]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
sched: Add default defines for PREEMPT_ACTIVE
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_counter_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern void calc_global_load(void);
144 extern u64 cpu_nr_migrations(int cpu);
145
146 extern unsigned long get_parent_ip(unsigned long addr);
147
148 struct seq_file;
149 struct cfs_rq;
150 struct task_group;
151 #ifdef CONFIG_SCHED_DEBUG
152 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
153 extern void proc_sched_set_task(struct task_struct *p);
154 extern void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
156 #else
157 static inline void
158 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
159 {
160 }
161 static inline void proc_sched_set_task(struct task_struct *p)
162 {
163 }
164 static inline void
165 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
166 {
167 }
168 #endif
169
170 extern unsigned long long time_sync_thresh;
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193
194 /* Convenience macros for the sake of set_task_state */
195 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
196 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
197 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
198
199 /* Convenience macros for the sake of wake_up */
200 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
201 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
202
203 /* get_task_state() */
204 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
205 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
206 __TASK_TRACED)
207
208 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
209 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
210 #define task_is_stopped_or_traced(task) \
211 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
212 #define task_contributes_to_load(task) \
213 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
214 (task->flags & PF_FREEZING) == 0)
215
216 #define __set_task_state(tsk, state_value) \
217 do { (tsk)->state = (state_value); } while (0)
218 #define set_task_state(tsk, state_value) \
219 set_mb((tsk)->state, (state_value))
220
221 /*
222 * set_current_state() includes a barrier so that the write of current->state
223 * is correctly serialised wrt the caller's subsequent test of whether to
224 * actually sleep:
225 *
226 * set_current_state(TASK_UNINTERRUPTIBLE);
227 * if (do_i_need_to_sleep())
228 * schedule();
229 *
230 * If the caller does not need such serialisation then use __set_current_state()
231 */
232 #define __set_current_state(state_value) \
233 do { current->state = (state_value); } while (0)
234 #define set_current_state(state_value) \
235 set_mb(current->state, (state_value))
236
237 /* Task command name length */
238 #define TASK_COMM_LEN 16
239
240 #include <linux/spinlock.h>
241
242 /*
243 * This serializes "schedule()" and also protects
244 * the run-queue from deletions/modifications (but
245 * _adding_ to the beginning of the run-queue has
246 * a separate lock).
247 */
248 extern rwlock_t tasklist_lock;
249 extern spinlock_t mmlist_lock;
250
251 struct task_struct;
252
253 extern void sched_init(void);
254 extern void sched_init_smp(void);
255 extern asmlinkage void schedule_tail(struct task_struct *prev);
256 extern void init_idle(struct task_struct *idle, int cpu);
257 extern void init_idle_bootup_task(struct task_struct *idle);
258
259 extern int runqueue_is_locked(void);
260 extern void task_rq_unlock_wait(struct task_struct *p);
261
262 extern cpumask_var_t nohz_cpu_mask;
263 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
264 extern int select_nohz_load_balancer(int cpu);
265 extern int get_nohz_load_balancer(void);
266 #else
267 static inline int select_nohz_load_balancer(int cpu)
268 {
269 return 0;
270 }
271 #endif
272
273 /*
274 * Only dump TASK_* tasks. (0 for all tasks)
275 */
276 extern void show_state_filter(unsigned long state_filter);
277
278 static inline void show_state(void)
279 {
280 show_state_filter(0);
281 }
282
283 extern void show_regs(struct pt_regs *);
284
285 /*
286 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
287 * task), SP is the stack pointer of the first frame that should be shown in the back
288 * trace (or NULL if the entire call-chain of the task should be shown).
289 */
290 extern void show_stack(struct task_struct *task, unsigned long *sp);
291
292 void io_schedule(void);
293 long io_schedule_timeout(long timeout);
294
295 extern void cpu_init (void);
296 extern void trap_init(void);
297 extern void update_process_times(int user);
298 extern void scheduler_tick(void);
299
300 extern void sched_show_task(struct task_struct *p);
301
302 #ifdef CONFIG_DETECT_SOFTLOCKUP
303 extern void softlockup_tick(void);
304 extern void touch_softlockup_watchdog(void);
305 extern void touch_all_softlockup_watchdogs(void);
306 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
307 struct file *filp, void __user *buffer,
308 size_t *lenp, loff_t *ppos);
309 extern unsigned int softlockup_panic;
310 extern int softlockup_thresh;
311 #else
312 static inline void softlockup_tick(void)
313 {
314 }
315 static inline void touch_softlockup_watchdog(void)
316 {
317 }
318 static inline void touch_all_softlockup_watchdogs(void)
319 {
320 }
321 #endif
322
323 #ifdef CONFIG_DETECT_HUNG_TASK
324 extern unsigned int sysctl_hung_task_panic;
325 extern unsigned long sysctl_hung_task_check_count;
326 extern unsigned long sysctl_hung_task_timeout_secs;
327 extern unsigned long sysctl_hung_task_warnings;
328 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
329 struct file *filp, void __user *buffer,
330 size_t *lenp, loff_t *ppos);
331 #endif
332
333 /* Attach to any functions which should be ignored in wchan output. */
334 #define __sched __attribute__((__section__(".sched.text")))
335
336 /* Linker adds these: start and end of __sched functions */
337 extern char __sched_text_start[], __sched_text_end[];
338
339 /* Is this address in the __sched functions? */
340 extern int in_sched_functions(unsigned long addr);
341
342 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
343 extern signed long schedule_timeout(signed long timeout);
344 extern signed long schedule_timeout_interruptible(signed long timeout);
345 extern signed long schedule_timeout_killable(signed long timeout);
346 extern signed long schedule_timeout_uninterruptible(signed long timeout);
347 asmlinkage void __schedule(void);
348 asmlinkage void schedule(void);
349 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
350
351 struct nsproxy;
352 struct user_namespace;
353
354 /*
355 * Default maximum number of active map areas, this limits the number of vmas
356 * per mm struct. Users can overwrite this number by sysctl but there is a
357 * problem.
358 *
359 * When a program's coredump is generated as ELF format, a section is created
360 * per a vma. In ELF, the number of sections is represented in unsigned short.
361 * This means the number of sections should be smaller than 65535 at coredump.
362 * Because the kernel adds some informative sections to a image of program at
363 * generating coredump, we need some margin. The number of extra sections is
364 * 1-3 now and depends on arch. We use "5" as safe margin, here.
365 */
366 #define MAPCOUNT_ELF_CORE_MARGIN (5)
367 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
368
369 extern int sysctl_max_map_count;
370
371 #include <linux/aio.h>
372
373 extern unsigned long
374 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
375 unsigned long, unsigned long);
376 extern unsigned long
377 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
378 unsigned long len, unsigned long pgoff,
379 unsigned long flags);
380 extern void arch_unmap_area(struct mm_struct *, unsigned long);
381 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
382
383 #if USE_SPLIT_PTLOCKS
384 /*
385 * The mm counters are not protected by its page_table_lock,
386 * so must be incremented atomically.
387 */
388 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
389 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
390 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
391 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
392 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
393
394 #else /* !USE_SPLIT_PTLOCKS */
395 /*
396 * The mm counters are protected by its page_table_lock,
397 * so can be incremented directly.
398 */
399 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
400 #define get_mm_counter(mm, member) ((mm)->_##member)
401 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
402 #define inc_mm_counter(mm, member) (mm)->_##member++
403 #define dec_mm_counter(mm, member) (mm)->_##member--
404
405 #endif /* !USE_SPLIT_PTLOCKS */
406
407 #define get_mm_rss(mm) \
408 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
409 #define update_hiwater_rss(mm) do { \
410 unsigned long _rss = get_mm_rss(mm); \
411 if ((mm)->hiwater_rss < _rss) \
412 (mm)->hiwater_rss = _rss; \
413 } while (0)
414 #define update_hiwater_vm(mm) do { \
415 if ((mm)->hiwater_vm < (mm)->total_vm) \
416 (mm)->hiwater_vm = (mm)->total_vm; \
417 } while (0)
418
419 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
420 {
421 return max(mm->hiwater_rss, get_mm_rss(mm));
422 }
423
424 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
425 {
426 return max(mm->hiwater_vm, mm->total_vm);
427 }
428
429 extern void set_dumpable(struct mm_struct *mm, int value);
430 extern int get_dumpable(struct mm_struct *mm);
431
432 /* mm flags */
433 /* dumpable bits */
434 #define MMF_DUMPABLE 0 /* core dump is permitted */
435 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
436 #define MMF_DUMPABLE_BITS 2
437
438 /* coredump filter bits */
439 #define MMF_DUMP_ANON_PRIVATE 2
440 #define MMF_DUMP_ANON_SHARED 3
441 #define MMF_DUMP_MAPPED_PRIVATE 4
442 #define MMF_DUMP_MAPPED_SHARED 5
443 #define MMF_DUMP_ELF_HEADERS 6
444 #define MMF_DUMP_HUGETLB_PRIVATE 7
445 #define MMF_DUMP_HUGETLB_SHARED 8
446 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
447 #define MMF_DUMP_FILTER_BITS 7
448 #define MMF_DUMP_FILTER_MASK \
449 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
450 #define MMF_DUMP_FILTER_DEFAULT \
451 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
452 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
453
454 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
455 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
456 #else
457 # define MMF_DUMP_MASK_DEFAULT_ELF 0
458 #endif
459
460 struct sighand_struct {
461 atomic_t count;
462 struct k_sigaction action[_NSIG];
463 spinlock_t siglock;
464 wait_queue_head_t signalfd_wqh;
465 };
466
467 struct pacct_struct {
468 int ac_flag;
469 long ac_exitcode;
470 unsigned long ac_mem;
471 cputime_t ac_utime, ac_stime;
472 unsigned long ac_minflt, ac_majflt;
473 };
474
475 /**
476 * struct task_cputime - collected CPU time counts
477 * @utime: time spent in user mode, in &cputime_t units
478 * @stime: time spent in kernel mode, in &cputime_t units
479 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
480 *
481 * This structure groups together three kinds of CPU time that are
482 * tracked for threads and thread groups. Most things considering
483 * CPU time want to group these counts together and treat all three
484 * of them in parallel.
485 */
486 struct task_cputime {
487 cputime_t utime;
488 cputime_t stime;
489 unsigned long long sum_exec_runtime;
490 };
491 /* Alternate field names when used to cache expirations. */
492 #define prof_exp stime
493 #define virt_exp utime
494 #define sched_exp sum_exec_runtime
495
496 #define INIT_CPUTIME \
497 (struct task_cputime) { \
498 .utime = cputime_zero, \
499 .stime = cputime_zero, \
500 .sum_exec_runtime = 0, \
501 }
502
503 /*
504 * Disable preemption until the scheduler is running.
505 * Reset by start_kernel()->sched_init()->init_idle().
506 *
507 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
508 * before the scheduler is active -- see should_resched().
509 */
510 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
511
512 /**
513 * struct thread_group_cputimer - thread group interval timer counts
514 * @cputime: thread group interval timers.
515 * @running: non-zero when there are timers running and
516 * @cputime receives updates.
517 * @lock: lock for fields in this struct.
518 *
519 * This structure contains the version of task_cputime, above, that is
520 * used for thread group CPU timer calculations.
521 */
522 struct thread_group_cputimer {
523 struct task_cputime cputime;
524 int running;
525 spinlock_t lock;
526 };
527
528 /*
529 * NOTE! "signal_struct" does not have it's own
530 * locking, because a shared signal_struct always
531 * implies a shared sighand_struct, so locking
532 * sighand_struct is always a proper superset of
533 * the locking of signal_struct.
534 */
535 struct signal_struct {
536 atomic_t count;
537 atomic_t live;
538
539 wait_queue_head_t wait_chldexit; /* for wait4() */
540
541 /* current thread group signal load-balancing target: */
542 struct task_struct *curr_target;
543
544 /* shared signal handling: */
545 struct sigpending shared_pending;
546
547 /* thread group exit support */
548 int group_exit_code;
549 /* overloaded:
550 * - notify group_exit_task when ->count is equal to notify_count
551 * - everyone except group_exit_task is stopped during signal delivery
552 * of fatal signals, group_exit_task processes the signal.
553 */
554 int notify_count;
555 struct task_struct *group_exit_task;
556
557 /* thread group stop support, overloads group_exit_code too */
558 int group_stop_count;
559 unsigned int flags; /* see SIGNAL_* flags below */
560
561 /* POSIX.1b Interval Timers */
562 struct list_head posix_timers;
563
564 /* ITIMER_REAL timer for the process */
565 struct hrtimer real_timer;
566 struct pid *leader_pid;
567 ktime_t it_real_incr;
568
569 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
570 cputime_t it_prof_expires, it_virt_expires;
571 cputime_t it_prof_incr, it_virt_incr;
572
573 /*
574 * Thread group totals for process CPU timers.
575 * See thread_group_cputimer(), et al, for details.
576 */
577 struct thread_group_cputimer cputimer;
578
579 /* Earliest-expiration cache. */
580 struct task_cputime cputime_expires;
581
582 struct list_head cpu_timers[3];
583
584 struct pid *tty_old_pgrp;
585
586 /* boolean value for session group leader */
587 int leader;
588
589 struct tty_struct *tty; /* NULL if no tty */
590
591 /*
592 * Cumulative resource counters for dead threads in the group,
593 * and for reaped dead child processes forked by this group.
594 * Live threads maintain their own counters and add to these
595 * in __exit_signal, except for the group leader.
596 */
597 cputime_t utime, stime, cutime, cstime;
598 cputime_t gtime;
599 cputime_t cgtime;
600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 unsigned long inblock, oublock, cinblock, coublock;
603 struct task_io_accounting ioac;
604
605 /*
606 * Cumulative ns of schedule CPU time fo dead threads in the
607 * group, not including a zombie group leader, (This only differs
608 * from jiffies_to_ns(utime + stime) if sched_clock uses something
609 * other than jiffies.)
610 */
611 unsigned long long sum_sched_runtime;
612
613 /*
614 * We don't bother to synchronize most readers of this at all,
615 * because there is no reader checking a limit that actually needs
616 * to get both rlim_cur and rlim_max atomically, and either one
617 * alone is a single word that can safely be read normally.
618 * getrlimit/setrlimit use task_lock(current->group_leader) to
619 * protect this instead of the siglock, because they really
620 * have no need to disable irqs.
621 */
622 struct rlimit rlim[RLIM_NLIMITS];
623
624 #ifdef CONFIG_BSD_PROCESS_ACCT
625 struct pacct_struct pacct; /* per-process accounting information */
626 #endif
627 #ifdef CONFIG_TASKSTATS
628 struct taskstats *stats;
629 #endif
630 #ifdef CONFIG_AUDIT
631 unsigned audit_tty;
632 struct tty_audit_buf *tty_audit_buf;
633 #endif
634 };
635
636 /* Context switch must be unlocked if interrupts are to be enabled */
637 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
638 # define __ARCH_WANT_UNLOCKED_CTXSW
639 #endif
640
641 /*
642 * Bits in flags field of signal_struct.
643 */
644 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
645 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
646 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
647 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
648 /*
649 * Pending notifications to parent.
650 */
651 #define SIGNAL_CLD_STOPPED 0x00000010
652 #define SIGNAL_CLD_CONTINUED 0x00000020
653 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
654
655 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
656
657 /* If true, all threads except ->group_exit_task have pending SIGKILL */
658 static inline int signal_group_exit(const struct signal_struct *sig)
659 {
660 return (sig->flags & SIGNAL_GROUP_EXIT) ||
661 (sig->group_exit_task != NULL);
662 }
663
664 /*
665 * Some day this will be a full-fledged user tracking system..
666 */
667 struct user_struct {
668 atomic_t __count; /* reference count */
669 atomic_t processes; /* How many processes does this user have? */
670 atomic_t files; /* How many open files does this user have? */
671 atomic_t sigpending; /* How many pending signals does this user have? */
672 #ifdef CONFIG_INOTIFY_USER
673 atomic_t inotify_watches; /* How many inotify watches does this user have? */
674 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
675 #endif
676 #ifdef CONFIG_EPOLL
677 atomic_t epoll_watches; /* The number of file descriptors currently watched */
678 #endif
679 #ifdef CONFIG_POSIX_MQUEUE
680 /* protected by mq_lock */
681 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
682 #endif
683 unsigned long locked_shm; /* How many pages of mlocked shm ? */
684
685 #ifdef CONFIG_KEYS
686 struct key *uid_keyring; /* UID specific keyring */
687 struct key *session_keyring; /* UID's default session keyring */
688 #endif
689
690 /* Hash table maintenance information */
691 struct hlist_node uidhash_node;
692 uid_t uid;
693 struct user_namespace *user_ns;
694
695 #ifdef CONFIG_USER_SCHED
696 struct task_group *tg;
697 #ifdef CONFIG_SYSFS
698 struct kobject kobj;
699 struct delayed_work work;
700 #endif
701 #endif
702
703 #ifdef CONFIG_PERF_COUNTERS
704 atomic_long_t locked_vm;
705 #endif
706 };
707
708 extern int uids_sysfs_init(void);
709
710 extern struct user_struct *find_user(uid_t);
711
712 extern struct user_struct root_user;
713 #define INIT_USER (&root_user)
714
715
716 struct backing_dev_info;
717 struct reclaim_state;
718
719 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
720 struct sched_info {
721 /* cumulative counters */
722 unsigned long pcount; /* # of times run on this cpu */
723 unsigned long long run_delay; /* time spent waiting on a runqueue */
724
725 /* timestamps */
726 unsigned long long last_arrival,/* when we last ran on a cpu */
727 last_queued; /* when we were last queued to run */
728 #ifdef CONFIG_SCHEDSTATS
729 /* BKL stats */
730 unsigned int bkl_count;
731 #endif
732 };
733 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
734
735 #ifdef CONFIG_TASK_DELAY_ACCT
736 struct task_delay_info {
737 spinlock_t lock;
738 unsigned int flags; /* Private per-task flags */
739
740 /* For each stat XXX, add following, aligned appropriately
741 *
742 * struct timespec XXX_start, XXX_end;
743 * u64 XXX_delay;
744 * u32 XXX_count;
745 *
746 * Atomicity of updates to XXX_delay, XXX_count protected by
747 * single lock above (split into XXX_lock if contention is an issue).
748 */
749
750 /*
751 * XXX_count is incremented on every XXX operation, the delay
752 * associated with the operation is added to XXX_delay.
753 * XXX_delay contains the accumulated delay time in nanoseconds.
754 */
755 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
756 u64 blkio_delay; /* wait for sync block io completion */
757 u64 swapin_delay; /* wait for swapin block io completion */
758 u32 blkio_count; /* total count of the number of sync block */
759 /* io operations performed */
760 u32 swapin_count; /* total count of the number of swapin block */
761 /* io operations performed */
762
763 struct timespec freepages_start, freepages_end;
764 u64 freepages_delay; /* wait for memory reclaim */
765 u32 freepages_count; /* total count of memory reclaim */
766 };
767 #endif /* CONFIG_TASK_DELAY_ACCT */
768
769 static inline int sched_info_on(void)
770 {
771 #ifdef CONFIG_SCHEDSTATS
772 return 1;
773 #elif defined(CONFIG_TASK_DELAY_ACCT)
774 extern int delayacct_on;
775 return delayacct_on;
776 #else
777 return 0;
778 #endif
779 }
780
781 enum cpu_idle_type {
782 CPU_IDLE,
783 CPU_NOT_IDLE,
784 CPU_NEWLY_IDLE,
785 CPU_MAX_IDLE_TYPES
786 };
787
788 /*
789 * sched-domains (multiprocessor balancing) declarations:
790 */
791
792 /*
793 * Increase resolution of nice-level calculations:
794 */
795 #define SCHED_LOAD_SHIFT 10
796 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
797
798 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
799
800 #ifdef CONFIG_SMP
801 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
802 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
803 #define SD_BALANCE_EXEC 4 /* Balance on exec */
804 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
805 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
806 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
807 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
808 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
809 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
810 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
811 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
812 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
813
814 enum powersavings_balance_level {
815 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
816 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
817 * first for long running threads
818 */
819 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
820 * cpu package for power savings
821 */
822 MAX_POWERSAVINGS_BALANCE_LEVELS
823 };
824
825 extern int sched_mc_power_savings, sched_smt_power_savings;
826
827 static inline int sd_balance_for_mc_power(void)
828 {
829 if (sched_smt_power_savings)
830 return SD_POWERSAVINGS_BALANCE;
831
832 return 0;
833 }
834
835 static inline int sd_balance_for_package_power(void)
836 {
837 if (sched_mc_power_savings | sched_smt_power_savings)
838 return SD_POWERSAVINGS_BALANCE;
839
840 return 0;
841 }
842
843 /*
844 * Optimise SD flags for power savings:
845 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
846 * Keep default SD flags if sched_{smt,mc}_power_saving=0
847 */
848
849 static inline int sd_power_saving_flags(void)
850 {
851 if (sched_mc_power_savings | sched_smt_power_savings)
852 return SD_BALANCE_NEWIDLE;
853
854 return 0;
855 }
856
857 struct sched_group {
858 struct sched_group *next; /* Must be a circular list */
859
860 /*
861 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
862 * single CPU. This is read only (except for setup, hotplug CPU).
863 * Note : Never change cpu_power without recompute its reciprocal
864 */
865 unsigned int __cpu_power;
866 /*
867 * reciprocal value of cpu_power to avoid expensive divides
868 * (see include/linux/reciprocal_div.h)
869 */
870 u32 reciprocal_cpu_power;
871
872 /*
873 * The CPUs this group covers.
874 *
875 * NOTE: this field is variable length. (Allocated dynamically
876 * by attaching extra space to the end of the structure,
877 * depending on how many CPUs the kernel has booted up with)
878 *
879 * It is also be embedded into static data structures at build
880 * time. (See 'struct static_sched_group' in kernel/sched.c)
881 */
882 unsigned long cpumask[0];
883 };
884
885 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
886 {
887 return to_cpumask(sg->cpumask);
888 }
889
890 enum sched_domain_level {
891 SD_LV_NONE = 0,
892 SD_LV_SIBLING,
893 SD_LV_MC,
894 SD_LV_CPU,
895 SD_LV_NODE,
896 SD_LV_ALLNODES,
897 SD_LV_MAX
898 };
899
900 struct sched_domain_attr {
901 int relax_domain_level;
902 };
903
904 #define SD_ATTR_INIT (struct sched_domain_attr) { \
905 .relax_domain_level = -1, \
906 }
907
908 struct sched_domain {
909 /* These fields must be setup */
910 struct sched_domain *parent; /* top domain must be null terminated */
911 struct sched_domain *child; /* bottom domain must be null terminated */
912 struct sched_group *groups; /* the balancing groups of the domain */
913 unsigned long min_interval; /* Minimum balance interval ms */
914 unsigned long max_interval; /* Maximum balance interval ms */
915 unsigned int busy_factor; /* less balancing by factor if busy */
916 unsigned int imbalance_pct; /* No balance until over watermark */
917 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
918 unsigned int busy_idx;
919 unsigned int idle_idx;
920 unsigned int newidle_idx;
921 unsigned int wake_idx;
922 unsigned int forkexec_idx;
923 int flags; /* See SD_* */
924 enum sched_domain_level level;
925
926 /* Runtime fields. */
927 unsigned long last_balance; /* init to jiffies. units in jiffies */
928 unsigned int balance_interval; /* initialise to 1. units in ms. */
929 unsigned int nr_balance_failed; /* initialise to 0 */
930
931 u64 last_update;
932
933 #ifdef CONFIG_SCHEDSTATS
934 /* load_balance() stats */
935 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
941 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
942 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
943
944 /* Active load balancing */
945 unsigned int alb_count;
946 unsigned int alb_failed;
947 unsigned int alb_pushed;
948
949 /* SD_BALANCE_EXEC stats */
950 unsigned int sbe_count;
951 unsigned int sbe_balanced;
952 unsigned int sbe_pushed;
953
954 /* SD_BALANCE_FORK stats */
955 unsigned int sbf_count;
956 unsigned int sbf_balanced;
957 unsigned int sbf_pushed;
958
959 /* try_to_wake_up() stats */
960 unsigned int ttwu_wake_remote;
961 unsigned int ttwu_move_affine;
962 unsigned int ttwu_move_balance;
963 #endif
964 #ifdef CONFIG_SCHED_DEBUG
965 char *name;
966 #endif
967
968 /*
969 * Span of all CPUs in this domain.
970 *
971 * NOTE: this field is variable length. (Allocated dynamically
972 * by attaching extra space to the end of the structure,
973 * depending on how many CPUs the kernel has booted up with)
974 *
975 * It is also be embedded into static data structures at build
976 * time. (See 'struct static_sched_domain' in kernel/sched.c)
977 */
978 unsigned long span[0];
979 };
980
981 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
982 {
983 return to_cpumask(sd->span);
984 }
985
986 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
987 struct sched_domain_attr *dattr_new);
988
989 /* Test a flag in parent sched domain */
990 static inline int test_sd_parent(struct sched_domain *sd, int flag)
991 {
992 if (sd->parent && (sd->parent->flags & flag))
993 return 1;
994
995 return 0;
996 }
997
998 #else /* CONFIG_SMP */
999
1000 struct sched_domain_attr;
1001
1002 static inline void
1003 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1004 struct sched_domain_attr *dattr_new)
1005 {
1006 }
1007 #endif /* !CONFIG_SMP */
1008
1009 struct io_context; /* See blkdev.h */
1010
1011
1012 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1013 extern void prefetch_stack(struct task_struct *t);
1014 #else
1015 static inline void prefetch_stack(struct task_struct *t) { }
1016 #endif
1017
1018 struct audit_context; /* See audit.c */
1019 struct mempolicy;
1020 struct pipe_inode_info;
1021 struct uts_namespace;
1022
1023 struct rq;
1024 struct sched_domain;
1025
1026 struct sched_class {
1027 const struct sched_class *next;
1028
1029 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1030 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1031 void (*yield_task) (struct rq *rq);
1032
1033 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1034
1035 struct task_struct * (*pick_next_task) (struct rq *rq);
1036 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1037
1038 #ifdef CONFIG_SMP
1039 int (*select_task_rq)(struct task_struct *p, int sync);
1040
1041 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1042 struct rq *busiest, unsigned long max_load_move,
1043 struct sched_domain *sd, enum cpu_idle_type idle,
1044 int *all_pinned, int *this_best_prio);
1045
1046 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1047 struct rq *busiest, struct sched_domain *sd,
1048 enum cpu_idle_type idle);
1049 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1050 void (*post_schedule) (struct rq *this_rq);
1051 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1052
1053 void (*set_cpus_allowed)(struct task_struct *p,
1054 const struct cpumask *newmask);
1055
1056 void (*rq_online)(struct rq *rq);
1057 void (*rq_offline)(struct rq *rq);
1058 #endif
1059
1060 void (*set_curr_task) (struct rq *rq);
1061 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1062 void (*task_new) (struct rq *rq, struct task_struct *p);
1063
1064 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1065 int running);
1066 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1067 int running);
1068 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1069 int oldprio, int running);
1070
1071 #ifdef CONFIG_FAIR_GROUP_SCHED
1072 void (*moved_group) (struct task_struct *p);
1073 #endif
1074 };
1075
1076 struct load_weight {
1077 unsigned long weight, inv_weight;
1078 };
1079
1080 /*
1081 * CFS stats for a schedulable entity (task, task-group etc)
1082 *
1083 * Current field usage histogram:
1084 *
1085 * 4 se->block_start
1086 * 4 se->run_node
1087 * 4 se->sleep_start
1088 * 6 se->load.weight
1089 */
1090 struct sched_entity {
1091 struct load_weight load; /* for load-balancing */
1092 struct rb_node run_node;
1093 struct list_head group_node;
1094 unsigned int on_rq;
1095
1096 u64 exec_start;
1097 u64 sum_exec_runtime;
1098 u64 vruntime;
1099 u64 prev_sum_exec_runtime;
1100
1101 u64 last_wakeup;
1102 u64 avg_overlap;
1103
1104 u64 nr_migrations;
1105
1106 u64 start_runtime;
1107 u64 avg_wakeup;
1108
1109 #ifdef CONFIG_SCHEDSTATS
1110 u64 wait_start;
1111 u64 wait_max;
1112 u64 wait_count;
1113 u64 wait_sum;
1114
1115 u64 sleep_start;
1116 u64 sleep_max;
1117 s64 sum_sleep_runtime;
1118
1119 u64 block_start;
1120 u64 block_max;
1121 u64 exec_max;
1122 u64 slice_max;
1123
1124 u64 nr_migrations_cold;
1125 u64 nr_failed_migrations_affine;
1126 u64 nr_failed_migrations_running;
1127 u64 nr_failed_migrations_hot;
1128 u64 nr_forced_migrations;
1129 u64 nr_forced2_migrations;
1130
1131 u64 nr_wakeups;
1132 u64 nr_wakeups_sync;
1133 u64 nr_wakeups_migrate;
1134 u64 nr_wakeups_local;
1135 u64 nr_wakeups_remote;
1136 u64 nr_wakeups_affine;
1137 u64 nr_wakeups_affine_attempts;
1138 u64 nr_wakeups_passive;
1139 u64 nr_wakeups_idle;
1140 #endif
1141
1142 #ifdef CONFIG_FAIR_GROUP_SCHED
1143 struct sched_entity *parent;
1144 /* rq on which this entity is (to be) queued: */
1145 struct cfs_rq *cfs_rq;
1146 /* rq "owned" by this entity/group: */
1147 struct cfs_rq *my_q;
1148 #endif
1149 };
1150
1151 struct sched_rt_entity {
1152 struct list_head run_list;
1153 unsigned long timeout;
1154 unsigned int time_slice;
1155 int nr_cpus_allowed;
1156
1157 struct sched_rt_entity *back;
1158 #ifdef CONFIG_RT_GROUP_SCHED
1159 struct sched_rt_entity *parent;
1160 /* rq on which this entity is (to be) queued: */
1161 struct rt_rq *rt_rq;
1162 /* rq "owned" by this entity/group: */
1163 struct rt_rq *my_q;
1164 #endif
1165 };
1166
1167 struct task_struct {
1168 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1169 void *stack;
1170 atomic_t usage;
1171 unsigned int flags; /* per process flags, defined below */
1172 unsigned int ptrace;
1173
1174 int lock_depth; /* BKL lock depth */
1175
1176 #ifdef CONFIG_SMP
1177 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1178 int oncpu;
1179 #endif
1180 #endif
1181
1182 int prio, static_prio, normal_prio;
1183 unsigned int rt_priority;
1184 const struct sched_class *sched_class;
1185 struct sched_entity se;
1186 struct sched_rt_entity rt;
1187
1188 #ifdef CONFIG_PREEMPT_NOTIFIERS
1189 /* list of struct preempt_notifier: */
1190 struct hlist_head preempt_notifiers;
1191 #endif
1192
1193 /*
1194 * fpu_counter contains the number of consecutive context switches
1195 * that the FPU is used. If this is over a threshold, the lazy fpu
1196 * saving becomes unlazy to save the trap. This is an unsigned char
1197 * so that after 256 times the counter wraps and the behavior turns
1198 * lazy again; this to deal with bursty apps that only use FPU for
1199 * a short time
1200 */
1201 unsigned char fpu_counter;
1202 #ifdef CONFIG_BLK_DEV_IO_TRACE
1203 unsigned int btrace_seq;
1204 #endif
1205
1206 unsigned int policy;
1207 cpumask_t cpus_allowed;
1208
1209 #ifdef CONFIG_PREEMPT_RCU
1210 int rcu_read_lock_nesting;
1211 int rcu_flipctr_idx;
1212 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1213
1214 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1215 struct sched_info sched_info;
1216 #endif
1217
1218 struct list_head tasks;
1219 struct plist_node pushable_tasks;
1220
1221 struct mm_struct *mm, *active_mm;
1222
1223 /* task state */
1224 struct linux_binfmt *binfmt;
1225 int exit_state;
1226 int exit_code, exit_signal;
1227 int pdeath_signal; /* The signal sent when the parent dies */
1228 /* ??? */
1229 unsigned int personality;
1230 unsigned did_exec:1;
1231 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1232 * execve */
1233
1234 /* Revert to default priority/policy when forking */
1235 unsigned sched_reset_on_fork:1;
1236
1237 pid_t pid;
1238 pid_t tgid;
1239
1240 /* Canary value for the -fstack-protector gcc feature */
1241 unsigned long stack_canary;
1242
1243 /*
1244 * pointers to (original) parent process, youngest child, younger sibling,
1245 * older sibling, respectively. (p->father can be replaced with
1246 * p->real_parent->pid)
1247 */
1248 struct task_struct *real_parent; /* real parent process */
1249 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1250 /*
1251 * children/sibling forms the list of my natural children
1252 */
1253 struct list_head children; /* list of my children */
1254 struct list_head sibling; /* linkage in my parent's children list */
1255 struct task_struct *group_leader; /* threadgroup leader */
1256
1257 /*
1258 * ptraced is the list of tasks this task is using ptrace on.
1259 * This includes both natural children and PTRACE_ATTACH targets.
1260 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1261 */
1262 struct list_head ptraced;
1263 struct list_head ptrace_entry;
1264
1265 /*
1266 * This is the tracer handle for the ptrace BTS extension.
1267 * This field actually belongs to the ptracer task.
1268 */
1269 struct bts_context *bts;
1270
1271 /* PID/PID hash table linkage. */
1272 struct pid_link pids[PIDTYPE_MAX];
1273 struct list_head thread_group;
1274
1275 struct completion *vfork_done; /* for vfork() */
1276 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1277 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1278
1279 cputime_t utime, stime, utimescaled, stimescaled;
1280 cputime_t gtime;
1281 cputime_t prev_utime, prev_stime;
1282 unsigned long nvcsw, nivcsw; /* context switch counts */
1283 struct timespec start_time; /* monotonic time */
1284 struct timespec real_start_time; /* boot based time */
1285 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1286 unsigned long min_flt, maj_flt;
1287
1288 struct task_cputime cputime_expires;
1289 struct list_head cpu_timers[3];
1290
1291 /* process credentials */
1292 const struct cred *real_cred; /* objective and real subjective task
1293 * credentials (COW) */
1294 const struct cred *cred; /* effective (overridable) subjective task
1295 * credentials (COW) */
1296 struct mutex cred_guard_mutex; /* guard against foreign influences on
1297 * credential calculations
1298 * (notably. ptrace) */
1299
1300 char comm[TASK_COMM_LEN]; /* executable name excluding path
1301 - access with [gs]et_task_comm (which lock
1302 it with task_lock())
1303 - initialized normally by flush_old_exec */
1304 /* file system info */
1305 int link_count, total_link_count;
1306 #ifdef CONFIG_SYSVIPC
1307 /* ipc stuff */
1308 struct sysv_sem sysvsem;
1309 #endif
1310 #ifdef CONFIG_DETECT_HUNG_TASK
1311 /* hung task detection */
1312 unsigned long last_switch_count;
1313 #endif
1314 /* CPU-specific state of this task */
1315 struct thread_struct thread;
1316 /* filesystem information */
1317 struct fs_struct *fs;
1318 /* open file information */
1319 struct files_struct *files;
1320 /* namespaces */
1321 struct nsproxy *nsproxy;
1322 /* signal handlers */
1323 struct signal_struct *signal;
1324 struct sighand_struct *sighand;
1325
1326 sigset_t blocked, real_blocked;
1327 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1328 struct sigpending pending;
1329
1330 unsigned long sas_ss_sp;
1331 size_t sas_ss_size;
1332 int (*notifier)(void *priv);
1333 void *notifier_data;
1334 sigset_t *notifier_mask;
1335 struct audit_context *audit_context;
1336 #ifdef CONFIG_AUDITSYSCALL
1337 uid_t loginuid;
1338 unsigned int sessionid;
1339 #endif
1340 seccomp_t seccomp;
1341
1342 /* Thread group tracking */
1343 u32 parent_exec_id;
1344 u32 self_exec_id;
1345 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1346 * mempolicy */
1347 spinlock_t alloc_lock;
1348
1349 #ifdef CONFIG_GENERIC_HARDIRQS
1350 /* IRQ handler threads */
1351 struct irqaction *irqaction;
1352 #endif
1353
1354 /* Protection of the PI data structures: */
1355 spinlock_t pi_lock;
1356
1357 #ifdef CONFIG_RT_MUTEXES
1358 /* PI waiters blocked on a rt_mutex held by this task */
1359 struct plist_head pi_waiters;
1360 /* Deadlock detection and priority inheritance handling */
1361 struct rt_mutex_waiter *pi_blocked_on;
1362 #endif
1363
1364 #ifdef CONFIG_DEBUG_MUTEXES
1365 /* mutex deadlock detection */
1366 struct mutex_waiter *blocked_on;
1367 #endif
1368 #ifdef CONFIG_TRACE_IRQFLAGS
1369 unsigned int irq_events;
1370 int hardirqs_enabled;
1371 unsigned long hardirq_enable_ip;
1372 unsigned int hardirq_enable_event;
1373 unsigned long hardirq_disable_ip;
1374 unsigned int hardirq_disable_event;
1375 int softirqs_enabled;
1376 unsigned long softirq_disable_ip;
1377 unsigned int softirq_disable_event;
1378 unsigned long softirq_enable_ip;
1379 unsigned int softirq_enable_event;
1380 int hardirq_context;
1381 int softirq_context;
1382 #endif
1383 #ifdef CONFIG_LOCKDEP
1384 # define MAX_LOCK_DEPTH 48UL
1385 u64 curr_chain_key;
1386 int lockdep_depth;
1387 unsigned int lockdep_recursion;
1388 struct held_lock held_locks[MAX_LOCK_DEPTH];
1389 gfp_t lockdep_reclaim_gfp;
1390 #endif
1391
1392 /* journalling filesystem info */
1393 void *journal_info;
1394
1395 /* stacked block device info */
1396 struct bio *bio_list, **bio_tail;
1397
1398 /* VM state */
1399 struct reclaim_state *reclaim_state;
1400
1401 struct backing_dev_info *backing_dev_info;
1402
1403 struct io_context *io_context;
1404
1405 unsigned long ptrace_message;
1406 siginfo_t *last_siginfo; /* For ptrace use. */
1407 struct task_io_accounting ioac;
1408 #if defined(CONFIG_TASK_XACCT)
1409 u64 acct_rss_mem1; /* accumulated rss usage */
1410 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1411 cputime_t acct_timexpd; /* stime + utime since last update */
1412 #endif
1413 #ifdef CONFIG_CPUSETS
1414 nodemask_t mems_allowed; /* Protected by alloc_lock */
1415 int cpuset_mem_spread_rotor;
1416 #endif
1417 #ifdef CONFIG_CGROUPS
1418 /* Control Group info protected by css_set_lock */
1419 struct css_set *cgroups;
1420 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1421 struct list_head cg_list;
1422 #endif
1423 #ifdef CONFIG_FUTEX
1424 struct robust_list_head __user *robust_list;
1425 #ifdef CONFIG_COMPAT
1426 struct compat_robust_list_head __user *compat_robust_list;
1427 #endif
1428 struct list_head pi_state_list;
1429 struct futex_pi_state *pi_state_cache;
1430 #endif
1431 #ifdef CONFIG_PERF_COUNTERS
1432 struct perf_counter_context *perf_counter_ctxp;
1433 struct mutex perf_counter_mutex;
1434 struct list_head perf_counter_list;
1435 #endif
1436 #ifdef CONFIG_NUMA
1437 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1438 short il_next;
1439 #endif
1440 atomic_t fs_excl; /* holding fs exclusive resources */
1441 struct rcu_head rcu;
1442
1443 /*
1444 * cache last used pipe for splice
1445 */
1446 struct pipe_inode_info *splice_pipe;
1447 #ifdef CONFIG_TASK_DELAY_ACCT
1448 struct task_delay_info *delays;
1449 #endif
1450 #ifdef CONFIG_FAULT_INJECTION
1451 int make_it_fail;
1452 #endif
1453 struct prop_local_single dirties;
1454 #ifdef CONFIG_LATENCYTOP
1455 int latency_record_count;
1456 struct latency_record latency_record[LT_SAVECOUNT];
1457 #endif
1458 /*
1459 * time slack values; these are used to round up poll() and
1460 * select() etc timeout values. These are in nanoseconds.
1461 */
1462 unsigned long timer_slack_ns;
1463 unsigned long default_timer_slack_ns;
1464
1465 struct list_head *scm_work_list;
1466 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1467 /* Index of current stored adress in ret_stack */
1468 int curr_ret_stack;
1469 /* Stack of return addresses for return function tracing */
1470 struct ftrace_ret_stack *ret_stack;
1471 /* time stamp for last schedule */
1472 unsigned long long ftrace_timestamp;
1473 /*
1474 * Number of functions that haven't been traced
1475 * because of depth overrun.
1476 */
1477 atomic_t trace_overrun;
1478 /* Pause for the tracing */
1479 atomic_t tracing_graph_pause;
1480 #endif
1481 #ifdef CONFIG_TRACING
1482 /* state flags for use by tracers */
1483 unsigned long trace;
1484 /* bitmask of trace recursion */
1485 unsigned long trace_recursion;
1486 #endif /* CONFIG_TRACING */
1487 };
1488
1489 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1490 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1491
1492 /*
1493 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1494 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1495 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1496 * values are inverted: lower p->prio value means higher priority.
1497 *
1498 * The MAX_USER_RT_PRIO value allows the actual maximum
1499 * RT priority to be separate from the value exported to
1500 * user-space. This allows kernel threads to set their
1501 * priority to a value higher than any user task. Note:
1502 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1503 */
1504
1505 #define MAX_USER_RT_PRIO 100
1506 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1507
1508 #define MAX_PRIO (MAX_RT_PRIO + 40)
1509 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1510
1511 static inline int rt_prio(int prio)
1512 {
1513 if (unlikely(prio < MAX_RT_PRIO))
1514 return 1;
1515 return 0;
1516 }
1517
1518 static inline int rt_task(struct task_struct *p)
1519 {
1520 return rt_prio(p->prio);
1521 }
1522
1523 static inline struct pid *task_pid(struct task_struct *task)
1524 {
1525 return task->pids[PIDTYPE_PID].pid;
1526 }
1527
1528 static inline struct pid *task_tgid(struct task_struct *task)
1529 {
1530 return task->group_leader->pids[PIDTYPE_PID].pid;
1531 }
1532
1533 /*
1534 * Without tasklist or rcu lock it is not safe to dereference
1535 * the result of task_pgrp/task_session even if task == current,
1536 * we can race with another thread doing sys_setsid/sys_setpgid.
1537 */
1538 static inline struct pid *task_pgrp(struct task_struct *task)
1539 {
1540 return task->group_leader->pids[PIDTYPE_PGID].pid;
1541 }
1542
1543 static inline struct pid *task_session(struct task_struct *task)
1544 {
1545 return task->group_leader->pids[PIDTYPE_SID].pid;
1546 }
1547
1548 struct pid_namespace;
1549
1550 /*
1551 * the helpers to get the task's different pids as they are seen
1552 * from various namespaces
1553 *
1554 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1555 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1556 * current.
1557 * task_xid_nr_ns() : id seen from the ns specified;
1558 *
1559 * set_task_vxid() : assigns a virtual id to a task;
1560 *
1561 * see also pid_nr() etc in include/linux/pid.h
1562 */
1563 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1564 struct pid_namespace *ns);
1565
1566 static inline pid_t task_pid_nr(struct task_struct *tsk)
1567 {
1568 return tsk->pid;
1569 }
1570
1571 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1572 struct pid_namespace *ns)
1573 {
1574 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1575 }
1576
1577 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1578 {
1579 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1580 }
1581
1582
1583 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1584 {
1585 return tsk->tgid;
1586 }
1587
1588 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1589
1590 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1591 {
1592 return pid_vnr(task_tgid(tsk));
1593 }
1594
1595
1596 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1597 struct pid_namespace *ns)
1598 {
1599 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1600 }
1601
1602 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1603 {
1604 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1605 }
1606
1607
1608 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1609 struct pid_namespace *ns)
1610 {
1611 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1612 }
1613
1614 static inline pid_t task_session_vnr(struct task_struct *tsk)
1615 {
1616 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1617 }
1618
1619 /* obsolete, do not use */
1620 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1621 {
1622 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1623 }
1624
1625 /**
1626 * pid_alive - check that a task structure is not stale
1627 * @p: Task structure to be checked.
1628 *
1629 * Test if a process is not yet dead (at most zombie state)
1630 * If pid_alive fails, then pointers within the task structure
1631 * can be stale and must not be dereferenced.
1632 */
1633 static inline int pid_alive(struct task_struct *p)
1634 {
1635 return p->pids[PIDTYPE_PID].pid != NULL;
1636 }
1637
1638 /**
1639 * is_global_init - check if a task structure is init
1640 * @tsk: Task structure to be checked.
1641 *
1642 * Check if a task structure is the first user space task the kernel created.
1643 */
1644 static inline int is_global_init(struct task_struct *tsk)
1645 {
1646 return tsk->pid == 1;
1647 }
1648
1649 /*
1650 * is_container_init:
1651 * check whether in the task is init in its own pid namespace.
1652 */
1653 extern int is_container_init(struct task_struct *tsk);
1654
1655 extern struct pid *cad_pid;
1656
1657 extern void free_task(struct task_struct *tsk);
1658 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1659
1660 extern void __put_task_struct(struct task_struct *t);
1661
1662 static inline void put_task_struct(struct task_struct *t)
1663 {
1664 if (atomic_dec_and_test(&t->usage))
1665 __put_task_struct(t);
1666 }
1667
1668 extern cputime_t task_utime(struct task_struct *p);
1669 extern cputime_t task_stime(struct task_struct *p);
1670 extern cputime_t task_gtime(struct task_struct *p);
1671
1672 /*
1673 * Per process flags
1674 */
1675 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1676 /* Not implemented yet, only for 486*/
1677 #define PF_STARTING 0x00000002 /* being created */
1678 #define PF_EXITING 0x00000004 /* getting shut down */
1679 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1680 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1681 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1682 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1683 #define PF_DUMPCORE 0x00000200 /* dumped core */
1684 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1685 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1686 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1687 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1688 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1689 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1690 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1691 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1692 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1693 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1694 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1695 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1696 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1697 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1698 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1699 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1700 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1701 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1702 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1703 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1704 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1705
1706 /*
1707 * Only the _current_ task can read/write to tsk->flags, but other
1708 * tasks can access tsk->flags in readonly mode for example
1709 * with tsk_used_math (like during threaded core dumping).
1710 * There is however an exception to this rule during ptrace
1711 * or during fork: the ptracer task is allowed to write to the
1712 * child->flags of its traced child (same goes for fork, the parent
1713 * can write to the child->flags), because we're guaranteed the
1714 * child is not running and in turn not changing child->flags
1715 * at the same time the parent does it.
1716 */
1717 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1718 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1719 #define clear_used_math() clear_stopped_child_used_math(current)
1720 #define set_used_math() set_stopped_child_used_math(current)
1721 #define conditional_stopped_child_used_math(condition, child) \
1722 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1723 #define conditional_used_math(condition) \
1724 conditional_stopped_child_used_math(condition, current)
1725 #define copy_to_stopped_child_used_math(child) \
1726 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1727 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1728 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1729 #define used_math() tsk_used_math(current)
1730
1731 #ifdef CONFIG_SMP
1732 extern int set_cpus_allowed_ptr(struct task_struct *p,
1733 const struct cpumask *new_mask);
1734 #else
1735 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1736 const struct cpumask *new_mask)
1737 {
1738 if (!cpumask_test_cpu(0, new_mask))
1739 return -EINVAL;
1740 return 0;
1741 }
1742 #endif
1743 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1744 {
1745 return set_cpus_allowed_ptr(p, &new_mask);
1746 }
1747
1748 /*
1749 * Architectures can set this to 1 if they have specified
1750 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1751 * but then during bootup it turns out that sched_clock()
1752 * is reliable after all:
1753 */
1754 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1755 extern int sched_clock_stable;
1756 #endif
1757
1758 extern unsigned long long sched_clock(void);
1759
1760 extern void sched_clock_init(void);
1761 extern u64 sched_clock_cpu(int cpu);
1762
1763 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1764 static inline void sched_clock_tick(void)
1765 {
1766 }
1767
1768 static inline void sched_clock_idle_sleep_event(void)
1769 {
1770 }
1771
1772 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1773 {
1774 }
1775 #else
1776 extern void sched_clock_tick(void);
1777 extern void sched_clock_idle_sleep_event(void);
1778 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1779 #endif
1780
1781 /*
1782 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1783 * clock constructed from sched_clock():
1784 */
1785 extern unsigned long long cpu_clock(int cpu);
1786
1787 extern unsigned long long
1788 task_sched_runtime(struct task_struct *task);
1789 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1790
1791 /* sched_exec is called by processes performing an exec */
1792 #ifdef CONFIG_SMP
1793 extern void sched_exec(void);
1794 #else
1795 #define sched_exec() {}
1796 #endif
1797
1798 extern void sched_clock_idle_sleep_event(void);
1799 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1800
1801 #ifdef CONFIG_HOTPLUG_CPU
1802 extern void idle_task_exit(void);
1803 #else
1804 static inline void idle_task_exit(void) {}
1805 #endif
1806
1807 extern void sched_idle_next(void);
1808
1809 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1810 extern void wake_up_idle_cpu(int cpu);
1811 #else
1812 static inline void wake_up_idle_cpu(int cpu) { }
1813 #endif
1814
1815 extern unsigned int sysctl_sched_latency;
1816 extern unsigned int sysctl_sched_min_granularity;
1817 extern unsigned int sysctl_sched_wakeup_granularity;
1818 extern unsigned int sysctl_sched_shares_ratelimit;
1819 extern unsigned int sysctl_sched_shares_thresh;
1820 #ifdef CONFIG_SCHED_DEBUG
1821 extern unsigned int sysctl_sched_child_runs_first;
1822 extern unsigned int sysctl_sched_features;
1823 extern unsigned int sysctl_sched_migration_cost;
1824 extern unsigned int sysctl_sched_nr_migrate;
1825 extern unsigned int sysctl_timer_migration;
1826
1827 int sched_nr_latency_handler(struct ctl_table *table, int write,
1828 struct file *file, void __user *buffer, size_t *length,
1829 loff_t *ppos);
1830 #endif
1831 #ifdef CONFIG_SCHED_DEBUG
1832 static inline unsigned int get_sysctl_timer_migration(void)
1833 {
1834 return sysctl_timer_migration;
1835 }
1836 #else
1837 static inline unsigned int get_sysctl_timer_migration(void)
1838 {
1839 return 1;
1840 }
1841 #endif
1842 extern unsigned int sysctl_sched_rt_period;
1843 extern int sysctl_sched_rt_runtime;
1844
1845 int sched_rt_handler(struct ctl_table *table, int write,
1846 struct file *filp, void __user *buffer, size_t *lenp,
1847 loff_t *ppos);
1848
1849 extern unsigned int sysctl_sched_compat_yield;
1850
1851 #ifdef CONFIG_RT_MUTEXES
1852 extern int rt_mutex_getprio(struct task_struct *p);
1853 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1854 extern void rt_mutex_adjust_pi(struct task_struct *p);
1855 #else
1856 static inline int rt_mutex_getprio(struct task_struct *p)
1857 {
1858 return p->normal_prio;
1859 }
1860 # define rt_mutex_adjust_pi(p) do { } while (0)
1861 #endif
1862
1863 extern void set_user_nice(struct task_struct *p, long nice);
1864 extern int task_prio(const struct task_struct *p);
1865 extern int task_nice(const struct task_struct *p);
1866 extern int can_nice(const struct task_struct *p, const int nice);
1867 extern int task_curr(const struct task_struct *p);
1868 extern int idle_cpu(int cpu);
1869 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1870 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1871 struct sched_param *);
1872 extern struct task_struct *idle_task(int cpu);
1873 extern struct task_struct *curr_task(int cpu);
1874 extern void set_curr_task(int cpu, struct task_struct *p);
1875
1876 void yield(void);
1877
1878 /*
1879 * The default (Linux) execution domain.
1880 */
1881 extern struct exec_domain default_exec_domain;
1882
1883 union thread_union {
1884 struct thread_info thread_info;
1885 unsigned long stack[THREAD_SIZE/sizeof(long)];
1886 };
1887
1888 #ifndef __HAVE_ARCH_KSTACK_END
1889 static inline int kstack_end(void *addr)
1890 {
1891 /* Reliable end of stack detection:
1892 * Some APM bios versions misalign the stack
1893 */
1894 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1895 }
1896 #endif
1897
1898 extern union thread_union init_thread_union;
1899 extern struct task_struct init_task;
1900
1901 extern struct mm_struct init_mm;
1902
1903 extern struct pid_namespace init_pid_ns;
1904
1905 /*
1906 * find a task by one of its numerical ids
1907 *
1908 * find_task_by_pid_ns():
1909 * finds a task by its pid in the specified namespace
1910 * find_task_by_vpid():
1911 * finds a task by its virtual pid
1912 *
1913 * see also find_vpid() etc in include/linux/pid.h
1914 */
1915
1916 extern struct task_struct *find_task_by_vpid(pid_t nr);
1917 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1918 struct pid_namespace *ns);
1919
1920 extern void __set_special_pids(struct pid *pid);
1921
1922 /* per-UID process charging. */
1923 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1924 static inline struct user_struct *get_uid(struct user_struct *u)
1925 {
1926 atomic_inc(&u->__count);
1927 return u;
1928 }
1929 extern void free_uid(struct user_struct *);
1930 extern void release_uids(struct user_namespace *ns);
1931
1932 #include <asm/current.h>
1933
1934 extern void do_timer(unsigned long ticks);
1935
1936 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1937 extern int wake_up_process(struct task_struct *tsk);
1938 extern void wake_up_new_task(struct task_struct *tsk,
1939 unsigned long clone_flags);
1940 #ifdef CONFIG_SMP
1941 extern void kick_process(struct task_struct *tsk);
1942 #else
1943 static inline void kick_process(struct task_struct *tsk) { }
1944 #endif
1945 extern void sched_fork(struct task_struct *p, int clone_flags);
1946 extern void sched_dead(struct task_struct *p);
1947
1948 extern void proc_caches_init(void);
1949 extern void flush_signals(struct task_struct *);
1950 extern void __flush_signals(struct task_struct *);
1951 extern void ignore_signals(struct task_struct *);
1952 extern void flush_signal_handlers(struct task_struct *, int force_default);
1953 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1954
1955 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1956 {
1957 unsigned long flags;
1958 int ret;
1959
1960 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1961 ret = dequeue_signal(tsk, mask, info);
1962 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1963
1964 return ret;
1965 }
1966
1967 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1968 sigset_t *mask);
1969 extern void unblock_all_signals(void);
1970 extern void release_task(struct task_struct * p);
1971 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1972 extern int force_sigsegv(int, struct task_struct *);
1973 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1974 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1975 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1976 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1977 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1978 extern int kill_pid(struct pid *pid, int sig, int priv);
1979 extern int kill_proc_info(int, struct siginfo *, pid_t);
1980 extern int do_notify_parent(struct task_struct *, int);
1981 extern void force_sig(int, struct task_struct *);
1982 extern void force_sig_specific(int, struct task_struct *);
1983 extern int send_sig(int, struct task_struct *, int);
1984 extern void zap_other_threads(struct task_struct *p);
1985 extern struct sigqueue *sigqueue_alloc(void);
1986 extern void sigqueue_free(struct sigqueue *);
1987 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1988 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1989 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1990
1991 static inline int kill_cad_pid(int sig, int priv)
1992 {
1993 return kill_pid(cad_pid, sig, priv);
1994 }
1995
1996 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1997 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1998 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1999 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2000
2001 static inline int is_si_special(const struct siginfo *info)
2002 {
2003 return info <= SEND_SIG_FORCED;
2004 }
2005
2006 /* True if we are on the alternate signal stack. */
2007
2008 static inline int on_sig_stack(unsigned long sp)
2009 {
2010 return (sp - current->sas_ss_sp < current->sas_ss_size);
2011 }
2012
2013 static inline int sas_ss_flags(unsigned long sp)
2014 {
2015 return (current->sas_ss_size == 0 ? SS_DISABLE
2016 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2017 }
2018
2019 /*
2020 * Routines for handling mm_structs
2021 */
2022 extern struct mm_struct * mm_alloc(void);
2023
2024 /* mmdrop drops the mm and the page tables */
2025 extern void __mmdrop(struct mm_struct *);
2026 static inline void mmdrop(struct mm_struct * mm)
2027 {
2028 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2029 __mmdrop(mm);
2030 }
2031
2032 /* mmput gets rid of the mappings and all user-space */
2033 extern void mmput(struct mm_struct *);
2034 /* Grab a reference to a task's mm, if it is not already going away */
2035 extern struct mm_struct *get_task_mm(struct task_struct *task);
2036 /* Remove the current tasks stale references to the old mm_struct */
2037 extern void mm_release(struct task_struct *, struct mm_struct *);
2038 /* Allocate a new mm structure and copy contents from tsk->mm */
2039 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2040
2041 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2042 struct task_struct *, struct pt_regs *);
2043 extern void flush_thread(void);
2044 extern void exit_thread(void);
2045
2046 extern void exit_files(struct task_struct *);
2047 extern void __cleanup_signal(struct signal_struct *);
2048 extern void __cleanup_sighand(struct sighand_struct *);
2049
2050 extern void exit_itimers(struct signal_struct *);
2051 extern void flush_itimer_signals(void);
2052
2053 extern NORET_TYPE void do_group_exit(int);
2054
2055 extern void daemonize(const char *, ...);
2056 extern int allow_signal(int);
2057 extern int disallow_signal(int);
2058
2059 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2060 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2061 struct task_struct *fork_idle(int);
2062
2063 extern void set_task_comm(struct task_struct *tsk, char *from);
2064 extern char *get_task_comm(char *to, struct task_struct *tsk);
2065
2066 #ifdef CONFIG_SMP
2067 extern void wait_task_context_switch(struct task_struct *p);
2068 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2069 #else
2070 static inline void wait_task_context_switch(struct task_struct *p) {}
2071 static inline unsigned long wait_task_inactive(struct task_struct *p,
2072 long match_state)
2073 {
2074 return 1;
2075 }
2076 #endif
2077
2078 #define next_task(p) \
2079 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2080
2081 #define for_each_process(p) \
2082 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2083
2084 extern bool is_single_threaded(struct task_struct *);
2085
2086 /*
2087 * Careful: do_each_thread/while_each_thread is a double loop so
2088 * 'break' will not work as expected - use goto instead.
2089 */
2090 #define do_each_thread(g, t) \
2091 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2092
2093 #define while_each_thread(g, t) \
2094 while ((t = next_thread(t)) != g)
2095
2096 /* de_thread depends on thread_group_leader not being a pid based check */
2097 #define thread_group_leader(p) (p == p->group_leader)
2098
2099 /* Do to the insanities of de_thread it is possible for a process
2100 * to have the pid of the thread group leader without actually being
2101 * the thread group leader. For iteration through the pids in proc
2102 * all we care about is that we have a task with the appropriate
2103 * pid, we don't actually care if we have the right task.
2104 */
2105 static inline int has_group_leader_pid(struct task_struct *p)
2106 {
2107 return p->pid == p->tgid;
2108 }
2109
2110 static inline
2111 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2112 {
2113 return p1->tgid == p2->tgid;
2114 }
2115
2116 static inline struct task_struct *next_thread(const struct task_struct *p)
2117 {
2118 return list_entry_rcu(p->thread_group.next,
2119 struct task_struct, thread_group);
2120 }
2121
2122 static inline int thread_group_empty(struct task_struct *p)
2123 {
2124 return list_empty(&p->thread_group);
2125 }
2126
2127 #define delay_group_leader(p) \
2128 (thread_group_leader(p) && !thread_group_empty(p))
2129
2130 static inline int task_detached(struct task_struct *p)
2131 {
2132 return p->exit_signal == -1;
2133 }
2134
2135 /*
2136 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2137 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2138 * pins the final release of task.io_context. Also protects ->cpuset and
2139 * ->cgroup.subsys[].
2140 *
2141 * Nests both inside and outside of read_lock(&tasklist_lock).
2142 * It must not be nested with write_lock_irq(&tasklist_lock),
2143 * neither inside nor outside.
2144 */
2145 static inline void task_lock(struct task_struct *p)
2146 {
2147 spin_lock(&p->alloc_lock);
2148 }
2149
2150 static inline void task_unlock(struct task_struct *p)
2151 {
2152 spin_unlock(&p->alloc_lock);
2153 }
2154
2155 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2156 unsigned long *flags);
2157
2158 static inline void unlock_task_sighand(struct task_struct *tsk,
2159 unsigned long *flags)
2160 {
2161 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2162 }
2163
2164 #ifndef __HAVE_THREAD_FUNCTIONS
2165
2166 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2167 #define task_stack_page(task) ((task)->stack)
2168
2169 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2170 {
2171 *task_thread_info(p) = *task_thread_info(org);
2172 task_thread_info(p)->task = p;
2173 }
2174
2175 static inline unsigned long *end_of_stack(struct task_struct *p)
2176 {
2177 return (unsigned long *)(task_thread_info(p) + 1);
2178 }
2179
2180 #endif
2181
2182 static inline int object_is_on_stack(void *obj)
2183 {
2184 void *stack = task_stack_page(current);
2185
2186 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2187 }
2188
2189 extern void thread_info_cache_init(void);
2190
2191 #ifdef CONFIG_DEBUG_STACK_USAGE
2192 static inline unsigned long stack_not_used(struct task_struct *p)
2193 {
2194 unsigned long *n = end_of_stack(p);
2195
2196 do { /* Skip over canary */
2197 n++;
2198 } while (!*n);
2199
2200 return (unsigned long)n - (unsigned long)end_of_stack(p);
2201 }
2202 #endif
2203
2204 /* set thread flags in other task's structures
2205 * - see asm/thread_info.h for TIF_xxxx flags available
2206 */
2207 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2208 {
2209 set_ti_thread_flag(task_thread_info(tsk), flag);
2210 }
2211
2212 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2213 {
2214 clear_ti_thread_flag(task_thread_info(tsk), flag);
2215 }
2216
2217 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2218 {
2219 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2220 }
2221
2222 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2223 {
2224 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2225 }
2226
2227 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2228 {
2229 return test_ti_thread_flag(task_thread_info(tsk), flag);
2230 }
2231
2232 static inline void set_tsk_need_resched(struct task_struct *tsk)
2233 {
2234 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2235 }
2236
2237 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2238 {
2239 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2240 }
2241
2242 static inline int test_tsk_need_resched(struct task_struct *tsk)
2243 {
2244 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2245 }
2246
2247 static inline int restart_syscall(void)
2248 {
2249 set_tsk_thread_flag(current, TIF_SIGPENDING);
2250 return -ERESTARTNOINTR;
2251 }
2252
2253 static inline int signal_pending(struct task_struct *p)
2254 {
2255 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2256 }
2257
2258 extern int __fatal_signal_pending(struct task_struct *p);
2259
2260 static inline int fatal_signal_pending(struct task_struct *p)
2261 {
2262 return signal_pending(p) && __fatal_signal_pending(p);
2263 }
2264
2265 static inline int signal_pending_state(long state, struct task_struct *p)
2266 {
2267 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2268 return 0;
2269 if (!signal_pending(p))
2270 return 0;
2271
2272 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2273 }
2274
2275 static inline int need_resched(void)
2276 {
2277 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2278 }
2279
2280 /*
2281 * cond_resched() and cond_resched_lock(): latency reduction via
2282 * explicit rescheduling in places that are safe. The return
2283 * value indicates whether a reschedule was done in fact.
2284 * cond_resched_lock() will drop the spinlock before scheduling,
2285 * cond_resched_softirq() will enable bhs before scheduling.
2286 */
2287 extern int _cond_resched(void);
2288
2289 #define cond_resched() ({ \
2290 __might_sleep(__FILE__, __LINE__, 0); \
2291 _cond_resched(); \
2292 })
2293
2294 extern int __cond_resched_lock(spinlock_t *lock);
2295
2296 #ifdef CONFIG_PREEMPT
2297 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2298 #else
2299 #define PREEMPT_LOCK_OFFSET 0
2300 #endif
2301
2302 #define cond_resched_lock(lock) ({ \
2303 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2304 __cond_resched_lock(lock); \
2305 })
2306
2307 extern int __cond_resched_softirq(void);
2308
2309 #define cond_resched_softirq() ({ \
2310 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2311 __cond_resched_softirq(); \
2312 })
2313
2314 /*
2315 * Does a critical section need to be broken due to another
2316 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2317 * but a general need for low latency)
2318 */
2319 static inline int spin_needbreak(spinlock_t *lock)
2320 {
2321 #ifdef CONFIG_PREEMPT
2322 return spin_is_contended(lock);
2323 #else
2324 return 0;
2325 #endif
2326 }
2327
2328 /*
2329 * Thread group CPU time accounting.
2330 */
2331 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2332 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2333
2334 static inline void thread_group_cputime_init(struct signal_struct *sig)
2335 {
2336 sig->cputimer.cputime = INIT_CPUTIME;
2337 spin_lock_init(&sig->cputimer.lock);
2338 sig->cputimer.running = 0;
2339 }
2340
2341 static inline void thread_group_cputime_free(struct signal_struct *sig)
2342 {
2343 }
2344
2345 /*
2346 * Reevaluate whether the task has signals pending delivery.
2347 * Wake the task if so.
2348 * This is required every time the blocked sigset_t changes.
2349 * callers must hold sighand->siglock.
2350 */
2351 extern void recalc_sigpending_and_wake(struct task_struct *t);
2352 extern void recalc_sigpending(void);
2353
2354 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2355
2356 /*
2357 * Wrappers for p->thread_info->cpu access. No-op on UP.
2358 */
2359 #ifdef CONFIG_SMP
2360
2361 static inline unsigned int task_cpu(const struct task_struct *p)
2362 {
2363 return task_thread_info(p)->cpu;
2364 }
2365
2366 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2367
2368 #else
2369
2370 static inline unsigned int task_cpu(const struct task_struct *p)
2371 {
2372 return 0;
2373 }
2374
2375 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2376 {
2377 }
2378
2379 #endif /* CONFIG_SMP */
2380
2381 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2382
2383 #ifdef CONFIG_TRACING
2384 extern void
2385 __trace_special(void *__tr, void *__data,
2386 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2387 #else
2388 static inline void
2389 __trace_special(void *__tr, void *__data,
2390 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2391 {
2392 }
2393 #endif
2394
2395 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2396 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2397
2398 extern void normalize_rt_tasks(void);
2399
2400 #ifdef CONFIG_GROUP_SCHED
2401
2402 extern struct task_group init_task_group;
2403 #ifdef CONFIG_USER_SCHED
2404 extern struct task_group root_task_group;
2405 extern void set_tg_uid(struct user_struct *user);
2406 #endif
2407
2408 extern struct task_group *sched_create_group(struct task_group *parent);
2409 extern void sched_destroy_group(struct task_group *tg);
2410 extern void sched_move_task(struct task_struct *tsk);
2411 #ifdef CONFIG_FAIR_GROUP_SCHED
2412 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2413 extern unsigned long sched_group_shares(struct task_group *tg);
2414 #endif
2415 #ifdef CONFIG_RT_GROUP_SCHED
2416 extern int sched_group_set_rt_runtime(struct task_group *tg,
2417 long rt_runtime_us);
2418 extern long sched_group_rt_runtime(struct task_group *tg);
2419 extern int sched_group_set_rt_period(struct task_group *tg,
2420 long rt_period_us);
2421 extern long sched_group_rt_period(struct task_group *tg);
2422 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2423 #endif
2424 #endif
2425
2426 extern int task_can_switch_user(struct user_struct *up,
2427 struct task_struct *tsk);
2428
2429 #ifdef CONFIG_TASK_XACCT
2430 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2431 {
2432 tsk->ioac.rchar += amt;
2433 }
2434
2435 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2436 {
2437 tsk->ioac.wchar += amt;
2438 }
2439
2440 static inline void inc_syscr(struct task_struct *tsk)
2441 {
2442 tsk->ioac.syscr++;
2443 }
2444
2445 static inline void inc_syscw(struct task_struct *tsk)
2446 {
2447 tsk->ioac.syscw++;
2448 }
2449 #else
2450 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2451 {
2452 }
2453
2454 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2455 {
2456 }
2457
2458 static inline void inc_syscr(struct task_struct *tsk)
2459 {
2460 }
2461
2462 static inline void inc_syscw(struct task_struct *tsk)
2463 {
2464 }
2465 #endif
2466
2467 #ifndef TASK_SIZE_OF
2468 #define TASK_SIZE_OF(tsk) TASK_SIZE
2469 #endif
2470
2471 /*
2472 * Call the function if the target task is executing on a CPU right now:
2473 */
2474 extern void task_oncpu_function_call(struct task_struct *p,
2475 void (*func) (void *info), void *info);
2476
2477
2478 #ifdef CONFIG_MM_OWNER
2479 extern void mm_update_next_owner(struct mm_struct *mm);
2480 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2481 #else
2482 static inline void mm_update_next_owner(struct mm_struct *mm)
2483 {
2484 }
2485
2486 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2487 {
2488 }
2489 #endif /* CONFIG_MM_OWNER */
2490
2491 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2492
2493 #endif /* __KERNEL__ */
2494
2495 #endif