]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/sched.h
sched: remove old cpu accounting field
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29
30 /*
31 * Scheduling policies
32 */
33 #define SCHED_NORMAL 0
34 #define SCHED_FIFO 1
35 #define SCHED_RR 2
36 #define SCHED_BATCH 3
37 /* SCHED_ISO: reserved but not implemented yet */
38 #define SCHED_IDLE 5
39
40 #ifdef __KERNEL__
41
42 struct sched_param {
43 int sched_priority;
44 };
45
46 #include <asm/param.h> /* for HZ */
47
48 #include <linux/capability.h>
49 #include <linux/threads.h>
50 #include <linux/kernel.h>
51 #include <linux/types.h>
52 #include <linux/timex.h>
53 #include <linux/jiffies.h>
54 #include <linux/rbtree.h>
55 #include <linux/thread_info.h>
56 #include <linux/cpumask.h>
57 #include <linux/errno.h>
58 #include <linux/nodemask.h>
59
60 #include <asm/system.h>
61 #include <asm/semaphore.h>
62 #include <asm/page.h>
63 #include <asm/ptrace.h>
64 #include <asm/mmu.h>
65 #include <asm/cputime.h>
66
67 #include <linux/smp.h>
68 #include <linux/sem.h>
69 #include <linux/signal.h>
70 #include <linux/securebits.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/seccomp.h>
78 #include <linux/rcupdate.h>
79 #include <linux/futex.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88
89 #include <asm/processor.h>
90
91 struct exec_domain;
92 struct futex_pi_state;
93 struct bio;
94
95 /*
96 * List of flags we want to share for kernel threads,
97 * if only because they are not used by them anyway.
98 */
99 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
100
101 /*
102 * These are the constant used to fake the fixed-point load-average
103 * counting. Some notes:
104 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
105 * a load-average precision of 10 bits integer + 11 bits fractional
106 * - if you want to count load-averages more often, you need more
107 * precision, or rounding will get you. With 2-second counting freq,
108 * the EXP_n values would be 1981, 2034 and 2043 if still using only
109 * 11 bit fractions.
110 */
111 extern unsigned long avenrun[]; /* Load averages */
112
113 #define FSHIFT 11 /* nr of bits of precision */
114 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
115 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
116 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
117 #define EXP_5 2014 /* 1/exp(5sec/5min) */
118 #define EXP_15 2037 /* 1/exp(5sec/15min) */
119
120 #define CALC_LOAD(load,exp,n) \
121 load *= exp; \
122 load += n*(FIXED_1-exp); \
123 load >>= FSHIFT;
124
125 extern unsigned long total_forks;
126 extern int nr_threads;
127 DECLARE_PER_CPU(unsigned long, process_counts);
128 extern int nr_processes(void);
129 extern unsigned long nr_running(void);
130 extern unsigned long nr_uninterruptible(void);
131 extern unsigned long nr_active(void);
132 extern unsigned long nr_iowait(void);
133 extern unsigned long weighted_cpuload(const int cpu);
134
135
136 /*
137 * Task state bitmask. NOTE! These bits are also
138 * encoded in fs/proc/array.c: get_task_state().
139 *
140 * We have two separate sets of flags: task->state
141 * is about runnability, while task->exit_state are
142 * about the task exiting. Confusing, but this way
143 * modifying one set can't modify the other one by
144 * mistake.
145 */
146 #define TASK_RUNNING 0
147 #define TASK_INTERRUPTIBLE 1
148 #define TASK_UNINTERRUPTIBLE 2
149 #define TASK_STOPPED 4
150 #define TASK_TRACED 8
151 /* in tsk->exit_state */
152 #define EXIT_ZOMBIE 16
153 #define EXIT_DEAD 32
154 /* in tsk->state again */
155 #define TASK_NONINTERACTIVE 64
156 #define TASK_DEAD 128
157
158 #define __set_task_state(tsk, state_value) \
159 do { (tsk)->state = (state_value); } while (0)
160 #define set_task_state(tsk, state_value) \
161 set_mb((tsk)->state, (state_value))
162
163 /*
164 * set_current_state() includes a barrier so that the write of current->state
165 * is correctly serialised wrt the caller's subsequent test of whether to
166 * actually sleep:
167 *
168 * set_current_state(TASK_UNINTERRUPTIBLE);
169 * if (do_i_need_to_sleep())
170 * schedule();
171 *
172 * If the caller does not need such serialisation then use __set_current_state()
173 */
174 #define __set_current_state(state_value) \
175 do { current->state = (state_value); } while (0)
176 #define set_current_state(state_value) \
177 set_mb(current->state, (state_value))
178
179 /* Task command name length */
180 #define TASK_COMM_LEN 16
181
182 #include <linux/spinlock.h>
183
184 /*
185 * This serializes "schedule()" and also protects
186 * the run-queue from deletions/modifications (but
187 * _adding_ to the beginning of the run-queue has
188 * a separate lock).
189 */
190 extern rwlock_t tasklist_lock;
191 extern spinlock_t mmlist_lock;
192
193 struct task_struct;
194
195 extern void sched_init(void);
196 extern void sched_init_smp(void);
197 extern void init_idle(struct task_struct *idle, int cpu);
198 extern void init_idle_bootup_task(struct task_struct *idle);
199
200 extern cpumask_t nohz_cpu_mask;
201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
202 extern int select_nohz_load_balancer(int cpu);
203 #else
204 static inline int select_nohz_load_balancer(int cpu)
205 {
206 return 0;
207 }
208 #endif
209
210 /*
211 * Only dump TASK_* tasks. (0 for all tasks)
212 */
213 extern void show_state_filter(unsigned long state_filter);
214
215 static inline void show_state(void)
216 {
217 show_state_filter(0);
218 }
219
220 extern void show_regs(struct pt_regs *);
221
222 /*
223 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
224 * task), SP is the stack pointer of the first frame that should be shown in the back
225 * trace (or NULL if the entire call-chain of the task should be shown).
226 */
227 extern void show_stack(struct task_struct *task, unsigned long *sp);
228
229 void io_schedule(void);
230 long io_schedule_timeout(long timeout);
231
232 extern void cpu_init (void);
233 extern void trap_init(void);
234 extern void update_process_times(int user);
235 extern void scheduler_tick(void);
236
237 #ifdef CONFIG_DETECT_SOFTLOCKUP
238 extern void softlockup_tick(void);
239 extern void spawn_softlockup_task(void);
240 extern void touch_softlockup_watchdog(void);
241 extern void touch_all_softlockup_watchdogs(void);
242 #else
243 static inline void softlockup_tick(void)
244 {
245 }
246 static inline void spawn_softlockup_task(void)
247 {
248 }
249 static inline void touch_softlockup_watchdog(void)
250 {
251 }
252 static inline void touch_all_softlockup_watchdogs(void)
253 {
254 }
255 #endif
256
257
258 /* Attach to any functions which should be ignored in wchan output. */
259 #define __sched __attribute__((__section__(".sched.text")))
260 /* Is this address in the __sched functions? */
261 extern int in_sched_functions(unsigned long addr);
262
263 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
264 extern signed long FASTCALL(schedule_timeout(signed long timeout));
265 extern signed long schedule_timeout_interruptible(signed long timeout);
266 extern signed long schedule_timeout_uninterruptible(signed long timeout);
267 asmlinkage void schedule(void);
268
269 struct nsproxy;
270
271 /* Maximum number of active map areas.. This is a random (large) number */
272 #define DEFAULT_MAX_MAP_COUNT 65536
273
274 extern int sysctl_max_map_count;
275
276 #include <linux/aio.h>
277
278 extern unsigned long
279 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
280 unsigned long, unsigned long);
281 extern unsigned long
282 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
283 unsigned long len, unsigned long pgoff,
284 unsigned long flags);
285 extern void arch_unmap_area(struct mm_struct *, unsigned long);
286 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
287
288 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
289 /*
290 * The mm counters are not protected by its page_table_lock,
291 * so must be incremented atomically.
292 */
293 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
294 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
295 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
296 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
297 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
298 typedef atomic_long_t mm_counter_t;
299
300 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
301 /*
302 * The mm counters are protected by its page_table_lock,
303 * so can be incremented directly.
304 */
305 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
306 #define get_mm_counter(mm, member) ((mm)->_##member)
307 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
308 #define inc_mm_counter(mm, member) (mm)->_##member++
309 #define dec_mm_counter(mm, member) (mm)->_##member--
310 typedef unsigned long mm_counter_t;
311
312 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
313
314 #define get_mm_rss(mm) \
315 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
316 #define update_hiwater_rss(mm) do { \
317 unsigned long _rss = get_mm_rss(mm); \
318 if ((mm)->hiwater_rss < _rss) \
319 (mm)->hiwater_rss = _rss; \
320 } while (0)
321 #define update_hiwater_vm(mm) do { \
322 if ((mm)->hiwater_vm < (mm)->total_vm) \
323 (mm)->hiwater_vm = (mm)->total_vm; \
324 } while (0)
325
326 struct mm_struct {
327 struct vm_area_struct * mmap; /* list of VMAs */
328 struct rb_root mm_rb;
329 struct vm_area_struct * mmap_cache; /* last find_vma result */
330 unsigned long (*get_unmapped_area) (struct file *filp,
331 unsigned long addr, unsigned long len,
332 unsigned long pgoff, unsigned long flags);
333 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
334 unsigned long mmap_base; /* base of mmap area */
335 unsigned long task_size; /* size of task vm space */
336 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
337 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
338 pgd_t * pgd;
339 atomic_t mm_users; /* How many users with user space? */
340 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
341 int map_count; /* number of VMAs */
342 struct rw_semaphore mmap_sem;
343 spinlock_t page_table_lock; /* Protects page tables and some counters */
344
345 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
346 * together off init_mm.mmlist, and are protected
347 * by mmlist_lock
348 */
349
350 /* Special counters, in some configurations protected by the
351 * page_table_lock, in other configurations by being atomic.
352 */
353 mm_counter_t _file_rss;
354 mm_counter_t _anon_rss;
355
356 unsigned long hiwater_rss; /* High-watermark of RSS usage */
357 unsigned long hiwater_vm; /* High-water virtual memory usage */
358
359 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
360 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
361 unsigned long start_code, end_code, start_data, end_data;
362 unsigned long start_brk, brk, start_stack;
363 unsigned long arg_start, arg_end, env_start, env_end;
364
365 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
366
367 cpumask_t cpu_vm_mask;
368
369 /* Architecture-specific MM context */
370 mm_context_t context;
371
372 /* Swap token stuff */
373 /*
374 * Last value of global fault stamp as seen by this process.
375 * In other words, this value gives an indication of how long
376 * it has been since this task got the token.
377 * Look at mm/thrash.c
378 */
379 unsigned int faultstamp;
380 unsigned int token_priority;
381 unsigned int last_interval;
382
383 unsigned char dumpable:2;
384
385 /* coredumping support */
386 int core_waiters;
387 struct completion *core_startup_done, core_done;
388
389 /* aio bits */
390 rwlock_t ioctx_list_lock;
391 struct kioctx *ioctx_list;
392 };
393
394 struct sighand_struct {
395 atomic_t count;
396 struct k_sigaction action[_NSIG];
397 spinlock_t siglock;
398 struct list_head signalfd_list;
399 };
400
401 struct pacct_struct {
402 int ac_flag;
403 long ac_exitcode;
404 unsigned long ac_mem;
405 cputime_t ac_utime, ac_stime;
406 unsigned long ac_minflt, ac_majflt;
407 };
408
409 /*
410 * NOTE! "signal_struct" does not have it's own
411 * locking, because a shared signal_struct always
412 * implies a shared sighand_struct, so locking
413 * sighand_struct is always a proper superset of
414 * the locking of signal_struct.
415 */
416 struct signal_struct {
417 atomic_t count;
418 atomic_t live;
419
420 wait_queue_head_t wait_chldexit; /* for wait4() */
421
422 /* current thread group signal load-balancing target: */
423 struct task_struct *curr_target;
424
425 /* shared signal handling: */
426 struct sigpending shared_pending;
427
428 /* thread group exit support */
429 int group_exit_code;
430 /* overloaded:
431 * - notify group_exit_task when ->count is equal to notify_count
432 * - everyone except group_exit_task is stopped during signal delivery
433 * of fatal signals, group_exit_task processes the signal.
434 */
435 struct task_struct *group_exit_task;
436 int notify_count;
437
438 /* thread group stop support, overloads group_exit_code too */
439 int group_stop_count;
440 unsigned int flags; /* see SIGNAL_* flags below */
441
442 /* POSIX.1b Interval Timers */
443 struct list_head posix_timers;
444
445 /* ITIMER_REAL timer for the process */
446 struct hrtimer real_timer;
447 struct task_struct *tsk;
448 ktime_t it_real_incr;
449
450 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
451 cputime_t it_prof_expires, it_virt_expires;
452 cputime_t it_prof_incr, it_virt_incr;
453
454 /* job control IDs */
455 pid_t pgrp;
456 struct pid *tty_old_pgrp;
457
458 union {
459 pid_t session __deprecated;
460 pid_t __session;
461 };
462
463 /* boolean value for session group leader */
464 int leader;
465
466 struct tty_struct *tty; /* NULL if no tty */
467
468 /*
469 * Cumulative resource counters for dead threads in the group,
470 * and for reaped dead child processes forked by this group.
471 * Live threads maintain their own counters and add to these
472 * in __exit_signal, except for the group leader.
473 */
474 cputime_t utime, stime, cutime, cstime;
475 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
476 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
477 unsigned long inblock, oublock, cinblock, coublock;
478
479 /*
480 * Cumulative ns of scheduled CPU time for dead threads in the
481 * group, not including a zombie group leader. (This only differs
482 * from jiffies_to_ns(utime + stime) if sched_clock uses something
483 * other than jiffies.)
484 */
485 unsigned long long sum_sched_runtime;
486
487 /*
488 * We don't bother to synchronize most readers of this at all,
489 * because there is no reader checking a limit that actually needs
490 * to get both rlim_cur and rlim_max atomically, and either one
491 * alone is a single word that can safely be read normally.
492 * getrlimit/setrlimit use task_lock(current->group_leader) to
493 * protect this instead of the siglock, because they really
494 * have no need to disable irqs.
495 */
496 struct rlimit rlim[RLIM_NLIMITS];
497
498 struct list_head cpu_timers[3];
499
500 /* keep the process-shared keyrings here so that they do the right
501 * thing in threads created with CLONE_THREAD */
502 #ifdef CONFIG_KEYS
503 struct key *session_keyring; /* keyring inherited over fork */
504 struct key *process_keyring; /* keyring private to this process */
505 #endif
506 #ifdef CONFIG_BSD_PROCESS_ACCT
507 struct pacct_struct pacct; /* per-process accounting information */
508 #endif
509 #ifdef CONFIG_TASKSTATS
510 struct taskstats *stats;
511 #endif
512 };
513
514 /* Context switch must be unlocked if interrupts are to be enabled */
515 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
516 # define __ARCH_WANT_UNLOCKED_CTXSW
517 #endif
518
519 /*
520 * Bits in flags field of signal_struct.
521 */
522 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
523 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
524 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
525 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
526
527 /*
528 * Some day this will be a full-fledged user tracking system..
529 */
530 struct user_struct {
531 atomic_t __count; /* reference count */
532 atomic_t processes; /* How many processes does this user have? */
533 atomic_t files; /* How many open files does this user have? */
534 atomic_t sigpending; /* How many pending signals does this user have? */
535 #ifdef CONFIG_INOTIFY_USER
536 atomic_t inotify_watches; /* How many inotify watches does this user have? */
537 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
538 #endif
539 /* protected by mq_lock */
540 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
541 unsigned long locked_shm; /* How many pages of mlocked shm ? */
542
543 #ifdef CONFIG_KEYS
544 struct key *uid_keyring; /* UID specific keyring */
545 struct key *session_keyring; /* UID's default session keyring */
546 #endif
547
548 /* Hash table maintenance information */
549 struct list_head uidhash_list;
550 uid_t uid;
551 };
552
553 extern struct user_struct *find_user(uid_t);
554
555 extern struct user_struct root_user;
556 #define INIT_USER (&root_user)
557
558 struct backing_dev_info;
559 struct reclaim_state;
560
561 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
562 struct sched_info {
563 /* cumulative counters */
564 unsigned long pcnt; /* # of times run on this cpu */
565 unsigned long long cpu_time, /* time spent on the cpu */
566 run_delay; /* time spent waiting on a runqueue */
567
568 /* timestamps */
569 unsigned long long last_arrival,/* when we last ran on a cpu */
570 last_queued; /* when we were last queued to run */
571 };
572 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
573
574 #ifdef CONFIG_SCHEDSTATS
575 extern const struct file_operations proc_schedstat_operations;
576 #endif /* CONFIG_SCHEDSTATS */
577
578 #ifdef CONFIG_TASK_DELAY_ACCT
579 struct task_delay_info {
580 spinlock_t lock;
581 unsigned int flags; /* Private per-task flags */
582
583 /* For each stat XXX, add following, aligned appropriately
584 *
585 * struct timespec XXX_start, XXX_end;
586 * u64 XXX_delay;
587 * u32 XXX_count;
588 *
589 * Atomicity of updates to XXX_delay, XXX_count protected by
590 * single lock above (split into XXX_lock if contention is an issue).
591 */
592
593 /*
594 * XXX_count is incremented on every XXX operation, the delay
595 * associated with the operation is added to XXX_delay.
596 * XXX_delay contains the accumulated delay time in nanoseconds.
597 */
598 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
599 u64 blkio_delay; /* wait for sync block io completion */
600 u64 swapin_delay; /* wait for swapin block io completion */
601 u32 blkio_count; /* total count of the number of sync block */
602 /* io operations performed */
603 u32 swapin_count; /* total count of the number of swapin block */
604 /* io operations performed */
605 };
606 #endif /* CONFIG_TASK_DELAY_ACCT */
607
608 static inline int sched_info_on(void)
609 {
610 #ifdef CONFIG_SCHEDSTATS
611 return 1;
612 #elif defined(CONFIG_TASK_DELAY_ACCT)
613 extern int delayacct_on;
614 return delayacct_on;
615 #else
616 return 0;
617 #endif
618 }
619
620 enum cpu_idle_type {
621 CPU_IDLE,
622 CPU_NOT_IDLE,
623 CPU_NEWLY_IDLE,
624 CPU_MAX_IDLE_TYPES
625 };
626
627 /*
628 * sched-domains (multiprocessor balancing) declarations:
629 */
630
631 /*
632 * Increase resolution of nice-level calculations:
633 */
634 #define SCHED_LOAD_SHIFT 10
635 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
636
637 #define SCHED_LOAD_SCALE_FUZZ (SCHED_LOAD_SCALE >> 5)
638
639 #ifdef CONFIG_SMP
640 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
641 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
642 #define SD_BALANCE_EXEC 4 /* Balance on exec */
643 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
644 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
645 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
646 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
647 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
648 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
649 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
650 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
651
652 #define BALANCE_FOR_MC_POWER \
653 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
654
655 #define BALANCE_FOR_PKG_POWER \
656 ((sched_mc_power_savings || sched_smt_power_savings) ? \
657 SD_POWERSAVINGS_BALANCE : 0)
658
659 #define test_sd_parent(sd, flag) ((sd->parent && \
660 (sd->parent->flags & flag)) ? 1 : 0)
661
662
663 struct sched_group {
664 struct sched_group *next; /* Must be a circular list */
665 cpumask_t cpumask;
666
667 /*
668 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
669 * single CPU. This is read only (except for setup, hotplug CPU).
670 * Note : Never change cpu_power without recompute its reciprocal
671 */
672 unsigned int __cpu_power;
673 /*
674 * reciprocal value of cpu_power to avoid expensive divides
675 * (see include/linux/reciprocal_div.h)
676 */
677 u32 reciprocal_cpu_power;
678 };
679
680 struct sched_domain {
681 /* These fields must be setup */
682 struct sched_domain *parent; /* top domain must be null terminated */
683 struct sched_domain *child; /* bottom domain must be null terminated */
684 struct sched_group *groups; /* the balancing groups of the domain */
685 cpumask_t span; /* span of all CPUs in this domain */
686 unsigned long min_interval; /* Minimum balance interval ms */
687 unsigned long max_interval; /* Maximum balance interval ms */
688 unsigned int busy_factor; /* less balancing by factor if busy */
689 unsigned int imbalance_pct; /* No balance until over watermark */
690 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
691 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
692 unsigned int busy_idx;
693 unsigned int idle_idx;
694 unsigned int newidle_idx;
695 unsigned int wake_idx;
696 unsigned int forkexec_idx;
697 int flags; /* See SD_* */
698
699 /* Runtime fields. */
700 unsigned long last_balance; /* init to jiffies. units in jiffies */
701 unsigned int balance_interval; /* initialise to 1. units in ms. */
702 unsigned int nr_balance_failed; /* initialise to 0 */
703
704 #ifdef CONFIG_SCHEDSTATS
705 /* load_balance() stats */
706 unsigned long lb_cnt[CPU_MAX_IDLE_TYPES];
707 unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
708 unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
709 unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
710 unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
711 unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
712 unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
713 unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
714
715 /* Active load balancing */
716 unsigned long alb_cnt;
717 unsigned long alb_failed;
718 unsigned long alb_pushed;
719
720 /* SD_BALANCE_EXEC stats */
721 unsigned long sbe_cnt;
722 unsigned long sbe_balanced;
723 unsigned long sbe_pushed;
724
725 /* SD_BALANCE_FORK stats */
726 unsigned long sbf_cnt;
727 unsigned long sbf_balanced;
728 unsigned long sbf_pushed;
729
730 /* try_to_wake_up() stats */
731 unsigned long ttwu_wake_remote;
732 unsigned long ttwu_move_affine;
733 unsigned long ttwu_move_balance;
734 #endif
735 };
736
737 extern int partition_sched_domains(cpumask_t *partition1,
738 cpumask_t *partition2);
739
740 #endif /* CONFIG_SMP */
741
742
743 struct io_context; /* See blkdev.h */
744 struct cpuset;
745
746 #define NGROUPS_SMALL 32
747 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
748 struct group_info {
749 int ngroups;
750 atomic_t usage;
751 gid_t small_block[NGROUPS_SMALL];
752 int nblocks;
753 gid_t *blocks[0];
754 };
755
756 /*
757 * get_group_info() must be called with the owning task locked (via task_lock())
758 * when task != current. The reason being that the vast majority of callers are
759 * looking at current->group_info, which can not be changed except by the
760 * current task. Changing current->group_info requires the task lock, too.
761 */
762 #define get_group_info(group_info) do { \
763 atomic_inc(&(group_info)->usage); \
764 } while (0)
765
766 #define put_group_info(group_info) do { \
767 if (atomic_dec_and_test(&(group_info)->usage)) \
768 groups_free(group_info); \
769 } while (0)
770
771 extern struct group_info *groups_alloc(int gidsetsize);
772 extern void groups_free(struct group_info *group_info);
773 extern int set_current_groups(struct group_info *group_info);
774 extern int groups_search(struct group_info *group_info, gid_t grp);
775 /* access the groups "array" with this macro */
776 #define GROUP_AT(gi, i) \
777 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
778
779 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
780 extern void prefetch_stack(struct task_struct *t);
781 #else
782 static inline void prefetch_stack(struct task_struct *t) { }
783 #endif
784
785 struct audit_context; /* See audit.c */
786 struct mempolicy;
787 struct pipe_inode_info;
788 struct uts_namespace;
789
790 struct rq;
791 struct sched_domain;
792
793 struct sched_class {
794 struct sched_class *next;
795
796 void (*enqueue_task) (struct rq *rq, struct task_struct *p,
797 int wakeup, u64 now);
798 void (*dequeue_task) (struct rq *rq, struct task_struct *p,
799 int sleep, u64 now);
800 void (*yield_task) (struct rq *rq, struct task_struct *p);
801
802 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
803
804 struct task_struct * (*pick_next_task) (struct rq *rq, u64 now);
805 void (*put_prev_task) (struct rq *rq, struct task_struct *p, u64 now);
806
807 int (*load_balance) (struct rq *this_rq, int this_cpu,
808 struct rq *busiest,
809 unsigned long max_nr_move, unsigned long max_load_move,
810 struct sched_domain *sd, enum cpu_idle_type idle,
811 int *all_pinned, unsigned long *total_load_moved);
812
813 void (*set_curr_task) (struct rq *rq);
814 void (*task_tick) (struct rq *rq, struct task_struct *p);
815 void (*task_new) (struct rq *rq, struct task_struct *p);
816 };
817
818 struct load_weight {
819 unsigned long weight, inv_weight;
820 };
821
822 /*
823 * CFS stats for a schedulable entity (task, task-group etc)
824 *
825 * Current field usage histogram:
826 *
827 * 4 se->block_start
828 * 4 se->run_node
829 * 4 se->sleep_start
830 * 4 se->sleep_start_fair
831 * 6 se->load.weight
832 * 7 se->delta_fair
833 * 15 se->wait_runtime
834 */
835 struct sched_entity {
836 long wait_runtime;
837 unsigned long delta_fair_run;
838 unsigned long delta_fair_sleep;
839 unsigned long delta_exec;
840 s64 fair_key;
841 struct load_weight load; /* for load-balancing */
842 struct rb_node run_node;
843 unsigned int on_rq;
844
845 u64 wait_start_fair;
846 u64 wait_start;
847 u64 exec_start;
848 u64 sleep_start;
849 u64 sleep_start_fair;
850 u64 block_start;
851 u64 sleep_max;
852 u64 block_max;
853 u64 exec_max;
854 u64 wait_max;
855 u64 last_ran;
856
857 u64 sum_exec_runtime;
858 s64 sum_wait_runtime;
859 s64 sum_sleep_runtime;
860 unsigned long wait_runtime_overruns;
861 unsigned long wait_runtime_underruns;
862 #ifdef CONFIG_FAIR_GROUP_SCHED
863 struct sched_entity *parent;
864 /* rq on which this entity is (to be) queued: */
865 struct cfs_rq *cfs_rq;
866 /* rq "owned" by this entity/group: */
867 struct cfs_rq *my_q;
868 #endif
869 };
870
871 struct task_struct {
872 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
873 void *stack;
874 atomic_t usage;
875 unsigned int flags; /* per process flags, defined below */
876 unsigned int ptrace;
877
878 int lock_depth; /* BKL lock depth */
879
880 #ifdef CONFIG_SMP
881 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
882 int oncpu;
883 #endif
884 #endif
885
886 int prio, static_prio, normal_prio;
887 struct list_head run_list;
888 struct sched_class *sched_class;
889 struct sched_entity se;
890
891 unsigned short ioprio;
892 #ifdef CONFIG_BLK_DEV_IO_TRACE
893 unsigned int btrace_seq;
894 #endif
895
896 unsigned int policy;
897 cpumask_t cpus_allowed;
898 unsigned int time_slice;
899
900 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
901 struct sched_info sched_info;
902 #endif
903
904 struct list_head tasks;
905 /*
906 * ptrace_list/ptrace_children forms the list of my children
907 * that were stolen by a ptracer.
908 */
909 struct list_head ptrace_children;
910 struct list_head ptrace_list;
911
912 struct mm_struct *mm, *active_mm;
913
914 /* task state */
915 struct linux_binfmt *binfmt;
916 int exit_state;
917 int exit_code, exit_signal;
918 int pdeath_signal; /* The signal sent when the parent dies */
919 /* ??? */
920 unsigned int personality;
921 unsigned did_exec:1;
922 pid_t pid;
923 pid_t tgid;
924
925 #ifdef CONFIG_CC_STACKPROTECTOR
926 /* Canary value for the -fstack-protector gcc feature */
927 unsigned long stack_canary;
928 #endif
929 /*
930 * pointers to (original) parent process, youngest child, younger sibling,
931 * older sibling, respectively. (p->father can be replaced with
932 * p->parent->pid)
933 */
934 struct task_struct *real_parent; /* real parent process (when being debugged) */
935 struct task_struct *parent; /* parent process */
936 /*
937 * children/sibling forms the list of my children plus the
938 * tasks I'm ptracing.
939 */
940 struct list_head children; /* list of my children */
941 struct list_head sibling; /* linkage in my parent's children list */
942 struct task_struct *group_leader; /* threadgroup leader */
943
944 /* PID/PID hash table linkage. */
945 struct pid_link pids[PIDTYPE_MAX];
946 struct list_head thread_group;
947
948 struct completion *vfork_done; /* for vfork() */
949 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
950 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
951
952 unsigned int rt_priority;
953 cputime_t utime, stime;
954 unsigned long nvcsw, nivcsw; /* context switch counts */
955 struct timespec start_time;
956 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
957 unsigned long min_flt, maj_flt;
958
959 cputime_t it_prof_expires, it_virt_expires;
960 unsigned long long it_sched_expires;
961 struct list_head cpu_timers[3];
962
963 /* process credentials */
964 uid_t uid,euid,suid,fsuid;
965 gid_t gid,egid,sgid,fsgid;
966 struct group_info *group_info;
967 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
968 unsigned keep_capabilities:1;
969 struct user_struct *user;
970 #ifdef CONFIG_KEYS
971 struct key *request_key_auth; /* assumed request_key authority */
972 struct key *thread_keyring; /* keyring private to this thread */
973 unsigned char jit_keyring; /* default keyring to attach requested keys to */
974 #endif
975 /*
976 * fpu_counter contains the number of consecutive context switches
977 * that the FPU is used. If this is over a threshold, the lazy fpu
978 * saving becomes unlazy to save the trap. This is an unsigned char
979 * so that after 256 times the counter wraps and the behavior turns
980 * lazy again; this to deal with bursty apps that only use FPU for
981 * a short time
982 */
983 unsigned char fpu_counter;
984 int oomkilladj; /* OOM kill score adjustment (bit shift). */
985 char comm[TASK_COMM_LEN]; /* executable name excluding path
986 - access with [gs]et_task_comm (which lock
987 it with task_lock())
988 - initialized normally by flush_old_exec */
989 /* file system info */
990 int link_count, total_link_count;
991 #ifdef CONFIG_SYSVIPC
992 /* ipc stuff */
993 struct sysv_sem sysvsem;
994 #endif
995 /* CPU-specific state of this task */
996 struct thread_struct thread;
997 /* filesystem information */
998 struct fs_struct *fs;
999 /* open file information */
1000 struct files_struct *files;
1001 /* namespaces */
1002 struct nsproxy *nsproxy;
1003 /* signal handlers */
1004 struct signal_struct *signal;
1005 struct sighand_struct *sighand;
1006
1007 sigset_t blocked, real_blocked;
1008 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1009 struct sigpending pending;
1010
1011 unsigned long sas_ss_sp;
1012 size_t sas_ss_size;
1013 int (*notifier)(void *priv);
1014 void *notifier_data;
1015 sigset_t *notifier_mask;
1016
1017 void *security;
1018 struct audit_context *audit_context;
1019 seccomp_t seccomp;
1020
1021 /* Thread group tracking */
1022 u32 parent_exec_id;
1023 u32 self_exec_id;
1024 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1025 spinlock_t alloc_lock;
1026
1027 /* Protection of the PI data structures: */
1028 spinlock_t pi_lock;
1029
1030 #ifdef CONFIG_RT_MUTEXES
1031 /* PI waiters blocked on a rt_mutex held by this task */
1032 struct plist_head pi_waiters;
1033 /* Deadlock detection and priority inheritance handling */
1034 struct rt_mutex_waiter *pi_blocked_on;
1035 #endif
1036
1037 #ifdef CONFIG_DEBUG_MUTEXES
1038 /* mutex deadlock detection */
1039 struct mutex_waiter *blocked_on;
1040 #endif
1041 #ifdef CONFIG_TRACE_IRQFLAGS
1042 unsigned int irq_events;
1043 int hardirqs_enabled;
1044 unsigned long hardirq_enable_ip;
1045 unsigned int hardirq_enable_event;
1046 unsigned long hardirq_disable_ip;
1047 unsigned int hardirq_disable_event;
1048 int softirqs_enabled;
1049 unsigned long softirq_disable_ip;
1050 unsigned int softirq_disable_event;
1051 unsigned long softirq_enable_ip;
1052 unsigned int softirq_enable_event;
1053 int hardirq_context;
1054 int softirq_context;
1055 #endif
1056 #ifdef CONFIG_LOCKDEP
1057 # define MAX_LOCK_DEPTH 30UL
1058 u64 curr_chain_key;
1059 int lockdep_depth;
1060 struct held_lock held_locks[MAX_LOCK_DEPTH];
1061 unsigned int lockdep_recursion;
1062 #endif
1063
1064 /* journalling filesystem info */
1065 void *journal_info;
1066
1067 /* stacked block device info */
1068 struct bio *bio_list, **bio_tail;
1069
1070 /* VM state */
1071 struct reclaim_state *reclaim_state;
1072
1073 struct backing_dev_info *backing_dev_info;
1074
1075 struct io_context *io_context;
1076
1077 unsigned long ptrace_message;
1078 siginfo_t *last_siginfo; /* For ptrace use. */
1079 /*
1080 * current io wait handle: wait queue entry to use for io waits
1081 * If this thread is processing aio, this points at the waitqueue
1082 * inside the currently handled kiocb. It may be NULL (i.e. default
1083 * to a stack based synchronous wait) if its doing sync IO.
1084 */
1085 wait_queue_t *io_wait;
1086 #ifdef CONFIG_TASK_XACCT
1087 /* i/o counters(bytes read/written, #syscalls */
1088 u64 rchar, wchar, syscr, syscw;
1089 #endif
1090 struct task_io_accounting ioac;
1091 #if defined(CONFIG_TASK_XACCT)
1092 u64 acct_rss_mem1; /* accumulated rss usage */
1093 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1094 cputime_t acct_stimexpd;/* stime since last update */
1095 #endif
1096 #ifdef CONFIG_NUMA
1097 struct mempolicy *mempolicy;
1098 short il_next;
1099 #endif
1100 #ifdef CONFIG_CPUSETS
1101 struct cpuset *cpuset;
1102 nodemask_t mems_allowed;
1103 int cpuset_mems_generation;
1104 int cpuset_mem_spread_rotor;
1105 #endif
1106 struct robust_list_head __user *robust_list;
1107 #ifdef CONFIG_COMPAT
1108 struct compat_robust_list_head __user *compat_robust_list;
1109 #endif
1110 struct list_head pi_state_list;
1111 struct futex_pi_state *pi_state_cache;
1112
1113 atomic_t fs_excl; /* holding fs exclusive resources */
1114 struct rcu_head rcu;
1115
1116 /*
1117 * cache last used pipe for splice
1118 */
1119 struct pipe_inode_info *splice_pipe;
1120 #ifdef CONFIG_TASK_DELAY_ACCT
1121 struct task_delay_info *delays;
1122 #endif
1123 #ifdef CONFIG_FAULT_INJECTION
1124 int make_it_fail;
1125 #endif
1126 };
1127
1128 /*
1129 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1130 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1131 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1132 * values are inverted: lower p->prio value means higher priority.
1133 *
1134 * The MAX_USER_RT_PRIO value allows the actual maximum
1135 * RT priority to be separate from the value exported to
1136 * user-space. This allows kernel threads to set their
1137 * priority to a value higher than any user task. Note:
1138 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1139 */
1140
1141 #define MAX_USER_RT_PRIO 100
1142 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1143
1144 #define MAX_PRIO (MAX_RT_PRIO + 40)
1145 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1146
1147 static inline int rt_prio(int prio)
1148 {
1149 if (unlikely(prio < MAX_RT_PRIO))
1150 return 1;
1151 return 0;
1152 }
1153
1154 static inline int rt_task(struct task_struct *p)
1155 {
1156 return rt_prio(p->prio);
1157 }
1158
1159 static inline pid_t process_group(struct task_struct *tsk)
1160 {
1161 return tsk->signal->pgrp;
1162 }
1163
1164 static inline pid_t signal_session(struct signal_struct *sig)
1165 {
1166 return sig->__session;
1167 }
1168
1169 static inline pid_t process_session(struct task_struct *tsk)
1170 {
1171 return signal_session(tsk->signal);
1172 }
1173
1174 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1175 {
1176 sig->__session = session;
1177 }
1178
1179 static inline struct pid *task_pid(struct task_struct *task)
1180 {
1181 return task->pids[PIDTYPE_PID].pid;
1182 }
1183
1184 static inline struct pid *task_tgid(struct task_struct *task)
1185 {
1186 return task->group_leader->pids[PIDTYPE_PID].pid;
1187 }
1188
1189 static inline struct pid *task_pgrp(struct task_struct *task)
1190 {
1191 return task->group_leader->pids[PIDTYPE_PGID].pid;
1192 }
1193
1194 static inline struct pid *task_session(struct task_struct *task)
1195 {
1196 return task->group_leader->pids[PIDTYPE_SID].pid;
1197 }
1198
1199 /**
1200 * pid_alive - check that a task structure is not stale
1201 * @p: Task structure to be checked.
1202 *
1203 * Test if a process is not yet dead (at most zombie state)
1204 * If pid_alive fails, then pointers within the task structure
1205 * can be stale and must not be dereferenced.
1206 */
1207 static inline int pid_alive(struct task_struct *p)
1208 {
1209 return p->pids[PIDTYPE_PID].pid != NULL;
1210 }
1211
1212 /**
1213 * is_init - check if a task structure is init
1214 * @tsk: Task structure to be checked.
1215 *
1216 * Check if a task structure is the first user space task the kernel created.
1217 */
1218 static inline int is_init(struct task_struct *tsk)
1219 {
1220 return tsk->pid == 1;
1221 }
1222
1223 extern struct pid *cad_pid;
1224
1225 extern void free_task(struct task_struct *tsk);
1226 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1227
1228 extern void __put_task_struct(struct task_struct *t);
1229
1230 static inline void put_task_struct(struct task_struct *t)
1231 {
1232 if (atomic_dec_and_test(&t->usage))
1233 __put_task_struct(t);
1234 }
1235
1236 /*
1237 * Per process flags
1238 */
1239 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1240 /* Not implemented yet, only for 486*/
1241 #define PF_STARTING 0x00000002 /* being created */
1242 #define PF_EXITING 0x00000004 /* getting shut down */
1243 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1244 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1245 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1246 #define PF_DUMPCORE 0x00000200 /* dumped core */
1247 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1248 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1249 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1250 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1251 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1252 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1253 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1254 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1255 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1256 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1257 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1258 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1259 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1260 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1261 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1262 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1263 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1264 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1265
1266 /*
1267 * Only the _current_ task can read/write to tsk->flags, but other
1268 * tasks can access tsk->flags in readonly mode for example
1269 * with tsk_used_math (like during threaded core dumping).
1270 * There is however an exception to this rule during ptrace
1271 * or during fork: the ptracer task is allowed to write to the
1272 * child->flags of its traced child (same goes for fork, the parent
1273 * can write to the child->flags), because we're guaranteed the
1274 * child is not running and in turn not changing child->flags
1275 * at the same time the parent does it.
1276 */
1277 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1278 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1279 #define clear_used_math() clear_stopped_child_used_math(current)
1280 #define set_used_math() set_stopped_child_used_math(current)
1281 #define conditional_stopped_child_used_math(condition, child) \
1282 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1283 #define conditional_used_math(condition) \
1284 conditional_stopped_child_used_math(condition, current)
1285 #define copy_to_stopped_child_used_math(child) \
1286 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1287 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1288 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1289 #define used_math() tsk_used_math(current)
1290
1291 #ifdef CONFIG_SMP
1292 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1293 #else
1294 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1295 {
1296 if (!cpu_isset(0, new_mask))
1297 return -EINVAL;
1298 return 0;
1299 }
1300 #endif
1301
1302 extern unsigned long long sched_clock(void);
1303 extern unsigned long long
1304 task_sched_runtime(struct task_struct *task);
1305
1306 /* sched_exec is called by processes performing an exec */
1307 #ifdef CONFIG_SMP
1308 extern void sched_exec(void);
1309 #else
1310 #define sched_exec() {}
1311 #endif
1312
1313 extern void sched_clock_unstable_event(void);
1314
1315 #ifdef CONFIG_HOTPLUG_CPU
1316 extern void idle_task_exit(void);
1317 #else
1318 static inline void idle_task_exit(void) {}
1319 #endif
1320
1321 extern void sched_idle_next(void);
1322
1323 extern unsigned int sysctl_sched_granularity;
1324 extern unsigned int sysctl_sched_wakeup_granularity;
1325 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1326 extern unsigned int sysctl_sched_stat_granularity;
1327 extern unsigned int sysctl_sched_runtime_limit;
1328 extern unsigned int sysctl_sched_child_runs_first;
1329 extern unsigned int sysctl_sched_features;
1330
1331 #ifdef CONFIG_RT_MUTEXES
1332 extern int rt_mutex_getprio(struct task_struct *p);
1333 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1334 extern void rt_mutex_adjust_pi(struct task_struct *p);
1335 #else
1336 static inline int rt_mutex_getprio(struct task_struct *p)
1337 {
1338 return p->normal_prio;
1339 }
1340 # define rt_mutex_adjust_pi(p) do { } while (0)
1341 #endif
1342
1343 extern void set_user_nice(struct task_struct *p, long nice);
1344 extern int task_prio(const struct task_struct *p);
1345 extern int task_nice(const struct task_struct *p);
1346 extern int can_nice(const struct task_struct *p, const int nice);
1347 extern int task_curr(const struct task_struct *p);
1348 extern int idle_cpu(int cpu);
1349 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1350 extern struct task_struct *idle_task(int cpu);
1351 extern struct task_struct *curr_task(int cpu);
1352 extern void set_curr_task(int cpu, struct task_struct *p);
1353
1354 void yield(void);
1355
1356 /*
1357 * The default (Linux) execution domain.
1358 */
1359 extern struct exec_domain default_exec_domain;
1360
1361 union thread_union {
1362 struct thread_info thread_info;
1363 unsigned long stack[THREAD_SIZE/sizeof(long)];
1364 };
1365
1366 #ifndef __HAVE_ARCH_KSTACK_END
1367 static inline int kstack_end(void *addr)
1368 {
1369 /* Reliable end of stack detection:
1370 * Some APM bios versions misalign the stack
1371 */
1372 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1373 }
1374 #endif
1375
1376 extern union thread_union init_thread_union;
1377 extern struct task_struct init_task;
1378
1379 extern struct mm_struct init_mm;
1380
1381 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1382 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1383 extern void __set_special_pids(pid_t session, pid_t pgrp);
1384
1385 /* per-UID process charging. */
1386 extern struct user_struct * alloc_uid(uid_t);
1387 static inline struct user_struct *get_uid(struct user_struct *u)
1388 {
1389 atomic_inc(&u->__count);
1390 return u;
1391 }
1392 extern void free_uid(struct user_struct *);
1393 extern void switch_uid(struct user_struct *);
1394
1395 #include <asm/current.h>
1396
1397 extern void do_timer(unsigned long ticks);
1398
1399 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1400 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1401 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1402 unsigned long clone_flags));
1403 #ifdef CONFIG_SMP
1404 extern void kick_process(struct task_struct *tsk);
1405 #else
1406 static inline void kick_process(struct task_struct *tsk) { }
1407 #endif
1408 extern void sched_fork(struct task_struct *p, int clone_flags);
1409 extern void sched_dead(struct task_struct *p);
1410
1411 extern int in_group_p(gid_t);
1412 extern int in_egroup_p(gid_t);
1413
1414 extern void proc_caches_init(void);
1415 extern void flush_signals(struct task_struct *);
1416 extern void ignore_signals(struct task_struct *);
1417 extern void flush_signal_handlers(struct task_struct *, int force_default);
1418 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1419
1420 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1421 {
1422 unsigned long flags;
1423 int ret;
1424
1425 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1426 ret = dequeue_signal(tsk, mask, info);
1427 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1428
1429 return ret;
1430 }
1431
1432 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1433 sigset_t *mask);
1434 extern void unblock_all_signals(void);
1435 extern void release_task(struct task_struct * p);
1436 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1437 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1438 extern int force_sigsegv(int, struct task_struct *);
1439 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1440 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1441 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1442 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1443 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1444 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1445 extern int kill_pid(struct pid *pid, int sig, int priv);
1446 extern int kill_proc_info(int, struct siginfo *, pid_t);
1447 extern void do_notify_parent(struct task_struct *, int);
1448 extern void force_sig(int, struct task_struct *);
1449 extern void force_sig_specific(int, struct task_struct *);
1450 extern int send_sig(int, struct task_struct *, int);
1451 extern void zap_other_threads(struct task_struct *p);
1452 extern int kill_proc(pid_t, int, int);
1453 extern struct sigqueue *sigqueue_alloc(void);
1454 extern void sigqueue_free(struct sigqueue *);
1455 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1456 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1457 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1458 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1459
1460 static inline int kill_cad_pid(int sig, int priv)
1461 {
1462 return kill_pid(cad_pid, sig, priv);
1463 }
1464
1465 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1466 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1467 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1468 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1469
1470 static inline int is_si_special(const struct siginfo *info)
1471 {
1472 return info <= SEND_SIG_FORCED;
1473 }
1474
1475 /* True if we are on the alternate signal stack. */
1476
1477 static inline int on_sig_stack(unsigned long sp)
1478 {
1479 return (sp - current->sas_ss_sp < current->sas_ss_size);
1480 }
1481
1482 static inline int sas_ss_flags(unsigned long sp)
1483 {
1484 return (current->sas_ss_size == 0 ? SS_DISABLE
1485 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1486 }
1487
1488 /*
1489 * Routines for handling mm_structs
1490 */
1491 extern struct mm_struct * mm_alloc(void);
1492
1493 /* mmdrop drops the mm and the page tables */
1494 extern void FASTCALL(__mmdrop(struct mm_struct *));
1495 static inline void mmdrop(struct mm_struct * mm)
1496 {
1497 if (atomic_dec_and_test(&mm->mm_count))
1498 __mmdrop(mm);
1499 }
1500
1501 /* mmput gets rid of the mappings and all user-space */
1502 extern void mmput(struct mm_struct *);
1503 /* Grab a reference to a task's mm, if it is not already going away */
1504 extern struct mm_struct *get_task_mm(struct task_struct *task);
1505 /* Remove the current tasks stale references to the old mm_struct */
1506 extern void mm_release(struct task_struct *, struct mm_struct *);
1507
1508 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1509 extern void flush_thread(void);
1510 extern void exit_thread(void);
1511
1512 extern void exit_files(struct task_struct *);
1513 extern void __cleanup_signal(struct signal_struct *);
1514 extern void __cleanup_sighand(struct sighand_struct *);
1515 extern void exit_itimers(struct signal_struct *);
1516
1517 extern NORET_TYPE void do_group_exit(int);
1518
1519 extern void daemonize(const char *, ...);
1520 extern int allow_signal(int);
1521 extern int disallow_signal(int);
1522
1523 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1524 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1525 struct task_struct *fork_idle(int);
1526
1527 extern void set_task_comm(struct task_struct *tsk, char *from);
1528 extern void get_task_comm(char *to, struct task_struct *tsk);
1529
1530 #ifdef CONFIG_SMP
1531 extern void wait_task_inactive(struct task_struct * p);
1532 #else
1533 #define wait_task_inactive(p) do { } while (0)
1534 #endif
1535
1536 #define remove_parent(p) list_del_init(&(p)->sibling)
1537 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1538
1539 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1540
1541 #define for_each_process(p) \
1542 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1543
1544 /*
1545 * Careful: do_each_thread/while_each_thread is a double loop so
1546 * 'break' will not work as expected - use goto instead.
1547 */
1548 #define do_each_thread(g, t) \
1549 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1550
1551 #define while_each_thread(g, t) \
1552 while ((t = next_thread(t)) != g)
1553
1554 /* de_thread depends on thread_group_leader not being a pid based check */
1555 #define thread_group_leader(p) (p == p->group_leader)
1556
1557 /* Do to the insanities of de_thread it is possible for a process
1558 * to have the pid of the thread group leader without actually being
1559 * the thread group leader. For iteration through the pids in proc
1560 * all we care about is that we have a task with the appropriate
1561 * pid, we don't actually care if we have the right task.
1562 */
1563 static inline int has_group_leader_pid(struct task_struct *p)
1564 {
1565 return p->pid == p->tgid;
1566 }
1567
1568 static inline struct task_struct *next_thread(const struct task_struct *p)
1569 {
1570 return list_entry(rcu_dereference(p->thread_group.next),
1571 struct task_struct, thread_group);
1572 }
1573
1574 static inline int thread_group_empty(struct task_struct *p)
1575 {
1576 return list_empty(&p->thread_group);
1577 }
1578
1579 #define delay_group_leader(p) \
1580 (thread_group_leader(p) && !thread_group_empty(p))
1581
1582 /*
1583 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1584 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1585 * pins the final release of task.io_context. Also protects ->cpuset.
1586 *
1587 * Nests both inside and outside of read_lock(&tasklist_lock).
1588 * It must not be nested with write_lock_irq(&tasklist_lock),
1589 * neither inside nor outside.
1590 */
1591 static inline void task_lock(struct task_struct *p)
1592 {
1593 spin_lock(&p->alloc_lock);
1594 }
1595
1596 static inline void task_unlock(struct task_struct *p)
1597 {
1598 spin_unlock(&p->alloc_lock);
1599 }
1600
1601 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1602 unsigned long *flags);
1603
1604 static inline void unlock_task_sighand(struct task_struct *tsk,
1605 unsigned long *flags)
1606 {
1607 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1608 }
1609
1610 #ifndef __HAVE_THREAD_FUNCTIONS
1611
1612 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1613 #define task_stack_page(task) ((task)->stack)
1614
1615 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1616 {
1617 *task_thread_info(p) = *task_thread_info(org);
1618 task_thread_info(p)->task = p;
1619 }
1620
1621 static inline unsigned long *end_of_stack(struct task_struct *p)
1622 {
1623 return (unsigned long *)(task_thread_info(p) + 1);
1624 }
1625
1626 #endif
1627
1628 /* set thread flags in other task's structures
1629 * - see asm/thread_info.h for TIF_xxxx flags available
1630 */
1631 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1632 {
1633 set_ti_thread_flag(task_thread_info(tsk), flag);
1634 }
1635
1636 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1637 {
1638 clear_ti_thread_flag(task_thread_info(tsk), flag);
1639 }
1640
1641 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1642 {
1643 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1644 }
1645
1646 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1647 {
1648 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1649 }
1650
1651 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1652 {
1653 return test_ti_thread_flag(task_thread_info(tsk), flag);
1654 }
1655
1656 static inline void set_tsk_need_resched(struct task_struct *tsk)
1657 {
1658 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1659 }
1660
1661 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1662 {
1663 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1664 }
1665
1666 static inline int signal_pending(struct task_struct *p)
1667 {
1668 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1669 }
1670
1671 static inline int need_resched(void)
1672 {
1673 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1674 }
1675
1676 /*
1677 * cond_resched() and cond_resched_lock(): latency reduction via
1678 * explicit rescheduling in places that are safe. The return
1679 * value indicates whether a reschedule was done in fact.
1680 * cond_resched_lock() will drop the spinlock before scheduling,
1681 * cond_resched_softirq() will enable bhs before scheduling.
1682 */
1683 extern int cond_resched(void);
1684 extern int cond_resched_lock(spinlock_t * lock);
1685 extern int cond_resched_softirq(void);
1686
1687 /*
1688 * Does a critical section need to be broken due to another
1689 * task waiting?:
1690 */
1691 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1692 # define need_lockbreak(lock) ((lock)->break_lock)
1693 #else
1694 # define need_lockbreak(lock) 0
1695 #endif
1696
1697 /*
1698 * Does a critical section need to be broken due to another
1699 * task waiting or preemption being signalled:
1700 */
1701 static inline int lock_need_resched(spinlock_t *lock)
1702 {
1703 if (need_lockbreak(lock) || need_resched())
1704 return 1;
1705 return 0;
1706 }
1707
1708 /*
1709 * Reevaluate whether the task has signals pending delivery.
1710 * Wake the task if so.
1711 * This is required every time the blocked sigset_t changes.
1712 * callers must hold sighand->siglock.
1713 */
1714 extern void recalc_sigpending_and_wake(struct task_struct *t);
1715 extern void recalc_sigpending(void);
1716
1717 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1718
1719 /*
1720 * Wrappers for p->thread_info->cpu access. No-op on UP.
1721 */
1722 #ifdef CONFIG_SMP
1723
1724 static inline unsigned int task_cpu(const struct task_struct *p)
1725 {
1726 return task_thread_info(p)->cpu;
1727 }
1728
1729 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1730
1731 #else
1732
1733 static inline unsigned int task_cpu(const struct task_struct *p)
1734 {
1735 return 0;
1736 }
1737
1738 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1739 {
1740 }
1741
1742 #endif /* CONFIG_SMP */
1743
1744 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1745 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1746 #else
1747 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1748 {
1749 mm->mmap_base = TASK_UNMAPPED_BASE;
1750 mm->get_unmapped_area = arch_get_unmapped_area;
1751 mm->unmap_area = arch_unmap_area;
1752 }
1753 #endif
1754
1755 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1756 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1757
1758 extern int sched_mc_power_savings, sched_smt_power_savings;
1759
1760 extern void normalize_rt_tasks(void);
1761
1762 #ifdef CONFIG_TASK_XACCT
1763 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1764 {
1765 tsk->rchar += amt;
1766 }
1767
1768 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1769 {
1770 tsk->wchar += amt;
1771 }
1772
1773 static inline void inc_syscr(struct task_struct *tsk)
1774 {
1775 tsk->syscr++;
1776 }
1777
1778 static inline void inc_syscw(struct task_struct *tsk)
1779 {
1780 tsk->syscw++;
1781 }
1782 #else
1783 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1784 {
1785 }
1786
1787 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1788 {
1789 }
1790
1791 static inline void inc_syscr(struct task_struct *tsk)
1792 {
1793 }
1794
1795 static inline void inc_syscw(struct task_struct *tsk)
1796 {
1797 }
1798 #endif
1799
1800 #endif /* __KERNEL__ */
1801
1802 #endif