnr routines below
531 */
532
533 union {
534 pid_t pgrp __deprecated;
535 pid_t __pgrp;
536 };
537
538 struct pid *tty_old_pgrp;
539
540 union {
541 pid_t session __deprecated;
542 pid_t __session;
543 };
544
545 /* boolean value for session group leader */
546 int leader;
547
548 struct tty_struct *tty; /* NULL if no tty */
549
550 /*
551 * Cumulative resource counters for dead threads in the group,
552 * and for reaped dead child processes forked by this group.
553 * Live threads maintain their own counters and add to these
554 * in __exit_signal, except for the group leader.
555 */
556 cputime_t cutime, cstime;
557 cputime_t gtime;
558 cputime_t cgtime;
559 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
560 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
561 unsigned long inblock, oublock, cinblock, coublock;
562 struct task_io_accounting ioac;
563
564 /*
565 * We don't bother to synchronize most readers of this at all,
566 * because there is no reader checking a limit that actually needs
567 * to get both rlim_cur and rlim_max atomically, and either one
568 * alone is a single word that can safely be read normally.
569 * getrlimit/setrlimit use task_lock(current->group_leader) to
570 * protect this instead of the siglock, because they really
571 * have no need to disable irqs.
572 */
573 struct rlimit rlim[RLIM_NLIMITS];
574
575 /* keep the process-shared keyrings here so that they do the right
576 * thing in threads created with CLONE_THREAD */
577 #ifdef CONFIG_KEYS
578 struct key *session_keyring; /* keyring inherited over fork */
579 struct key *process_keyring; /* keyring private to this process */
580 #endif
581 #ifdef CONFIG_BSD_PROCESS_ACCT
582 struct pacct_struct pacct; /* per-process accounting information */
583 #endif
584 #ifdef CONFIG_TASKSTATS
585 struct taskstats *stats;
586 #endif
587 #ifdef CONFIG_AUDIT
588 unsigned audit_tty;
589 struct tty_audit_buf *tty_audit_buf;
590 #endif
591 };
592
593 /* Context switch must be unlocked if interrupts are to be enabled */
594 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
595 # define __ARCH_WANT_UNLOCKED_CTXSW
596 #endif
597
598 /*
599 * Bits in flags field of signal_struct.
600 */
601 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
602 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
603 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
604 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
605 /*
606 * Pending notifications to parent.
607 */
608 #define SIGNAL_CLD_STOPPED 0x00000010
609 #define SIGNAL_CLD_CONTINUED 0x00000020
610 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
611
612 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
613
614 /* If true, all threads except ->group_exit_task have pending SIGKILL */
615 static inline int signal_group_exit(const struct signal_struct *sig)
616 {
617 return (sig->flags & SIGNAL_GROUP_EXIT) ||
618 (sig->group_exit_task != NULL);
619 }
620
621 /*
622 * Some day this will be a full-fledged user tracking system..
623 */
624 struct user_struct {
625 atomic_t __count; /* reference count */
626 atomic_t processes; /* How many processes does this user have? */
627 atomic_t files; /* How many open files does this user have? */
628 atomic_t sigpending; /* How many pending signals does this user have? */
629 #ifdef CONFIG_INOTIFY_USER
630 atomic_t inotify_watches; /* How many inotify watches does this user have? */
631 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
632 #endif
633 #ifdef CONFIG_POSIX_MQUEUE
634 /* protected by mq_lock */
635 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
636 #endif
637 unsigned long locked_shm; /* How many pages of mlocked shm ? */
638
639 #ifdef CONFIG_KEYS
640 struct key *uid_keyring; /* UID specific keyring */
641 struct key *session_keyring; /* UID's default session keyring */
642 #endif
643
644 /* Hash table maintenance information */
645 struct hlist_node uidhash_node;
646 uid_t uid;
647
648 #ifdef CONFIG_USER_SCHED
649 struct task_group *tg;
650 #ifdef CONFIG_SYSFS
651 struct kobject kobj;
652 struct work_struct work;
653 #endif
654 #endif
655 };
656
657 extern int uids_sysfs_init(void);
658
659 extern struct user_struct *find_user(uid_t);
660
661 extern struct user_struct root_user;
662 #define INIT_USER (&root_user)
663
664 struct backing_dev_info;
665 struct reclaim_state;
666
667 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
668 struct sched_info {
669 /* cumulative counters */
670 unsigned long pcount; /* # of times run on this cpu */
671 unsigned long long cpu_time, /* time spent on the cpu */
672 run_delay; /* time spent waiting on a runqueue */
673
674 /* timestamps */
675 unsigned long long last_arrival,/* when we last ran on a cpu */
676 last_queued; /* when we were last queued to run */
677 #ifdef CONFIG_SCHEDSTATS
678 /* BKL stats */
679 unsigned int bkl_count;
680 #endif
681 };
682 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
683
684 #ifdef CONFIG_TASK_DELAY_ACCT
685 struct task_delay_info {
686 spinlock_t lock;
687 unsigned int flags; /* Private per-task flags */
688
689 /* For each stat XXX, add following, aligned appropriately
690 *
691 * struct timespec XXX_start, XXX_end;
692 * u64 XXX_delay;
693 * u32 XXX_count;
694 *
695 * Atomicity of updates to XXX_delay, XXX_count protected by
696 * single lock above (split into XXX_lock if contention is an issue).
697 */
698
699 /*
700 * XXX_count is incremented on every XXX operation, the delay
701 * associated with the operation is added to XXX_delay.
702 * XXX_delay contains the accumulated delay time in nanoseconds.
703 */
704 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
705 u64 blkio_delay; /* wait for sync block io completion */
706 u64 swapin_delay; /* wait for swapin block io completion */
707 u32 blkio_count; /* total count of the number of sync block */
708 /* io operations performed */
709 u32 swapin_count; /* total count of the number of swapin block */
710 /* io operations performed */
711
712 struct timespec freepages_start, freepages_end;
713 u64 freepages_delay; /* wait for memory reclaim */
714 u32 freepages_count; /* total count of memory reclaim */
715 };
716 #endif /* CONFIG_TASK_DELAY_ACCT */
717
718 static inline int sched_info_on(void)
719 {
720 #ifdef CONFIG_SCHEDSTATS
721 return 1;
722 #elif defined(CONFIG_TASK_DELAY_ACCT)
723 extern int delayacct_on;
724 return delayacct_on;
725 #else
726 return 0;
727 #endif
728 }
729
730 enum cpu_idle_type {
731 CPU_IDLE,
732 CPU_NOT_IDLE,
733 CPU_NEWLY_IDLE,
734 CPU_MAX_IDLE_TYPES
735 };
736
737 /*
738 * sched-domains (multiprocessor balancing) declarations:
739 */
740
741 /*
742 * Increase resolution of nice-level calculations:
743 */
744 #define SCHED_LOAD_SHIFT 10
745 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
746
747 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
748
749 #ifdef CONFIG_SMP
750 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
751 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
752 #define SD_BALANCE_EXEC 4 /* Balance on exec */
753 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
754 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
755 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
756 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
757 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
758 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
759 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
760 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
761 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
762
763 #define BALANCE_FOR_MC_POWER \
764 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
765
766 #define BALANCE_FOR_PKG_POWER \
767 ((sched_mc_power_savings || sched_smt_power_savings) ? \
768 SD_POWERSAVINGS_BALANCE : 0)
769
770 #define test_sd_parent(sd, flag) ((sd->parent && \
771 (sd->parent->flags & flag)) ? 1 : 0)
772
773
774 struct sched_group {
775 struct sched_group *next; /* Must be a circular list */
776 cpumask_t cpumask;
777
778 /*
779 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
780 * single CPU. This is read only (except for setup, hotplug CPU).
781 * Note : Never change cpu_power without recompute its reciprocal
782 */
783 unsigned int __cpu_power;
784 /*
785 * reciprocal value of cpu_power to avoid expensive divides
786 * (see include/linux/reciprocal_div.h)
787 */
788 u32 reciprocal_cpu_power;
789 };
790
791 enum sched_domain_level {
792 SD_LV_NONE = 0,
793 SD_LV_SIBLING,
794 SD_LV_MC,
795 SD_LV_CPU,
796 SD_LV_NODE,
797 SD_LV_ALLNODES,
798 SD_LV_MAX
799 };
800
801 struct sched_domain_attr {
802 int relax_domain_level;
803 };
804
805 #define SD_ATTR_INIT (struct sched_domain_attr) { \
806 .relax_domain_level = -1, \
807 }
808
809 struct sched_domain {
810 /* These fields must be setup */
811 struct sched_domain *parent; /* top domain must be null terminated */
812 struct sched_domain *child; /* bottom domain must be null terminated */
813 struct sched_group *groups; /* the balancing groups of the domain */
814 cpumask_t span; /* span of all CPUs in this domain */
815 unsigned long min_interval; /* Minimum balance interval ms */
816 unsigned long max_interval; /* Maximum balance interval ms */
817 unsigned int busy_factor; /* less balancing by factor if busy */
818 unsigned int imbalance_pct; /* No balance until over watermark */
819 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
820 unsigned int busy_idx;
821 unsigned int idle_idx;
822 unsigned int newidle_idx;
823 unsigned int wake_idx;
824 unsigned int forkexec_idx;
825 int flags; /* See SD_* */
826 enum sched_domain_level level;
827
828 /* Runtime fields. */
829 unsigned long last_balance; /* init to jiffies. units in jiffies */
830 unsigned int balance_interval; /* initialise to 1. units in ms. */
831 unsigned int nr_balance_failed; /* initialise to 0 */
832
833 u64 last_update;
834
835 #ifdef CONFIG_SCHEDSTATS
836 /* load_balance() stats */
837 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
838 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
839 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
840 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
841 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
842 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
843 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
844 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
845
846 /* Active load balancing */
847 unsigned int alb_count;
848 unsigned int alb_failed;
849 unsigned int alb_pushed;
850
851 /* SD_BALANCE_EXEC stats */
852 unsigned int sbe_count;
853 unsigned int sbe_balanced;
854 unsigned int sbe_pushed;
855
856 /* SD_BALANCE_FORK stats */
857 unsigned int sbf_count;
858 unsigned int sbf_balanced;
859 unsigned int sbf_pushed;
860
861 /* try_to_wake_up() stats */
862 unsigned int ttwu_wake_remote;
863 unsigned int ttwu_move_affine;
864 unsigned int ttwu_move_balance;
865 #endif
866 #ifdef CONFIG_SCHED_DEBUG
867 char *name;
868 #endif
869 };
870
871 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
872 struct sched_domain_attr *dattr_new);
873 extern int arch_reinit_sched_domains(void);
874
875 #else /* CONFIG_SMP */
876
877 struct sched_domain_attr;
878
879 static inline void
880 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
881 struct sched_domain_attr *dattr_new)
882 {
883 }
884 #endif /* !CONFIG_SMP */
885
886 struct io_context; /* See blkdev.h */
887 #define NGROUPS_SMALL 32
888 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
889 struct group_info {
890 int ngroups;
891 atomic_t usage;
892 gid_t small_block[NGROUPS_SMALL];
893 int nblocks;
894 gid_t *blocks[0];
895 };
896
897 /*
898 * get_group_info() must be called with the owning task locked (via task_lock())
899 * when task != current. The reason being that the vast majority of callers are
900 * looking at current->group_info, which can not be changed except by the
901 * current task. Changing current->group_info requires the task lock, too.
902 */
903 #define get_group_info(group_info) do { \
904 atomic_inc(&(group_info)->usage); \
905 } while (0)
906
907 #define put_group_info(group_info) do { \
908 if (atomic_dec_and_test(&(group_info)->usage)) \
909 groups_free(group_info); \
910 } while (0)
911
912 extern struct group_info *groups_alloc(int gidsetsize);
913 extern void groups_free(struct group_info *group_info);
914 extern int set_current_groups(struct group_info *group_info);
915 extern int groups_search(struct group_info *group_info, gid_t grp);
916 /* access the groups "array" with this macro */
917 #define GROUP_AT(gi, i) \
918 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
919
920 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
921 extern void prefetch_stack(struct task_struct *t);
922 #else
923 static inline void prefetch_stack(struct task_struct *t) { }
924 #endif
925
926 struct audit_context; /* See audit.c */
927 struct mempolicy;
928 struct pipe_inode_info;
929 struct uts_namespace;
930
931 struct rq;
932 struct sched_domain;
933
934 struct sched_class {
935 const struct sched_class *next;
936
937 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
938 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
939 void (*yield_task) (struct rq *rq);
940
941 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
942
943 struct task_struct * (*pick_next_task) (struct rq *rq);
944 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
945
946 #ifdef CONFIG_SMP
947 int (*select_task_rq)(struct task_struct *p, int sync);
948
949 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
950 struct rq *busiest, unsigned long max_load_move,
951 struct sched_domain *sd, enum cpu_idle_type idle,
952 int *all_pinned, int *this_best_prio);
953
954 int (*move_one_task) (struct rq *this_rq, int this_cpu,
955 struct rq *busiest, struct sched_domain *sd,
956 enum cpu_idle_type idle);
957 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
958 void (*post_schedule) (struct rq *this_rq);
959 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
960
961 void (*set_cpus_allowed)(struct task_struct *p,
962 const cpumask_t *newmask);
963
964 void (*rq_online)(struct rq *rq);
965 void (*rq_offline)(struct rq *rq);
966 #endif
967
968 void (*set_curr_task) (struct rq *rq);
969 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
970 void (*task_new) (struct rq *rq, struct task_struct *p);
971
972 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
973 int running);
974 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
975 int running);
976 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
977 int oldprio, int running);
978
979 #ifdef CONFIG_FAIR_GROUP_SCHED
980 void (*moved_group) (struct task_struct *p);
981 #endif
982 };
983
984 struct load_weight {
985 unsigned long weight, inv_weight;
986 };
987
988 /*
989 * CFS stats for a schedulable entity (task, task-group etc)
990 *
991 * Current field usage histogram:
992 *
993 * 4 se->block_start
994 * 4 se->run_node
995 * 4 se->sleep_start
996 * 6 se->load.weight
997 */
998 struct sched_entity {
999 struct load_weight load; /* for load-balancing */
1000 struct rb_node run_node;
1001 struct list_head group_node;
1002 unsigned int on_rq;
1003
1004 u64 exec_start;
1005 u64 sum_exec_runtime;
1006 u64 vruntime;
1007 u64 prev_sum_exec_runtime;
1008
1009 u64 last_wakeup;
1010 u64 avg_overlap;
1011
1012 #ifdef CONFIG_SCHEDSTATS
1013 u64 wait_start;
1014 u64 wait_max;
1015 u64 wait_count;
1016 u64 wait_sum;
1017
1018 u64 sleep_start;
1019 u64 sleep_max;
1020 s64 sum_sleep_runtime;
1021
1022 u64 block_start;
1023 u64 block_max;
1024 u64 exec_max;
1025 u64 slice_max;
1026
1027 u64 nr_migrations;
1028 u64 nr_migrations_cold;
1029 u64 nr_failed_migrations_affine;
1030 u64 nr_failed_migrations_running;
1031 u64 nr_failed_migrations_hot;
1032 u64 nr_forced_migrations;
1033 u64 nr_forced2_migrations;
1034
1035 u64 nr_wakeups;
1036 u64 nr_wakeups_sync;
1037 u64 nr_wakeups_migrate;
1038 u64 nr_wakeups_local;
1039 u64 nr_wakeups_remote;
1040 u64 nr_wakeups_affine;
1041 u64 nr_wakeups_affine_attempts;
1042 u64 nr_wakeups_passive;
1043 u64 nr_wakeups_idle;
1044 #endif
1045
1046 #ifdef CONFIG_FAIR_GROUP_SCHED
1047 struct sched_entity *parent;
1048 /* rq on which this entity is (to be) queued: */
1049 struct cfs_rq *cfs_rq;
1050 /* rq "owned" by this entity/group: */
1051 struct cfs_rq *my_q;
1052 #endif
1053 };
1054
1055 struct sched_rt_entity {
1056 struct list_head run_list;
1057 unsigned long timeout;
1058 unsigned int time_slice;
1059 int nr_cpus_allowed;
1060
1061 struct sched_rt_entity *back;
1062 #ifdef CONFIG_RT_GROUP_SCHED
1063 struct sched_rt_entity *parent;
1064 /* rq on which this entity is (to be) queued: */
1065 struct rt_rq *rt_rq;
1066 /* rq "owned" by this entity/group: */
1067 struct rt_rq *my_q;
1068 #endif
1069 };
1070
1071 struct task_struct {
1072 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1073 void *stack;
1074 atomic_t usage;
1075 unsigned int flags; /* per process flags, defined below */
1076 unsigned int ptrace;
1077
1078 int lock_depth; /* BKL lock depth */
1079
1080 #ifdef CONFIG_SMP
1081 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1082 int oncpu;
1083 #endif
1084 #endif
1085
1086 int prio, static_prio, normal_prio;
1087 unsigned int rt_priority;
1088 const struct sched_class *sched_class;
1089 struct sched_entity se;
1090 struct sched_rt_entity rt;
1091
1092 #ifdef CONFIG_PREEMPT_NOTIFIERS
1093 /* list of struct preempt_notifier: */
1094 struct hlist_head preempt_notifiers;
1095 #endif
1096
1097 /*
1098 * fpu_counter contains the number of consecutive context switches
1099 * that the FPU is used. If this is over a threshold, the lazy fpu
1100 * saving becomes unlazy to save the trap. This is an unsigned char
1101 * so that after 256 times the counter wraps and the behavior turns
1102 * lazy again; this to deal with bursty apps that only use FPU for
1103 * a short time
1104 */
1105 unsigned char fpu_counter;
1106 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1107 #ifdef CONFIG_BLK_DEV_IO_TRACE
1108 unsigned int btrace_seq;
1109 #endif
1110
1111 unsigned int policy;
1112 cpumask_t cpus_allowed;
1113
1114 #ifdef CONFIG_PREEMPT_RCU
1115 int rcu_read_lock_nesting;
1116 int rcu_flipctr_idx;
1117 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1118
1119 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1120 struct sched_info sched_info;
1121 #endif
1122
1123 struct list_head tasks;
1124
1125 struct mm_struct *mm, *active_mm;
1126
1127 /* task state */
1128 struct linux_binfmt *binfmt;
1129 int exit_state;
1130 int exit_code, exit_signal;
1131 int pdeath_signal; /* The signal sent when the parent dies */
1132 /* ??? */
1133 unsigned int personality;
1134 unsigned did_exec:1;
1135 pid_t pid;
1136 pid_t tgid;
1137
1138 #ifdef CONFIG_CC_STACKPROTECTOR
1139 /* Canary value for the -fstack-protector gcc feature */
1140 unsigned long stack_canary;
1141 #endif
1142 /*
1143 * pointers to (original) parent process, youngest child, younger sibling,
1144 * older sibling, respectively. (p->father can be replaced with
1145 * p->real_parent->pid)
1146 */
1147 struct task_struct *real_parent; /* real parent process */
1148 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1149 /*
1150 * children/sibling forms the list of my natural children
1151 */
1152 struct list_head children; /* list of my children */
1153 struct list_head sibling; /* linkage in my parent's children list */
1154 struct task_struct *group_leader; /* threadgroup leader */
1155
1156 /*
1157 * ptraced is the list of tasks this task is using ptrace on.
1158 * This includes both natural children and PTRACE_ATTACH targets.
1159 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1160 */
1161 struct list_head ptraced;
1162 struct list_head ptrace_entry;
1163
1164 /* PID/PID hash table linkage. */
1165 struct pid_link pids[PIDTYPE_MAX];
1166 struct list_head thread_group;
1167
1168 struct completion *vfork_done; /* for vfork() */
1169 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1170 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1171
1172 cputime_t utime, stime, utimescaled, stimescaled;
1173 cputime_t gtime;
1174 cputime_t prev_utime, prev_stime;
1175 unsigned long nvcsw, nivcsw; /* context switch counts */
1176 struct timespec start_time; /* monotonic time */
1177 struct timespec real_start_time; /* boot based time */
1178 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1179 unsigned long min_flt, maj_flt;
1180
1181 struct task_cputime cputime_expires;
1182 struct list_head cpu_timers[3];
1183
1184 /* process credentials */
1185 uid_t uid,euid,suid,fsuid;
1186 gid_t gid,egid,sgid,fsgid;
1187 struct group_info *group_info;
1188 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1189 struct user_struct *user;
1190 unsigned securebits;
1191 #ifdef CONFIG_KEYS
1192 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1193 struct key *request_key_auth; /* assumed request_key authority */
1194 struct key *thread_keyring; /* keyring private to this thread */
1195 #endif
1196 char comm[TASK_COMM_LEN]; /* executable name excluding path
1197 - access with [gs]et_task_comm (which lock
1198 it with task_lock())
1199 - initialized normally by flush_old_exec */
1200 /* file system info */
1201 int link_count, total_link_count;
1202 #ifdef CONFIG_SYSVIPC
1203 /* ipc stuff */
1204 struct sysv_sem sysvsem;
1205 #endif
1206 #ifdef CONFIG_DETECT_SOFTLOCKUP
1207 /* hung task detection */
1208 unsigned long last_switch_timestamp;
1209 unsigned long last_switch_count;
1210 #endif
1211 /* CPU-specific state of this task */
1212 struct thread_struct thread;
1213 /* filesystem information */
1214 struct fs_struct *fs;
1215 /* open file information */
1216 struct files_struct *files;
1217 /* namespaces */
1218 struct nsproxy *nsproxy;
1219 /* signal handlers */
1220 struct signal_struct *signal;
1221 struct sighand_struct *sighand;
1222
1223 sigset_t blocked, real_blocked;
1224 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1225 struct sigpending pending;
1226
1227 unsigned long sas_ss_sp;
1228 size_t sas_ss_size;
1229 int (*notifier)(void *priv);
1230 void *notifier_data;
1231 sigset_t *notifier_mask;
1232 #ifdef CONFIG_SECURITY
1233 void *security;
1234 #endif
1235 struct audit_context *audit_context;
1236 #ifdef CONFIG_AUDITSYSCALL
1237 uid_t loginuid;
1238 unsigned int sessionid;
1239 #endif
1240 seccomp_t seccomp;
1241
1242 /* Thread group tracking */
1243 u32 parent_exec_id;
1244 u32 self_exec_id;
1245 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1246 spinlock_t alloc_lock;
1247
1248 /* Protection of the PI data structures: */
1249 spinlock_t pi_lock;
1250
1251 #ifdef CONFIG_RT_MUTEXES
1252 /* PI waiters blocked on a rt_mutex held by this task */
1253 struct plist_head pi_waiters;
1254 /* Deadlock detection and priority inheritance handling */
1255 struct rt_mutex_waiter *pi_blocked_on;
1256 #endif
1257
1258 #ifdef CONFIG_DEBUG_MUTEXES
1259 /* mutex deadlock detection */
1260 struct mutex_waiter *blocked_on;
1261 #endif
1262 #ifdef CONFIG_TRACE_IRQFLAGS
1263 unsigned int irq_events;
1264 int hardirqs_enabled;
1265 unsigned long hardirq_enable_ip;
1266 unsigned int hardirq_enable_event;
1267 unsigned long hardirq_disable_ip;
1268 unsigned int hardirq_disable_event;
1269 int softirqs_enabled;
1270 unsigned long softirq_disable_ip;
1271 unsigned int softirq_disable_event;
1272 unsigned long softirq_enable_ip;
1273 unsigned int softirq_enable_event;
1274 int hardirq_context;
1275 int softirq_context;
1276 #endif
1277 #ifdef CONFIG_LOCKDEP
1278 # define MAX_LOCK_DEPTH 48UL
1279 u64 curr_chain_key;
1280 int lockdep_depth;
1281 unsigned int lockdep_recursion;
1282 struct held_lock held_locks[MAX_LOCK_DEPTH];
1283 #endif
1284
1285 /* journalling filesystem info */
1286 void *journal_info;
1287
1288 /* stacked block device info */
1289 struct bio *bio_list, **bio_tail;
1290
1291 /* VM state */
1292 struct reclaim_state *reclaim_state;
1293
1294 struct backing_dev_info *backing_dev_info;
1295
1296 struct io_context *io_context;
1297
1298 unsigned long ptrace_message;
1299 siginfo_t *last_siginfo; /* For ptrace use. */
1300 struct task_io_accounting ioac;
1301 #if defined(CONFIG_TASK_XACCT)
1302 u64 acct_rss_mem1; /* accumulated rss usage */
1303 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1304 cputime_t acct_timexpd; /* stime + utime since last update */
1305 #endif
1306 #ifdef CONFIG_CPUSETS
1307 nodemask_t mems_allowed;
1308 int cpuset_mems_generation;
1309 int cpuset_mem_spread_rotor;
1310 #endif
1311 #ifdef CONFIG_CGROUPS
1312 /* Control Group info protected by css_set_lock */
1313 struct css_set *cgroups;
1314 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1315 struct list_head cg_list;
1316 #endif
1317 #ifdef CONFIG_FUTEX
1318 struct robust_list_head __user *robust_list;
1319 #ifdef CONFIG_COMPAT
1320 struct compat_robust_list_head __user *compat_robust_list;
1321 #endif
1322 struct list_head pi_state_list;
1323 struct futex_pi_state *pi_state_cache;
1324 #endif
1325 #ifdef CONFIG_NUMA
1326 struct mempolicy *mempolicy;
1327 short il_next;
1328 #endif
1329 atomic_t fs_excl; /* holding fs exclusive resources */
1330 struct rcu_head rcu;
1331
1332 /*
1333 * cache last used pipe for splice
1334 */
1335 struct pipe_inode_info *splice_pipe;
1336 #ifdef CONFIG_TASK_DELAY_ACCT
1337 struct task_delay_info *delays;
1338 #endif
1339 #ifdef CONFIG_FAULT_INJECTION
1340 int make_it_fail;
1341 #endif
1342 struct prop_local_single dirties;
1343 #ifdef CONFIG_LATENCYTOP
1344 int latency_record_count;
1345 struct latency_record latency_record[LT_SAVECOUNT];
1346 #endif
1347 /*
1348 * time slack values; these are used to round up poll() and
1349 * select() etc timeout values. These are in nanoseconds.
1350 */
1351 unsigned long timer_slack_ns;
1352 unsigned long default_timer_slack_ns;
1353
1354 struct list_head *scm_work_list;
1355 };
1356
1357 /*
1358 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1359 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1360 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1361 * values are inverted: lower p->prio value means higher priority.
1362 *
1363 * The MAX_USER_RT_PRIO value allows the actual maximum
1364 * RT priority to be separate from the value exported to
1365 * user-space. This allows kernel threads to set their
1366 * priority to a value higher than any user task. Note:
1367 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1368 */
1369
1370 #define MAX_USER_RT_PRIO 100
1371 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1372
1373 #define MAX_PRIO (MAX_RT_PRIO + 40)
1374 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1375
1376 static inline int rt_prio(int prio)
1377 {
1378 if (unlikely(prio < MAX_RT_PRIO))
1379 return 1;
1380 return 0;
1381 }
1382
1383 static inline int rt_task(struct task_struct *p)
1384 {
1385 return rt_prio(p->prio);
1386 }
1387
1388 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1389 {
1390 tsk->signal->__session = session;
1391 }
1392
1393 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1394 {
1395 tsk->signal->__pgrp = pgrp;
1396 }
1397
1398 static inline struct pid *task_pid(struct task_struct *task)
1399 {
1400 return task->pids[PIDTYPE_PID].pid;
1401 }
1402
1403 static inline struct pid *task_tgid(struct task_struct *task)
1404 {
1405 return task->group_leader->pids[PIDTYPE_PID].pid;
1406 }
1407
1408 static inline struct pid *task_pgrp(struct task_struct *task)
1409 {
1410 return task->group_leader->pids[PIDTYPE_PGID].pid;
1411 }
1412
1413 static inline struct pid *task_session(struct task_struct *task)
1414 {
1415 return task->group_leader->pids[PIDTYPE_SID].pid;
1416 }
1417
1418 struct pid_namespace;
1419
1420 /*
1421 * the helpers to get the task's different pids as they are seen
1422 * from various namespaces
1423 *
1424 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1425 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1426 * current.
1427 * task_xid_nr_ns() : id seen from the ns specified;
1428 *
1429 * set_task_vxid() : assigns a virtual id to a task;
1430 *
1431 * see also pid_nr() etc in include/linux/pid.h
1432 */
1433
1434 static inline pid_t task_pid_nr(struct task_struct *tsk)
1435 {
1436 return tsk->pid;
1437 }
1438
1439 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1440
1441 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1442 {
1443 return pid_vnr(task_pid(tsk));
1444 }
1445
1446
1447 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1448 {
1449 return tsk->tgid;
1450 }
1451
1452 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1453
1454 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1455 {
1456 return pid_vnr(task_tgid(tsk));
1457 }
1458
1459
1460 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1461 {
1462 return tsk->signal->__pgrp;
1463 }
1464
1465 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1466
1467 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1468 {
1469 return pid_vnr(task_pgrp(tsk));
1470 }
1471
1472
1473 static inline pid_t task_session_nr(struct task_struct *tsk)
1474 {
1475 return tsk->signal->__session;
1476 }
1477
1478 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1479
1480 static inline pid_t task_session_vnr(struct task_struct *tsk)
1481 {
1482 return pid_vnr(task_session(tsk));
1483 }
1484
1485
1486 /**
1487 * pid_alive - check that a task structure is not stale
1488 * @p: Task structure to be checked.
1489 *
1490 * Test if a process is not yet dead (at most zombie state)
1491 * If pid_alive fails, then pointers within the task structure
1492 * can be stale and must not be dereferenced.
1493 */
1494 static inline int pid_alive(struct task_struct *p)
1495 {
1496 return p->pids[PIDTYPE_PID].pid != NULL;
1497 }
1498
1499 /**
1500 * is_global_init - check if a task structure is init
1501 * @tsk: Task structure to be checked.
1502 *
1503 * Check if a task structure is the first user space task the kernel created.
1504 */
1505 static inline int is_global_init(struct task_struct *tsk)
1506 {
1507 return tsk->pid == 1;
1508 }
1509
1510 /*
1511 * is_container_init:
1512 * check whether in the task is init in its own pid namespace.
1513 */
1514 extern int is_container_init(struct task_struct *tsk);
1515
1516 extern struct pid *cad_pid;
1517
1518 extern void free_task(struct task_struct *tsk);
1519 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1520
1521 extern void __put_task_struct(struct task_struct *t);
1522
1523 static inline void put_task_struct(struct task_struct *t)
1524 {
1525 if (atomic_dec_and_test(&t->usage))
1526 __put_task_struct(t);
1527 }
1528
1529 extern cputime_t task_utime(struct task_struct *p);
1530 extern cputime_t task_stime(struct task_struct *p);
1531 extern cputime_t task_gtime(struct task_struct *p);
1532
1533 /*
1534 * Per process flags
1535 */
1536 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1537 /* Not implemented yet, only for 486*/
1538 #define PF_STARTING 0x00000002 /* being created */
1539 #define PF_EXITING 0x00000004 /* getting shut down */
1540 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1541 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1542 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1543 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1544 #define PF_DUMPCORE 0x00000200 /* dumped core */
1545 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1546 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1547 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1548 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1549 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1550 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1551 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1552 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1553 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1554 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1555 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1556 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1557 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1558 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1559 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1560 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1561 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1562 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1563 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1564 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1565
1566 /*
1567 * Only the _current_ task can read/write to tsk->flags, but other
1568 * tasks can access tsk->flags in readonly mode for example
1569 * with tsk_used_math (like during threaded core dumping).
1570 * There is however an exception to this rule during ptrace
1571 * or during fork: the ptracer task is allowed to write to the
1572 * child->flags of its traced child (same goes for fork, the parent
1573 * can write to the child->flags), because we're guaranteed the
1574 * child is not running and in turn not changing child->flags
1575 * at the same time the parent does it.
1576 */
1577 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1578 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1579 #define clear_used_math() clear_stopped_child_used_math(current)
1580 #define set_used_math() set_stopped_child_used_math(current)
1581 #define conditional_stopped_child_used_math(condition, child) \
1582 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1583 #define conditional_used_math(condition) \
1584 conditional_stopped_child_used_math(condition, current)
1585 #define copy_to_stopped_child_used_math(child) \
1586 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1587 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1588 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1589 #define used_math() tsk_used_math(current)
1590
1591 #ifdef CONFIG_SMP
1592 extern int set_cpus_allowed_ptr(struct task_struct *p,
1593 const cpumask_t *new_mask);
1594 #else
1595 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1596 const cpumask_t *new_mask)
1597 {
1598 if (!cpu_isset(0, *new_mask))
1599 return -EINVAL;
1600 return 0;
1601 }
1602 #endif
1603 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1604 {
1605 return set_cpus_allowed_ptr(p, &new_mask);
1606 }
1607
1608 extern unsigned long long sched_clock(void);
1609
1610 extern void sched_clock_init(void);
1611 extern u64 sched_clock_cpu(int cpu);
1612
1613 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1614 static inline void sched_clock_tick(void)
1615 {
1616 }
1617
1618 static inline void sched_clock_idle_sleep_event(void)
1619 {
1620 }
1621
1622 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1623 {
1624 }
1625 #else
1626 extern void sched_clock_tick(void);
1627 extern void sched_clock_idle_sleep_event(void);
1628 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1629 #endif
1630
1631 /*
1632 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1633 * clock constructed from sched_clock():
1634 */
1635 extern unsigned long long cpu_clock(int cpu);
1636
1637 extern unsigned long long
1638 task_sched_runtime(struct task_struct *task);
1639 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1640
1641 /* sched_exec is called by processes performing an exec */
1642 #ifdef CONFIG_SMP
1643 extern void sched_exec(void);
1644 #else
1645 #define sched_exec() {}
1646 #endif
1647
1648 extern void sched_clock_idle_sleep_event(void);
1649 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1650
1651 #ifdef CONFIG_HOTPLUG_CPU
1652 extern void idle_task_exit(void);
1653 #else
1654 static inline void idle_task_exit(void) {}
1655 #endif
1656
1657 extern void sched_idle_next(void);
1658
1659 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1660 extern void wake_up_idle_cpu(int cpu);
1661 #else
1662 static inline void wake_up_idle_cpu(int cpu) { }
1663 #endif
1664
1665 #ifdef CONFIG_SCHED_DEBUG
1666 extern unsigned int sysctl_sched_latency;
1667 extern unsigned int sysctl_sched_min_granularity;
1668 extern unsigned int sysctl_sched_wakeup_granularity;
1669 extern unsigned int sysctl_sched_child_runs_first;
1670 extern unsigned int sysctl_sched_features;
1671 extern unsigned int sysctl_sched_migration_cost;
1672 extern unsigned int sysctl_sched_nr_migrate;
1673 extern unsigned int sysctl_sched_shares_ratelimit;
1674 extern unsigned int sysctl_sched_shares_thresh;
1675
1676 int sched_nr_latency_handler(struct ctl_table *table, int write,
1677 struct file *file, void __user *buffer, size_t *length,
1678 loff_t *ppos);
1679 #endif
1680 extern unsigned int sysctl_sched_rt_period;
1681 extern int sysctl_sched_rt_runtime;
1682
1683 int sched_rt_handler(struct ctl_table *table, int write,
1684 struct file *filp, void __user *buffer, size_t *lenp,
1685 loff_t *ppos);
1686
1687 extern unsigned int sysctl_sched_compat_yield;
1688
1689 #ifdef CONFIG_RT_MUTEXES
1690 extern int rt_mutex_getprio(struct task_struct *p);
1691 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1692 extern void rt_mutex_adjust_pi(struct task_struct *p);
1693 #else
1694 static inline int rt_mutex_getprio(struct task_struct *p)
1695 {
1696 return p->normal_prio;
1697 }
1698 # define rt_mutex_adjust_pi(p) do { } while (0)
1699 #endif
1700
1701 extern void set_user_nice(struct task_struct *p, long nice);
1702 extern int task_prio(const struct task_struct *p);
1703 extern int task_nice(const struct task_struct *p);
1704 extern int can_nice(const struct task_struct *p, const int nice);
1705 extern int task_curr(const struct task_struct *p);
1706 extern int idle_cpu(int cpu);
1707 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1708 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1709 struct sched_param *);
1710 extern struct task_struct *idle_task(int cpu);
1711 extern struct task_struct *curr_task(int cpu);
1712 extern void set_curr_task(int cpu, struct task_struct *p);
1713
1714 void yield(void);
1715
1716 /*
1717 * The default (Linux) execution domain.
1718 */
1719 extern struct exec_domain default_exec_domain;
1720
1721 union thread_union {
1722 struct thread_info thread_info;
1723 unsigned long stack[THREAD_SIZE/sizeof(long)];
1724 };
1725
1726 #ifndef __HAVE_ARCH_KSTACK_END
1727 static inline int kstack_end(void *addr)
1728 {
1729 /* Reliable end of stack detection:
1730 * Some APM bios versions misalign the stack
1731 */
1732 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1733 }
1734 #endif
1735
1736 extern union thread_union init_thread_union;
1737 extern struct task_struct init_task;
1738
1739 extern struct mm_struct init_mm;
1740
1741 extern struct pid_namespace init_pid_ns;
1742
1743 /*
1744 * find a task by one of its numerical ids
1745 *
1746 * find_task_by_pid_type_ns():
1747 * it is the most generic call - it finds a task by all id,
1748 * type and namespace specified
1749 * find_task_by_pid_ns():
1750 * finds a task by its pid in the specified namespace
1751 * find_task_by_vpid():
1752 * finds a task by its virtual pid
1753 *
1754 * see also find_vpid() etc in include/linux/pid.h
1755 */
1756
1757 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1758 struct pid_namespace *ns);
1759
1760 extern struct task_struct *find_task_by_vpid(pid_t nr);
1761 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1762 struct pid_namespace *ns);
1763
1764 extern void __set_special_pids(struct pid *pid);
1765
1766 /* per-UID process charging. */
1767 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1768 static inline struct user_struct *get_uid(struct user_struct *u)
1769 {
1770 atomic_inc(&u->__count);
1771 return u;
1772 }
1773 extern void free_uid(struct user_struct *);
1774 extern void switch_uid(struct user_struct *);
1775 extern void release_uids(struct user_namespace *ns);
1776
1777 #include <asm/current.h>
1778
1779 extern void do_timer(unsigned long ticks);
1780
1781 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1782 extern int wake_up_process(struct task_struct *tsk);
1783 extern void wake_up_new_task(struct task_struct *tsk,
1784 unsigned long clone_flags);
1785 #ifdef CONFIG_SMP
1786 extern void kick_process(struct task_struct *tsk);
1787 #else
1788 static inline void kick_process(struct task_struct *tsk) { }
1789 #endif
1790 extern void sched_fork(struct task_struct *p, int clone_flags);
1791 extern void sched_dead(struct task_struct *p);
1792
1793 extern int in_group_p(gid_t);
1794 extern int in_egroup_p(gid_t);
1795
1796 extern void proc_caches_init(void);
1797 extern void flush_signals(struct task_struct *);
1798 extern void ignore_signals(struct task_struct *);
1799 extern void flush_signal_handlers(struct task_struct *, int force_default);
1800 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1801
1802 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1803 {
1804 unsigned long flags;
1805 int ret;
1806
1807 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1808 ret = dequeue_signal(tsk, mask, info);
1809 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1810
1811 return ret;
1812 }
1813
1814 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1815 sigset_t *mask);
1816 extern void unblock_all_signals(void);
1817 extern void release_task(struct task_struct * p);
1818 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1819 extern int force_sigsegv(int, struct task_struct *);
1820 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1821 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1822 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1823 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1824 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1825 extern int kill_pid(struct pid *pid, int sig, int priv);
1826 extern int kill_proc_info(int, struct siginfo *, pid_t);
1827 extern int do_notify_parent(struct task_struct *, int);
1828 extern void force_sig(int, struct task_struct *);
1829 extern void force_sig_specific(int, struct task_struct *);
1830 extern int send_sig(int, struct task_struct *, int);
1831 extern void zap_other_threads(struct task_struct *p);
1832 extern struct sigqueue *sigqueue_alloc(void);
1833 extern void sigqueue_free(struct sigqueue *);
1834 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1835 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1836 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1837
1838 static inline int kill_cad_pid(int sig, int priv)
1839 {
1840 return kill_pid(cad_pid, sig, priv);
1841 }
1842
1843 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1844 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1845 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1846 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1847
1848 static inline int is_si_special(const struct siginfo *info)
1849 {
1850 return info <= SEND_SIG_FORCED;
1851 }
1852
1853 /* True if we are on the alternate signal stack. */
1854
1855 static inline int on_sig_stack(unsigned long sp)
1856 {
1857 return (sp - current->sas_ss_sp < current->sas_ss_size);
1858 }
1859
1860 static inline int sas_ss_flags(unsigned long sp)
1861 {
1862 return (current->sas_ss_size == 0 ? SS_DISABLE
1863 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1864 }
1865
1866 /*
1867 * Routines for handling mm_structs
1868 */
1869 extern struct mm_struct * mm_alloc(void);
1870
1871 /* mmdrop drops the mm and the page tables */
1872 extern void __mmdrop(struct mm_struct *);
1873 static inline void mmdrop(struct mm_struct * mm)
1874 {
1875 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1876 __mmdrop(mm);
1877 }
1878
1879 /* mmput gets rid of the mappings and all user-space */
1880 extern void mmput(struct mm_struct *);
1881 /* Grab a reference to a task's mm, if it is not already going away */
1882 extern struct mm_struct *get_task_mm(struct task_struct *task);
1883 /* Remove the current tasks stale references to the old mm_struct */
1884 extern void mm_release(struct task_struct *, struct mm_struct *);
1885 /* Allocate a new mm structure and copy contents from tsk->mm */
1886 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1887
1888 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1889 extern void flush_thread(void);
1890 extern void exit_thread(void);
1891
1892 extern void exit_files(struct task_struct *);
1893 extern void __cleanup_signal(struct signal_struct *);
1894 extern void __cleanup_sighand(struct sighand_struct *);
1895
1896 extern void exit_itimers(struct signal_struct *);
1897 extern void flush_itimer_signals(void);
1898
1899 extern NORET_TYPE void do_group_exit(int);
1900
1901 extern void daemonize(const char *, ...);
1902 extern int allow_signal(int);
1903 extern int disallow_signal(int);
1904
1905 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1906 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1907 struct task_struct *fork_idle(int);
1908
1909 extern void set_task_comm(struct task_struct *tsk, char *from);
1910 extern char *get_task_comm(char *to, struct task_struct *tsk);
1911
1912 #ifdef CONFIG_SMP
1913 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1914 #else
1915 static inline unsigned long wait_task_inactive(struct task_struct *p,
1916 long match_state)
1917 {
1918 return 1;
1919 }
1920 #endif
1921
1922 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1923
1924 #define for_each_process(p) \
1925 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1926
1927 /*
1928 * Careful: do_each_thread/while_each_thread is a double loop so
1929 * 'break' will not work as expected - use goto instead.
1930 */
1931 #define do_each_thread(g, t) \
1932 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1933
1934 #define while_each_thread(g, t) \
1935 while ((t = next_thread(t)) != g)
1936
1937 /* de_thread depends on thread_group_leader not being a pid based check */
1938 #define thread_group_leader(p) (p == p->group_leader)
1939
1940 /* Do to the insanities of de_thread it is possible for a process
1941 * to have the pid of the thread group leader without actually being
1942 * the thread group leader. For iteration through the pids in proc
1943 * all we care about is that we have a task with the appropriate
1944 * pid, we don't actually care if we have the right task.
1945 */
1946 static inline int has_group_leader_pid(struct task_struct *p)
1947 {
1948 return p->pid == p->tgid;
1949 }
1950
1951 static inline
1952 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1953 {
1954 return p1->tgid == p2->tgid;
1955 }
1956
1957 static inline struct task_struct *next_thread(const struct task_struct *p)
1958 {
1959 return list_entry(rcu_dereference(p->thread_group.next),
1960 struct task_struct, thread_group);
1961 }
1962
1963 static inline int thread_group_empty(struct task_struct *p)
1964 {
1965 return list_empty(&p->thread_group);
1966 }
1967
1968 #define delay_group_leader(p) \
1969 (thread_group_leader(p) && !thread_group_empty(p))
1970
1971 /*
1972 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1973 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1974 * pins the final release of task.io_context. Also protects ->cpuset and
1975 * ->cgroup.subsys[].
1976 *
1977 * Nests both inside and outside of read_lock(&tasklist_lock).
1978 * It must not be nested with write_lock_irq(&tasklist_lock),
1979 * neither inside nor outside.
1980 */
1981 static inline void task_lock(struct task_struct *p)
1982 {
1983 spin_lock(&p->alloc_lock);
1984 }
1985
1986 static inline void task_unlock(struct task_struct *p)
1987 {
1988 spin_unlock(&p->alloc_lock);
1989 }
1990
1991 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1992 unsigned long *flags);
1993
1994 static inline void unlock_task_sighand(struct task_struct *tsk,
1995 unsigned long *flags)
1996 {
1997 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1998 }
1999
2000 #ifndef __HAVE_THREAD_FUNCTIONS
2001
2002 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2003 #define task_stack_page(task) ((task)->stack)
2004
2005 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2006 {
2007 *task_thread_info(p) = *task_thread_info(org);
2008 task_thread_info(p)->task = p;
2009 }
2010
2011 static inline unsigned long *end_of_stack(struct task_struct *p)
2012 {
2013 return (unsigned long *)(task_thread_info(p) + 1);
2014 }
2015
2016 #endif
2017
2018 static inline int object_is_on_stack(void *obj)
2019 {
2020 void *stack = task_stack_page(current);
2021
2022 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2023 }
2024
2025 extern void thread_info_cache_init(void);
2026
2027 /* set thread flags in other task's structures
2028 * - see asm/thread_info.h for TIF_xxxx flags available
2029 */
2030 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2031 {
2032 set_ti_thread_flag(task_thread_info(tsk), flag);
2033 }
2034
2035 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 clear_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039
2040 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2041 {
2042 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2043 }
2044
2045 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2046 {
2047 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2048 }
2049
2050 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2051 {
2052 return test_ti_thread_flag(task_thread_info(tsk), flag);
2053 }
2054
2055 static inline void set_tsk_need_resched(struct task_struct *tsk)
2056 {
2057 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2058 }
2059
2060 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2061 {
2062 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2063 }
2064
2065 static inline int test_tsk_need_resched(struct task_struct *tsk)
2066 {
2067 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2068 }
2069
2070 static inline int signal_pending(struct task_struct *p)
2071 {
2072 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2073 }
2074
2075 extern int __fatal_signal_pending(struct task_struct *p);
2076
2077 static inline int fatal_signal_pending(struct task_struct *p)
2078 {
2079 return signal_pending(p) && __fatal_signal_pending(p);
2080 }
2081
2082 static inline int signal_pending_state(long state, struct task_struct *p)
2083 {
2084 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2085 return 0;
2086 if (!signal_pending(p))
2087 return 0;
2088
2089 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2090 }
2091
2092 static inline int need_resched(void)
2093 {
2094 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2095 }
2096
2097 /*
2098 * cond_resched() and cond_resched_lock(): latency reduction via
2099 * explicit rescheduling in places that are safe. The return
2100 * value indicates whether a reschedule was done in fact.
2101 * cond_resched_lock() will drop the spinlock before scheduling,
2102 * cond_resched_softirq() will enable bhs before scheduling.
2103 */
2104 extern int _cond_resched(void);
2105 #ifdef CONFIG_PREEMPT_BKL
2106 static inline int cond_resched(void)
2107 {
2108 return 0;
2109 }
2110 #else
2111 static inline int cond_resched(void)
2112 {
2113 return _cond_resched();
2114 }
2115 #endif
2116 extern int cond_resched_lock(spinlock_t * lock);
2117 extern int cond_resched_softirq(void);
2118 static inline int cond_resched_bkl(void)
2119 {
2120 return _cond_resched();
2121 }
2122
2123 /*
2124 * Does a critical section need to be broken due to another
2125 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2126 * but a general need for low latency)
2127 */
2128 static inline int spin_needbreak(spinlock_t *lock)
2129 {
2130 #ifdef CONFIG_PREEMPT
2131 return spin_is_contended(lock);
2132 #else
2133 return 0;
2134 #endif
2135 }
2136
2137 /*
2138 * Thread group CPU time accounting.
2139 */
2140
2141 extern int thread_group_cputime_alloc(struct task_struct *);
2142 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2143
2144 static inline void thread_group_cputime_init(struct signal_struct *sig)
2145 {
2146 sig->cputime.totals = NULL;
2147 }
2148
2149 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2150 {
2151 if (curr->signal->cputime.totals)
2152 return 0;
2153 return thread_group_cputime_alloc(curr);
2154 }
2155
2156 static inline void thread_group_cputime_free(struct signal_struct *sig)
2157 {
2158 free_percpu(sig->cputime.totals);
2159 }
2160
2161 /*
2162 * Reevaluate whether the task has signals pending delivery.
2163 * Wake the task if so.
2164 * This is required every time the blocked sigset_t changes.
2165 * callers must hold sighand->siglock.
2166 */
2167 extern void recalc_sigpending_and_wake(struct task_struct *t);
2168 extern void recalc_sigpending(void);
2169
2170 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2171
2172 /*
2173 * Wrappers for p->thread_info->cpu access. No-op on UP.
2174 */
2175 #ifdef CONFIG_SMP
2176
2177 static inline unsigned int task_cpu(const struct task_struct *p)
2178 {
2179 return task_thread_info(p)->cpu;
2180 }
2181
2182 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2183
2184 #else
2185
2186 static inline unsigned int task_cpu(const struct task_struct *p)
2187 {
2188 return 0;
2189 }
2190
2191 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2192 {
2193 }
2194
2195 #endif /* CONFIG_SMP */
2196
2197 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2198
2199 #ifdef CONFIG_TRACING
2200 extern void
2201 __trace_special(void *__tr, void *__data,
2202 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2203 #else
2204 static inline void
2205 __trace_special(void *__tr, void *__data,
2206 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2207 {
2208 }
2209 #endif
2210
2211 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2212 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2213
2214 extern int sched_mc_power_savings, sched_smt_power_savings;
2215
2216 extern void normalize_rt_tasks(void);
2217
2218 #ifdef CONFIG_GROUP_SCHED
2219
2220 extern struct task_group init_task_group;
2221 #ifdef CONFIG_USER_SCHED
2222 extern struct task_group root_task_group;
2223 #endif
2224
2225 extern struct task_group *sched_create_group(struct task_group *parent);
2226 extern void sched_destroy_group(struct task_group *tg);
2227 extern void sched_move_task(struct task_struct *tsk);
2228 #ifdef CONFIG_FAIR_GROUP_SCHED
2229 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2230 extern unsigned long sched_group_shares(struct task_group *tg);
2231 #endif
2232 #ifdef CONFIG_RT_GROUP_SCHED
2233 extern int sched_group_set_rt_runtime(struct task_group *tg,
2234 long rt_runtime_us);
2235 extern long sched_group_rt_runtime(struct task_group *tg);
2236 extern int sched_group_set_rt_period(struct task_group *tg,
2237 long rt_period_us);
2238 extern long sched_group_rt_period(struct task_group *tg);
2239 #endif
2240 #endif
2241
2242 #ifdef CONFIG_TASK_XACCT
2243 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2244 {
2245 tsk->ioac.rchar += amt;
2246 }
2247
2248 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2249 {
2250 tsk->ioac.wchar += amt;
2251 }
2252
2253 static inline void inc_syscr(struct task_struct *tsk)
2254 {
2255 tsk->ioac.syscr++;
2256 }
2257
2258 static inline void inc_syscw(struct task_struct *tsk)
2259 {
2260 tsk->ioac.syscw++;
2261 }
2262 #else
2263 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2264 {
2265 }
2266
2267 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2268 {
2269 }
2270
2271 static inline void inc_syscr(struct task_struct *tsk)
2272 {
2273 }
2274
2275 static inline void inc_syscw(struct task_struct *tsk)
2276 {
2277 }
2278 #endif
2279
2280 #ifndef TASK_SIZE_OF
2281 #define TASK_SIZE_OF(tsk) TASK_SIZE
2282 #endif
2283
2284 #ifdef CONFIG_MM_OWNER
2285 extern void mm_update_next_owner(struct mm_struct *mm);
2286 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2287 #else
2288 static inline void mm_update_next_owner(struct mm_struct *mm)
2289 {
2290 }
2291
2292 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2293 {
2294 }
2295 #endif /* CONFIG_MM_OWNER */
2296
2297 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2298
2299 #endif /* __KERNEL__ */
2300
2301 #endif