]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 #include <linux/llist.h>
93
94 #include <asm/processor.h>
95
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
102 struct blk_plug;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(unsigned long ticks);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FROZEN) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
274 extern void select_nohz_load_balancer(int stop_tick);
275 extern void set_cpu_sd_state_idle(void);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 static inline void set_cpu_sd_state_idle(void) { }
280 #endif
281
282 /*
283 * Only dump TASK_* tasks. (0 for all tasks)
284 */
285 extern void show_state_filter(unsigned long state_filter);
286
287 static inline void show_state(void)
288 {
289 show_state_filter(0);
290 }
291
292 extern void show_regs(struct pt_regs *);
293
294 /*
295 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
296 * task), SP is the stack pointer of the first frame that should be shown in the back
297 * trace (or NULL if the entire call-chain of the task should be shown).
298 */
299 extern void show_stack(struct task_struct *task, unsigned long *sp);
300
301 void io_schedule(void);
302 long io_schedule_timeout(long timeout);
303
304 extern void cpu_init (void);
305 extern void trap_init(void);
306 extern void update_process_times(int user);
307 extern void scheduler_tick(void);
308
309 extern void sched_show_task(struct task_struct *p);
310
311 #ifdef CONFIG_LOCKUP_DETECTOR
312 extern void touch_softlockup_watchdog(void);
313 extern void touch_softlockup_watchdog_sync(void);
314 extern void touch_all_softlockup_watchdogs(void);
315 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
316 void __user *buffer,
317 size_t *lenp, loff_t *ppos);
318 extern unsigned int softlockup_panic;
319 void lockup_detector_init(void);
320 #else
321 static inline void touch_softlockup_watchdog(void)
322 {
323 }
324 static inline void touch_softlockup_watchdog_sync(void)
325 {
326 }
327 static inline void touch_all_softlockup_watchdogs(void)
328 {
329 }
330 static inline void lockup_detector_init(void)
331 {
332 }
333 #endif
334
335 #ifdef CONFIG_DETECT_HUNG_TASK
336 extern unsigned int sysctl_hung_task_panic;
337 extern unsigned long sysctl_hung_task_check_count;
338 extern unsigned long sysctl_hung_task_timeout_secs;
339 extern unsigned long sysctl_hung_task_warnings;
340 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
341 void __user *buffer,
342 size_t *lenp, loff_t *ppos);
343 #else
344 /* Avoid need for ifdefs elsewhere in the code */
345 enum { sysctl_hung_task_timeout_secs = 0 };
346 #endif
347
348 /* Attach to any functions which should be ignored in wchan output. */
349 #define __sched __attribute__((__section__(".sched.text")))
350
351 /* Linker adds these: start and end of __sched functions */
352 extern char __sched_text_start[], __sched_text_end[];
353
354 /* Is this address in the __sched functions? */
355 extern int in_sched_functions(unsigned long addr);
356
357 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
358 extern signed long schedule_timeout(signed long timeout);
359 extern signed long schedule_timeout_interruptible(signed long timeout);
360 extern signed long schedule_timeout_killable(signed long timeout);
361 extern signed long schedule_timeout_uninterruptible(signed long timeout);
362 asmlinkage void schedule(void);
363 extern void schedule_preempt_disabled(void);
364 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
365
366 struct nsproxy;
367 struct user_namespace;
368
369 /*
370 * Default maximum number of active map areas, this limits the number of vmas
371 * per mm struct. Users can overwrite this number by sysctl but there is a
372 * problem.
373 *
374 * When a program's coredump is generated as ELF format, a section is created
375 * per a vma. In ELF, the number of sections is represented in unsigned short.
376 * This means the number of sections should be smaller than 65535 at coredump.
377 * Because the kernel adds some informative sections to a image of program at
378 * generating coredump, we need some margin. The number of extra sections is
379 * 1-3 now and depends on arch. We use "5" as safe margin, here.
380 */
381 #define MAPCOUNT_ELF_CORE_MARGIN (5)
382 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
383
384 extern int sysctl_max_map_count;
385
386 #include <linux/aio.h>
387
388 #ifdef CONFIG_MMU
389 extern void arch_pick_mmap_layout(struct mm_struct *mm);
390 extern unsigned long
391 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
392 unsigned long, unsigned long);
393 extern unsigned long
394 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
395 unsigned long len, unsigned long pgoff,
396 unsigned long flags);
397 extern void arch_unmap_area(struct mm_struct *, unsigned long);
398 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
399 #else
400 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
401 #endif
402
403
404 extern void set_dumpable(struct mm_struct *mm, int value);
405 extern int get_dumpable(struct mm_struct *mm);
406
407 /* mm flags */
408 /* dumpable bits */
409 #define MMF_DUMPABLE 0 /* core dump is permitted */
410 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
411
412 #define MMF_DUMPABLE_BITS 2
413 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
414
415 /* coredump filter bits */
416 #define MMF_DUMP_ANON_PRIVATE 2
417 #define MMF_DUMP_ANON_SHARED 3
418 #define MMF_DUMP_MAPPED_PRIVATE 4
419 #define MMF_DUMP_MAPPED_SHARED 5
420 #define MMF_DUMP_ELF_HEADERS 6
421 #define MMF_DUMP_HUGETLB_PRIVATE 7
422 #define MMF_DUMP_HUGETLB_SHARED 8
423
424 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
425 #define MMF_DUMP_FILTER_BITS 7
426 #define MMF_DUMP_FILTER_MASK \
427 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
428 #define MMF_DUMP_FILTER_DEFAULT \
429 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
430 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
431
432 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
433 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
434 #else
435 # define MMF_DUMP_MASK_DEFAULT_ELF 0
436 #endif
437 /* leave room for more dump flags */
438 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
439 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
440
441 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
442
443 struct sighand_struct {
444 atomic_t count;
445 struct k_sigaction action[_NSIG];
446 spinlock_t siglock;
447 wait_queue_head_t signalfd_wqh;
448 };
449
450 struct pacct_struct {
451 int ac_flag;
452 long ac_exitcode;
453 unsigned long ac_mem;
454 cputime_t ac_utime, ac_stime;
455 unsigned long ac_minflt, ac_majflt;
456 };
457
458 struct cpu_itimer {
459 cputime_t expires;
460 cputime_t incr;
461 u32 error;
462 u32 incr_error;
463 };
464
465 /**
466 * struct task_cputime - collected CPU time counts
467 * @utime: time spent in user mode, in &cputime_t units
468 * @stime: time spent in kernel mode, in &cputime_t units
469 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
470 *
471 * This structure groups together three kinds of CPU time that are
472 * tracked for threads and thread groups. Most things considering
473 * CPU time want to group these counts together and treat all three
474 * of them in parallel.
475 */
476 struct task_cputime {
477 cputime_t utime;
478 cputime_t stime;
479 unsigned long long sum_exec_runtime;
480 };
481 /* Alternate field names when used to cache expirations. */
482 #define prof_exp stime
483 #define virt_exp utime
484 #define sched_exp sum_exec_runtime
485
486 #define INIT_CPUTIME \
487 (struct task_cputime) { \
488 .utime = 0, \
489 .stime = 0, \
490 .sum_exec_runtime = 0, \
491 }
492
493 /*
494 * Disable preemption until the scheduler is running.
495 * Reset by start_kernel()->sched_init()->init_idle().
496 *
497 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
498 * before the scheduler is active -- see should_resched().
499 */
500 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
501
502 /**
503 * struct thread_group_cputimer - thread group interval timer counts
504 * @cputime: thread group interval timers.
505 * @running: non-zero when there are timers running and
506 * @cputime receives updates.
507 * @lock: lock for fields in this struct.
508 *
509 * This structure contains the version of task_cputime, above, that is
510 * used for thread group CPU timer calculations.
511 */
512 struct thread_group_cputimer {
513 struct task_cputime cputime;
514 int running;
515 raw_spinlock_t lock;
516 };
517
518 #include <linux/rwsem.h>
519 struct autogroup;
520
521 /*
522 * NOTE! "signal_struct" does not have its own
523 * locking, because a shared signal_struct always
524 * implies a shared sighand_struct, so locking
525 * sighand_struct is always a proper superset of
526 * the locking of signal_struct.
527 */
528 struct signal_struct {
529 atomic_t sigcnt;
530 atomic_t live;
531 int nr_threads;
532
533 wait_queue_head_t wait_chldexit; /* for wait4() */
534
535 /* current thread group signal load-balancing target: */
536 struct task_struct *curr_target;
537
538 /* shared signal handling: */
539 struct sigpending shared_pending;
540
541 /* thread group exit support */
542 int group_exit_code;
543 /* overloaded:
544 * - notify group_exit_task when ->count is equal to notify_count
545 * - everyone except group_exit_task is stopped during signal delivery
546 * of fatal signals, group_exit_task processes the signal.
547 */
548 int notify_count;
549 struct task_struct *group_exit_task;
550
551 /* thread group stop support, overloads group_exit_code too */
552 int group_stop_count;
553 unsigned int flags; /* see SIGNAL_* flags below */
554
555 /*
556 * PR_SET_CHILD_SUBREAPER marks a process, like a service
557 * manager, to re-parent orphan (double-forking) child processes
558 * to this process instead of 'init'. The service manager is
559 * able to receive SIGCHLD signals and is able to investigate
560 * the process until it calls wait(). All children of this
561 * process will inherit a flag if they should look for a
562 * child_subreaper process at exit.
563 */
564 unsigned int is_child_subreaper:1;
565 unsigned int has_child_subreaper:1;
566
567 /* POSIX.1b Interval Timers */
568 struct list_head posix_timers;
569
570 /* ITIMER_REAL timer for the process */
571 struct hrtimer real_timer;
572 struct pid *leader_pid;
573 ktime_t it_real_incr;
574
575 /*
576 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
577 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
578 * values are defined to 0 and 1 respectively
579 */
580 struct cpu_itimer it[2];
581
582 /*
583 * Thread group totals for process CPU timers.
584 * See thread_group_cputimer(), et al, for details.
585 */
586 struct thread_group_cputimer cputimer;
587
588 /* Earliest-expiration cache. */
589 struct task_cputime cputime_expires;
590
591 struct list_head cpu_timers[3];
592
593 struct pid *tty_old_pgrp;
594
595 /* boolean value for session group leader */
596 int leader;
597
598 struct tty_struct *tty; /* NULL if no tty */
599
600 #ifdef CONFIG_SCHED_AUTOGROUP
601 struct autogroup *autogroup;
602 #endif
603 /*
604 * Cumulative resource counters for dead threads in the group,
605 * and for reaped dead child processes forked by this group.
606 * Live threads maintain their own counters and add to these
607 * in __exit_signal, except for the group leader.
608 */
609 cputime_t utime, stime, cutime, cstime;
610 cputime_t gtime;
611 cputime_t cgtime;
612 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
613 cputime_t prev_utime, prev_stime;
614 #endif
615 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
616 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
617 unsigned long inblock, oublock, cinblock, coublock;
618 unsigned long maxrss, cmaxrss;
619 struct task_io_accounting ioac;
620
621 /*
622 * Cumulative ns of schedule CPU time fo dead threads in the
623 * group, not including a zombie group leader, (This only differs
624 * from jiffies_to_ns(utime + stime) if sched_clock uses something
625 * other than jiffies.)
626 */
627 unsigned long long sum_sched_runtime;
628
629 /*
630 * We don't bother to synchronize most readers of this at all,
631 * because there is no reader checking a limit that actually needs
632 * to get both rlim_cur and rlim_max atomically, and either one
633 * alone is a single word that can safely be read normally.
634 * getrlimit/setrlimit use task_lock(current->group_leader) to
635 * protect this instead of the siglock, because they really
636 * have no need to disable irqs.
637 */
638 struct rlimit rlim[RLIM_NLIMITS];
639
640 #ifdef CONFIG_BSD_PROCESS_ACCT
641 struct pacct_struct pacct; /* per-process accounting information */
642 #endif
643 #ifdef CONFIG_TASKSTATS
644 struct taskstats *stats;
645 #endif
646 #ifdef CONFIG_AUDIT
647 unsigned audit_tty;
648 struct tty_audit_buf *tty_audit_buf;
649 #endif
650 #ifdef CONFIG_CGROUPS
651 /*
652 * group_rwsem prevents new tasks from entering the threadgroup and
653 * member tasks from exiting,a more specifically, setting of
654 * PF_EXITING. fork and exit paths are protected with this rwsem
655 * using threadgroup_change_begin/end(). Users which require
656 * threadgroup to remain stable should use threadgroup_[un]lock()
657 * which also takes care of exec path. Currently, cgroup is the
658 * only user.
659 */
660 struct rw_semaphore group_rwsem;
661 #endif
662
663 int oom_adj; /* OOM kill score adjustment (bit shift) */
664 int oom_score_adj; /* OOM kill score adjustment */
665 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
666 * Only settable by CAP_SYS_RESOURCE. */
667
668 struct mutex cred_guard_mutex; /* guard against foreign influences on
669 * credential calculations
670 * (notably. ptrace) */
671 };
672
673 /* Context switch must be unlocked if interrupts are to be enabled */
674 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
675 # define __ARCH_WANT_UNLOCKED_CTXSW
676 #endif
677
678 /*
679 * Bits in flags field of signal_struct.
680 */
681 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
682 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
683 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
684 /*
685 * Pending notifications to parent.
686 */
687 #define SIGNAL_CLD_STOPPED 0x00000010
688 #define SIGNAL_CLD_CONTINUED 0x00000020
689 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
690
691 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
692
693 /* If true, all threads except ->group_exit_task have pending SIGKILL */
694 static inline int signal_group_exit(const struct signal_struct *sig)
695 {
696 return (sig->flags & SIGNAL_GROUP_EXIT) ||
697 (sig->group_exit_task != NULL);
698 }
699
700 /*
701 * Some day this will be a full-fledged user tracking system..
702 */
703 struct user_struct {
704 atomic_t __count; /* reference count */
705 atomic_t processes; /* How many processes does this user have? */
706 atomic_t files; /* How many open files does this user have? */
707 atomic_t sigpending; /* How many pending signals does this user have? */
708 #ifdef CONFIG_INOTIFY_USER
709 atomic_t inotify_watches; /* How many inotify watches does this user have? */
710 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
711 #endif
712 #ifdef CONFIG_FANOTIFY
713 atomic_t fanotify_listeners;
714 #endif
715 #ifdef CONFIG_EPOLL
716 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
717 #endif
718 #ifdef CONFIG_POSIX_MQUEUE
719 /* protected by mq_lock */
720 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
721 #endif
722 unsigned long locked_shm; /* How many pages of mlocked shm ? */
723
724 #ifdef CONFIG_KEYS
725 struct key *uid_keyring; /* UID specific keyring */
726 struct key *session_keyring; /* UID's default session keyring */
727 #endif
728
729 /* Hash table maintenance information */
730 struct hlist_node uidhash_node;
731 uid_t uid;
732 struct user_namespace *user_ns;
733
734 #ifdef CONFIG_PERF_EVENTS
735 atomic_long_t locked_vm;
736 #endif
737 };
738
739 extern int uids_sysfs_init(void);
740
741 extern struct user_struct *find_user(uid_t);
742
743 extern struct user_struct root_user;
744 #define INIT_USER (&root_user)
745
746
747 struct backing_dev_info;
748 struct reclaim_state;
749
750 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
751 struct sched_info {
752 /* cumulative counters */
753 unsigned long pcount; /* # of times run on this cpu */
754 unsigned long long run_delay; /* time spent waiting on a runqueue */
755
756 /* timestamps */
757 unsigned long long last_arrival,/* when we last ran on a cpu */
758 last_queued; /* when we were last queued to run */
759 };
760 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
761
762 #ifdef CONFIG_TASK_DELAY_ACCT
763 struct task_delay_info {
764 spinlock_t lock;
765 unsigned int flags; /* Private per-task flags */
766
767 /* For each stat XXX, add following, aligned appropriately
768 *
769 * struct timespec XXX_start, XXX_end;
770 * u64 XXX_delay;
771 * u32 XXX_count;
772 *
773 * Atomicity of updates to XXX_delay, XXX_count protected by
774 * single lock above (split into XXX_lock if contention is an issue).
775 */
776
777 /*
778 * XXX_count is incremented on every XXX operation, the delay
779 * associated with the operation is added to XXX_delay.
780 * XXX_delay contains the accumulated delay time in nanoseconds.
781 */
782 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
783 u64 blkio_delay; /* wait for sync block io completion */
784 u64 swapin_delay; /* wait for swapin block io completion */
785 u32 blkio_count; /* total count of the number of sync block */
786 /* io operations performed */
787 u32 swapin_count; /* total count of the number of swapin block */
788 /* io operations performed */
789
790 struct timespec freepages_start, freepages_end;
791 u64 freepages_delay; /* wait for memory reclaim */
792 u32 freepages_count; /* total count of memory reclaim */
793 };
794 #endif /* CONFIG_TASK_DELAY_ACCT */
795
796 static inline int sched_info_on(void)
797 {
798 #ifdef CONFIG_SCHEDSTATS
799 return 1;
800 #elif defined(CONFIG_TASK_DELAY_ACCT)
801 extern int delayacct_on;
802 return delayacct_on;
803 #else
804 return 0;
805 #endif
806 }
807
808 enum cpu_idle_type {
809 CPU_IDLE,
810 CPU_NOT_IDLE,
811 CPU_NEWLY_IDLE,
812 CPU_MAX_IDLE_TYPES
813 };
814
815 /*
816 * Increase resolution of nice-level calculations for 64-bit architectures.
817 * The extra resolution improves shares distribution and load balancing of
818 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
819 * hierarchies, especially on larger systems. This is not a user-visible change
820 * and does not change the user-interface for setting shares/weights.
821 *
822 * We increase resolution only if we have enough bits to allow this increased
823 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
824 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
825 * increased costs.
826 */
827 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
828 # define SCHED_LOAD_RESOLUTION 10
829 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
830 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
831 #else
832 # define SCHED_LOAD_RESOLUTION 0
833 # define scale_load(w) (w)
834 # define scale_load_down(w) (w)
835 #endif
836
837 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
838 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
839
840 /*
841 * Increase resolution of cpu_power calculations
842 */
843 #define SCHED_POWER_SHIFT 10
844 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
845
846 /*
847 * sched-domains (multiprocessor balancing) declarations:
848 */
849 #ifdef CONFIG_SMP
850 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
851 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
852 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
853 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
854 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
855 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
856 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
857 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
858 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
859 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
860 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
861 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
862 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
863 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
864
865 enum powersavings_balance_level {
866 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
867 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
868 * first for long running threads
869 */
870 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
871 * cpu package for power savings
872 */
873 MAX_POWERSAVINGS_BALANCE_LEVELS
874 };
875
876 extern int sched_mc_power_savings, sched_smt_power_savings;
877
878 static inline int sd_balance_for_mc_power(void)
879 {
880 if (sched_smt_power_savings)
881 return SD_POWERSAVINGS_BALANCE;
882
883 if (!sched_mc_power_savings)
884 return SD_PREFER_SIBLING;
885
886 return 0;
887 }
888
889 static inline int sd_balance_for_package_power(void)
890 {
891 if (sched_mc_power_savings | sched_smt_power_savings)
892 return SD_POWERSAVINGS_BALANCE;
893
894 return SD_PREFER_SIBLING;
895 }
896
897 extern int __weak arch_sd_sibiling_asym_packing(void);
898
899 /*
900 * Optimise SD flags for power savings:
901 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
902 * Keep default SD flags if sched_{smt,mc}_power_saving=0
903 */
904
905 static inline int sd_power_saving_flags(void)
906 {
907 if (sched_mc_power_savings | sched_smt_power_savings)
908 return SD_BALANCE_NEWIDLE;
909
910 return 0;
911 }
912
913 struct sched_group_power {
914 atomic_t ref;
915 /*
916 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
917 * single CPU.
918 */
919 unsigned int power, power_orig;
920 unsigned long next_update;
921 /*
922 * Number of busy cpus in this group.
923 */
924 atomic_t nr_busy_cpus;
925 };
926
927 struct sched_group {
928 struct sched_group *next; /* Must be a circular list */
929 atomic_t ref;
930
931 unsigned int group_weight;
932 struct sched_group_power *sgp;
933
934 /*
935 * The CPUs this group covers.
936 *
937 * NOTE: this field is variable length. (Allocated dynamically
938 * by attaching extra space to the end of the structure,
939 * depending on how many CPUs the kernel has booted up with)
940 */
941 unsigned long cpumask[0];
942 };
943
944 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
945 {
946 return to_cpumask(sg->cpumask);
947 }
948
949 /**
950 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
951 * @group: The group whose first cpu is to be returned.
952 */
953 static inline unsigned int group_first_cpu(struct sched_group *group)
954 {
955 return cpumask_first(sched_group_cpus(group));
956 }
957
958 struct sched_domain_attr {
959 int relax_domain_level;
960 };
961
962 #define SD_ATTR_INIT (struct sched_domain_attr) { \
963 .relax_domain_level = -1, \
964 }
965
966 extern int sched_domain_level_max;
967
968 struct sched_domain {
969 /* These fields must be setup */
970 struct sched_domain *parent; /* top domain must be null terminated */
971 struct sched_domain *child; /* bottom domain must be null terminated */
972 struct sched_group *groups; /* the balancing groups of the domain */
973 unsigned long min_interval; /* Minimum balance interval ms */
974 unsigned long max_interval; /* Maximum balance interval ms */
975 unsigned int busy_factor; /* less balancing by factor if busy */
976 unsigned int imbalance_pct; /* No balance until over watermark */
977 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
978 unsigned int busy_idx;
979 unsigned int idle_idx;
980 unsigned int newidle_idx;
981 unsigned int wake_idx;
982 unsigned int forkexec_idx;
983 unsigned int smt_gain;
984 int flags; /* See SD_* */
985 int level;
986
987 /* Runtime fields. */
988 unsigned long last_balance; /* init to jiffies. units in jiffies */
989 unsigned int balance_interval; /* initialise to 1. units in ms. */
990 unsigned int nr_balance_failed; /* initialise to 0 */
991
992 u64 last_update;
993
994 #ifdef CONFIG_SCHEDSTATS
995 /* load_balance() stats */
996 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
997 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
998 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
999 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1000 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1001 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1002 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1003 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1004
1005 /* Active load balancing */
1006 unsigned int alb_count;
1007 unsigned int alb_failed;
1008 unsigned int alb_pushed;
1009
1010 /* SD_BALANCE_EXEC stats */
1011 unsigned int sbe_count;
1012 unsigned int sbe_balanced;
1013 unsigned int sbe_pushed;
1014
1015 /* SD_BALANCE_FORK stats */
1016 unsigned int sbf_count;
1017 unsigned int sbf_balanced;
1018 unsigned int sbf_pushed;
1019
1020 /* try_to_wake_up() stats */
1021 unsigned int ttwu_wake_remote;
1022 unsigned int ttwu_move_affine;
1023 unsigned int ttwu_move_balance;
1024 #endif
1025 #ifdef CONFIG_SCHED_DEBUG
1026 char *name;
1027 #endif
1028 union {
1029 void *private; /* used during construction */
1030 struct rcu_head rcu; /* used during destruction */
1031 };
1032
1033 unsigned int span_weight;
1034 /*
1035 * Span of all CPUs in this domain.
1036 *
1037 * NOTE: this field is variable length. (Allocated dynamically
1038 * by attaching extra space to the end of the structure,
1039 * depending on how many CPUs the kernel has booted up with)
1040 */
1041 unsigned long span[0];
1042 };
1043
1044 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1045 {
1046 return to_cpumask(sd->span);
1047 }
1048
1049 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1050 struct sched_domain_attr *dattr_new);
1051
1052 /* Allocate an array of sched domains, for partition_sched_domains(). */
1053 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1054 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1055
1056 /* Test a flag in parent sched domain */
1057 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1058 {
1059 if (sd->parent && (sd->parent->flags & flag))
1060 return 1;
1061
1062 return 0;
1063 }
1064
1065 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1066 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1067
1068 bool cpus_share_cache(int this_cpu, int that_cpu);
1069
1070 #else /* CONFIG_SMP */
1071
1072 struct sched_domain_attr;
1073
1074 static inline void
1075 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1076 struct sched_domain_attr *dattr_new)
1077 {
1078 }
1079
1080 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1081 {
1082 return true;
1083 }
1084
1085 #endif /* !CONFIG_SMP */
1086
1087
1088 struct io_context; /* See blkdev.h */
1089
1090
1091 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1092 extern void prefetch_stack(struct task_struct *t);
1093 #else
1094 static inline void prefetch_stack(struct task_struct *t) { }
1095 #endif
1096
1097 struct audit_context; /* See audit.c */
1098 struct mempolicy;
1099 struct pipe_inode_info;
1100 struct uts_namespace;
1101
1102 struct rq;
1103 struct sched_domain;
1104
1105 /*
1106 * wake flags
1107 */
1108 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1109 #define WF_FORK 0x02 /* child wakeup after fork */
1110 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1111
1112 #define ENQUEUE_WAKEUP 1
1113 #define ENQUEUE_HEAD 2
1114 #ifdef CONFIG_SMP
1115 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1116 #else
1117 #define ENQUEUE_WAKING 0
1118 #endif
1119
1120 #define DEQUEUE_SLEEP 1
1121
1122 struct sched_class {
1123 const struct sched_class *next;
1124
1125 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1126 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1127 void (*yield_task) (struct rq *rq);
1128 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1129
1130 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1131
1132 struct task_struct * (*pick_next_task) (struct rq *rq);
1133 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1134
1135 #ifdef CONFIG_SMP
1136 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1137
1138 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1139 void (*post_schedule) (struct rq *this_rq);
1140 void (*task_waking) (struct task_struct *task);
1141 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1142
1143 void (*set_cpus_allowed)(struct task_struct *p,
1144 const struct cpumask *newmask);
1145
1146 void (*rq_online)(struct rq *rq);
1147 void (*rq_offline)(struct rq *rq);
1148 #endif
1149
1150 void (*set_curr_task) (struct rq *rq);
1151 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1152 void (*task_fork) (struct task_struct *p);
1153
1154 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1155 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1156 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1157 int oldprio);
1158
1159 unsigned int (*get_rr_interval) (struct rq *rq,
1160 struct task_struct *task);
1161
1162 #ifdef CONFIG_FAIR_GROUP_SCHED
1163 void (*task_move_group) (struct task_struct *p, int on_rq);
1164 #endif
1165 };
1166
1167 struct load_weight {
1168 unsigned long weight, inv_weight;
1169 };
1170
1171 #ifdef CONFIG_SCHEDSTATS
1172 struct sched_statistics {
1173 u64 wait_start;
1174 u64 wait_max;
1175 u64 wait_count;
1176 u64 wait_sum;
1177 u64 iowait_count;
1178 u64 iowait_sum;
1179
1180 u64 sleep_start;
1181 u64 sleep_max;
1182 s64 sum_sleep_runtime;
1183
1184 u64 block_start;
1185 u64 block_max;
1186 u64 exec_max;
1187 u64 slice_max;
1188
1189 u64 nr_migrations_cold;
1190 u64 nr_failed_migrations_affine;
1191 u64 nr_failed_migrations_running;
1192 u64 nr_failed_migrations_hot;
1193 u64 nr_forced_migrations;
1194
1195 u64 nr_wakeups;
1196 u64 nr_wakeups_sync;
1197 u64 nr_wakeups_migrate;
1198 u64 nr_wakeups_local;
1199 u64 nr_wakeups_remote;
1200 u64 nr_wakeups_affine;
1201 u64 nr_wakeups_affine_attempts;
1202 u64 nr_wakeups_passive;
1203 u64 nr_wakeups_idle;
1204 };
1205 #endif
1206
1207 struct sched_entity {
1208 struct load_weight load; /* for load-balancing */
1209 struct rb_node run_node;
1210 struct list_head group_node;
1211 unsigned int on_rq;
1212
1213 u64 exec_start;
1214 u64 sum_exec_runtime;
1215 u64 vruntime;
1216 u64 prev_sum_exec_runtime;
1217
1218 u64 nr_migrations;
1219
1220 #ifdef CONFIG_SCHEDSTATS
1221 struct sched_statistics statistics;
1222 #endif
1223
1224 #ifdef CONFIG_FAIR_GROUP_SCHED
1225 struct sched_entity *parent;
1226 /* rq on which this entity is (to be) queued: */
1227 struct cfs_rq *cfs_rq;
1228 /* rq "owned" by this entity/group: */
1229 struct cfs_rq *my_q;
1230 #endif
1231 };
1232
1233 struct sched_rt_entity {
1234 struct list_head run_list;
1235 unsigned long timeout;
1236 unsigned int time_slice;
1237 int nr_cpus_allowed;
1238
1239 struct sched_rt_entity *back;
1240 #ifdef CONFIG_RT_GROUP_SCHED
1241 struct sched_rt_entity *parent;
1242 /* rq on which this entity is (to be) queued: */
1243 struct rt_rq *rt_rq;
1244 /* rq "owned" by this entity/group: */
1245 struct rt_rq *my_q;
1246 #endif
1247 };
1248
1249 /*
1250 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1251 * Timeslices get refilled after they expire.
1252 */
1253 #define RR_TIMESLICE (100 * HZ / 1000)
1254
1255 struct rcu_node;
1256
1257 enum perf_event_task_context {
1258 perf_invalid_context = -1,
1259 perf_hw_context = 0,
1260 perf_sw_context,
1261 perf_nr_task_contexts,
1262 };
1263
1264 struct task_struct {
1265 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1266 void *stack;
1267 atomic_t usage;
1268 unsigned int flags; /* per process flags, defined below */
1269 unsigned int ptrace;
1270
1271 #ifdef CONFIG_SMP
1272 struct llist_node wake_entry;
1273 int on_cpu;
1274 #endif
1275 int on_rq;
1276
1277 int prio, static_prio, normal_prio;
1278 unsigned int rt_priority;
1279 const struct sched_class *sched_class;
1280 struct sched_entity se;
1281 struct sched_rt_entity rt;
1282
1283 #ifdef CONFIG_PREEMPT_NOTIFIERS
1284 /* list of struct preempt_notifier: */
1285 struct hlist_head preempt_notifiers;
1286 #endif
1287
1288 /*
1289 * fpu_counter contains the number of consecutive context switches
1290 * that the FPU is used. If this is over a threshold, the lazy fpu
1291 * saving becomes unlazy to save the trap. This is an unsigned char
1292 * so that after 256 times the counter wraps and the behavior turns
1293 * lazy again; this to deal with bursty apps that only use FPU for
1294 * a short time
1295 */
1296 unsigned char fpu_counter;
1297 #ifdef CONFIG_BLK_DEV_IO_TRACE
1298 unsigned int btrace_seq;
1299 #endif
1300
1301 unsigned int policy;
1302 cpumask_t cpus_allowed;
1303
1304 #ifdef CONFIG_PREEMPT_RCU
1305 int rcu_read_lock_nesting;
1306 char rcu_read_unlock_special;
1307 struct list_head rcu_node_entry;
1308 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1309 #ifdef CONFIG_TREE_PREEMPT_RCU
1310 struct rcu_node *rcu_blocked_node;
1311 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1312 #ifdef CONFIG_RCU_BOOST
1313 struct rt_mutex *rcu_boost_mutex;
1314 #endif /* #ifdef CONFIG_RCU_BOOST */
1315
1316 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1317 struct sched_info sched_info;
1318 #endif
1319
1320 struct list_head tasks;
1321 #ifdef CONFIG_SMP
1322 struct plist_node pushable_tasks;
1323 #endif
1324
1325 struct mm_struct *mm, *active_mm;
1326 #ifdef CONFIG_COMPAT_BRK
1327 unsigned brk_randomized:1;
1328 #endif
1329 #if defined(SPLIT_RSS_COUNTING)
1330 struct task_rss_stat rss_stat;
1331 #endif
1332 /* task state */
1333 int exit_state;
1334 int exit_code, exit_signal;
1335 int pdeath_signal; /* The signal sent when the parent dies */
1336 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1337 /* ??? */
1338 unsigned int personality;
1339 unsigned did_exec:1;
1340 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1341 * execve */
1342 unsigned in_iowait:1;
1343
1344
1345 /* Revert to default priority/policy when forking */
1346 unsigned sched_reset_on_fork:1;
1347 unsigned sched_contributes_to_load:1;
1348
1349 #ifdef CONFIG_GENERIC_HARDIRQS
1350 /* IRQ handler threads */
1351 unsigned irq_thread:1;
1352 #endif
1353
1354 pid_t pid;
1355 pid_t tgid;
1356
1357 #ifdef CONFIG_CC_STACKPROTECTOR
1358 /* Canary value for the -fstack-protector gcc feature */
1359 unsigned long stack_canary;
1360 #endif
1361
1362 /*
1363 * pointers to (original) parent process, youngest child, younger sibling,
1364 * older sibling, respectively. (p->father can be replaced with
1365 * p->real_parent->pid)
1366 */
1367 struct task_struct __rcu *real_parent; /* real parent process */
1368 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1369 /*
1370 * children/sibling forms the list of my natural children
1371 */
1372 struct list_head children; /* list of my children */
1373 struct list_head sibling; /* linkage in my parent's children list */
1374 struct task_struct *group_leader; /* threadgroup leader */
1375
1376 /*
1377 * ptraced is the list of tasks this task is using ptrace on.
1378 * This includes both natural children and PTRACE_ATTACH targets.
1379 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1380 */
1381 struct list_head ptraced;
1382 struct list_head ptrace_entry;
1383
1384 /* PID/PID hash table linkage. */
1385 struct pid_link pids[PIDTYPE_MAX];
1386 struct list_head thread_group;
1387
1388 struct completion *vfork_done; /* for vfork() */
1389 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1390 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1391
1392 cputime_t utime, stime, utimescaled, stimescaled;
1393 cputime_t gtime;
1394 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1395 cputime_t prev_utime, prev_stime;
1396 #endif
1397 unsigned long nvcsw, nivcsw; /* context switch counts */
1398 struct timespec start_time; /* monotonic time */
1399 struct timespec real_start_time; /* boot based time */
1400 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1401 unsigned long min_flt, maj_flt;
1402
1403 struct task_cputime cputime_expires;
1404 struct list_head cpu_timers[3];
1405
1406 /* process credentials */
1407 const struct cred __rcu *real_cred; /* objective and real subjective task
1408 * credentials (COW) */
1409 const struct cred __rcu *cred; /* effective (overridable) subjective task
1410 * credentials (COW) */
1411 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1412
1413 char comm[TASK_COMM_LEN]; /* executable name excluding path
1414 - access with [gs]et_task_comm (which lock
1415 it with task_lock())
1416 - initialized normally by setup_new_exec */
1417 /* file system info */
1418 int link_count, total_link_count;
1419 #ifdef CONFIG_SYSVIPC
1420 /* ipc stuff */
1421 struct sysv_sem sysvsem;
1422 #endif
1423 #ifdef CONFIG_DETECT_HUNG_TASK
1424 /* hung task detection */
1425 unsigned long last_switch_count;
1426 #endif
1427 /* CPU-specific state of this task */
1428 struct thread_struct thread;
1429 /* filesystem information */
1430 struct fs_struct *fs;
1431 /* open file information */
1432 struct files_struct *files;
1433 /* namespaces */
1434 struct nsproxy *nsproxy;
1435 /* signal handlers */
1436 struct signal_struct *signal;
1437 struct sighand_struct *sighand;
1438
1439 sigset_t blocked, real_blocked;
1440 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1441 struct sigpending pending;
1442
1443 unsigned long sas_ss_sp;
1444 size_t sas_ss_size;
1445 int (*notifier)(void *priv);
1446 void *notifier_data;
1447 sigset_t *notifier_mask;
1448 struct audit_context *audit_context;
1449 #ifdef CONFIG_AUDITSYSCALL
1450 uid_t loginuid;
1451 unsigned int sessionid;
1452 #endif
1453 seccomp_t seccomp;
1454
1455 /* Thread group tracking */
1456 u32 parent_exec_id;
1457 u32 self_exec_id;
1458 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1459 * mempolicy */
1460 spinlock_t alloc_lock;
1461
1462 /* Protection of the PI data structures: */
1463 raw_spinlock_t pi_lock;
1464
1465 #ifdef CONFIG_RT_MUTEXES
1466 /* PI waiters blocked on a rt_mutex held by this task */
1467 struct plist_head pi_waiters;
1468 /* Deadlock detection and priority inheritance handling */
1469 struct rt_mutex_waiter *pi_blocked_on;
1470 #endif
1471
1472 #ifdef CONFIG_DEBUG_MUTEXES
1473 /* mutex deadlock detection */
1474 struct mutex_waiter *blocked_on;
1475 #endif
1476 #ifdef CONFIG_TRACE_IRQFLAGS
1477 unsigned int irq_events;
1478 unsigned long hardirq_enable_ip;
1479 unsigned long hardirq_disable_ip;
1480 unsigned int hardirq_enable_event;
1481 unsigned int hardirq_disable_event;
1482 int hardirqs_enabled;
1483 int hardirq_context;
1484 unsigned long softirq_disable_ip;
1485 unsigned long softirq_enable_ip;
1486 unsigned int softirq_disable_event;
1487 unsigned int softirq_enable_event;
1488 int softirqs_enabled;
1489 int softirq_context;
1490 #endif
1491 #ifdef CONFIG_LOCKDEP
1492 # define MAX_LOCK_DEPTH 48UL
1493 u64 curr_chain_key;
1494 int lockdep_depth;
1495 unsigned int lockdep_recursion;
1496 struct held_lock held_locks[MAX_LOCK_DEPTH];
1497 gfp_t lockdep_reclaim_gfp;
1498 #endif
1499
1500 /* journalling filesystem info */
1501 void *journal_info;
1502
1503 /* stacked block device info */
1504 struct bio_list *bio_list;
1505
1506 #ifdef CONFIG_BLOCK
1507 /* stack plugging */
1508 struct blk_plug *plug;
1509 #endif
1510
1511 /* VM state */
1512 struct reclaim_state *reclaim_state;
1513
1514 struct backing_dev_info *backing_dev_info;
1515
1516 struct io_context *io_context;
1517
1518 unsigned long ptrace_message;
1519 siginfo_t *last_siginfo; /* For ptrace use. */
1520 struct task_io_accounting ioac;
1521 #if defined(CONFIG_TASK_XACCT)
1522 u64 acct_rss_mem1; /* accumulated rss usage */
1523 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1524 cputime_t acct_timexpd; /* stime + utime since last update */
1525 #endif
1526 #ifdef CONFIG_CPUSETS
1527 nodemask_t mems_allowed; /* Protected by alloc_lock */
1528 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1529 int cpuset_mem_spread_rotor;
1530 int cpuset_slab_spread_rotor;
1531 #endif
1532 #ifdef CONFIG_CGROUPS
1533 /* Control Group info protected by css_set_lock */
1534 struct css_set __rcu *cgroups;
1535 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1536 struct list_head cg_list;
1537 #endif
1538 #ifdef CONFIG_FUTEX
1539 struct robust_list_head __user *robust_list;
1540 #ifdef CONFIG_COMPAT
1541 struct compat_robust_list_head __user *compat_robust_list;
1542 #endif
1543 struct list_head pi_state_list;
1544 struct futex_pi_state *pi_state_cache;
1545 #endif
1546 #ifdef CONFIG_PERF_EVENTS
1547 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1548 struct mutex perf_event_mutex;
1549 struct list_head perf_event_list;
1550 #endif
1551 #ifdef CONFIG_NUMA
1552 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1553 short il_next;
1554 short pref_node_fork;
1555 #endif
1556 struct rcu_head rcu;
1557
1558 /*
1559 * cache last used pipe for splice
1560 */
1561 struct pipe_inode_info *splice_pipe;
1562 #ifdef CONFIG_TASK_DELAY_ACCT
1563 struct task_delay_info *delays;
1564 #endif
1565 #ifdef CONFIG_FAULT_INJECTION
1566 int make_it_fail;
1567 #endif
1568 /*
1569 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1570 * balance_dirty_pages() for some dirty throttling pause
1571 */
1572 int nr_dirtied;
1573 int nr_dirtied_pause;
1574 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1575
1576 #ifdef CONFIG_LATENCYTOP
1577 int latency_record_count;
1578 struct latency_record latency_record[LT_SAVECOUNT];
1579 #endif
1580 /*
1581 * time slack values; these are used to round up poll() and
1582 * select() etc timeout values. These are in nanoseconds.
1583 */
1584 unsigned long timer_slack_ns;
1585 unsigned long default_timer_slack_ns;
1586
1587 struct list_head *scm_work_list;
1588 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1589 /* Index of current stored address in ret_stack */
1590 int curr_ret_stack;
1591 /* Stack of return addresses for return function tracing */
1592 struct ftrace_ret_stack *ret_stack;
1593 /* time stamp for last schedule */
1594 unsigned long long ftrace_timestamp;
1595 /*
1596 * Number of functions that haven't been traced
1597 * because of depth overrun.
1598 */
1599 atomic_t trace_overrun;
1600 /* Pause for the tracing */
1601 atomic_t tracing_graph_pause;
1602 #endif
1603 #ifdef CONFIG_TRACING
1604 /* state flags for use by tracers */
1605 unsigned long trace;
1606 /* bitmask and counter of trace recursion */
1607 unsigned long trace_recursion;
1608 #endif /* CONFIG_TRACING */
1609 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1610 struct memcg_batch_info {
1611 int do_batch; /* incremented when batch uncharge started */
1612 struct mem_cgroup *memcg; /* target memcg of uncharge */
1613 unsigned long nr_pages; /* uncharged usage */
1614 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1615 } memcg_batch;
1616 #endif
1617 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1618 atomic_t ptrace_bp_refcnt;
1619 #endif
1620 };
1621
1622 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1623 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1624
1625 /*
1626 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1627 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1628 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1629 * values are inverted: lower p->prio value means higher priority.
1630 *
1631 * The MAX_USER_RT_PRIO value allows the actual maximum
1632 * RT priority to be separate from the value exported to
1633 * user-space. This allows kernel threads to set their
1634 * priority to a value higher than any user task. Note:
1635 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1636 */
1637
1638 #define MAX_USER_RT_PRIO 100
1639 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1640
1641 #define MAX_PRIO (MAX_RT_PRIO + 40)
1642 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1643
1644 static inline int rt_prio(int prio)
1645 {
1646 if (unlikely(prio < MAX_RT_PRIO))
1647 return 1;
1648 return 0;
1649 }
1650
1651 static inline int rt_task(struct task_struct *p)
1652 {
1653 return rt_prio(p->prio);
1654 }
1655
1656 static inline struct pid *task_pid(struct task_struct *task)
1657 {
1658 return task->pids[PIDTYPE_PID].pid;
1659 }
1660
1661 static inline struct pid *task_tgid(struct task_struct *task)
1662 {
1663 return task->group_leader->pids[PIDTYPE_PID].pid;
1664 }
1665
1666 /*
1667 * Without tasklist or rcu lock it is not safe to dereference
1668 * the result of task_pgrp/task_session even if task == current,
1669 * we can race with another thread doing sys_setsid/sys_setpgid.
1670 */
1671 static inline struct pid *task_pgrp(struct task_struct *task)
1672 {
1673 return task->group_leader->pids[PIDTYPE_PGID].pid;
1674 }
1675
1676 static inline struct pid *task_session(struct task_struct *task)
1677 {
1678 return task->group_leader->pids[PIDTYPE_SID].pid;
1679 }
1680
1681 struct pid_namespace;
1682
1683 /*
1684 * the helpers to get the task's different pids as they are seen
1685 * from various namespaces
1686 *
1687 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1688 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1689 * current.
1690 * task_xid_nr_ns() : id seen from the ns specified;
1691 *
1692 * set_task_vxid() : assigns a virtual id to a task;
1693 *
1694 * see also pid_nr() etc in include/linux/pid.h
1695 */
1696 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1697 struct pid_namespace *ns);
1698
1699 static inline pid_t task_pid_nr(struct task_struct *tsk)
1700 {
1701 return tsk->pid;
1702 }
1703
1704 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1705 struct pid_namespace *ns)
1706 {
1707 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1708 }
1709
1710 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1711 {
1712 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1713 }
1714
1715
1716 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1717 {
1718 return tsk->tgid;
1719 }
1720
1721 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1722
1723 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1724 {
1725 return pid_vnr(task_tgid(tsk));
1726 }
1727
1728
1729 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1730 struct pid_namespace *ns)
1731 {
1732 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1733 }
1734
1735 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1736 {
1737 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1738 }
1739
1740
1741 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1742 struct pid_namespace *ns)
1743 {
1744 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1745 }
1746
1747 static inline pid_t task_session_vnr(struct task_struct *tsk)
1748 {
1749 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1750 }
1751
1752 /* obsolete, do not use */
1753 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1754 {
1755 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1756 }
1757
1758 /**
1759 * pid_alive - check that a task structure is not stale
1760 * @p: Task structure to be checked.
1761 *
1762 * Test if a process is not yet dead (at most zombie state)
1763 * If pid_alive fails, then pointers within the task structure
1764 * can be stale and must not be dereferenced.
1765 */
1766 static inline int pid_alive(struct task_struct *p)
1767 {
1768 return p->pids[PIDTYPE_PID].pid != NULL;
1769 }
1770
1771 /**
1772 * is_global_init - check if a task structure is init
1773 * @tsk: Task structure to be checked.
1774 *
1775 * Check if a task structure is the first user space task the kernel created.
1776 */
1777 static inline int is_global_init(struct task_struct *tsk)
1778 {
1779 return tsk->pid == 1;
1780 }
1781
1782 /*
1783 * is_container_init:
1784 * check whether in the task is init in its own pid namespace.
1785 */
1786 extern int is_container_init(struct task_struct *tsk);
1787
1788 extern struct pid *cad_pid;
1789
1790 extern void free_task(struct task_struct *tsk);
1791 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1792
1793 extern void __put_task_struct(struct task_struct *t);
1794
1795 static inline void put_task_struct(struct task_struct *t)
1796 {
1797 if (atomic_dec_and_test(&t->usage))
1798 __put_task_struct(t);
1799 }
1800
1801 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1802 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1803
1804 /*
1805 * Per process flags
1806 */
1807 #define PF_EXITING 0x00000004 /* getting shut down */
1808 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1809 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1810 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1811 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1812 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1813 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1814 #define PF_DUMPCORE 0x00000200 /* dumped core */
1815 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1816 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1817 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1818 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1819 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1820 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1821 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1822 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1823 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1824 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1825 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1826 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1827 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1828 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1829 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1830 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1831 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1832 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1833 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1834
1835 /*
1836 * Only the _current_ task can read/write to tsk->flags, but other
1837 * tasks can access tsk->flags in readonly mode for example
1838 * with tsk_used_math (like during threaded core dumping).
1839 * There is however an exception to this rule during ptrace
1840 * or during fork: the ptracer task is allowed to write to the
1841 * child->flags of its traced child (same goes for fork, the parent
1842 * can write to the child->flags), because we're guaranteed the
1843 * child is not running and in turn not changing child->flags
1844 * at the same time the parent does it.
1845 */
1846 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1847 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1848 #define clear_used_math() clear_stopped_child_used_math(current)
1849 #define set_used_math() set_stopped_child_used_math(current)
1850 #define conditional_stopped_child_used_math(condition, child) \
1851 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1852 #define conditional_used_math(condition) \
1853 conditional_stopped_child_used_math(condition, current)
1854 #define copy_to_stopped_child_used_math(child) \
1855 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1856 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1857 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1858 #define used_math() tsk_used_math(current)
1859
1860 /*
1861 * task->jobctl flags
1862 */
1863 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1864
1865 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1866 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1867 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1868 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1869 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1870 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1871 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1872
1873 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1874 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1875 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1876 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1877 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1878 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1879 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1880
1881 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1882 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1883
1884 extern bool task_set_jobctl_pending(struct task_struct *task,
1885 unsigned int mask);
1886 extern void task_clear_jobctl_trapping(struct task_struct *task);
1887 extern void task_clear_jobctl_pending(struct task_struct *task,
1888 unsigned int mask);
1889
1890 #ifdef CONFIG_PREEMPT_RCU
1891
1892 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1893 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1894
1895 static inline void rcu_copy_process(struct task_struct *p)
1896 {
1897 p->rcu_read_lock_nesting = 0;
1898 p->rcu_read_unlock_special = 0;
1899 #ifdef CONFIG_TREE_PREEMPT_RCU
1900 p->rcu_blocked_node = NULL;
1901 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1902 #ifdef CONFIG_RCU_BOOST
1903 p->rcu_boost_mutex = NULL;
1904 #endif /* #ifdef CONFIG_RCU_BOOST */
1905 INIT_LIST_HEAD(&p->rcu_node_entry);
1906 }
1907
1908 #else
1909
1910 static inline void rcu_copy_process(struct task_struct *p)
1911 {
1912 }
1913
1914 #endif
1915
1916 #ifdef CONFIG_SMP
1917 extern void do_set_cpus_allowed(struct task_struct *p,
1918 const struct cpumask *new_mask);
1919
1920 extern int set_cpus_allowed_ptr(struct task_struct *p,
1921 const struct cpumask *new_mask);
1922 #else
1923 static inline void do_set_cpus_allowed(struct task_struct *p,
1924 const struct cpumask *new_mask)
1925 {
1926 }
1927 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1928 const struct cpumask *new_mask)
1929 {
1930 if (!cpumask_test_cpu(0, new_mask))
1931 return -EINVAL;
1932 return 0;
1933 }
1934 #endif
1935
1936 #ifndef CONFIG_CPUMASK_OFFSTACK
1937 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1938 {
1939 return set_cpus_allowed_ptr(p, &new_mask);
1940 }
1941 #endif
1942
1943 /*
1944 * Do not use outside of architecture code which knows its limitations.
1945 *
1946 * sched_clock() has no promise of monotonicity or bounded drift between
1947 * CPUs, use (which you should not) requires disabling IRQs.
1948 *
1949 * Please use one of the three interfaces below.
1950 */
1951 extern unsigned long long notrace sched_clock(void);
1952 /*
1953 * See the comment in kernel/sched_clock.c
1954 */
1955 extern u64 cpu_clock(int cpu);
1956 extern u64 local_clock(void);
1957 extern u64 sched_clock_cpu(int cpu);
1958
1959
1960 extern void sched_clock_init(void);
1961
1962 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1963 static inline void sched_clock_tick(void)
1964 {
1965 }
1966
1967 static inline void sched_clock_idle_sleep_event(void)
1968 {
1969 }
1970
1971 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1972 {
1973 }
1974 #else
1975 /*
1976 * Architectures can set this to 1 if they have specified
1977 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1978 * but then during bootup it turns out that sched_clock()
1979 * is reliable after all:
1980 */
1981 extern int sched_clock_stable;
1982
1983 extern void sched_clock_tick(void);
1984 extern void sched_clock_idle_sleep_event(void);
1985 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1986 #endif
1987
1988 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1989 /*
1990 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1991 * The reason for this explicit opt-in is not to have perf penalty with
1992 * slow sched_clocks.
1993 */
1994 extern void enable_sched_clock_irqtime(void);
1995 extern void disable_sched_clock_irqtime(void);
1996 #else
1997 static inline void enable_sched_clock_irqtime(void) {}
1998 static inline void disable_sched_clock_irqtime(void) {}
1999 #endif
2000
2001 extern unsigned long long
2002 task_sched_runtime(struct task_struct *task);
2003
2004 /* sched_exec is called by processes performing an exec */
2005 #ifdef CONFIG_SMP
2006 extern void sched_exec(void);
2007 #else
2008 #define sched_exec() {}
2009 #endif
2010
2011 extern void sched_clock_idle_sleep_event(void);
2012 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2013
2014 #ifdef CONFIG_HOTPLUG_CPU
2015 extern void idle_task_exit(void);
2016 #else
2017 static inline void idle_task_exit(void) {}
2018 #endif
2019
2020 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2021 extern void wake_up_idle_cpu(int cpu);
2022 #else
2023 static inline void wake_up_idle_cpu(int cpu) { }
2024 #endif
2025
2026 extern unsigned int sysctl_sched_latency;
2027 extern unsigned int sysctl_sched_min_granularity;
2028 extern unsigned int sysctl_sched_wakeup_granularity;
2029 extern unsigned int sysctl_sched_child_runs_first;
2030
2031 enum sched_tunable_scaling {
2032 SCHED_TUNABLESCALING_NONE,
2033 SCHED_TUNABLESCALING_LOG,
2034 SCHED_TUNABLESCALING_LINEAR,
2035 SCHED_TUNABLESCALING_END,
2036 };
2037 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2038
2039 #ifdef CONFIG_SCHED_DEBUG
2040 extern unsigned int sysctl_sched_migration_cost;
2041 extern unsigned int sysctl_sched_nr_migrate;
2042 extern unsigned int sysctl_sched_time_avg;
2043 extern unsigned int sysctl_timer_migration;
2044 extern unsigned int sysctl_sched_shares_window;
2045
2046 int sched_proc_update_handler(struct ctl_table *table, int write,
2047 void __user *buffer, size_t *length,
2048 loff_t *ppos);
2049 #endif
2050 #ifdef CONFIG_SCHED_DEBUG
2051 static inline unsigned int get_sysctl_timer_migration(void)
2052 {
2053 return sysctl_timer_migration;
2054 }
2055 #else
2056 static inline unsigned int get_sysctl_timer_migration(void)
2057 {
2058 return 1;
2059 }
2060 #endif
2061 extern unsigned int sysctl_sched_rt_period;
2062 extern int sysctl_sched_rt_runtime;
2063
2064 int sched_rt_handler(struct ctl_table *table, int write,
2065 void __user *buffer, size_t *lenp,
2066 loff_t *ppos);
2067
2068 #ifdef CONFIG_SCHED_AUTOGROUP
2069 extern unsigned int sysctl_sched_autogroup_enabled;
2070
2071 extern void sched_autogroup_create_attach(struct task_struct *p);
2072 extern void sched_autogroup_detach(struct task_struct *p);
2073 extern void sched_autogroup_fork(struct signal_struct *sig);
2074 extern void sched_autogroup_exit(struct signal_struct *sig);
2075 #ifdef CONFIG_PROC_FS
2076 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2077 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2078 #endif
2079 #else
2080 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2081 static inline void sched_autogroup_detach(struct task_struct *p) { }
2082 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2083 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2084 #endif
2085
2086 #ifdef CONFIG_CFS_BANDWIDTH
2087 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2088 #endif
2089
2090 #ifdef CONFIG_RT_MUTEXES
2091 extern int rt_mutex_getprio(struct task_struct *p);
2092 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2093 extern void rt_mutex_adjust_pi(struct task_struct *p);
2094 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2095 {
2096 return tsk->pi_blocked_on != NULL;
2097 }
2098 #else
2099 static inline int rt_mutex_getprio(struct task_struct *p)
2100 {
2101 return p->normal_prio;
2102 }
2103 # define rt_mutex_adjust_pi(p) do { } while (0)
2104 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2105 {
2106 return false;
2107 }
2108 #endif
2109
2110 extern bool yield_to(struct task_struct *p, bool preempt);
2111 extern void set_user_nice(struct task_struct *p, long nice);
2112 extern int task_prio(const struct task_struct *p);
2113 extern int task_nice(const struct task_struct *p);
2114 extern int can_nice(const struct task_struct *p, const int nice);
2115 extern int task_curr(const struct task_struct *p);
2116 extern int idle_cpu(int cpu);
2117 extern int sched_setscheduler(struct task_struct *, int,
2118 const struct sched_param *);
2119 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2120 const struct sched_param *);
2121 extern struct task_struct *idle_task(int cpu);
2122 /**
2123 * is_idle_task - is the specified task an idle task?
2124 * @p: the task in question.
2125 */
2126 static inline bool is_idle_task(const struct task_struct *p)
2127 {
2128 return p->pid == 0;
2129 }
2130 extern struct task_struct *curr_task(int cpu);
2131 extern void set_curr_task(int cpu, struct task_struct *p);
2132
2133 void yield(void);
2134
2135 /*
2136 * The default (Linux) execution domain.
2137 */
2138 extern struct exec_domain default_exec_domain;
2139
2140 union thread_union {
2141 struct thread_info thread_info;
2142 unsigned long stack[THREAD_SIZE/sizeof(long)];
2143 };
2144
2145 #ifndef __HAVE_ARCH_KSTACK_END
2146 static inline int kstack_end(void *addr)
2147 {
2148 /* Reliable end of stack detection:
2149 * Some APM bios versions misalign the stack
2150 */
2151 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2152 }
2153 #endif
2154
2155 extern union thread_union init_thread_union;
2156 extern struct task_struct init_task;
2157
2158 extern struct mm_struct init_mm;
2159
2160 extern struct pid_namespace init_pid_ns;
2161
2162 /*
2163 * find a task by one of its numerical ids
2164 *
2165 * find_task_by_pid_ns():
2166 * finds a task by its pid in the specified namespace
2167 * find_task_by_vpid():
2168 * finds a task by its virtual pid
2169 *
2170 * see also find_vpid() etc in include/linux/pid.h
2171 */
2172
2173 extern struct task_struct *find_task_by_vpid(pid_t nr);
2174 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2175 struct pid_namespace *ns);
2176
2177 extern void __set_special_pids(struct pid *pid);
2178
2179 /* per-UID process charging. */
2180 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2181 static inline struct user_struct *get_uid(struct user_struct *u)
2182 {
2183 atomic_inc(&u->__count);
2184 return u;
2185 }
2186 extern void free_uid(struct user_struct *);
2187 extern void release_uids(struct user_namespace *ns);
2188
2189 #include <asm/current.h>
2190
2191 extern void xtime_update(unsigned long ticks);
2192
2193 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2194 extern int wake_up_process(struct task_struct *tsk);
2195 extern void wake_up_new_task(struct task_struct *tsk);
2196 #ifdef CONFIG_SMP
2197 extern void kick_process(struct task_struct *tsk);
2198 #else
2199 static inline void kick_process(struct task_struct *tsk) { }
2200 #endif
2201 extern void sched_fork(struct task_struct *p);
2202 extern void sched_dead(struct task_struct *p);
2203
2204 extern void proc_caches_init(void);
2205 extern void flush_signals(struct task_struct *);
2206 extern void __flush_signals(struct task_struct *);
2207 extern void ignore_signals(struct task_struct *);
2208 extern void flush_signal_handlers(struct task_struct *, int force_default);
2209 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2210
2211 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2212 {
2213 unsigned long flags;
2214 int ret;
2215
2216 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2217 ret = dequeue_signal(tsk, mask, info);
2218 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2219
2220 return ret;
2221 }
2222
2223 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2224 sigset_t *mask);
2225 extern void unblock_all_signals(void);
2226 extern void release_task(struct task_struct * p);
2227 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2228 extern int force_sigsegv(int, struct task_struct *);
2229 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2230 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2231 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2232 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2233 const struct cred *, u32);
2234 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2235 extern int kill_pid(struct pid *pid, int sig, int priv);
2236 extern int kill_proc_info(int, struct siginfo *, pid_t);
2237 extern __must_check bool do_notify_parent(struct task_struct *, int);
2238 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2239 extern void force_sig(int, struct task_struct *);
2240 extern int send_sig(int, struct task_struct *, int);
2241 extern int zap_other_threads(struct task_struct *p);
2242 extern struct sigqueue *sigqueue_alloc(void);
2243 extern void sigqueue_free(struct sigqueue *);
2244 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2245 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2246 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2247
2248 static inline int kill_cad_pid(int sig, int priv)
2249 {
2250 return kill_pid(cad_pid, sig, priv);
2251 }
2252
2253 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2254 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2255 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2256 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2257
2258 /*
2259 * True if we are on the alternate signal stack.
2260 */
2261 static inline int on_sig_stack(unsigned long sp)
2262 {
2263 #ifdef CONFIG_STACK_GROWSUP
2264 return sp >= current->sas_ss_sp &&
2265 sp - current->sas_ss_sp < current->sas_ss_size;
2266 #else
2267 return sp > current->sas_ss_sp &&
2268 sp - current->sas_ss_sp <= current->sas_ss_size;
2269 #endif
2270 }
2271
2272 static inline int sas_ss_flags(unsigned long sp)
2273 {
2274 return (current->sas_ss_size == 0 ? SS_DISABLE
2275 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2276 }
2277
2278 /*
2279 * Routines for handling mm_structs
2280 */
2281 extern struct mm_struct * mm_alloc(void);
2282
2283 /* mmdrop drops the mm and the page tables */
2284 extern void __mmdrop(struct mm_struct *);
2285 static inline void mmdrop(struct mm_struct * mm)
2286 {
2287 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2288 __mmdrop(mm);
2289 }
2290
2291 /* mmput gets rid of the mappings and all user-space */
2292 extern void mmput(struct mm_struct *);
2293 /* Grab a reference to a task's mm, if it is not already going away */
2294 extern struct mm_struct *get_task_mm(struct task_struct *task);
2295 /*
2296 * Grab a reference to a task's mm, if it is not already going away
2297 * and ptrace_may_access with the mode parameter passed to it
2298 * succeeds.
2299 */
2300 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2301 /* Remove the current tasks stale references to the old mm_struct */
2302 extern void mm_release(struct task_struct *, struct mm_struct *);
2303 /* Allocate a new mm structure and copy contents from tsk->mm */
2304 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2305
2306 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2307 struct task_struct *, struct pt_regs *);
2308 extern void flush_thread(void);
2309 extern void exit_thread(void);
2310
2311 extern void exit_files(struct task_struct *);
2312 extern void __cleanup_sighand(struct sighand_struct *);
2313
2314 extern void exit_itimers(struct signal_struct *);
2315 extern void flush_itimer_signals(void);
2316
2317 extern void do_group_exit(int);
2318
2319 extern void daemonize(const char *, ...);
2320 extern int allow_signal(int);
2321 extern int disallow_signal(int);
2322
2323 extern int do_execve(const char *,
2324 const char __user * const __user *,
2325 const char __user * const __user *, struct pt_regs *);
2326 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2327 struct task_struct *fork_idle(int);
2328
2329 extern void set_task_comm(struct task_struct *tsk, char *from);
2330 extern char *get_task_comm(char *to, struct task_struct *tsk);
2331
2332 #ifdef CONFIG_SMP
2333 void scheduler_ipi(void);
2334 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2335 #else
2336 static inline void scheduler_ipi(void) { }
2337 static inline unsigned long wait_task_inactive(struct task_struct *p,
2338 long match_state)
2339 {
2340 return 1;
2341 }
2342 #endif
2343
2344 #define next_task(p) \
2345 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2346
2347 #define for_each_process(p) \
2348 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2349
2350 extern bool current_is_single_threaded(void);
2351
2352 /*
2353 * Careful: do_each_thread/while_each_thread is a double loop so
2354 * 'break' will not work as expected - use goto instead.
2355 */
2356 #define do_each_thread(g, t) \
2357 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2358
2359 #define while_each_thread(g, t) \
2360 while ((t = next_thread(t)) != g)
2361
2362 static inline int get_nr_threads(struct task_struct *tsk)
2363 {
2364 return tsk->signal->nr_threads;
2365 }
2366
2367 static inline bool thread_group_leader(struct task_struct *p)
2368 {
2369 return p->exit_signal >= 0;
2370 }
2371
2372 /* Do to the insanities of de_thread it is possible for a process
2373 * to have the pid of the thread group leader without actually being
2374 * the thread group leader. For iteration through the pids in proc
2375 * all we care about is that we have a task with the appropriate
2376 * pid, we don't actually care if we have the right task.
2377 */
2378 static inline int has_group_leader_pid(struct task_struct *p)
2379 {
2380 return p->pid == p->tgid;
2381 }
2382
2383 static inline
2384 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2385 {
2386 return p1->tgid == p2->tgid;
2387 }
2388
2389 static inline struct task_struct *next_thread(const struct task_struct *p)
2390 {
2391 return list_entry_rcu(p->thread_group.next,
2392 struct task_struct, thread_group);
2393 }
2394
2395 static inline int thread_group_empty(struct task_struct *p)
2396 {
2397 return list_empty(&p->thread_group);
2398 }
2399
2400 #define delay_group_leader(p) \
2401 (thread_group_leader(p) && !thread_group_empty(p))
2402
2403 /*
2404 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2405 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2406 * pins the final release of task.io_context. Also protects ->cpuset and
2407 * ->cgroup.subsys[]. And ->vfork_done.
2408 *
2409 * Nests both inside and outside of read_lock(&tasklist_lock).
2410 * It must not be nested with write_lock_irq(&tasklist_lock),
2411 * neither inside nor outside.
2412 */
2413 static inline void task_lock(struct task_struct *p)
2414 {
2415 spin_lock(&p->alloc_lock);
2416 }
2417
2418 static inline void task_unlock(struct task_struct *p)
2419 {
2420 spin_unlock(&p->alloc_lock);
2421 }
2422
2423 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2424 unsigned long *flags);
2425
2426 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2427 unsigned long *flags)
2428 {
2429 struct sighand_struct *ret;
2430
2431 ret = __lock_task_sighand(tsk, flags);
2432 (void)__cond_lock(&tsk->sighand->siglock, ret);
2433 return ret;
2434 }
2435
2436 static inline void unlock_task_sighand(struct task_struct *tsk,
2437 unsigned long *flags)
2438 {
2439 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2440 }
2441
2442 #ifdef CONFIG_CGROUPS
2443 static inline void threadgroup_change_begin(struct task_struct *tsk)
2444 {
2445 down_read(&tsk->signal->group_rwsem);
2446 }
2447 static inline void threadgroup_change_end(struct task_struct *tsk)
2448 {
2449 up_read(&tsk->signal->group_rwsem);
2450 }
2451
2452 /**
2453 * threadgroup_lock - lock threadgroup
2454 * @tsk: member task of the threadgroup to lock
2455 *
2456 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2457 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2458 * perform exec. This is useful for cases where the threadgroup needs to
2459 * stay stable across blockable operations.
2460 *
2461 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2462 * synchronization. While held, no new task will be added to threadgroup
2463 * and no existing live task will have its PF_EXITING set.
2464 *
2465 * During exec, a task goes and puts its thread group through unusual
2466 * changes. After de-threading, exclusive access is assumed to resources
2467 * which are usually shared by tasks in the same group - e.g. sighand may
2468 * be replaced with a new one. Also, the exec'ing task takes over group
2469 * leader role including its pid. Exclude these changes while locked by
2470 * grabbing cred_guard_mutex which is used to synchronize exec path.
2471 */
2472 static inline void threadgroup_lock(struct task_struct *tsk)
2473 {
2474 /*
2475 * exec uses exit for de-threading nesting group_rwsem inside
2476 * cred_guard_mutex. Grab cred_guard_mutex first.
2477 */
2478 mutex_lock(&tsk->signal->cred_guard_mutex);
2479 down_write(&tsk->signal->group_rwsem);
2480 }
2481
2482 /**
2483 * threadgroup_unlock - unlock threadgroup
2484 * @tsk: member task of the threadgroup to unlock
2485 *
2486 * Reverse threadgroup_lock().
2487 */
2488 static inline void threadgroup_unlock(struct task_struct *tsk)
2489 {
2490 up_write(&tsk->signal->group_rwsem);
2491 mutex_unlock(&tsk->signal->cred_guard_mutex);
2492 }
2493 #else
2494 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2495 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2496 static inline void threadgroup_lock(struct task_struct *tsk) {}
2497 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2498 #endif
2499
2500 #ifndef __HAVE_THREAD_FUNCTIONS
2501
2502 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2503 #define task_stack_page(task) ((task)->stack)
2504
2505 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2506 {
2507 *task_thread_info(p) = *task_thread_info(org);
2508 task_thread_info(p)->task = p;
2509 }
2510
2511 static inline unsigned long *end_of_stack(struct task_struct *p)
2512 {
2513 return (unsigned long *)(task_thread_info(p) + 1);
2514 }
2515
2516 #endif
2517
2518 static inline int object_is_on_stack(void *obj)
2519 {
2520 void *stack = task_stack_page(current);
2521
2522 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2523 }
2524
2525 extern void thread_info_cache_init(void);
2526
2527 #ifdef CONFIG_DEBUG_STACK_USAGE
2528 static inline unsigned long stack_not_used(struct task_struct *p)
2529 {
2530 unsigned long *n = end_of_stack(p);
2531
2532 do { /* Skip over canary */
2533 n++;
2534 } while (!*n);
2535
2536 return (unsigned long)n - (unsigned long)end_of_stack(p);
2537 }
2538 #endif
2539
2540 /* set thread flags in other task's structures
2541 * - see asm/thread_info.h for TIF_xxxx flags available
2542 */
2543 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2544 {
2545 set_ti_thread_flag(task_thread_info(tsk), flag);
2546 }
2547
2548 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2549 {
2550 clear_ti_thread_flag(task_thread_info(tsk), flag);
2551 }
2552
2553 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2554 {
2555 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2556 }
2557
2558 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2559 {
2560 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2561 }
2562
2563 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2564 {
2565 return test_ti_thread_flag(task_thread_info(tsk), flag);
2566 }
2567
2568 static inline void set_tsk_need_resched(struct task_struct *tsk)
2569 {
2570 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2571 }
2572
2573 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2574 {
2575 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2576 }
2577
2578 static inline int test_tsk_need_resched(struct task_struct *tsk)
2579 {
2580 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2581 }
2582
2583 static inline int restart_syscall(void)
2584 {
2585 set_tsk_thread_flag(current, TIF_SIGPENDING);
2586 return -ERESTARTNOINTR;
2587 }
2588
2589 static inline int signal_pending(struct task_struct *p)
2590 {
2591 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2592 }
2593
2594 static inline int __fatal_signal_pending(struct task_struct *p)
2595 {
2596 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2597 }
2598
2599 static inline int fatal_signal_pending(struct task_struct *p)
2600 {
2601 return signal_pending(p) && __fatal_signal_pending(p);
2602 }
2603
2604 static inline int signal_pending_state(long state, struct task_struct *p)
2605 {
2606 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2607 return 0;
2608 if (!signal_pending(p))
2609 return 0;
2610
2611 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2612 }
2613
2614 static inline int need_resched(void)
2615 {
2616 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2617 }
2618
2619 /*
2620 * cond_resched() and cond_resched_lock(): latency reduction via
2621 * explicit rescheduling in places that are safe. The return
2622 * value indicates whether a reschedule was done in fact.
2623 * cond_resched_lock() will drop the spinlock before scheduling,
2624 * cond_resched_softirq() will enable bhs before scheduling.
2625 */
2626 extern int _cond_resched(void);
2627
2628 #define cond_resched() ({ \
2629 __might_sleep(__FILE__, __LINE__, 0); \
2630 _cond_resched(); \
2631 })
2632
2633 extern int __cond_resched_lock(spinlock_t *lock);
2634
2635 #ifdef CONFIG_PREEMPT_COUNT
2636 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2637 #else
2638 #define PREEMPT_LOCK_OFFSET 0
2639 #endif
2640
2641 #define cond_resched_lock(lock) ({ \
2642 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2643 __cond_resched_lock(lock); \
2644 })
2645
2646 extern int __cond_resched_softirq(void);
2647
2648 #define cond_resched_softirq() ({ \
2649 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2650 __cond_resched_softirq(); \
2651 })
2652
2653 /*
2654 * Does a critical section need to be broken due to another
2655 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2656 * but a general need for low latency)
2657 */
2658 static inline int spin_needbreak(spinlock_t *lock)
2659 {
2660 #ifdef CONFIG_PREEMPT
2661 return spin_is_contended(lock);
2662 #else
2663 return 0;
2664 #endif
2665 }
2666
2667 /*
2668 * Thread group CPU time accounting.
2669 */
2670 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2671 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2672
2673 static inline void thread_group_cputime_init(struct signal_struct *sig)
2674 {
2675 raw_spin_lock_init(&sig->cputimer.lock);
2676 }
2677
2678 /*
2679 * Reevaluate whether the task has signals pending delivery.
2680 * Wake the task if so.
2681 * This is required every time the blocked sigset_t changes.
2682 * callers must hold sighand->siglock.
2683 */
2684 extern void recalc_sigpending_and_wake(struct task_struct *t);
2685 extern void recalc_sigpending(void);
2686
2687 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2688
2689 /*
2690 * Wrappers for p->thread_info->cpu access. No-op on UP.
2691 */
2692 #ifdef CONFIG_SMP
2693
2694 static inline unsigned int task_cpu(const struct task_struct *p)
2695 {
2696 return task_thread_info(p)->cpu;
2697 }
2698
2699 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2700
2701 #else
2702
2703 static inline unsigned int task_cpu(const struct task_struct *p)
2704 {
2705 return 0;
2706 }
2707
2708 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2709 {
2710 }
2711
2712 #endif /* CONFIG_SMP */
2713
2714 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2715 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2716
2717 extern void normalize_rt_tasks(void);
2718
2719 #ifdef CONFIG_CGROUP_SCHED
2720
2721 extern struct task_group root_task_group;
2722
2723 extern struct task_group *sched_create_group(struct task_group *parent);
2724 extern void sched_destroy_group(struct task_group *tg);
2725 extern void sched_move_task(struct task_struct *tsk);
2726 #ifdef CONFIG_FAIR_GROUP_SCHED
2727 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2728 extern unsigned long sched_group_shares(struct task_group *tg);
2729 #endif
2730 #ifdef CONFIG_RT_GROUP_SCHED
2731 extern int sched_group_set_rt_runtime(struct task_group *tg,
2732 long rt_runtime_us);
2733 extern long sched_group_rt_runtime(struct task_group *tg);
2734 extern int sched_group_set_rt_period(struct task_group *tg,
2735 long rt_period_us);
2736 extern long sched_group_rt_period(struct task_group *tg);
2737 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2738 #endif
2739 #endif
2740
2741 extern int task_can_switch_user(struct user_struct *up,
2742 struct task_struct *tsk);
2743
2744 #ifdef CONFIG_TASK_XACCT
2745 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2746 {
2747 tsk->ioac.rchar += amt;
2748 }
2749
2750 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2751 {
2752 tsk->ioac.wchar += amt;
2753 }
2754
2755 static inline void inc_syscr(struct task_struct *tsk)
2756 {
2757 tsk->ioac.syscr++;
2758 }
2759
2760 static inline void inc_syscw(struct task_struct *tsk)
2761 {
2762 tsk->ioac.syscw++;
2763 }
2764 #else
2765 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2766 {
2767 }
2768
2769 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2770 {
2771 }
2772
2773 static inline void inc_syscr(struct task_struct *tsk)
2774 {
2775 }
2776
2777 static inline void inc_syscw(struct task_struct *tsk)
2778 {
2779 }
2780 #endif
2781
2782 #ifndef TASK_SIZE_OF
2783 #define TASK_SIZE_OF(tsk) TASK_SIZE
2784 #endif
2785
2786 #ifdef CONFIG_MM_OWNER
2787 extern void mm_update_next_owner(struct mm_struct *mm);
2788 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2789 #else
2790 static inline void mm_update_next_owner(struct mm_struct *mm)
2791 {
2792 }
2793
2794 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2795 {
2796 }
2797 #endif /* CONFIG_MM_OWNER */
2798
2799 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2800 unsigned int limit)
2801 {
2802 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2803 }
2804
2805 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2806 unsigned int limit)
2807 {
2808 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2809 }
2810
2811 static inline unsigned long rlimit(unsigned int limit)
2812 {
2813 return task_rlimit(current, limit);
2814 }
2815
2816 static inline unsigned long rlimit_max(unsigned int limit)
2817 {
2818 return task_rlimit_max(current, limit);
2819 }
2820
2821 #endif /* __KERNEL__ */
2822
2823 #endif