]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge tag 'samsung-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61
62 #include <asm/processor.h>
63
64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66 /*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
109 */
110 struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126 };
127
128 struct futex_pi_state;
129 struct robust_list_head;
130 struct bio_list;
131 struct fs_struct;
132 struct perf_event_context;
133 struct blk_plug;
134 struct filename;
135
136 #define VMACACHE_BITS 2
137 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
138 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
139
140 /*
141 * These are the constant used to fake the fixed-point load-average
142 * counting. Some notes:
143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
144 * a load-average precision of 10 bits integer + 11 bits fractional
145 * - if you want to count load-averages more often, you need more
146 * precision, or rounding will get you. With 2-second counting freq,
147 * the EXP_n values would be 1981, 2034 and 2043 if still using only
148 * 11 bit fractions.
149 */
150 extern unsigned long avenrun[]; /* Load averages */
151 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
152
153 #define FSHIFT 11 /* nr of bits of precision */
154 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
155 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
156 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
157 #define EXP_5 2014 /* 1/exp(5sec/5min) */
158 #define EXP_15 2037 /* 1/exp(5sec/15min) */
159
160 #define CALC_LOAD(load,exp,n) \
161 load *= exp; \
162 load += n*(FIXED_1-exp); \
163 load >>= FSHIFT;
164
165 extern unsigned long total_forks;
166 extern int nr_threads;
167 DECLARE_PER_CPU(unsigned long, process_counts);
168 extern int nr_processes(void);
169 extern unsigned long nr_running(void);
170 extern bool single_task_running(void);
171 extern unsigned long nr_iowait(void);
172 extern unsigned long nr_iowait_cpu(int cpu);
173 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
174
175 extern void calc_global_load(unsigned long ticks);
176 extern void update_cpu_load_nohz(void);
177
178 extern unsigned long get_parent_ip(unsigned long addr);
179
180 extern void dump_cpu_task(int cpu);
181
182 struct seq_file;
183 struct cfs_rq;
184 struct task_group;
185 #ifdef CONFIG_SCHED_DEBUG
186 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
187 extern void proc_sched_set_task(struct task_struct *p);
188 extern void
189 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
190 #endif
191
192 /*
193 * Task state bitmask. NOTE! These bits are also
194 * encoded in fs/proc/array.c: get_task_state().
195 *
196 * We have two separate sets of flags: task->state
197 * is about runnability, while task->exit_state are
198 * about the task exiting. Confusing, but this way
199 * modifying one set can't modify the other one by
200 * mistake.
201 */
202 #define TASK_RUNNING 0
203 #define TASK_INTERRUPTIBLE 1
204 #define TASK_UNINTERRUPTIBLE 2
205 #define __TASK_STOPPED 4
206 #define __TASK_TRACED 8
207 /* in tsk->exit_state */
208 #define EXIT_DEAD 16
209 #define EXIT_ZOMBIE 32
210 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
211 /* in tsk->state again */
212 #define TASK_DEAD 64
213 #define TASK_WAKEKILL 128
214 #define TASK_WAKING 256
215 #define TASK_PARKED 512
216 #define TASK_STATE_MAX 1024
217
218 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
219
220 extern char ___assert_task_state[1 - 2*!!(
221 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
222
223 /* Convenience macros for the sake of set_task_state */
224 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
225 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
226 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
227
228 /* Convenience macros for the sake of wake_up */
229 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
230 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
231
232 /* get_task_state() */
233 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
234 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
235 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
236
237 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
238 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
239 #define task_is_stopped_or_traced(task) \
240 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
241 #define task_contributes_to_load(task) \
242 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
243 (task->flags & PF_FROZEN) == 0)
244
245 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
246
247 #define __set_task_state(tsk, state_value) \
248 do { \
249 (tsk)->task_state_change = _THIS_IP_; \
250 (tsk)->state = (state_value); \
251 } while (0)
252 #define set_task_state(tsk, state_value) \
253 do { \
254 (tsk)->task_state_change = _THIS_IP_; \
255 set_mb((tsk)->state, (state_value)); \
256 } while (0)
257
258 /*
259 * set_current_state() includes a barrier so that the write of current->state
260 * is correctly serialised wrt the caller's subsequent test of whether to
261 * actually sleep:
262 *
263 * set_current_state(TASK_UNINTERRUPTIBLE);
264 * if (do_i_need_to_sleep())
265 * schedule();
266 *
267 * If the caller does not need such serialisation then use __set_current_state()
268 */
269 #define __set_current_state(state_value) \
270 do { \
271 current->task_state_change = _THIS_IP_; \
272 current->state = (state_value); \
273 } while (0)
274 #define set_current_state(state_value) \
275 do { \
276 current->task_state_change = _THIS_IP_; \
277 set_mb(current->state, (state_value)); \
278 } while (0)
279
280 #else
281
282 #define __set_task_state(tsk, state_value) \
283 do { (tsk)->state = (state_value); } while (0)
284 #define set_task_state(tsk, state_value) \
285 set_mb((tsk)->state, (state_value))
286
287 /*
288 * set_current_state() includes a barrier so that the write of current->state
289 * is correctly serialised wrt the caller's subsequent test of whether to
290 * actually sleep:
291 *
292 * set_current_state(TASK_UNINTERRUPTIBLE);
293 * if (do_i_need_to_sleep())
294 * schedule();
295 *
296 * If the caller does not need such serialisation then use __set_current_state()
297 */
298 #define __set_current_state(state_value) \
299 do { current->state = (state_value); } while (0)
300 #define set_current_state(state_value) \
301 set_mb(current->state, (state_value))
302
303 #endif
304
305 /* Task command name length */
306 #define TASK_COMM_LEN 16
307
308 #include <linux/spinlock.h>
309
310 /*
311 * This serializes "schedule()" and also protects
312 * the run-queue from deletions/modifications (but
313 * _adding_ to the beginning of the run-queue has
314 * a separate lock).
315 */
316 extern rwlock_t tasklist_lock;
317 extern spinlock_t mmlist_lock;
318
319 struct task_struct;
320
321 #ifdef CONFIG_PROVE_RCU
322 extern int lockdep_tasklist_lock_is_held(void);
323 #endif /* #ifdef CONFIG_PROVE_RCU */
324
325 extern void sched_init(void);
326 extern void sched_init_smp(void);
327 extern asmlinkage void schedule_tail(struct task_struct *prev);
328 extern void init_idle(struct task_struct *idle, int cpu);
329 extern void init_idle_bootup_task(struct task_struct *idle);
330
331 extern cpumask_var_t cpu_isolated_map;
332
333 extern int runqueue_is_locked(int cpu);
334
335 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
336 extern void nohz_balance_enter_idle(int cpu);
337 extern void set_cpu_sd_state_idle(void);
338 extern int get_nohz_timer_target(int pinned);
339 #else
340 static inline void nohz_balance_enter_idle(int cpu) { }
341 static inline void set_cpu_sd_state_idle(void) { }
342 static inline int get_nohz_timer_target(int pinned)
343 {
344 return smp_processor_id();
345 }
346 #endif
347
348 /*
349 * Only dump TASK_* tasks. (0 for all tasks)
350 */
351 extern void show_state_filter(unsigned long state_filter);
352
353 static inline void show_state(void)
354 {
355 show_state_filter(0);
356 }
357
358 extern void show_regs(struct pt_regs *);
359
360 /*
361 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
362 * task), SP is the stack pointer of the first frame that should be shown in the back
363 * trace (or NULL if the entire call-chain of the task should be shown).
364 */
365 extern void show_stack(struct task_struct *task, unsigned long *sp);
366
367 extern void cpu_init (void);
368 extern void trap_init(void);
369 extern void update_process_times(int user);
370 extern void scheduler_tick(void);
371
372 extern void sched_show_task(struct task_struct *p);
373
374 #ifdef CONFIG_LOCKUP_DETECTOR
375 extern void touch_softlockup_watchdog(void);
376 extern void touch_softlockup_watchdog_sync(void);
377 extern void touch_all_softlockup_watchdogs(void);
378 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
379 void __user *buffer,
380 size_t *lenp, loff_t *ppos);
381 extern unsigned int softlockup_panic;
382 void lockup_detector_init(void);
383 #else
384 static inline void touch_softlockup_watchdog(void)
385 {
386 }
387 static inline void touch_softlockup_watchdog_sync(void)
388 {
389 }
390 static inline void touch_all_softlockup_watchdogs(void)
391 {
392 }
393 static inline void lockup_detector_init(void)
394 {
395 }
396 #endif
397
398 #ifdef CONFIG_DETECT_HUNG_TASK
399 void reset_hung_task_detector(void);
400 #else
401 static inline void reset_hung_task_detector(void)
402 {
403 }
404 #endif
405
406 /* Attach to any functions which should be ignored in wchan output. */
407 #define __sched __attribute__((__section__(".sched.text")))
408
409 /* Linker adds these: start and end of __sched functions */
410 extern char __sched_text_start[], __sched_text_end[];
411
412 /* Is this address in the __sched functions? */
413 extern int in_sched_functions(unsigned long addr);
414
415 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
416 extern signed long schedule_timeout(signed long timeout);
417 extern signed long schedule_timeout_interruptible(signed long timeout);
418 extern signed long schedule_timeout_killable(signed long timeout);
419 extern signed long schedule_timeout_uninterruptible(signed long timeout);
420 asmlinkage void schedule(void);
421 extern void schedule_preempt_disabled(void);
422
423 extern long io_schedule_timeout(long timeout);
424
425 static inline void io_schedule(void)
426 {
427 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
428 }
429
430 struct nsproxy;
431 struct user_namespace;
432
433 #ifdef CONFIG_MMU
434 extern void arch_pick_mmap_layout(struct mm_struct *mm);
435 extern unsigned long
436 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
437 unsigned long, unsigned long);
438 extern unsigned long
439 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
440 unsigned long len, unsigned long pgoff,
441 unsigned long flags);
442 #else
443 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
444 #endif
445
446 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
447 #define SUID_DUMP_USER 1 /* Dump as user of process */
448 #define SUID_DUMP_ROOT 2 /* Dump as root */
449
450 /* mm flags */
451
452 /* for SUID_DUMP_* above */
453 #define MMF_DUMPABLE_BITS 2
454 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
455
456 extern void set_dumpable(struct mm_struct *mm, int value);
457 /*
458 * This returns the actual value of the suid_dumpable flag. For things
459 * that are using this for checking for privilege transitions, it must
460 * test against SUID_DUMP_USER rather than treating it as a boolean
461 * value.
462 */
463 static inline int __get_dumpable(unsigned long mm_flags)
464 {
465 return mm_flags & MMF_DUMPABLE_MASK;
466 }
467
468 static inline int get_dumpable(struct mm_struct *mm)
469 {
470 return __get_dumpable(mm->flags);
471 }
472
473 /* coredump filter bits */
474 #define MMF_DUMP_ANON_PRIVATE 2
475 #define MMF_DUMP_ANON_SHARED 3
476 #define MMF_DUMP_MAPPED_PRIVATE 4
477 #define MMF_DUMP_MAPPED_SHARED 5
478 #define MMF_DUMP_ELF_HEADERS 6
479 #define MMF_DUMP_HUGETLB_PRIVATE 7
480 #define MMF_DUMP_HUGETLB_SHARED 8
481
482 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
483 #define MMF_DUMP_FILTER_BITS 7
484 #define MMF_DUMP_FILTER_MASK \
485 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
486 #define MMF_DUMP_FILTER_DEFAULT \
487 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
488 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
489
490 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
491 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
492 #else
493 # define MMF_DUMP_MASK_DEFAULT_ELF 0
494 #endif
495 /* leave room for more dump flags */
496 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
497 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
498 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
499
500 #define MMF_HAS_UPROBES 19 /* has uprobes */
501 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
502
503 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
504
505 struct sighand_struct {
506 atomic_t count;
507 struct k_sigaction action[_NSIG];
508 spinlock_t siglock;
509 wait_queue_head_t signalfd_wqh;
510 };
511
512 struct pacct_struct {
513 int ac_flag;
514 long ac_exitcode;
515 unsigned long ac_mem;
516 cputime_t ac_utime, ac_stime;
517 unsigned long ac_minflt, ac_majflt;
518 };
519
520 struct cpu_itimer {
521 cputime_t expires;
522 cputime_t incr;
523 u32 error;
524 u32 incr_error;
525 };
526
527 /**
528 * struct cputime - snaphsot of system and user cputime
529 * @utime: time spent in user mode
530 * @stime: time spent in system mode
531 *
532 * Gathers a generic snapshot of user and system time.
533 */
534 struct cputime {
535 cputime_t utime;
536 cputime_t stime;
537 };
538
539 /**
540 * struct task_cputime - collected CPU time counts
541 * @utime: time spent in user mode, in &cputime_t units
542 * @stime: time spent in kernel mode, in &cputime_t units
543 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
544 *
545 * This is an extension of struct cputime that includes the total runtime
546 * spent by the task from the scheduler point of view.
547 *
548 * As a result, this structure groups together three kinds of CPU time
549 * that are tracked for threads and thread groups. Most things considering
550 * CPU time want to group these counts together and treat all three
551 * of them in parallel.
552 */
553 struct task_cputime {
554 cputime_t utime;
555 cputime_t stime;
556 unsigned long long sum_exec_runtime;
557 };
558 /* Alternate field names when used to cache expirations. */
559 #define prof_exp stime
560 #define virt_exp utime
561 #define sched_exp sum_exec_runtime
562
563 #define INIT_CPUTIME \
564 (struct task_cputime) { \
565 .utime = 0, \
566 .stime = 0, \
567 .sum_exec_runtime = 0, \
568 }
569
570 #ifdef CONFIG_PREEMPT_COUNT
571 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
572 #else
573 #define PREEMPT_DISABLED PREEMPT_ENABLED
574 #endif
575
576 /*
577 * Disable preemption until the scheduler is running.
578 * Reset by start_kernel()->sched_init()->init_idle().
579 *
580 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
581 * before the scheduler is active -- see should_resched().
582 */
583 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
584
585 /**
586 * struct thread_group_cputimer - thread group interval timer counts
587 * @cputime: thread group interval timers.
588 * @running: non-zero when there are timers running and
589 * @cputime receives updates.
590 * @lock: lock for fields in this struct.
591 *
592 * This structure contains the version of task_cputime, above, that is
593 * used for thread group CPU timer calculations.
594 */
595 struct thread_group_cputimer {
596 struct task_cputime cputime;
597 int running;
598 raw_spinlock_t lock;
599 };
600
601 #include <linux/rwsem.h>
602 struct autogroup;
603
604 /*
605 * NOTE! "signal_struct" does not have its own
606 * locking, because a shared signal_struct always
607 * implies a shared sighand_struct, so locking
608 * sighand_struct is always a proper superset of
609 * the locking of signal_struct.
610 */
611 struct signal_struct {
612 atomic_t sigcnt;
613 atomic_t live;
614 int nr_threads;
615 struct list_head thread_head;
616
617 wait_queue_head_t wait_chldexit; /* for wait4() */
618
619 /* current thread group signal load-balancing target: */
620 struct task_struct *curr_target;
621
622 /* shared signal handling: */
623 struct sigpending shared_pending;
624
625 /* thread group exit support */
626 int group_exit_code;
627 /* overloaded:
628 * - notify group_exit_task when ->count is equal to notify_count
629 * - everyone except group_exit_task is stopped during signal delivery
630 * of fatal signals, group_exit_task processes the signal.
631 */
632 int notify_count;
633 struct task_struct *group_exit_task;
634
635 /* thread group stop support, overloads group_exit_code too */
636 int group_stop_count;
637 unsigned int flags; /* see SIGNAL_* flags below */
638
639 /*
640 * PR_SET_CHILD_SUBREAPER marks a process, like a service
641 * manager, to re-parent orphan (double-forking) child processes
642 * to this process instead of 'init'. The service manager is
643 * able to receive SIGCHLD signals and is able to investigate
644 * the process until it calls wait(). All children of this
645 * process will inherit a flag if they should look for a
646 * child_subreaper process at exit.
647 */
648 unsigned int is_child_subreaper:1;
649 unsigned int has_child_subreaper:1;
650
651 /* POSIX.1b Interval Timers */
652 int posix_timer_id;
653 struct list_head posix_timers;
654
655 /* ITIMER_REAL timer for the process */
656 struct hrtimer real_timer;
657 struct pid *leader_pid;
658 ktime_t it_real_incr;
659
660 /*
661 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
662 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
663 * values are defined to 0 and 1 respectively
664 */
665 struct cpu_itimer it[2];
666
667 /*
668 * Thread group totals for process CPU timers.
669 * See thread_group_cputimer(), et al, for details.
670 */
671 struct thread_group_cputimer cputimer;
672
673 /* Earliest-expiration cache. */
674 struct task_cputime cputime_expires;
675
676 struct list_head cpu_timers[3];
677
678 struct pid *tty_old_pgrp;
679
680 /* boolean value for session group leader */
681 int leader;
682
683 struct tty_struct *tty; /* NULL if no tty */
684
685 #ifdef CONFIG_SCHED_AUTOGROUP
686 struct autogroup *autogroup;
687 #endif
688 /*
689 * Cumulative resource counters for dead threads in the group,
690 * and for reaped dead child processes forked by this group.
691 * Live threads maintain their own counters and add to these
692 * in __exit_signal, except for the group leader.
693 */
694 seqlock_t stats_lock;
695 cputime_t utime, stime, cutime, cstime;
696 cputime_t gtime;
697 cputime_t cgtime;
698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
699 struct cputime prev_cputime;
700 #endif
701 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
702 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
703 unsigned long inblock, oublock, cinblock, coublock;
704 unsigned long maxrss, cmaxrss;
705 struct task_io_accounting ioac;
706
707 /*
708 * Cumulative ns of schedule CPU time fo dead threads in the
709 * group, not including a zombie group leader, (This only differs
710 * from jiffies_to_ns(utime + stime) if sched_clock uses something
711 * other than jiffies.)
712 */
713 unsigned long long sum_sched_runtime;
714
715 /*
716 * We don't bother to synchronize most readers of this at all,
717 * because there is no reader checking a limit that actually needs
718 * to get both rlim_cur and rlim_max atomically, and either one
719 * alone is a single word that can safely be read normally.
720 * getrlimit/setrlimit use task_lock(current->group_leader) to
721 * protect this instead of the siglock, because they really
722 * have no need to disable irqs.
723 */
724 struct rlimit rlim[RLIM_NLIMITS];
725
726 #ifdef CONFIG_BSD_PROCESS_ACCT
727 struct pacct_struct pacct; /* per-process accounting information */
728 #endif
729 #ifdef CONFIG_TASKSTATS
730 struct taskstats *stats;
731 #endif
732 #ifdef CONFIG_AUDIT
733 unsigned audit_tty;
734 unsigned audit_tty_log_passwd;
735 struct tty_audit_buf *tty_audit_buf;
736 #endif
737 #ifdef CONFIG_CGROUPS
738 /*
739 * group_rwsem prevents new tasks from entering the threadgroup and
740 * member tasks from exiting,a more specifically, setting of
741 * PF_EXITING. fork and exit paths are protected with this rwsem
742 * using threadgroup_change_begin/end(). Users which require
743 * threadgroup to remain stable should use threadgroup_[un]lock()
744 * which also takes care of exec path. Currently, cgroup is the
745 * only user.
746 */
747 struct rw_semaphore group_rwsem;
748 #endif
749
750 oom_flags_t oom_flags;
751 short oom_score_adj; /* OOM kill score adjustment */
752 short oom_score_adj_min; /* OOM kill score adjustment min value.
753 * Only settable by CAP_SYS_RESOURCE. */
754
755 struct mutex cred_guard_mutex; /* guard against foreign influences on
756 * credential calculations
757 * (notably. ptrace) */
758 };
759
760 /*
761 * Bits in flags field of signal_struct.
762 */
763 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
764 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
765 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
766 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
767 /*
768 * Pending notifications to parent.
769 */
770 #define SIGNAL_CLD_STOPPED 0x00000010
771 #define SIGNAL_CLD_CONTINUED 0x00000020
772 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
773
774 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
775
776 /* If true, all threads except ->group_exit_task have pending SIGKILL */
777 static inline int signal_group_exit(const struct signal_struct *sig)
778 {
779 return (sig->flags & SIGNAL_GROUP_EXIT) ||
780 (sig->group_exit_task != NULL);
781 }
782
783 /*
784 * Some day this will be a full-fledged user tracking system..
785 */
786 struct user_struct {
787 atomic_t __count; /* reference count */
788 atomic_t processes; /* How many processes does this user have? */
789 atomic_t sigpending; /* How many pending signals does this user have? */
790 #ifdef CONFIG_INOTIFY_USER
791 atomic_t inotify_watches; /* How many inotify watches does this user have? */
792 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
793 #endif
794 #ifdef CONFIG_FANOTIFY
795 atomic_t fanotify_listeners;
796 #endif
797 #ifdef CONFIG_EPOLL
798 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
799 #endif
800 #ifdef CONFIG_POSIX_MQUEUE
801 /* protected by mq_lock */
802 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
803 #endif
804 unsigned long locked_shm; /* How many pages of mlocked shm ? */
805
806 #ifdef CONFIG_KEYS
807 struct key *uid_keyring; /* UID specific keyring */
808 struct key *session_keyring; /* UID's default session keyring */
809 #endif
810
811 /* Hash table maintenance information */
812 struct hlist_node uidhash_node;
813 kuid_t uid;
814
815 #ifdef CONFIG_PERF_EVENTS
816 atomic_long_t locked_vm;
817 #endif
818 };
819
820 extern int uids_sysfs_init(void);
821
822 extern struct user_struct *find_user(kuid_t);
823
824 extern struct user_struct root_user;
825 #define INIT_USER (&root_user)
826
827
828 struct backing_dev_info;
829 struct reclaim_state;
830
831 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
832 struct sched_info {
833 /* cumulative counters */
834 unsigned long pcount; /* # of times run on this cpu */
835 unsigned long long run_delay; /* time spent waiting on a runqueue */
836
837 /* timestamps */
838 unsigned long long last_arrival,/* when we last ran on a cpu */
839 last_queued; /* when we were last queued to run */
840 };
841 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
842
843 #ifdef CONFIG_TASK_DELAY_ACCT
844 struct task_delay_info {
845 spinlock_t lock;
846 unsigned int flags; /* Private per-task flags */
847
848 /* For each stat XXX, add following, aligned appropriately
849 *
850 * struct timespec XXX_start, XXX_end;
851 * u64 XXX_delay;
852 * u32 XXX_count;
853 *
854 * Atomicity of updates to XXX_delay, XXX_count protected by
855 * single lock above (split into XXX_lock if contention is an issue).
856 */
857
858 /*
859 * XXX_count is incremented on every XXX operation, the delay
860 * associated with the operation is added to XXX_delay.
861 * XXX_delay contains the accumulated delay time in nanoseconds.
862 */
863 u64 blkio_start; /* Shared by blkio, swapin */
864 u64 blkio_delay; /* wait for sync block io completion */
865 u64 swapin_delay; /* wait for swapin block io completion */
866 u32 blkio_count; /* total count of the number of sync block */
867 /* io operations performed */
868 u32 swapin_count; /* total count of the number of swapin block */
869 /* io operations performed */
870
871 u64 freepages_start;
872 u64 freepages_delay; /* wait for memory reclaim */
873 u32 freepages_count; /* total count of memory reclaim */
874 };
875 #endif /* CONFIG_TASK_DELAY_ACCT */
876
877 static inline int sched_info_on(void)
878 {
879 #ifdef CONFIG_SCHEDSTATS
880 return 1;
881 #elif defined(CONFIG_TASK_DELAY_ACCT)
882 extern int delayacct_on;
883 return delayacct_on;
884 #else
885 return 0;
886 #endif
887 }
888
889 enum cpu_idle_type {
890 CPU_IDLE,
891 CPU_NOT_IDLE,
892 CPU_NEWLY_IDLE,
893 CPU_MAX_IDLE_TYPES
894 };
895
896 /*
897 * Increase resolution of cpu_capacity calculations
898 */
899 #define SCHED_CAPACITY_SHIFT 10
900 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
901
902 /*
903 * sched-domains (multiprocessor balancing) declarations:
904 */
905 #ifdef CONFIG_SMP
906 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
907 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
908 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
909 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
910 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
911 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
912 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
913 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
914 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
915 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
916 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
917 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
918 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
919 #define SD_NUMA 0x4000 /* cross-node balancing */
920
921 #ifdef CONFIG_SCHED_SMT
922 static inline int cpu_smt_flags(void)
923 {
924 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
925 }
926 #endif
927
928 #ifdef CONFIG_SCHED_MC
929 static inline int cpu_core_flags(void)
930 {
931 return SD_SHARE_PKG_RESOURCES;
932 }
933 #endif
934
935 #ifdef CONFIG_NUMA
936 static inline int cpu_numa_flags(void)
937 {
938 return SD_NUMA;
939 }
940 #endif
941
942 struct sched_domain_attr {
943 int relax_domain_level;
944 };
945
946 #define SD_ATTR_INIT (struct sched_domain_attr) { \
947 .relax_domain_level = -1, \
948 }
949
950 extern int sched_domain_level_max;
951
952 struct sched_group;
953
954 struct sched_domain {
955 /* These fields must be setup */
956 struct sched_domain *parent; /* top domain must be null terminated */
957 struct sched_domain *child; /* bottom domain must be null terminated */
958 struct sched_group *groups; /* the balancing groups of the domain */
959 unsigned long min_interval; /* Minimum balance interval ms */
960 unsigned long max_interval; /* Maximum balance interval ms */
961 unsigned int busy_factor; /* less balancing by factor if busy */
962 unsigned int imbalance_pct; /* No balance until over watermark */
963 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
964 unsigned int busy_idx;
965 unsigned int idle_idx;
966 unsigned int newidle_idx;
967 unsigned int wake_idx;
968 unsigned int forkexec_idx;
969 unsigned int smt_gain;
970
971 int nohz_idle; /* NOHZ IDLE status */
972 int flags; /* See SD_* */
973 int level;
974
975 /* Runtime fields. */
976 unsigned long last_balance; /* init to jiffies. units in jiffies */
977 unsigned int balance_interval; /* initialise to 1. units in ms. */
978 unsigned int nr_balance_failed; /* initialise to 0 */
979
980 /* idle_balance() stats */
981 u64 max_newidle_lb_cost;
982 unsigned long next_decay_max_lb_cost;
983
984 #ifdef CONFIG_SCHEDSTATS
985 /* load_balance() stats */
986 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
987 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
988 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
989 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
990 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
991 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
992 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
993 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
994
995 /* Active load balancing */
996 unsigned int alb_count;
997 unsigned int alb_failed;
998 unsigned int alb_pushed;
999
1000 /* SD_BALANCE_EXEC stats */
1001 unsigned int sbe_count;
1002 unsigned int sbe_balanced;
1003 unsigned int sbe_pushed;
1004
1005 /* SD_BALANCE_FORK stats */
1006 unsigned int sbf_count;
1007 unsigned int sbf_balanced;
1008 unsigned int sbf_pushed;
1009
1010 /* try_to_wake_up() stats */
1011 unsigned int ttwu_wake_remote;
1012 unsigned int ttwu_move_affine;
1013 unsigned int ttwu_move_balance;
1014 #endif
1015 #ifdef CONFIG_SCHED_DEBUG
1016 char *name;
1017 #endif
1018 union {
1019 void *private; /* used during construction */
1020 struct rcu_head rcu; /* used during destruction */
1021 };
1022
1023 unsigned int span_weight;
1024 /*
1025 * Span of all CPUs in this domain.
1026 *
1027 * NOTE: this field is variable length. (Allocated dynamically
1028 * by attaching extra space to the end of the structure,
1029 * depending on how many CPUs the kernel has booted up with)
1030 */
1031 unsigned long span[0];
1032 };
1033
1034 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1035 {
1036 return to_cpumask(sd->span);
1037 }
1038
1039 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1040 struct sched_domain_attr *dattr_new);
1041
1042 /* Allocate an array of sched domains, for partition_sched_domains(). */
1043 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1044 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1045
1046 bool cpus_share_cache(int this_cpu, int that_cpu);
1047
1048 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1049 typedef int (*sched_domain_flags_f)(void);
1050
1051 #define SDTL_OVERLAP 0x01
1052
1053 struct sd_data {
1054 struct sched_domain **__percpu sd;
1055 struct sched_group **__percpu sg;
1056 struct sched_group_capacity **__percpu sgc;
1057 };
1058
1059 struct sched_domain_topology_level {
1060 sched_domain_mask_f mask;
1061 sched_domain_flags_f sd_flags;
1062 int flags;
1063 int numa_level;
1064 struct sd_data data;
1065 #ifdef CONFIG_SCHED_DEBUG
1066 char *name;
1067 #endif
1068 };
1069
1070 extern struct sched_domain_topology_level *sched_domain_topology;
1071
1072 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1073 extern void wake_up_if_idle(int cpu);
1074
1075 #ifdef CONFIG_SCHED_DEBUG
1076 # define SD_INIT_NAME(type) .name = #type
1077 #else
1078 # define SD_INIT_NAME(type)
1079 #endif
1080
1081 #else /* CONFIG_SMP */
1082
1083 struct sched_domain_attr;
1084
1085 static inline void
1086 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1087 struct sched_domain_attr *dattr_new)
1088 {
1089 }
1090
1091 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1092 {
1093 return true;
1094 }
1095
1096 #endif /* !CONFIG_SMP */
1097
1098
1099 struct io_context; /* See blkdev.h */
1100
1101
1102 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1103 extern void prefetch_stack(struct task_struct *t);
1104 #else
1105 static inline void prefetch_stack(struct task_struct *t) { }
1106 #endif
1107
1108 struct audit_context; /* See audit.c */
1109 struct mempolicy;
1110 struct pipe_inode_info;
1111 struct uts_namespace;
1112
1113 struct load_weight {
1114 unsigned long weight;
1115 u32 inv_weight;
1116 };
1117
1118 struct sched_avg {
1119 u64 last_runnable_update;
1120 s64 decay_count;
1121 /*
1122 * utilization_avg_contrib describes the amount of time that a
1123 * sched_entity is running on a CPU. It is based on running_avg_sum
1124 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1125 * load_avg_contrib described the amount of time that a sched_entity
1126 * is runnable on a rq. It is based on both runnable_avg_sum and the
1127 * weight of the task.
1128 */
1129 unsigned long load_avg_contrib, utilization_avg_contrib;
1130 /*
1131 * These sums represent an infinite geometric series and so are bound
1132 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1133 * choices of y < 1-2^(-32)*1024.
1134 * running_avg_sum reflects the time that the sched_entity is
1135 * effectively running on the CPU.
1136 * runnable_avg_sum represents the amount of time a sched_entity is on
1137 * a runqueue which includes the running time that is monitored by
1138 * running_avg_sum.
1139 */
1140 u32 runnable_avg_sum, avg_period, running_avg_sum;
1141 };
1142
1143 #ifdef CONFIG_SCHEDSTATS
1144 struct sched_statistics {
1145 u64 wait_start;
1146 u64 wait_max;
1147 u64 wait_count;
1148 u64 wait_sum;
1149 u64 iowait_count;
1150 u64 iowait_sum;
1151
1152 u64 sleep_start;
1153 u64 sleep_max;
1154 s64 sum_sleep_runtime;
1155
1156 u64 block_start;
1157 u64 block_max;
1158 u64 exec_max;
1159 u64 slice_max;
1160
1161 u64 nr_migrations_cold;
1162 u64 nr_failed_migrations_affine;
1163 u64 nr_failed_migrations_running;
1164 u64 nr_failed_migrations_hot;
1165 u64 nr_forced_migrations;
1166
1167 u64 nr_wakeups;
1168 u64 nr_wakeups_sync;
1169 u64 nr_wakeups_migrate;
1170 u64 nr_wakeups_local;
1171 u64 nr_wakeups_remote;
1172 u64 nr_wakeups_affine;
1173 u64 nr_wakeups_affine_attempts;
1174 u64 nr_wakeups_passive;
1175 u64 nr_wakeups_idle;
1176 };
1177 #endif
1178
1179 struct sched_entity {
1180 struct load_weight load; /* for load-balancing */
1181 struct rb_node run_node;
1182 struct list_head group_node;
1183 unsigned int on_rq;
1184
1185 u64 exec_start;
1186 u64 sum_exec_runtime;
1187 u64 vruntime;
1188 u64 prev_sum_exec_runtime;
1189
1190 u64 nr_migrations;
1191
1192 #ifdef CONFIG_SCHEDSTATS
1193 struct sched_statistics statistics;
1194 #endif
1195
1196 #ifdef CONFIG_FAIR_GROUP_SCHED
1197 int depth;
1198 struct sched_entity *parent;
1199 /* rq on which this entity is (to be) queued: */
1200 struct cfs_rq *cfs_rq;
1201 /* rq "owned" by this entity/group: */
1202 struct cfs_rq *my_q;
1203 #endif
1204
1205 #ifdef CONFIG_SMP
1206 /* Per-entity load-tracking */
1207 struct sched_avg avg;
1208 #endif
1209 };
1210
1211 struct sched_rt_entity {
1212 struct list_head run_list;
1213 unsigned long timeout;
1214 unsigned long watchdog_stamp;
1215 unsigned int time_slice;
1216
1217 struct sched_rt_entity *back;
1218 #ifdef CONFIG_RT_GROUP_SCHED
1219 struct sched_rt_entity *parent;
1220 /* rq on which this entity is (to be) queued: */
1221 struct rt_rq *rt_rq;
1222 /* rq "owned" by this entity/group: */
1223 struct rt_rq *my_q;
1224 #endif
1225 };
1226
1227 struct sched_dl_entity {
1228 struct rb_node rb_node;
1229
1230 /*
1231 * Original scheduling parameters. Copied here from sched_attr
1232 * during sched_setattr(), they will remain the same until
1233 * the next sched_setattr().
1234 */
1235 u64 dl_runtime; /* maximum runtime for each instance */
1236 u64 dl_deadline; /* relative deadline of each instance */
1237 u64 dl_period; /* separation of two instances (period) */
1238 u64 dl_bw; /* dl_runtime / dl_deadline */
1239
1240 /*
1241 * Actual scheduling parameters. Initialized with the values above,
1242 * they are continously updated during task execution. Note that
1243 * the remaining runtime could be < 0 in case we are in overrun.
1244 */
1245 s64 runtime; /* remaining runtime for this instance */
1246 u64 deadline; /* absolute deadline for this instance */
1247 unsigned int flags; /* specifying the scheduler behaviour */
1248
1249 /*
1250 * Some bool flags:
1251 *
1252 * @dl_throttled tells if we exhausted the runtime. If so, the
1253 * task has to wait for a replenishment to be performed at the
1254 * next firing of dl_timer.
1255 *
1256 * @dl_new tells if a new instance arrived. If so we must
1257 * start executing it with full runtime and reset its absolute
1258 * deadline;
1259 *
1260 * @dl_boosted tells if we are boosted due to DI. If so we are
1261 * outside bandwidth enforcement mechanism (but only until we
1262 * exit the critical section);
1263 *
1264 * @dl_yielded tells if task gave up the cpu before consuming
1265 * all its available runtime during the last job.
1266 */
1267 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1268
1269 /*
1270 * Bandwidth enforcement timer. Each -deadline task has its
1271 * own bandwidth to be enforced, thus we need one timer per task.
1272 */
1273 struct hrtimer dl_timer;
1274 };
1275
1276 union rcu_special {
1277 struct {
1278 bool blocked;
1279 bool need_qs;
1280 } b;
1281 short s;
1282 };
1283 struct rcu_node;
1284
1285 enum perf_event_task_context {
1286 perf_invalid_context = -1,
1287 perf_hw_context = 0,
1288 perf_sw_context,
1289 perf_nr_task_contexts,
1290 };
1291
1292 struct task_struct {
1293 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1294 void *stack;
1295 atomic_t usage;
1296 unsigned int flags; /* per process flags, defined below */
1297 unsigned int ptrace;
1298
1299 #ifdef CONFIG_SMP
1300 struct llist_node wake_entry;
1301 int on_cpu;
1302 struct task_struct *last_wakee;
1303 unsigned long wakee_flips;
1304 unsigned long wakee_flip_decay_ts;
1305
1306 int wake_cpu;
1307 #endif
1308 int on_rq;
1309
1310 int prio, static_prio, normal_prio;
1311 unsigned int rt_priority;
1312 const struct sched_class *sched_class;
1313 struct sched_entity se;
1314 struct sched_rt_entity rt;
1315 #ifdef CONFIG_CGROUP_SCHED
1316 struct task_group *sched_task_group;
1317 #endif
1318 struct sched_dl_entity dl;
1319
1320 #ifdef CONFIG_PREEMPT_NOTIFIERS
1321 /* list of struct preempt_notifier: */
1322 struct hlist_head preempt_notifiers;
1323 #endif
1324
1325 #ifdef CONFIG_BLK_DEV_IO_TRACE
1326 unsigned int btrace_seq;
1327 #endif
1328
1329 unsigned int policy;
1330 int nr_cpus_allowed;
1331 cpumask_t cpus_allowed;
1332
1333 #ifdef CONFIG_PREEMPT_RCU
1334 int rcu_read_lock_nesting;
1335 union rcu_special rcu_read_unlock_special;
1336 struct list_head rcu_node_entry;
1337 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1338 #ifdef CONFIG_PREEMPT_RCU
1339 struct rcu_node *rcu_blocked_node;
1340 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1341 #ifdef CONFIG_TASKS_RCU
1342 unsigned long rcu_tasks_nvcsw;
1343 bool rcu_tasks_holdout;
1344 struct list_head rcu_tasks_holdout_list;
1345 int rcu_tasks_idle_cpu;
1346 #endif /* #ifdef CONFIG_TASKS_RCU */
1347
1348 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1349 struct sched_info sched_info;
1350 #endif
1351
1352 struct list_head tasks;
1353 #ifdef CONFIG_SMP
1354 struct plist_node pushable_tasks;
1355 struct rb_node pushable_dl_tasks;
1356 #endif
1357
1358 struct mm_struct *mm, *active_mm;
1359 #ifdef CONFIG_COMPAT_BRK
1360 unsigned brk_randomized:1;
1361 #endif
1362 /* per-thread vma caching */
1363 u32 vmacache_seqnum;
1364 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1365 #if defined(SPLIT_RSS_COUNTING)
1366 struct task_rss_stat rss_stat;
1367 #endif
1368 /* task state */
1369 int exit_state;
1370 int exit_code, exit_signal;
1371 int pdeath_signal; /* The signal sent when the parent dies */
1372 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1373
1374 /* Used for emulating ABI behavior of previous Linux versions */
1375 unsigned int personality;
1376
1377 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1378 * execve */
1379 unsigned in_iowait:1;
1380
1381 /* Revert to default priority/policy when forking */
1382 unsigned sched_reset_on_fork:1;
1383 unsigned sched_contributes_to_load:1;
1384
1385 #ifdef CONFIG_MEMCG_KMEM
1386 unsigned memcg_kmem_skip_account:1;
1387 #endif
1388
1389 unsigned long atomic_flags; /* Flags needing atomic access. */
1390
1391 struct restart_block restart_block;
1392
1393 pid_t pid;
1394 pid_t tgid;
1395
1396 #ifdef CONFIG_CC_STACKPROTECTOR
1397 /* Canary value for the -fstack-protector gcc feature */
1398 unsigned long stack_canary;
1399 #endif
1400 /*
1401 * pointers to (original) parent process, youngest child, younger sibling,
1402 * older sibling, respectively. (p->father can be replaced with
1403 * p->real_parent->pid)
1404 */
1405 struct task_struct __rcu *real_parent; /* real parent process */
1406 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1407 /*
1408 * children/sibling forms the list of my natural children
1409 */
1410 struct list_head children; /* list of my children */
1411 struct list_head sibling; /* linkage in my parent's children list */
1412 struct task_struct *group_leader; /* threadgroup leader */
1413
1414 /*
1415 * ptraced is the list of tasks this task is using ptrace on.
1416 * This includes both natural children and PTRACE_ATTACH targets.
1417 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1418 */
1419 struct list_head ptraced;
1420 struct list_head ptrace_entry;
1421
1422 /* PID/PID hash table linkage. */
1423 struct pid_link pids[PIDTYPE_MAX];
1424 struct list_head thread_group;
1425 struct list_head thread_node;
1426
1427 struct completion *vfork_done; /* for vfork() */
1428 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1429 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1430
1431 cputime_t utime, stime, utimescaled, stimescaled;
1432 cputime_t gtime;
1433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1434 struct cputime prev_cputime;
1435 #endif
1436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1437 seqlock_t vtime_seqlock;
1438 unsigned long long vtime_snap;
1439 enum {
1440 VTIME_SLEEPING = 0,
1441 VTIME_USER,
1442 VTIME_SYS,
1443 } vtime_snap_whence;
1444 #endif
1445 unsigned long nvcsw, nivcsw; /* context switch counts */
1446 u64 start_time; /* monotonic time in nsec */
1447 u64 real_start_time; /* boot based time in nsec */
1448 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1449 unsigned long min_flt, maj_flt;
1450
1451 struct task_cputime cputime_expires;
1452 struct list_head cpu_timers[3];
1453
1454 /* process credentials */
1455 const struct cred __rcu *real_cred; /* objective and real subjective task
1456 * credentials (COW) */
1457 const struct cred __rcu *cred; /* effective (overridable) subjective task
1458 * credentials (COW) */
1459 char comm[TASK_COMM_LEN]; /* executable name excluding path
1460 - access with [gs]et_task_comm (which lock
1461 it with task_lock())
1462 - initialized normally by setup_new_exec */
1463 /* file system info */
1464 int link_count, total_link_count;
1465 #ifdef CONFIG_SYSVIPC
1466 /* ipc stuff */
1467 struct sysv_sem sysvsem;
1468 struct sysv_shm sysvshm;
1469 #endif
1470 #ifdef CONFIG_DETECT_HUNG_TASK
1471 /* hung task detection */
1472 unsigned long last_switch_count;
1473 #endif
1474 /* CPU-specific state of this task */
1475 struct thread_struct thread;
1476 /* filesystem information */
1477 struct fs_struct *fs;
1478 /* open file information */
1479 struct files_struct *files;
1480 /* namespaces */
1481 struct nsproxy *nsproxy;
1482 /* signal handlers */
1483 struct signal_struct *signal;
1484 struct sighand_struct *sighand;
1485
1486 sigset_t blocked, real_blocked;
1487 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1488 struct sigpending pending;
1489
1490 unsigned long sas_ss_sp;
1491 size_t sas_ss_size;
1492 int (*notifier)(void *priv);
1493 void *notifier_data;
1494 sigset_t *notifier_mask;
1495 struct callback_head *task_works;
1496
1497 struct audit_context *audit_context;
1498 #ifdef CONFIG_AUDITSYSCALL
1499 kuid_t loginuid;
1500 unsigned int sessionid;
1501 #endif
1502 struct seccomp seccomp;
1503
1504 /* Thread group tracking */
1505 u32 parent_exec_id;
1506 u32 self_exec_id;
1507 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1508 * mempolicy */
1509 spinlock_t alloc_lock;
1510
1511 /* Protection of the PI data structures: */
1512 raw_spinlock_t pi_lock;
1513
1514 #ifdef CONFIG_RT_MUTEXES
1515 /* PI waiters blocked on a rt_mutex held by this task */
1516 struct rb_root pi_waiters;
1517 struct rb_node *pi_waiters_leftmost;
1518 /* Deadlock detection and priority inheritance handling */
1519 struct rt_mutex_waiter *pi_blocked_on;
1520 #endif
1521
1522 #ifdef CONFIG_DEBUG_MUTEXES
1523 /* mutex deadlock detection */
1524 struct mutex_waiter *blocked_on;
1525 #endif
1526 #ifdef CONFIG_TRACE_IRQFLAGS
1527 unsigned int irq_events;
1528 unsigned long hardirq_enable_ip;
1529 unsigned long hardirq_disable_ip;
1530 unsigned int hardirq_enable_event;
1531 unsigned int hardirq_disable_event;
1532 int hardirqs_enabled;
1533 int hardirq_context;
1534 unsigned long softirq_disable_ip;
1535 unsigned long softirq_enable_ip;
1536 unsigned int softirq_disable_event;
1537 unsigned int softirq_enable_event;
1538 int softirqs_enabled;
1539 int softirq_context;
1540 #endif
1541 #ifdef CONFIG_LOCKDEP
1542 # define MAX_LOCK_DEPTH 48UL
1543 u64 curr_chain_key;
1544 int lockdep_depth;
1545 unsigned int lockdep_recursion;
1546 struct held_lock held_locks[MAX_LOCK_DEPTH];
1547 gfp_t lockdep_reclaim_gfp;
1548 #endif
1549
1550 /* journalling filesystem info */
1551 void *journal_info;
1552
1553 /* stacked block device info */
1554 struct bio_list *bio_list;
1555
1556 #ifdef CONFIG_BLOCK
1557 /* stack plugging */
1558 struct blk_plug *plug;
1559 #endif
1560
1561 /* VM state */
1562 struct reclaim_state *reclaim_state;
1563
1564 struct backing_dev_info *backing_dev_info;
1565
1566 struct io_context *io_context;
1567
1568 unsigned long ptrace_message;
1569 siginfo_t *last_siginfo; /* For ptrace use. */
1570 struct task_io_accounting ioac;
1571 #if defined(CONFIG_TASK_XACCT)
1572 u64 acct_rss_mem1; /* accumulated rss usage */
1573 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1574 cputime_t acct_timexpd; /* stime + utime since last update */
1575 #endif
1576 #ifdef CONFIG_CPUSETS
1577 nodemask_t mems_allowed; /* Protected by alloc_lock */
1578 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1579 int cpuset_mem_spread_rotor;
1580 int cpuset_slab_spread_rotor;
1581 #endif
1582 #ifdef CONFIG_CGROUPS
1583 /* Control Group info protected by css_set_lock */
1584 struct css_set __rcu *cgroups;
1585 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1586 struct list_head cg_list;
1587 #endif
1588 #ifdef CONFIG_FUTEX
1589 struct robust_list_head __user *robust_list;
1590 #ifdef CONFIG_COMPAT
1591 struct compat_robust_list_head __user *compat_robust_list;
1592 #endif
1593 struct list_head pi_state_list;
1594 struct futex_pi_state *pi_state_cache;
1595 #endif
1596 #ifdef CONFIG_PERF_EVENTS
1597 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1598 struct mutex perf_event_mutex;
1599 struct list_head perf_event_list;
1600 #endif
1601 #ifdef CONFIG_DEBUG_PREEMPT
1602 unsigned long preempt_disable_ip;
1603 #endif
1604 #ifdef CONFIG_NUMA
1605 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1606 short il_next;
1607 short pref_node_fork;
1608 #endif
1609 #ifdef CONFIG_NUMA_BALANCING
1610 int numa_scan_seq;
1611 unsigned int numa_scan_period;
1612 unsigned int numa_scan_period_max;
1613 int numa_preferred_nid;
1614 unsigned long numa_migrate_retry;
1615 u64 node_stamp; /* migration stamp */
1616 u64 last_task_numa_placement;
1617 u64 last_sum_exec_runtime;
1618 struct callback_head numa_work;
1619
1620 struct list_head numa_entry;
1621 struct numa_group *numa_group;
1622
1623 /*
1624 * numa_faults is an array split into four regions:
1625 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1626 * in this precise order.
1627 *
1628 * faults_memory: Exponential decaying average of faults on a per-node
1629 * basis. Scheduling placement decisions are made based on these
1630 * counts. The values remain static for the duration of a PTE scan.
1631 * faults_cpu: Track the nodes the process was running on when a NUMA
1632 * hinting fault was incurred.
1633 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1634 * during the current scan window. When the scan completes, the counts
1635 * in faults_memory and faults_cpu decay and these values are copied.
1636 */
1637 unsigned long *numa_faults;
1638 unsigned long total_numa_faults;
1639
1640 /*
1641 * numa_faults_locality tracks if faults recorded during the last
1642 * scan window were remote/local or failed to migrate. The task scan
1643 * period is adapted based on the locality of the faults with different
1644 * weights depending on whether they were shared or private faults
1645 */
1646 unsigned long numa_faults_locality[3];
1647
1648 unsigned long numa_pages_migrated;
1649 #endif /* CONFIG_NUMA_BALANCING */
1650
1651 struct rcu_head rcu;
1652
1653 /*
1654 * cache last used pipe for splice
1655 */
1656 struct pipe_inode_info *splice_pipe;
1657
1658 struct page_frag task_frag;
1659
1660 #ifdef CONFIG_TASK_DELAY_ACCT
1661 struct task_delay_info *delays;
1662 #endif
1663 #ifdef CONFIG_FAULT_INJECTION
1664 int make_it_fail;
1665 #endif
1666 /*
1667 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1668 * balance_dirty_pages() for some dirty throttling pause
1669 */
1670 int nr_dirtied;
1671 int nr_dirtied_pause;
1672 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1673
1674 #ifdef CONFIG_LATENCYTOP
1675 int latency_record_count;
1676 struct latency_record latency_record[LT_SAVECOUNT];
1677 #endif
1678 /*
1679 * time slack values; these are used to round up poll() and
1680 * select() etc timeout values. These are in nanoseconds.
1681 */
1682 unsigned long timer_slack_ns;
1683 unsigned long default_timer_slack_ns;
1684
1685 #ifdef CONFIG_KASAN
1686 unsigned int kasan_depth;
1687 #endif
1688 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1689 /* Index of current stored address in ret_stack */
1690 int curr_ret_stack;
1691 /* Stack of return addresses for return function tracing */
1692 struct ftrace_ret_stack *ret_stack;
1693 /* time stamp for last schedule */
1694 unsigned long long ftrace_timestamp;
1695 /*
1696 * Number of functions that haven't been traced
1697 * because of depth overrun.
1698 */
1699 atomic_t trace_overrun;
1700 /* Pause for the tracing */
1701 atomic_t tracing_graph_pause;
1702 #endif
1703 #ifdef CONFIG_TRACING
1704 /* state flags for use by tracers */
1705 unsigned long trace;
1706 /* bitmask and counter of trace recursion */
1707 unsigned long trace_recursion;
1708 #endif /* CONFIG_TRACING */
1709 #ifdef CONFIG_MEMCG
1710 struct memcg_oom_info {
1711 struct mem_cgroup *memcg;
1712 gfp_t gfp_mask;
1713 int order;
1714 unsigned int may_oom:1;
1715 } memcg_oom;
1716 #endif
1717 #ifdef CONFIG_UPROBES
1718 struct uprobe_task *utask;
1719 #endif
1720 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1721 unsigned int sequential_io;
1722 unsigned int sequential_io_avg;
1723 #endif
1724 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1725 unsigned long task_state_change;
1726 #endif
1727 };
1728
1729 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1730 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1731
1732 #define TNF_MIGRATED 0x01
1733 #define TNF_NO_GROUP 0x02
1734 #define TNF_SHARED 0x04
1735 #define TNF_FAULT_LOCAL 0x08
1736 #define TNF_MIGRATE_FAIL 0x10
1737
1738 #ifdef CONFIG_NUMA_BALANCING
1739 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1740 extern pid_t task_numa_group_id(struct task_struct *p);
1741 extern void set_numabalancing_state(bool enabled);
1742 extern void task_numa_free(struct task_struct *p);
1743 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1744 int src_nid, int dst_cpu);
1745 #else
1746 static inline void task_numa_fault(int last_node, int node, int pages,
1747 int flags)
1748 {
1749 }
1750 static inline pid_t task_numa_group_id(struct task_struct *p)
1751 {
1752 return 0;
1753 }
1754 static inline void set_numabalancing_state(bool enabled)
1755 {
1756 }
1757 static inline void task_numa_free(struct task_struct *p)
1758 {
1759 }
1760 static inline bool should_numa_migrate_memory(struct task_struct *p,
1761 struct page *page, int src_nid, int dst_cpu)
1762 {
1763 return true;
1764 }
1765 #endif
1766
1767 static inline struct pid *task_pid(struct task_struct *task)
1768 {
1769 return task->pids[PIDTYPE_PID].pid;
1770 }
1771
1772 static inline struct pid *task_tgid(struct task_struct *task)
1773 {
1774 return task->group_leader->pids[PIDTYPE_PID].pid;
1775 }
1776
1777 /*
1778 * Without tasklist or rcu lock it is not safe to dereference
1779 * the result of task_pgrp/task_session even if task == current,
1780 * we can race with another thread doing sys_setsid/sys_setpgid.
1781 */
1782 static inline struct pid *task_pgrp(struct task_struct *task)
1783 {
1784 return task->group_leader->pids[PIDTYPE_PGID].pid;
1785 }
1786
1787 static inline struct pid *task_session(struct task_struct *task)
1788 {
1789 return task->group_leader->pids[PIDTYPE_SID].pid;
1790 }
1791
1792 struct pid_namespace;
1793
1794 /*
1795 * the helpers to get the task's different pids as they are seen
1796 * from various namespaces
1797 *
1798 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1799 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1800 * current.
1801 * task_xid_nr_ns() : id seen from the ns specified;
1802 *
1803 * set_task_vxid() : assigns a virtual id to a task;
1804 *
1805 * see also pid_nr() etc in include/linux/pid.h
1806 */
1807 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1808 struct pid_namespace *ns);
1809
1810 static inline pid_t task_pid_nr(struct task_struct *tsk)
1811 {
1812 return tsk->pid;
1813 }
1814
1815 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1816 struct pid_namespace *ns)
1817 {
1818 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1819 }
1820
1821 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1822 {
1823 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1824 }
1825
1826
1827 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1828 {
1829 return tsk->tgid;
1830 }
1831
1832 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1833
1834 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1835 {
1836 return pid_vnr(task_tgid(tsk));
1837 }
1838
1839
1840 static inline int pid_alive(const struct task_struct *p);
1841 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1842 {
1843 pid_t pid = 0;
1844
1845 rcu_read_lock();
1846 if (pid_alive(tsk))
1847 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1848 rcu_read_unlock();
1849
1850 return pid;
1851 }
1852
1853 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1854 {
1855 return task_ppid_nr_ns(tsk, &init_pid_ns);
1856 }
1857
1858 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1859 struct pid_namespace *ns)
1860 {
1861 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1862 }
1863
1864 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1865 {
1866 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1867 }
1868
1869
1870 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1871 struct pid_namespace *ns)
1872 {
1873 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1874 }
1875
1876 static inline pid_t task_session_vnr(struct task_struct *tsk)
1877 {
1878 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1879 }
1880
1881 /* obsolete, do not use */
1882 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1883 {
1884 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1885 }
1886
1887 /**
1888 * pid_alive - check that a task structure is not stale
1889 * @p: Task structure to be checked.
1890 *
1891 * Test if a process is not yet dead (at most zombie state)
1892 * If pid_alive fails, then pointers within the task structure
1893 * can be stale and must not be dereferenced.
1894 *
1895 * Return: 1 if the process is alive. 0 otherwise.
1896 */
1897 static inline int pid_alive(const struct task_struct *p)
1898 {
1899 return p->pids[PIDTYPE_PID].pid != NULL;
1900 }
1901
1902 /**
1903 * is_global_init - check if a task structure is init
1904 * @tsk: Task structure to be checked.
1905 *
1906 * Check if a task structure is the first user space task the kernel created.
1907 *
1908 * Return: 1 if the task structure is init. 0 otherwise.
1909 */
1910 static inline int is_global_init(struct task_struct *tsk)
1911 {
1912 return tsk->pid == 1;
1913 }
1914
1915 extern struct pid *cad_pid;
1916
1917 extern void free_task(struct task_struct *tsk);
1918 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1919
1920 extern void __put_task_struct(struct task_struct *t);
1921
1922 static inline void put_task_struct(struct task_struct *t)
1923 {
1924 if (atomic_dec_and_test(&t->usage))
1925 __put_task_struct(t);
1926 }
1927
1928 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1929 extern void task_cputime(struct task_struct *t,
1930 cputime_t *utime, cputime_t *stime);
1931 extern void task_cputime_scaled(struct task_struct *t,
1932 cputime_t *utimescaled, cputime_t *stimescaled);
1933 extern cputime_t task_gtime(struct task_struct *t);
1934 #else
1935 static inline void task_cputime(struct task_struct *t,
1936 cputime_t *utime, cputime_t *stime)
1937 {
1938 if (utime)
1939 *utime = t->utime;
1940 if (stime)
1941 *stime = t->stime;
1942 }
1943
1944 static inline void task_cputime_scaled(struct task_struct *t,
1945 cputime_t *utimescaled,
1946 cputime_t *stimescaled)
1947 {
1948 if (utimescaled)
1949 *utimescaled = t->utimescaled;
1950 if (stimescaled)
1951 *stimescaled = t->stimescaled;
1952 }
1953
1954 static inline cputime_t task_gtime(struct task_struct *t)
1955 {
1956 return t->gtime;
1957 }
1958 #endif
1959 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1960 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1961
1962 /*
1963 * Per process flags
1964 */
1965 #define PF_EXITING 0x00000004 /* getting shut down */
1966 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1967 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1968 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1969 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1970 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1971 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1972 #define PF_DUMPCORE 0x00000200 /* dumped core */
1973 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1974 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1975 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1976 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1977 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1978 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1979 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1980 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1981 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1982 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1983 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1984 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1985 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1986 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1987 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1988 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1989 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1990 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1991 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1992
1993 /*
1994 * Only the _current_ task can read/write to tsk->flags, but other
1995 * tasks can access tsk->flags in readonly mode for example
1996 * with tsk_used_math (like during threaded core dumping).
1997 * There is however an exception to this rule during ptrace
1998 * or during fork: the ptracer task is allowed to write to the
1999 * child->flags of its traced child (same goes for fork, the parent
2000 * can write to the child->flags), because we're guaranteed the
2001 * child is not running and in turn not changing child->flags
2002 * at the same time the parent does it.
2003 */
2004 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2005 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2006 #define clear_used_math() clear_stopped_child_used_math(current)
2007 #define set_used_math() set_stopped_child_used_math(current)
2008 #define conditional_stopped_child_used_math(condition, child) \
2009 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2010 #define conditional_used_math(condition) \
2011 conditional_stopped_child_used_math(condition, current)
2012 #define copy_to_stopped_child_used_math(child) \
2013 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2014 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2015 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2016 #define used_math() tsk_used_math(current)
2017
2018 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2019 * __GFP_FS is also cleared as it implies __GFP_IO.
2020 */
2021 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2022 {
2023 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2024 flags &= ~(__GFP_IO | __GFP_FS);
2025 return flags;
2026 }
2027
2028 static inline unsigned int memalloc_noio_save(void)
2029 {
2030 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2031 current->flags |= PF_MEMALLOC_NOIO;
2032 return flags;
2033 }
2034
2035 static inline void memalloc_noio_restore(unsigned int flags)
2036 {
2037 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2038 }
2039
2040 /* Per-process atomic flags. */
2041 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2042 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2043 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2044
2045
2046 #define TASK_PFA_TEST(name, func) \
2047 static inline bool task_##func(struct task_struct *p) \
2048 { return test_bit(PFA_##name, &p->atomic_flags); }
2049 #define TASK_PFA_SET(name, func) \
2050 static inline void task_set_##func(struct task_struct *p) \
2051 { set_bit(PFA_##name, &p->atomic_flags); }
2052 #define TASK_PFA_CLEAR(name, func) \
2053 static inline void task_clear_##func(struct task_struct *p) \
2054 { clear_bit(PFA_##name, &p->atomic_flags); }
2055
2056 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2057 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2058
2059 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2060 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2061 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2062
2063 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2064 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2065 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2066
2067 /*
2068 * task->jobctl flags
2069 */
2070 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2071
2072 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2073 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2074 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2075 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2076 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2077 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2078 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2079
2080 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
2081 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
2082 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
2083 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
2084 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
2085 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
2086 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
2087
2088 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2089 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2090
2091 extern bool task_set_jobctl_pending(struct task_struct *task,
2092 unsigned int mask);
2093 extern void task_clear_jobctl_trapping(struct task_struct *task);
2094 extern void task_clear_jobctl_pending(struct task_struct *task,
2095 unsigned int mask);
2096
2097 static inline void rcu_copy_process(struct task_struct *p)
2098 {
2099 #ifdef CONFIG_PREEMPT_RCU
2100 p->rcu_read_lock_nesting = 0;
2101 p->rcu_read_unlock_special.s = 0;
2102 p->rcu_blocked_node = NULL;
2103 INIT_LIST_HEAD(&p->rcu_node_entry);
2104 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2105 #ifdef CONFIG_TASKS_RCU
2106 p->rcu_tasks_holdout = false;
2107 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2108 p->rcu_tasks_idle_cpu = -1;
2109 #endif /* #ifdef CONFIG_TASKS_RCU */
2110 }
2111
2112 static inline void tsk_restore_flags(struct task_struct *task,
2113 unsigned long orig_flags, unsigned long flags)
2114 {
2115 task->flags &= ~flags;
2116 task->flags |= orig_flags & flags;
2117 }
2118
2119 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2120 const struct cpumask *trial);
2121 extern int task_can_attach(struct task_struct *p,
2122 const struct cpumask *cs_cpus_allowed);
2123 #ifdef CONFIG_SMP
2124 extern void do_set_cpus_allowed(struct task_struct *p,
2125 const struct cpumask *new_mask);
2126
2127 extern int set_cpus_allowed_ptr(struct task_struct *p,
2128 const struct cpumask *new_mask);
2129 #else
2130 static inline void do_set_cpus_allowed(struct task_struct *p,
2131 const struct cpumask *new_mask)
2132 {
2133 }
2134 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2135 const struct cpumask *new_mask)
2136 {
2137 if (!cpumask_test_cpu(0, new_mask))
2138 return -EINVAL;
2139 return 0;
2140 }
2141 #endif
2142
2143 #ifdef CONFIG_NO_HZ_COMMON
2144 void calc_load_enter_idle(void);
2145 void calc_load_exit_idle(void);
2146 #else
2147 static inline void calc_load_enter_idle(void) { }
2148 static inline void calc_load_exit_idle(void) { }
2149 #endif /* CONFIG_NO_HZ_COMMON */
2150
2151 #ifndef CONFIG_CPUMASK_OFFSTACK
2152 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2153 {
2154 return set_cpus_allowed_ptr(p, &new_mask);
2155 }
2156 #endif
2157
2158 /*
2159 * Do not use outside of architecture code which knows its limitations.
2160 *
2161 * sched_clock() has no promise of monotonicity or bounded drift between
2162 * CPUs, use (which you should not) requires disabling IRQs.
2163 *
2164 * Please use one of the three interfaces below.
2165 */
2166 extern unsigned long long notrace sched_clock(void);
2167 /*
2168 * See the comment in kernel/sched/clock.c
2169 */
2170 extern u64 cpu_clock(int cpu);
2171 extern u64 local_clock(void);
2172 extern u64 running_clock(void);
2173 extern u64 sched_clock_cpu(int cpu);
2174
2175
2176 extern void sched_clock_init(void);
2177
2178 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2179 static inline void sched_clock_tick(void)
2180 {
2181 }
2182
2183 static inline void sched_clock_idle_sleep_event(void)
2184 {
2185 }
2186
2187 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2188 {
2189 }
2190 #else
2191 /*
2192 * Architectures can set this to 1 if they have specified
2193 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2194 * but then during bootup it turns out that sched_clock()
2195 * is reliable after all:
2196 */
2197 extern int sched_clock_stable(void);
2198 extern void set_sched_clock_stable(void);
2199 extern void clear_sched_clock_stable(void);
2200
2201 extern void sched_clock_tick(void);
2202 extern void sched_clock_idle_sleep_event(void);
2203 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2204 #endif
2205
2206 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2207 /*
2208 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2209 * The reason for this explicit opt-in is not to have perf penalty with
2210 * slow sched_clocks.
2211 */
2212 extern void enable_sched_clock_irqtime(void);
2213 extern void disable_sched_clock_irqtime(void);
2214 #else
2215 static inline void enable_sched_clock_irqtime(void) {}
2216 static inline void disable_sched_clock_irqtime(void) {}
2217 #endif
2218
2219 extern unsigned long long
2220 task_sched_runtime(struct task_struct *task);
2221
2222 /* sched_exec is called by processes performing an exec */
2223 #ifdef CONFIG_SMP
2224 extern void sched_exec(void);
2225 #else
2226 #define sched_exec() {}
2227 #endif
2228
2229 extern void sched_clock_idle_sleep_event(void);
2230 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2231
2232 #ifdef CONFIG_HOTPLUG_CPU
2233 extern void idle_task_exit(void);
2234 #else
2235 static inline void idle_task_exit(void) {}
2236 #endif
2237
2238 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2239 extern void wake_up_nohz_cpu(int cpu);
2240 #else
2241 static inline void wake_up_nohz_cpu(int cpu) { }
2242 #endif
2243
2244 #ifdef CONFIG_NO_HZ_FULL
2245 extern bool sched_can_stop_tick(void);
2246 extern u64 scheduler_tick_max_deferment(void);
2247 #else
2248 static inline bool sched_can_stop_tick(void) { return false; }
2249 #endif
2250
2251 #ifdef CONFIG_SCHED_AUTOGROUP
2252 extern void sched_autogroup_create_attach(struct task_struct *p);
2253 extern void sched_autogroup_detach(struct task_struct *p);
2254 extern void sched_autogroup_fork(struct signal_struct *sig);
2255 extern void sched_autogroup_exit(struct signal_struct *sig);
2256 #ifdef CONFIG_PROC_FS
2257 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2258 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2259 #endif
2260 #else
2261 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2262 static inline void sched_autogroup_detach(struct task_struct *p) { }
2263 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2264 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2265 #endif
2266
2267 extern int yield_to(struct task_struct *p, bool preempt);
2268 extern void set_user_nice(struct task_struct *p, long nice);
2269 extern int task_prio(const struct task_struct *p);
2270 /**
2271 * task_nice - return the nice value of a given task.
2272 * @p: the task in question.
2273 *
2274 * Return: The nice value [ -20 ... 0 ... 19 ].
2275 */
2276 static inline int task_nice(const struct task_struct *p)
2277 {
2278 return PRIO_TO_NICE((p)->static_prio);
2279 }
2280 extern int can_nice(const struct task_struct *p, const int nice);
2281 extern int task_curr(const struct task_struct *p);
2282 extern int idle_cpu(int cpu);
2283 extern int sched_setscheduler(struct task_struct *, int,
2284 const struct sched_param *);
2285 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2286 const struct sched_param *);
2287 extern int sched_setattr(struct task_struct *,
2288 const struct sched_attr *);
2289 extern struct task_struct *idle_task(int cpu);
2290 /**
2291 * is_idle_task - is the specified task an idle task?
2292 * @p: the task in question.
2293 *
2294 * Return: 1 if @p is an idle task. 0 otherwise.
2295 */
2296 static inline bool is_idle_task(const struct task_struct *p)
2297 {
2298 return p->pid == 0;
2299 }
2300 extern struct task_struct *curr_task(int cpu);
2301 extern void set_curr_task(int cpu, struct task_struct *p);
2302
2303 void yield(void);
2304
2305 union thread_union {
2306 struct thread_info thread_info;
2307 unsigned long stack[THREAD_SIZE/sizeof(long)];
2308 };
2309
2310 #ifndef __HAVE_ARCH_KSTACK_END
2311 static inline int kstack_end(void *addr)
2312 {
2313 /* Reliable end of stack detection:
2314 * Some APM bios versions misalign the stack
2315 */
2316 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2317 }
2318 #endif
2319
2320 extern union thread_union init_thread_union;
2321 extern struct task_struct init_task;
2322
2323 extern struct mm_struct init_mm;
2324
2325 extern struct pid_namespace init_pid_ns;
2326
2327 /*
2328 * find a task by one of its numerical ids
2329 *
2330 * find_task_by_pid_ns():
2331 * finds a task by its pid in the specified namespace
2332 * find_task_by_vpid():
2333 * finds a task by its virtual pid
2334 *
2335 * see also find_vpid() etc in include/linux/pid.h
2336 */
2337
2338 extern struct task_struct *find_task_by_vpid(pid_t nr);
2339 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2340 struct pid_namespace *ns);
2341
2342 /* per-UID process charging. */
2343 extern struct user_struct * alloc_uid(kuid_t);
2344 static inline struct user_struct *get_uid(struct user_struct *u)
2345 {
2346 atomic_inc(&u->__count);
2347 return u;
2348 }
2349 extern void free_uid(struct user_struct *);
2350
2351 #include <asm/current.h>
2352
2353 extern void xtime_update(unsigned long ticks);
2354
2355 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2356 extern int wake_up_process(struct task_struct *tsk);
2357 extern void wake_up_new_task(struct task_struct *tsk);
2358 #ifdef CONFIG_SMP
2359 extern void kick_process(struct task_struct *tsk);
2360 #else
2361 static inline void kick_process(struct task_struct *tsk) { }
2362 #endif
2363 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2364 extern void sched_dead(struct task_struct *p);
2365
2366 extern void proc_caches_init(void);
2367 extern void flush_signals(struct task_struct *);
2368 extern void __flush_signals(struct task_struct *);
2369 extern void ignore_signals(struct task_struct *);
2370 extern void flush_signal_handlers(struct task_struct *, int force_default);
2371 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2372
2373 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2374 {
2375 unsigned long flags;
2376 int ret;
2377
2378 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2379 ret = dequeue_signal(tsk, mask, info);
2380 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2381
2382 return ret;
2383 }
2384
2385 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2386 sigset_t *mask);
2387 extern void unblock_all_signals(void);
2388 extern void release_task(struct task_struct * p);
2389 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2390 extern int force_sigsegv(int, struct task_struct *);
2391 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2392 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2393 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2394 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2395 const struct cred *, u32);
2396 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2397 extern int kill_pid(struct pid *pid, int sig, int priv);
2398 extern int kill_proc_info(int, struct siginfo *, pid_t);
2399 extern __must_check bool do_notify_parent(struct task_struct *, int);
2400 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2401 extern void force_sig(int, struct task_struct *);
2402 extern int send_sig(int, struct task_struct *, int);
2403 extern int zap_other_threads(struct task_struct *p);
2404 extern struct sigqueue *sigqueue_alloc(void);
2405 extern void sigqueue_free(struct sigqueue *);
2406 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2407 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2408
2409 static inline void restore_saved_sigmask(void)
2410 {
2411 if (test_and_clear_restore_sigmask())
2412 __set_current_blocked(&current->saved_sigmask);
2413 }
2414
2415 static inline sigset_t *sigmask_to_save(void)
2416 {
2417 sigset_t *res = &current->blocked;
2418 if (unlikely(test_restore_sigmask()))
2419 res = &current->saved_sigmask;
2420 return res;
2421 }
2422
2423 static inline int kill_cad_pid(int sig, int priv)
2424 {
2425 return kill_pid(cad_pid, sig, priv);
2426 }
2427
2428 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2429 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2430 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2431 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2432
2433 /*
2434 * True if we are on the alternate signal stack.
2435 */
2436 static inline int on_sig_stack(unsigned long sp)
2437 {
2438 #ifdef CONFIG_STACK_GROWSUP
2439 return sp >= current->sas_ss_sp &&
2440 sp - current->sas_ss_sp < current->sas_ss_size;
2441 #else
2442 return sp > current->sas_ss_sp &&
2443 sp - current->sas_ss_sp <= current->sas_ss_size;
2444 #endif
2445 }
2446
2447 static inline int sas_ss_flags(unsigned long sp)
2448 {
2449 if (!current->sas_ss_size)
2450 return SS_DISABLE;
2451
2452 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2453 }
2454
2455 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2456 {
2457 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2458 #ifdef CONFIG_STACK_GROWSUP
2459 return current->sas_ss_sp;
2460 #else
2461 return current->sas_ss_sp + current->sas_ss_size;
2462 #endif
2463 return sp;
2464 }
2465
2466 /*
2467 * Routines for handling mm_structs
2468 */
2469 extern struct mm_struct * mm_alloc(void);
2470
2471 /* mmdrop drops the mm and the page tables */
2472 extern void __mmdrop(struct mm_struct *);
2473 static inline void mmdrop(struct mm_struct * mm)
2474 {
2475 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2476 __mmdrop(mm);
2477 }
2478
2479 /* mmput gets rid of the mappings and all user-space */
2480 extern void mmput(struct mm_struct *);
2481 /* Grab a reference to a task's mm, if it is not already going away */
2482 extern struct mm_struct *get_task_mm(struct task_struct *task);
2483 /*
2484 * Grab a reference to a task's mm, if it is not already going away
2485 * and ptrace_may_access with the mode parameter passed to it
2486 * succeeds.
2487 */
2488 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2489 /* Remove the current tasks stale references to the old mm_struct */
2490 extern void mm_release(struct task_struct *, struct mm_struct *);
2491
2492 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2493 struct task_struct *);
2494 extern void flush_thread(void);
2495 extern void exit_thread(void);
2496
2497 extern void exit_files(struct task_struct *);
2498 extern void __cleanup_sighand(struct sighand_struct *);
2499
2500 extern void exit_itimers(struct signal_struct *);
2501 extern void flush_itimer_signals(void);
2502
2503 extern void do_group_exit(int);
2504
2505 extern int do_execve(struct filename *,
2506 const char __user * const __user *,
2507 const char __user * const __user *);
2508 extern int do_execveat(int, struct filename *,
2509 const char __user * const __user *,
2510 const char __user * const __user *,
2511 int);
2512 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2513 struct task_struct *fork_idle(int);
2514 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2515
2516 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2517 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2518 {
2519 __set_task_comm(tsk, from, false);
2520 }
2521 extern char *get_task_comm(char *to, struct task_struct *tsk);
2522
2523 #ifdef CONFIG_SMP
2524 void scheduler_ipi(void);
2525 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2526 #else
2527 static inline void scheduler_ipi(void) { }
2528 static inline unsigned long wait_task_inactive(struct task_struct *p,
2529 long match_state)
2530 {
2531 return 1;
2532 }
2533 #endif
2534
2535 #define next_task(p) \
2536 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2537
2538 #define for_each_process(p) \
2539 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2540
2541 extern bool current_is_single_threaded(void);
2542
2543 /*
2544 * Careful: do_each_thread/while_each_thread is a double loop so
2545 * 'break' will not work as expected - use goto instead.
2546 */
2547 #define do_each_thread(g, t) \
2548 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2549
2550 #define while_each_thread(g, t) \
2551 while ((t = next_thread(t)) != g)
2552
2553 #define __for_each_thread(signal, t) \
2554 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2555
2556 #define for_each_thread(p, t) \
2557 __for_each_thread((p)->signal, t)
2558
2559 /* Careful: this is a double loop, 'break' won't work as expected. */
2560 #define for_each_process_thread(p, t) \
2561 for_each_process(p) for_each_thread(p, t)
2562
2563 static inline int get_nr_threads(struct task_struct *tsk)
2564 {
2565 return tsk->signal->nr_threads;
2566 }
2567
2568 static inline bool thread_group_leader(struct task_struct *p)
2569 {
2570 return p->exit_signal >= 0;
2571 }
2572
2573 /* Do to the insanities of de_thread it is possible for a process
2574 * to have the pid of the thread group leader without actually being
2575 * the thread group leader. For iteration through the pids in proc
2576 * all we care about is that we have a task with the appropriate
2577 * pid, we don't actually care if we have the right task.
2578 */
2579 static inline bool has_group_leader_pid(struct task_struct *p)
2580 {
2581 return task_pid(p) == p->signal->leader_pid;
2582 }
2583
2584 static inline
2585 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2586 {
2587 return p1->signal == p2->signal;
2588 }
2589
2590 static inline struct task_struct *next_thread(const struct task_struct *p)
2591 {
2592 return list_entry_rcu(p->thread_group.next,
2593 struct task_struct, thread_group);
2594 }
2595
2596 static inline int thread_group_empty(struct task_struct *p)
2597 {
2598 return list_empty(&p->thread_group);
2599 }
2600
2601 #define delay_group_leader(p) \
2602 (thread_group_leader(p) && !thread_group_empty(p))
2603
2604 /*
2605 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2606 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2607 * pins the final release of task.io_context. Also protects ->cpuset and
2608 * ->cgroup.subsys[]. And ->vfork_done.
2609 *
2610 * Nests both inside and outside of read_lock(&tasklist_lock).
2611 * It must not be nested with write_lock_irq(&tasklist_lock),
2612 * neither inside nor outside.
2613 */
2614 static inline void task_lock(struct task_struct *p)
2615 {
2616 spin_lock(&p->alloc_lock);
2617 }
2618
2619 static inline void task_unlock(struct task_struct *p)
2620 {
2621 spin_unlock(&p->alloc_lock);
2622 }
2623
2624 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2625 unsigned long *flags);
2626
2627 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2628 unsigned long *flags)
2629 {
2630 struct sighand_struct *ret;
2631
2632 ret = __lock_task_sighand(tsk, flags);
2633 (void)__cond_lock(&tsk->sighand->siglock, ret);
2634 return ret;
2635 }
2636
2637 static inline void unlock_task_sighand(struct task_struct *tsk,
2638 unsigned long *flags)
2639 {
2640 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2641 }
2642
2643 #ifdef CONFIG_CGROUPS
2644 static inline void threadgroup_change_begin(struct task_struct *tsk)
2645 {
2646 down_read(&tsk->signal->group_rwsem);
2647 }
2648 static inline void threadgroup_change_end(struct task_struct *tsk)
2649 {
2650 up_read(&tsk->signal->group_rwsem);
2651 }
2652
2653 /**
2654 * threadgroup_lock - lock threadgroup
2655 * @tsk: member task of the threadgroup to lock
2656 *
2657 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2658 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2659 * change ->group_leader/pid. This is useful for cases where the threadgroup
2660 * needs to stay stable across blockable operations.
2661 *
2662 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2663 * synchronization. While held, no new task will be added to threadgroup
2664 * and no existing live task will have its PF_EXITING set.
2665 *
2666 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2667 * sub-thread becomes a new leader.
2668 */
2669 static inline void threadgroup_lock(struct task_struct *tsk)
2670 {
2671 down_write(&tsk->signal->group_rwsem);
2672 }
2673
2674 /**
2675 * threadgroup_unlock - unlock threadgroup
2676 * @tsk: member task of the threadgroup to unlock
2677 *
2678 * Reverse threadgroup_lock().
2679 */
2680 static inline void threadgroup_unlock(struct task_struct *tsk)
2681 {
2682 up_write(&tsk->signal->group_rwsem);
2683 }
2684 #else
2685 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2686 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2687 static inline void threadgroup_lock(struct task_struct *tsk) {}
2688 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2689 #endif
2690
2691 #ifndef __HAVE_THREAD_FUNCTIONS
2692
2693 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2694 #define task_stack_page(task) ((task)->stack)
2695
2696 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2697 {
2698 *task_thread_info(p) = *task_thread_info(org);
2699 task_thread_info(p)->task = p;
2700 }
2701
2702 /*
2703 * Return the address of the last usable long on the stack.
2704 *
2705 * When the stack grows down, this is just above the thread
2706 * info struct. Going any lower will corrupt the threadinfo.
2707 *
2708 * When the stack grows up, this is the highest address.
2709 * Beyond that position, we corrupt data on the next page.
2710 */
2711 static inline unsigned long *end_of_stack(struct task_struct *p)
2712 {
2713 #ifdef CONFIG_STACK_GROWSUP
2714 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2715 #else
2716 return (unsigned long *)(task_thread_info(p) + 1);
2717 #endif
2718 }
2719
2720 #endif
2721 #define task_stack_end_corrupted(task) \
2722 (*(end_of_stack(task)) != STACK_END_MAGIC)
2723
2724 static inline int object_is_on_stack(void *obj)
2725 {
2726 void *stack = task_stack_page(current);
2727
2728 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2729 }
2730
2731 extern void thread_info_cache_init(void);
2732
2733 #ifdef CONFIG_DEBUG_STACK_USAGE
2734 static inline unsigned long stack_not_used(struct task_struct *p)
2735 {
2736 unsigned long *n = end_of_stack(p);
2737
2738 do { /* Skip over canary */
2739 n++;
2740 } while (!*n);
2741
2742 return (unsigned long)n - (unsigned long)end_of_stack(p);
2743 }
2744 #endif
2745 extern void set_task_stack_end_magic(struct task_struct *tsk);
2746
2747 /* set thread flags in other task's structures
2748 * - see asm/thread_info.h for TIF_xxxx flags available
2749 */
2750 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2751 {
2752 set_ti_thread_flag(task_thread_info(tsk), flag);
2753 }
2754
2755 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2756 {
2757 clear_ti_thread_flag(task_thread_info(tsk), flag);
2758 }
2759
2760 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2761 {
2762 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2763 }
2764
2765 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2766 {
2767 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2768 }
2769
2770 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2771 {
2772 return test_ti_thread_flag(task_thread_info(tsk), flag);
2773 }
2774
2775 static inline void set_tsk_need_resched(struct task_struct *tsk)
2776 {
2777 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2778 }
2779
2780 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2781 {
2782 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2783 }
2784
2785 static inline int test_tsk_need_resched(struct task_struct *tsk)
2786 {
2787 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2788 }
2789
2790 static inline int restart_syscall(void)
2791 {
2792 set_tsk_thread_flag(current, TIF_SIGPENDING);
2793 return -ERESTARTNOINTR;
2794 }
2795
2796 static inline int signal_pending(struct task_struct *p)
2797 {
2798 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2799 }
2800
2801 static inline int __fatal_signal_pending(struct task_struct *p)
2802 {
2803 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2804 }
2805
2806 static inline int fatal_signal_pending(struct task_struct *p)
2807 {
2808 return signal_pending(p) && __fatal_signal_pending(p);
2809 }
2810
2811 static inline int signal_pending_state(long state, struct task_struct *p)
2812 {
2813 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2814 return 0;
2815 if (!signal_pending(p))
2816 return 0;
2817
2818 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2819 }
2820
2821 /*
2822 * cond_resched() and cond_resched_lock(): latency reduction via
2823 * explicit rescheduling in places that are safe. The return
2824 * value indicates whether a reschedule was done in fact.
2825 * cond_resched_lock() will drop the spinlock before scheduling,
2826 * cond_resched_softirq() will enable bhs before scheduling.
2827 */
2828 extern int _cond_resched(void);
2829
2830 #define cond_resched() ({ \
2831 ___might_sleep(__FILE__, __LINE__, 0); \
2832 _cond_resched(); \
2833 })
2834
2835 extern int __cond_resched_lock(spinlock_t *lock);
2836
2837 #ifdef CONFIG_PREEMPT_COUNT
2838 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2839 #else
2840 #define PREEMPT_LOCK_OFFSET 0
2841 #endif
2842
2843 #define cond_resched_lock(lock) ({ \
2844 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2845 __cond_resched_lock(lock); \
2846 })
2847
2848 extern int __cond_resched_softirq(void);
2849
2850 #define cond_resched_softirq() ({ \
2851 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2852 __cond_resched_softirq(); \
2853 })
2854
2855 static inline void cond_resched_rcu(void)
2856 {
2857 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2858 rcu_read_unlock();
2859 cond_resched();
2860 rcu_read_lock();
2861 #endif
2862 }
2863
2864 /*
2865 * Does a critical section need to be broken due to another
2866 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2867 * but a general need for low latency)
2868 */
2869 static inline int spin_needbreak(spinlock_t *lock)
2870 {
2871 #ifdef CONFIG_PREEMPT
2872 return spin_is_contended(lock);
2873 #else
2874 return 0;
2875 #endif
2876 }
2877
2878 /*
2879 * Idle thread specific functions to determine the need_resched
2880 * polling state.
2881 */
2882 #ifdef TIF_POLLING_NRFLAG
2883 static inline int tsk_is_polling(struct task_struct *p)
2884 {
2885 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2886 }
2887
2888 static inline void __current_set_polling(void)
2889 {
2890 set_thread_flag(TIF_POLLING_NRFLAG);
2891 }
2892
2893 static inline bool __must_check current_set_polling_and_test(void)
2894 {
2895 __current_set_polling();
2896
2897 /*
2898 * Polling state must be visible before we test NEED_RESCHED,
2899 * paired by resched_curr()
2900 */
2901 smp_mb__after_atomic();
2902
2903 return unlikely(tif_need_resched());
2904 }
2905
2906 static inline void __current_clr_polling(void)
2907 {
2908 clear_thread_flag(TIF_POLLING_NRFLAG);
2909 }
2910
2911 static inline bool __must_check current_clr_polling_and_test(void)
2912 {
2913 __current_clr_polling();
2914
2915 /*
2916 * Polling state must be visible before we test NEED_RESCHED,
2917 * paired by resched_curr()
2918 */
2919 smp_mb__after_atomic();
2920
2921 return unlikely(tif_need_resched());
2922 }
2923
2924 #else
2925 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2926 static inline void __current_set_polling(void) { }
2927 static inline void __current_clr_polling(void) { }
2928
2929 static inline bool __must_check current_set_polling_and_test(void)
2930 {
2931 return unlikely(tif_need_resched());
2932 }
2933 static inline bool __must_check current_clr_polling_and_test(void)
2934 {
2935 return unlikely(tif_need_resched());
2936 }
2937 #endif
2938
2939 static inline void current_clr_polling(void)
2940 {
2941 __current_clr_polling();
2942
2943 /*
2944 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2945 * Once the bit is cleared, we'll get IPIs with every new
2946 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2947 * fold.
2948 */
2949 smp_mb(); /* paired with resched_curr() */
2950
2951 preempt_fold_need_resched();
2952 }
2953
2954 static __always_inline bool need_resched(void)
2955 {
2956 return unlikely(tif_need_resched());
2957 }
2958
2959 /*
2960 * Thread group CPU time accounting.
2961 */
2962 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2963 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2964
2965 static inline void thread_group_cputime_init(struct signal_struct *sig)
2966 {
2967 raw_spin_lock_init(&sig->cputimer.lock);
2968 }
2969
2970 /*
2971 * Reevaluate whether the task has signals pending delivery.
2972 * Wake the task if so.
2973 * This is required every time the blocked sigset_t changes.
2974 * callers must hold sighand->siglock.
2975 */
2976 extern void recalc_sigpending_and_wake(struct task_struct *t);
2977 extern void recalc_sigpending(void);
2978
2979 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2980
2981 static inline void signal_wake_up(struct task_struct *t, bool resume)
2982 {
2983 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2984 }
2985 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2986 {
2987 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2988 }
2989
2990 /*
2991 * Wrappers for p->thread_info->cpu access. No-op on UP.
2992 */
2993 #ifdef CONFIG_SMP
2994
2995 static inline unsigned int task_cpu(const struct task_struct *p)
2996 {
2997 return task_thread_info(p)->cpu;
2998 }
2999
3000 static inline int task_node(const struct task_struct *p)
3001 {
3002 return cpu_to_node(task_cpu(p));
3003 }
3004
3005 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3006
3007 #else
3008
3009 static inline unsigned int task_cpu(const struct task_struct *p)
3010 {
3011 return 0;
3012 }
3013
3014 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3015 {
3016 }
3017
3018 #endif /* CONFIG_SMP */
3019
3020 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3021 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3022
3023 #ifdef CONFIG_CGROUP_SCHED
3024 extern struct task_group root_task_group;
3025 #endif /* CONFIG_CGROUP_SCHED */
3026
3027 extern int task_can_switch_user(struct user_struct *up,
3028 struct task_struct *tsk);
3029
3030 #ifdef CONFIG_TASK_XACCT
3031 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3032 {
3033 tsk->ioac.rchar += amt;
3034 }
3035
3036 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3037 {
3038 tsk->ioac.wchar += amt;
3039 }
3040
3041 static inline void inc_syscr(struct task_struct *tsk)
3042 {
3043 tsk->ioac.syscr++;
3044 }
3045
3046 static inline void inc_syscw(struct task_struct *tsk)
3047 {
3048 tsk->ioac.syscw++;
3049 }
3050 #else
3051 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3052 {
3053 }
3054
3055 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3056 {
3057 }
3058
3059 static inline void inc_syscr(struct task_struct *tsk)
3060 {
3061 }
3062
3063 static inline void inc_syscw(struct task_struct *tsk)
3064 {
3065 }
3066 #endif
3067
3068 #ifndef TASK_SIZE_OF
3069 #define TASK_SIZE_OF(tsk) TASK_SIZE
3070 #endif
3071
3072 #ifdef CONFIG_MEMCG
3073 extern void mm_update_next_owner(struct mm_struct *mm);
3074 #else
3075 static inline void mm_update_next_owner(struct mm_struct *mm)
3076 {
3077 }
3078 #endif /* CONFIG_MEMCG */
3079
3080 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3081 unsigned int limit)
3082 {
3083 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3084 }
3085
3086 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3087 unsigned int limit)
3088 {
3089 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3090 }
3091
3092 static inline unsigned long rlimit(unsigned int limit)
3093 {
3094 return task_rlimit(current, limit);
3095 }
3096
3097 static inline unsigned long rlimit_max(unsigned int limit)
3098 {
3099 return task_rlimit_max(current, limit);
3100 }
3101
3102 #endif