]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/sched.h
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void cpu_load_update_nohz_start(void);
181 extern void cpu_load_update_nohz_stop(void);
182 #else
183 static inline void cpu_load_update_nohz_start(void) { }
184 static inline void cpu_load_update_nohz_stop(void) { }
185 #endif
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_NEW 2048
223 #define TASK_STATE_MAX 4096
224
225 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
226
227 extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
229
230 /* Convenience macros for the sake of set_task_state */
231 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
234
235 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
237 /* Convenience macros for the sake of wake_up */
238 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
239 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
240
241 /* get_task_state() */
242 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
245
246 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
248 #define task_is_stopped_or_traced(task) \
249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
250 #define task_contributes_to_load(task) \
251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
254
255 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257 #define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262 #define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
265 smp_store_mb((tsk)->state, (state_value)); \
266 } while (0)
267
268 #define __set_current_state(state_value) \
269 do { \
270 current->task_state_change = _THIS_IP_; \
271 current->state = (state_value); \
272 } while (0)
273 #define set_current_state(state_value) \
274 do { \
275 current->task_state_change = _THIS_IP_; \
276 smp_store_mb(current->state, (state_value)); \
277 } while (0)
278
279 #else
280
281 /*
282 * @tsk had better be current, or you get to keep the pieces.
283 *
284 * The only reason is that computing current can be more expensive than
285 * using a pointer that's already available.
286 *
287 * Therefore, see set_current_state().
288 */
289 #define __set_task_state(tsk, state_value) \
290 do { (tsk)->state = (state_value); } while (0)
291 #define set_task_state(tsk, state_value) \
292 smp_store_mb((tsk)->state, (state_value))
293
294 /*
295 * set_current_state() includes a barrier so that the write of current->state
296 * is correctly serialised wrt the caller's subsequent test of whether to
297 * actually sleep:
298 *
299 * for (;;) {
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (!need_sleep)
302 * break;
303 *
304 * schedule();
305 * }
306 * __set_current_state(TASK_RUNNING);
307 *
308 * If the caller does not need such serialisation (because, for instance, the
309 * condition test and condition change and wakeup are under the same lock) then
310 * use __set_current_state().
311 *
312 * The above is typically ordered against the wakeup, which does:
313 *
314 * need_sleep = false;
315 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
316 *
317 * Where wake_up_state() (and all other wakeup primitives) imply enough
318 * barriers to order the store of the variable against wakeup.
319 *
320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
323 *
324 * This is obviously fine, since they both store the exact same value.
325 *
326 * Also see the comments of try_to_wake_up().
327 */
328 #define __set_current_state(state_value) \
329 do { current->state = (state_value); } while (0)
330 #define set_current_state(state_value) \
331 smp_store_mb(current->state, (state_value))
332
333 #endif
334
335 /* Task command name length */
336 #define TASK_COMM_LEN 16
337
338 #include <linux/spinlock.h>
339
340 /*
341 * This serializes "schedule()" and also protects
342 * the run-queue from deletions/modifications (but
343 * _adding_ to the beginning of the run-queue has
344 * a separate lock).
345 */
346 extern rwlock_t tasklist_lock;
347 extern spinlock_t mmlist_lock;
348
349 struct task_struct;
350
351 #ifdef CONFIG_PROVE_RCU
352 extern int lockdep_tasklist_lock_is_held(void);
353 #endif /* #ifdef CONFIG_PROVE_RCU */
354
355 extern void sched_init(void);
356 extern void sched_init_smp(void);
357 extern asmlinkage void schedule_tail(struct task_struct *prev);
358 extern void init_idle(struct task_struct *idle, int cpu);
359 extern void init_idle_bootup_task(struct task_struct *idle);
360
361 extern cpumask_var_t cpu_isolated_map;
362
363 extern int runqueue_is_locked(int cpu);
364
365 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
366 extern void nohz_balance_enter_idle(int cpu);
367 extern void set_cpu_sd_state_idle(void);
368 extern int get_nohz_timer_target(void);
369 #else
370 static inline void nohz_balance_enter_idle(int cpu) { }
371 static inline void set_cpu_sd_state_idle(void) { }
372 #endif
373
374 /*
375 * Only dump TASK_* tasks. (0 for all tasks)
376 */
377 extern void show_state_filter(unsigned long state_filter);
378
379 static inline void show_state(void)
380 {
381 show_state_filter(0);
382 }
383
384 extern void show_regs(struct pt_regs *);
385
386 /*
387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
388 * task), SP is the stack pointer of the first frame that should be shown in the back
389 * trace (or NULL if the entire call-chain of the task should be shown).
390 */
391 extern void show_stack(struct task_struct *task, unsigned long *sp);
392
393 extern void cpu_init (void);
394 extern void trap_init(void);
395 extern void update_process_times(int user);
396 extern void scheduler_tick(void);
397 extern int sched_cpu_starting(unsigned int cpu);
398 extern int sched_cpu_activate(unsigned int cpu);
399 extern int sched_cpu_deactivate(unsigned int cpu);
400
401 #ifdef CONFIG_HOTPLUG_CPU
402 extern int sched_cpu_dying(unsigned int cpu);
403 #else
404 # define sched_cpu_dying NULL
405 #endif
406
407 extern void sched_show_task(struct task_struct *p);
408
409 #ifdef CONFIG_LOCKUP_DETECTOR
410 extern void touch_softlockup_watchdog_sched(void);
411 extern void touch_softlockup_watchdog(void);
412 extern void touch_softlockup_watchdog_sync(void);
413 extern void touch_all_softlockup_watchdogs(void);
414 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
415 void __user *buffer,
416 size_t *lenp, loff_t *ppos);
417 extern unsigned int softlockup_panic;
418 extern unsigned int hardlockup_panic;
419 void lockup_detector_init(void);
420 #else
421 static inline void touch_softlockup_watchdog_sched(void)
422 {
423 }
424 static inline void touch_softlockup_watchdog(void)
425 {
426 }
427 static inline void touch_softlockup_watchdog_sync(void)
428 {
429 }
430 static inline void touch_all_softlockup_watchdogs(void)
431 {
432 }
433 static inline void lockup_detector_init(void)
434 {
435 }
436 #endif
437
438 #ifdef CONFIG_DETECT_HUNG_TASK
439 void reset_hung_task_detector(void);
440 #else
441 static inline void reset_hung_task_detector(void)
442 {
443 }
444 #endif
445
446 /* Attach to any functions which should be ignored in wchan output. */
447 #define __sched __attribute__((__section__(".sched.text")))
448
449 /* Linker adds these: start and end of __sched functions */
450 extern char __sched_text_start[], __sched_text_end[];
451
452 /* Is this address in the __sched functions? */
453 extern int in_sched_functions(unsigned long addr);
454
455 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
456 extern signed long schedule_timeout(signed long timeout);
457 extern signed long schedule_timeout_interruptible(signed long timeout);
458 extern signed long schedule_timeout_killable(signed long timeout);
459 extern signed long schedule_timeout_uninterruptible(signed long timeout);
460 extern signed long schedule_timeout_idle(signed long timeout);
461 asmlinkage void schedule(void);
462 extern void schedule_preempt_disabled(void);
463
464 extern long io_schedule_timeout(long timeout);
465
466 static inline void io_schedule(void)
467 {
468 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
469 }
470
471 void __noreturn do_task_dead(void);
472
473 struct nsproxy;
474 struct user_namespace;
475
476 #ifdef CONFIG_MMU
477 extern void arch_pick_mmap_layout(struct mm_struct *mm);
478 extern unsigned long
479 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
480 unsigned long, unsigned long);
481 extern unsigned long
482 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
483 unsigned long len, unsigned long pgoff,
484 unsigned long flags);
485 #else
486 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
487 #endif
488
489 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
490 #define SUID_DUMP_USER 1 /* Dump as user of process */
491 #define SUID_DUMP_ROOT 2 /* Dump as root */
492
493 /* mm flags */
494
495 /* for SUID_DUMP_* above */
496 #define MMF_DUMPABLE_BITS 2
497 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
498
499 extern void set_dumpable(struct mm_struct *mm, int value);
500 /*
501 * This returns the actual value of the suid_dumpable flag. For things
502 * that are using this for checking for privilege transitions, it must
503 * test against SUID_DUMP_USER rather than treating it as a boolean
504 * value.
505 */
506 static inline int __get_dumpable(unsigned long mm_flags)
507 {
508 return mm_flags & MMF_DUMPABLE_MASK;
509 }
510
511 static inline int get_dumpable(struct mm_struct *mm)
512 {
513 return __get_dumpable(mm->flags);
514 }
515
516 /* coredump filter bits */
517 #define MMF_DUMP_ANON_PRIVATE 2
518 #define MMF_DUMP_ANON_SHARED 3
519 #define MMF_DUMP_MAPPED_PRIVATE 4
520 #define MMF_DUMP_MAPPED_SHARED 5
521 #define MMF_DUMP_ELF_HEADERS 6
522 #define MMF_DUMP_HUGETLB_PRIVATE 7
523 #define MMF_DUMP_HUGETLB_SHARED 8
524 #define MMF_DUMP_DAX_PRIVATE 9
525 #define MMF_DUMP_DAX_SHARED 10
526
527 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
528 #define MMF_DUMP_FILTER_BITS 9
529 #define MMF_DUMP_FILTER_MASK \
530 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
531 #define MMF_DUMP_FILTER_DEFAULT \
532 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
533 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
534
535 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
536 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
537 #else
538 # define MMF_DUMP_MASK_DEFAULT_ELF 0
539 #endif
540 /* leave room for more dump flags */
541 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
542 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
543 /*
544 * This one-shot flag is dropped due to necessity of changing exe once again
545 * on NFS restore
546 */
547 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
548
549 #define MMF_HAS_UPROBES 19 /* has uprobes */
550 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
551 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
552 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
553 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
554
555 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
556
557 struct sighand_struct {
558 atomic_t count;
559 struct k_sigaction action[_NSIG];
560 spinlock_t siglock;
561 wait_queue_head_t signalfd_wqh;
562 };
563
564 struct pacct_struct {
565 int ac_flag;
566 long ac_exitcode;
567 unsigned long ac_mem;
568 cputime_t ac_utime, ac_stime;
569 unsigned long ac_minflt, ac_majflt;
570 };
571
572 struct cpu_itimer {
573 cputime_t expires;
574 cputime_t incr;
575 u32 error;
576 u32 incr_error;
577 };
578
579 /**
580 * struct prev_cputime - snaphsot of system and user cputime
581 * @utime: time spent in user mode
582 * @stime: time spent in system mode
583 * @lock: protects the above two fields
584 *
585 * Stores previous user/system time values such that we can guarantee
586 * monotonicity.
587 */
588 struct prev_cputime {
589 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
590 cputime_t utime;
591 cputime_t stime;
592 raw_spinlock_t lock;
593 #endif
594 };
595
596 static inline void prev_cputime_init(struct prev_cputime *prev)
597 {
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
599 prev->utime = prev->stime = 0;
600 raw_spin_lock_init(&prev->lock);
601 #endif
602 }
603
604 /**
605 * struct task_cputime - collected CPU time counts
606 * @utime: time spent in user mode, in &cputime_t units
607 * @stime: time spent in kernel mode, in &cputime_t units
608 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
609 *
610 * This structure groups together three kinds of CPU time that are tracked for
611 * threads and thread groups. Most things considering CPU time want to group
612 * these counts together and treat all three of them in parallel.
613 */
614 struct task_cputime {
615 cputime_t utime;
616 cputime_t stime;
617 unsigned long long sum_exec_runtime;
618 };
619
620 /* Alternate field names when used to cache expirations. */
621 #define virt_exp utime
622 #define prof_exp stime
623 #define sched_exp sum_exec_runtime
624
625 #define INIT_CPUTIME \
626 (struct task_cputime) { \
627 .utime = 0, \
628 .stime = 0, \
629 .sum_exec_runtime = 0, \
630 }
631
632 /*
633 * This is the atomic variant of task_cputime, which can be used for
634 * storing and updating task_cputime statistics without locking.
635 */
636 struct task_cputime_atomic {
637 atomic64_t utime;
638 atomic64_t stime;
639 atomic64_t sum_exec_runtime;
640 };
641
642 #define INIT_CPUTIME_ATOMIC \
643 (struct task_cputime_atomic) { \
644 .utime = ATOMIC64_INIT(0), \
645 .stime = ATOMIC64_INIT(0), \
646 .sum_exec_runtime = ATOMIC64_INIT(0), \
647 }
648
649 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
650
651 /*
652 * Disable preemption until the scheduler is running -- use an unconditional
653 * value so that it also works on !PREEMPT_COUNT kernels.
654 *
655 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
656 */
657 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
658
659 /*
660 * Initial preempt_count value; reflects the preempt_count schedule invariant
661 * which states that during context switches:
662 *
663 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
664 *
665 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
666 * Note: See finish_task_switch().
667 */
668 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
669
670 /**
671 * struct thread_group_cputimer - thread group interval timer counts
672 * @cputime_atomic: atomic thread group interval timers.
673 * @running: true when there are timers running and
674 * @cputime_atomic receives updates.
675 * @checking_timer: true when a thread in the group is in the
676 * process of checking for thread group timers.
677 *
678 * This structure contains the version of task_cputime, above, that is
679 * used for thread group CPU timer calculations.
680 */
681 struct thread_group_cputimer {
682 struct task_cputime_atomic cputime_atomic;
683 bool running;
684 bool checking_timer;
685 };
686
687 #include <linux/rwsem.h>
688 struct autogroup;
689
690 /*
691 * NOTE! "signal_struct" does not have its own
692 * locking, because a shared signal_struct always
693 * implies a shared sighand_struct, so locking
694 * sighand_struct is always a proper superset of
695 * the locking of signal_struct.
696 */
697 struct signal_struct {
698 atomic_t sigcnt;
699 atomic_t live;
700 int nr_threads;
701 struct list_head thread_head;
702
703 wait_queue_head_t wait_chldexit; /* for wait4() */
704
705 /* current thread group signal load-balancing target: */
706 struct task_struct *curr_target;
707
708 /* shared signal handling: */
709 struct sigpending shared_pending;
710
711 /* thread group exit support */
712 int group_exit_code;
713 /* overloaded:
714 * - notify group_exit_task when ->count is equal to notify_count
715 * - everyone except group_exit_task is stopped during signal delivery
716 * of fatal signals, group_exit_task processes the signal.
717 */
718 int notify_count;
719 struct task_struct *group_exit_task;
720
721 /* thread group stop support, overloads group_exit_code too */
722 int group_stop_count;
723 unsigned int flags; /* see SIGNAL_* flags below */
724
725 /*
726 * PR_SET_CHILD_SUBREAPER marks a process, like a service
727 * manager, to re-parent orphan (double-forking) child processes
728 * to this process instead of 'init'. The service manager is
729 * able to receive SIGCHLD signals and is able to investigate
730 * the process until it calls wait(). All children of this
731 * process will inherit a flag if they should look for a
732 * child_subreaper process at exit.
733 */
734 unsigned int is_child_subreaper:1;
735 unsigned int has_child_subreaper:1;
736
737 /* POSIX.1b Interval Timers */
738 int posix_timer_id;
739 struct list_head posix_timers;
740
741 /* ITIMER_REAL timer for the process */
742 struct hrtimer real_timer;
743 struct pid *leader_pid;
744 ktime_t it_real_incr;
745
746 /*
747 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
748 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
749 * values are defined to 0 and 1 respectively
750 */
751 struct cpu_itimer it[2];
752
753 /*
754 * Thread group totals for process CPU timers.
755 * See thread_group_cputimer(), et al, for details.
756 */
757 struct thread_group_cputimer cputimer;
758
759 /* Earliest-expiration cache. */
760 struct task_cputime cputime_expires;
761
762 #ifdef CONFIG_NO_HZ_FULL
763 atomic_t tick_dep_mask;
764 #endif
765
766 struct list_head cpu_timers[3];
767
768 struct pid *tty_old_pgrp;
769
770 /* boolean value for session group leader */
771 int leader;
772
773 struct tty_struct *tty; /* NULL if no tty */
774
775 #ifdef CONFIG_SCHED_AUTOGROUP
776 struct autogroup *autogroup;
777 #endif
778 /*
779 * Cumulative resource counters for dead threads in the group,
780 * and for reaped dead child processes forked by this group.
781 * Live threads maintain their own counters and add to these
782 * in __exit_signal, except for the group leader.
783 */
784 seqlock_t stats_lock;
785 cputime_t utime, stime, cutime, cstime;
786 cputime_t gtime;
787 cputime_t cgtime;
788 struct prev_cputime prev_cputime;
789 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
790 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
791 unsigned long inblock, oublock, cinblock, coublock;
792 unsigned long maxrss, cmaxrss;
793 struct task_io_accounting ioac;
794
795 /*
796 * Cumulative ns of schedule CPU time fo dead threads in the
797 * group, not including a zombie group leader, (This only differs
798 * from jiffies_to_ns(utime + stime) if sched_clock uses something
799 * other than jiffies.)
800 */
801 unsigned long long sum_sched_runtime;
802
803 /*
804 * We don't bother to synchronize most readers of this at all,
805 * because there is no reader checking a limit that actually needs
806 * to get both rlim_cur and rlim_max atomically, and either one
807 * alone is a single word that can safely be read normally.
808 * getrlimit/setrlimit use task_lock(current->group_leader) to
809 * protect this instead of the siglock, because they really
810 * have no need to disable irqs.
811 */
812 struct rlimit rlim[RLIM_NLIMITS];
813
814 #ifdef CONFIG_BSD_PROCESS_ACCT
815 struct pacct_struct pacct; /* per-process accounting information */
816 #endif
817 #ifdef CONFIG_TASKSTATS
818 struct taskstats *stats;
819 #endif
820 #ifdef CONFIG_AUDIT
821 unsigned audit_tty;
822 struct tty_audit_buf *tty_audit_buf;
823 #endif
824
825 /*
826 * Thread is the potential origin of an oom condition; kill first on
827 * oom
828 */
829 bool oom_flag_origin;
830 short oom_score_adj; /* OOM kill score adjustment */
831 short oom_score_adj_min; /* OOM kill score adjustment min value.
832 * Only settable by CAP_SYS_RESOURCE. */
833 struct mm_struct *oom_mm; /* recorded mm when the thread group got
834 * killed by the oom killer */
835
836 struct mutex cred_guard_mutex; /* guard against foreign influences on
837 * credential calculations
838 * (notably. ptrace) */
839 };
840
841 /*
842 * Bits in flags field of signal_struct.
843 */
844 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
845 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
846 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
847 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
848 /*
849 * Pending notifications to parent.
850 */
851 #define SIGNAL_CLD_STOPPED 0x00000010
852 #define SIGNAL_CLD_CONTINUED 0x00000020
853 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
854
855 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
856
857 /* If true, all threads except ->group_exit_task have pending SIGKILL */
858 static inline int signal_group_exit(const struct signal_struct *sig)
859 {
860 return (sig->flags & SIGNAL_GROUP_EXIT) ||
861 (sig->group_exit_task != NULL);
862 }
863
864 /*
865 * Some day this will be a full-fledged user tracking system..
866 */
867 struct user_struct {
868 atomic_t __count; /* reference count */
869 atomic_t processes; /* How many processes does this user have? */
870 atomic_t sigpending; /* How many pending signals does this user have? */
871 #ifdef CONFIG_INOTIFY_USER
872 atomic_t inotify_watches; /* How many inotify watches does this user have? */
873 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
874 #endif
875 #ifdef CONFIG_FANOTIFY
876 atomic_t fanotify_listeners;
877 #endif
878 #ifdef CONFIG_EPOLL
879 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
880 #endif
881 #ifdef CONFIG_POSIX_MQUEUE
882 /* protected by mq_lock */
883 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
884 #endif
885 unsigned long locked_shm; /* How many pages of mlocked shm ? */
886 unsigned long unix_inflight; /* How many files in flight in unix sockets */
887 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
888
889 #ifdef CONFIG_KEYS
890 struct key *uid_keyring; /* UID specific keyring */
891 struct key *session_keyring; /* UID's default session keyring */
892 #endif
893
894 /* Hash table maintenance information */
895 struct hlist_node uidhash_node;
896 kuid_t uid;
897
898 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
899 atomic_long_t locked_vm;
900 #endif
901 };
902
903 extern int uids_sysfs_init(void);
904
905 extern struct user_struct *find_user(kuid_t);
906
907 extern struct user_struct root_user;
908 #define INIT_USER (&root_user)
909
910
911 struct backing_dev_info;
912 struct reclaim_state;
913
914 #ifdef CONFIG_SCHED_INFO
915 struct sched_info {
916 /* cumulative counters */
917 unsigned long pcount; /* # of times run on this cpu */
918 unsigned long long run_delay; /* time spent waiting on a runqueue */
919
920 /* timestamps */
921 unsigned long long last_arrival,/* when we last ran on a cpu */
922 last_queued; /* when we were last queued to run */
923 };
924 #endif /* CONFIG_SCHED_INFO */
925
926 #ifdef CONFIG_TASK_DELAY_ACCT
927 struct task_delay_info {
928 spinlock_t lock;
929 unsigned int flags; /* Private per-task flags */
930
931 /* For each stat XXX, add following, aligned appropriately
932 *
933 * struct timespec XXX_start, XXX_end;
934 * u64 XXX_delay;
935 * u32 XXX_count;
936 *
937 * Atomicity of updates to XXX_delay, XXX_count protected by
938 * single lock above (split into XXX_lock if contention is an issue).
939 */
940
941 /*
942 * XXX_count is incremented on every XXX operation, the delay
943 * associated with the operation is added to XXX_delay.
944 * XXX_delay contains the accumulated delay time in nanoseconds.
945 */
946 u64 blkio_start; /* Shared by blkio, swapin */
947 u64 blkio_delay; /* wait for sync block io completion */
948 u64 swapin_delay; /* wait for swapin block io completion */
949 u32 blkio_count; /* total count of the number of sync block */
950 /* io operations performed */
951 u32 swapin_count; /* total count of the number of swapin block */
952 /* io operations performed */
953
954 u64 freepages_start;
955 u64 freepages_delay; /* wait for memory reclaim */
956 u32 freepages_count; /* total count of memory reclaim */
957 };
958 #endif /* CONFIG_TASK_DELAY_ACCT */
959
960 static inline int sched_info_on(void)
961 {
962 #ifdef CONFIG_SCHEDSTATS
963 return 1;
964 #elif defined(CONFIG_TASK_DELAY_ACCT)
965 extern int delayacct_on;
966 return delayacct_on;
967 #else
968 return 0;
969 #endif
970 }
971
972 #ifdef CONFIG_SCHEDSTATS
973 void force_schedstat_enabled(void);
974 #endif
975
976 enum cpu_idle_type {
977 CPU_IDLE,
978 CPU_NOT_IDLE,
979 CPU_NEWLY_IDLE,
980 CPU_MAX_IDLE_TYPES
981 };
982
983 /*
984 * Integer metrics need fixed point arithmetic, e.g., sched/fair
985 * has a few: load, load_avg, util_avg, freq, and capacity.
986 *
987 * We define a basic fixed point arithmetic range, and then formalize
988 * all these metrics based on that basic range.
989 */
990 # define SCHED_FIXEDPOINT_SHIFT 10
991 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
992
993 /*
994 * Increase resolution of cpu_capacity calculations
995 */
996 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
997 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
998
999 /*
1000 * Wake-queues are lists of tasks with a pending wakeup, whose
1001 * callers have already marked the task as woken internally,
1002 * and can thus carry on. A common use case is being able to
1003 * do the wakeups once the corresponding user lock as been
1004 * released.
1005 *
1006 * We hold reference to each task in the list across the wakeup,
1007 * thus guaranteeing that the memory is still valid by the time
1008 * the actual wakeups are performed in wake_up_q().
1009 *
1010 * One per task suffices, because there's never a need for a task to be
1011 * in two wake queues simultaneously; it is forbidden to abandon a task
1012 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1013 * already in a wake queue, the wakeup will happen soon and the second
1014 * waker can just skip it.
1015 *
1016 * The DEFINE_WAKE_Q macro declares and initializes the list head.
1017 * wake_up_q() does NOT reinitialize the list; it's expected to be
1018 * called near the end of a function, where the fact that the queue is
1019 * not used again will be easy to see by inspection.
1020 *
1021 * Note that this can cause spurious wakeups. schedule() callers
1022 * must ensure the call is done inside a loop, confirming that the
1023 * wakeup condition has in fact occurred.
1024 */
1025 struct wake_q_node {
1026 struct wake_q_node *next;
1027 };
1028
1029 struct wake_q_head {
1030 struct wake_q_node *first;
1031 struct wake_q_node **lastp;
1032 };
1033
1034 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1035
1036 #define DEFINE_WAKE_Q(name) \
1037 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1038
1039 extern void wake_q_add(struct wake_q_head *head,
1040 struct task_struct *task);
1041 extern void wake_up_q(struct wake_q_head *head);
1042
1043 /*
1044 * sched-domains (multiprocessor balancing) declarations:
1045 */
1046 #ifdef CONFIG_SMP
1047 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1048 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1049 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1050 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1051 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1052 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1053 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1054 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1055 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1056 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1057 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1058 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1059 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1060 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1061 #define SD_NUMA 0x4000 /* cross-node balancing */
1062
1063 #ifdef CONFIG_SCHED_SMT
1064 static inline int cpu_smt_flags(void)
1065 {
1066 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1067 }
1068 #endif
1069
1070 #ifdef CONFIG_SCHED_MC
1071 static inline int cpu_core_flags(void)
1072 {
1073 return SD_SHARE_PKG_RESOURCES;
1074 }
1075 #endif
1076
1077 #ifdef CONFIG_NUMA
1078 static inline int cpu_numa_flags(void)
1079 {
1080 return SD_NUMA;
1081 }
1082 #endif
1083
1084 extern int arch_asym_cpu_priority(int cpu);
1085
1086 struct sched_domain_attr {
1087 int relax_domain_level;
1088 };
1089
1090 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1091 .relax_domain_level = -1, \
1092 }
1093
1094 extern int sched_domain_level_max;
1095
1096 struct sched_group;
1097
1098 struct sched_domain_shared {
1099 atomic_t ref;
1100 atomic_t nr_busy_cpus;
1101 int has_idle_cores;
1102 };
1103
1104 struct sched_domain {
1105 /* These fields must be setup */
1106 struct sched_domain *parent; /* top domain must be null terminated */
1107 struct sched_domain *child; /* bottom domain must be null terminated */
1108 struct sched_group *groups; /* the balancing groups of the domain */
1109 unsigned long min_interval; /* Minimum balance interval ms */
1110 unsigned long max_interval; /* Maximum balance interval ms */
1111 unsigned int busy_factor; /* less balancing by factor if busy */
1112 unsigned int imbalance_pct; /* No balance until over watermark */
1113 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1114 unsigned int busy_idx;
1115 unsigned int idle_idx;
1116 unsigned int newidle_idx;
1117 unsigned int wake_idx;
1118 unsigned int forkexec_idx;
1119 unsigned int smt_gain;
1120
1121 int nohz_idle; /* NOHZ IDLE status */
1122 int flags; /* See SD_* */
1123 int level;
1124
1125 /* Runtime fields. */
1126 unsigned long last_balance; /* init to jiffies. units in jiffies */
1127 unsigned int balance_interval; /* initialise to 1. units in ms. */
1128 unsigned int nr_balance_failed; /* initialise to 0 */
1129
1130 /* idle_balance() stats */
1131 u64 max_newidle_lb_cost;
1132 unsigned long next_decay_max_lb_cost;
1133
1134 u64 avg_scan_cost; /* select_idle_sibling */
1135
1136 #ifdef CONFIG_SCHEDSTATS
1137 /* load_balance() stats */
1138 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1139 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1140 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1141 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1142 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1143 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1144 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1145 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1146
1147 /* Active load balancing */
1148 unsigned int alb_count;
1149 unsigned int alb_failed;
1150 unsigned int alb_pushed;
1151
1152 /* SD_BALANCE_EXEC stats */
1153 unsigned int sbe_count;
1154 unsigned int sbe_balanced;
1155 unsigned int sbe_pushed;
1156
1157 /* SD_BALANCE_FORK stats */
1158 unsigned int sbf_count;
1159 unsigned int sbf_balanced;
1160 unsigned int sbf_pushed;
1161
1162 /* try_to_wake_up() stats */
1163 unsigned int ttwu_wake_remote;
1164 unsigned int ttwu_move_affine;
1165 unsigned int ttwu_move_balance;
1166 #endif
1167 #ifdef CONFIG_SCHED_DEBUG
1168 char *name;
1169 #endif
1170 union {
1171 void *private; /* used during construction */
1172 struct rcu_head rcu; /* used during destruction */
1173 };
1174 struct sched_domain_shared *shared;
1175
1176 unsigned int span_weight;
1177 /*
1178 * Span of all CPUs in this domain.
1179 *
1180 * NOTE: this field is variable length. (Allocated dynamically
1181 * by attaching extra space to the end of the structure,
1182 * depending on how many CPUs the kernel has booted up with)
1183 */
1184 unsigned long span[0];
1185 };
1186
1187 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1188 {
1189 return to_cpumask(sd->span);
1190 }
1191
1192 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1193 struct sched_domain_attr *dattr_new);
1194
1195 /* Allocate an array of sched domains, for partition_sched_domains(). */
1196 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1197 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1198
1199 bool cpus_share_cache(int this_cpu, int that_cpu);
1200
1201 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1202 typedef int (*sched_domain_flags_f)(void);
1203
1204 #define SDTL_OVERLAP 0x01
1205
1206 struct sd_data {
1207 struct sched_domain **__percpu sd;
1208 struct sched_domain_shared **__percpu sds;
1209 struct sched_group **__percpu sg;
1210 struct sched_group_capacity **__percpu sgc;
1211 };
1212
1213 struct sched_domain_topology_level {
1214 sched_domain_mask_f mask;
1215 sched_domain_flags_f sd_flags;
1216 int flags;
1217 int numa_level;
1218 struct sd_data data;
1219 #ifdef CONFIG_SCHED_DEBUG
1220 char *name;
1221 #endif
1222 };
1223
1224 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1225 extern void wake_up_if_idle(int cpu);
1226
1227 #ifdef CONFIG_SCHED_DEBUG
1228 # define SD_INIT_NAME(type) .name = #type
1229 #else
1230 # define SD_INIT_NAME(type)
1231 #endif
1232
1233 #else /* CONFIG_SMP */
1234
1235 struct sched_domain_attr;
1236
1237 static inline void
1238 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1239 struct sched_domain_attr *dattr_new)
1240 {
1241 }
1242
1243 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1244 {
1245 return true;
1246 }
1247
1248 #endif /* !CONFIG_SMP */
1249
1250
1251 struct io_context; /* See blkdev.h */
1252
1253
1254 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1255 extern void prefetch_stack(struct task_struct *t);
1256 #else
1257 static inline void prefetch_stack(struct task_struct *t) { }
1258 #endif
1259
1260 struct audit_context; /* See audit.c */
1261 struct mempolicy;
1262 struct pipe_inode_info;
1263 struct uts_namespace;
1264
1265 struct load_weight {
1266 unsigned long weight;
1267 u32 inv_weight;
1268 };
1269
1270 /*
1271 * The load_avg/util_avg accumulates an infinite geometric series
1272 * (see __update_load_avg() in kernel/sched/fair.c).
1273 *
1274 * [load_avg definition]
1275 *
1276 * load_avg = runnable% * scale_load_down(load)
1277 *
1278 * where runnable% is the time ratio that a sched_entity is runnable.
1279 * For cfs_rq, it is the aggregated load_avg of all runnable and
1280 * blocked sched_entities.
1281 *
1282 * load_avg may also take frequency scaling into account:
1283 *
1284 * load_avg = runnable% * scale_load_down(load) * freq%
1285 *
1286 * where freq% is the CPU frequency normalized to the highest frequency.
1287 *
1288 * [util_avg definition]
1289 *
1290 * util_avg = running% * SCHED_CAPACITY_SCALE
1291 *
1292 * where running% is the time ratio that a sched_entity is running on
1293 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1294 * and blocked sched_entities.
1295 *
1296 * util_avg may also factor frequency scaling and CPU capacity scaling:
1297 *
1298 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1299 *
1300 * where freq% is the same as above, and capacity% is the CPU capacity
1301 * normalized to the greatest capacity (due to uarch differences, etc).
1302 *
1303 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1304 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1305 * we therefore scale them to as large a range as necessary. This is for
1306 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1307 *
1308 * [Overflow issue]
1309 *
1310 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1311 * with the highest load (=88761), always runnable on a single cfs_rq,
1312 * and should not overflow as the number already hits PID_MAX_LIMIT.
1313 *
1314 * For all other cases (including 32-bit kernels), struct load_weight's
1315 * weight will overflow first before we do, because:
1316 *
1317 * Max(load_avg) <= Max(load.weight)
1318 *
1319 * Then it is the load_weight's responsibility to consider overflow
1320 * issues.
1321 */
1322 struct sched_avg {
1323 u64 last_update_time, load_sum;
1324 u32 util_sum, period_contrib;
1325 unsigned long load_avg, util_avg;
1326 };
1327
1328 #ifdef CONFIG_SCHEDSTATS
1329 struct sched_statistics {
1330 u64 wait_start;
1331 u64 wait_max;
1332 u64 wait_count;
1333 u64 wait_sum;
1334 u64 iowait_count;
1335 u64 iowait_sum;
1336
1337 u64 sleep_start;
1338 u64 sleep_max;
1339 s64 sum_sleep_runtime;
1340
1341 u64 block_start;
1342 u64 block_max;
1343 u64 exec_max;
1344 u64 slice_max;
1345
1346 u64 nr_migrations_cold;
1347 u64 nr_failed_migrations_affine;
1348 u64 nr_failed_migrations_running;
1349 u64 nr_failed_migrations_hot;
1350 u64 nr_forced_migrations;
1351
1352 u64 nr_wakeups;
1353 u64 nr_wakeups_sync;
1354 u64 nr_wakeups_migrate;
1355 u64 nr_wakeups_local;
1356 u64 nr_wakeups_remote;
1357 u64 nr_wakeups_affine;
1358 u64 nr_wakeups_affine_attempts;
1359 u64 nr_wakeups_passive;
1360 u64 nr_wakeups_idle;
1361 };
1362 #endif
1363
1364 struct sched_entity {
1365 struct load_weight load; /* for load-balancing */
1366 struct rb_node run_node;
1367 struct list_head group_node;
1368 unsigned int on_rq;
1369
1370 u64 exec_start;
1371 u64 sum_exec_runtime;
1372 u64 vruntime;
1373 u64 prev_sum_exec_runtime;
1374
1375 u64 nr_migrations;
1376
1377 #ifdef CONFIG_SCHEDSTATS
1378 struct sched_statistics statistics;
1379 #endif
1380
1381 #ifdef CONFIG_FAIR_GROUP_SCHED
1382 int depth;
1383 struct sched_entity *parent;
1384 /* rq on which this entity is (to be) queued: */
1385 struct cfs_rq *cfs_rq;
1386 /* rq "owned" by this entity/group: */
1387 struct cfs_rq *my_q;
1388 #endif
1389
1390 #ifdef CONFIG_SMP
1391 /*
1392 * Per entity load average tracking.
1393 *
1394 * Put into separate cache line so it does not
1395 * collide with read-mostly values above.
1396 */
1397 struct sched_avg avg ____cacheline_aligned_in_smp;
1398 #endif
1399 };
1400
1401 struct sched_rt_entity {
1402 struct list_head run_list;
1403 unsigned long timeout;
1404 unsigned long watchdog_stamp;
1405 unsigned int time_slice;
1406 unsigned short on_rq;
1407 unsigned short on_list;
1408
1409 struct sched_rt_entity *back;
1410 #ifdef CONFIG_RT_GROUP_SCHED
1411 struct sched_rt_entity *parent;
1412 /* rq on which this entity is (to be) queued: */
1413 struct rt_rq *rt_rq;
1414 /* rq "owned" by this entity/group: */
1415 struct rt_rq *my_q;
1416 #endif
1417 };
1418
1419 struct sched_dl_entity {
1420 struct rb_node rb_node;
1421
1422 /*
1423 * Original scheduling parameters. Copied here from sched_attr
1424 * during sched_setattr(), they will remain the same until
1425 * the next sched_setattr().
1426 */
1427 u64 dl_runtime; /* maximum runtime for each instance */
1428 u64 dl_deadline; /* relative deadline of each instance */
1429 u64 dl_period; /* separation of two instances (period) */
1430 u64 dl_bw; /* dl_runtime / dl_deadline */
1431
1432 /*
1433 * Actual scheduling parameters. Initialized with the values above,
1434 * they are continously updated during task execution. Note that
1435 * the remaining runtime could be < 0 in case we are in overrun.
1436 */
1437 s64 runtime; /* remaining runtime for this instance */
1438 u64 deadline; /* absolute deadline for this instance */
1439 unsigned int flags; /* specifying the scheduler behaviour */
1440
1441 /*
1442 * Some bool flags:
1443 *
1444 * @dl_throttled tells if we exhausted the runtime. If so, the
1445 * task has to wait for a replenishment to be performed at the
1446 * next firing of dl_timer.
1447 *
1448 * @dl_boosted tells if we are boosted due to DI. If so we are
1449 * outside bandwidth enforcement mechanism (but only until we
1450 * exit the critical section);
1451 *
1452 * @dl_yielded tells if task gave up the cpu before consuming
1453 * all its available runtime during the last job.
1454 */
1455 int dl_throttled, dl_boosted, dl_yielded;
1456
1457 /*
1458 * Bandwidth enforcement timer. Each -deadline task has its
1459 * own bandwidth to be enforced, thus we need one timer per task.
1460 */
1461 struct hrtimer dl_timer;
1462 };
1463
1464 union rcu_special {
1465 struct {
1466 u8 blocked;
1467 u8 need_qs;
1468 u8 exp_need_qs;
1469 u8 pad; /* Otherwise the compiler can store garbage here. */
1470 } b; /* Bits. */
1471 u32 s; /* Set of bits. */
1472 };
1473 struct rcu_node;
1474
1475 enum perf_event_task_context {
1476 perf_invalid_context = -1,
1477 perf_hw_context = 0,
1478 perf_sw_context,
1479 perf_nr_task_contexts,
1480 };
1481
1482 /* Track pages that require TLB flushes */
1483 struct tlbflush_unmap_batch {
1484 /*
1485 * Each bit set is a CPU that potentially has a TLB entry for one of
1486 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1487 */
1488 struct cpumask cpumask;
1489
1490 /* True if any bit in cpumask is set */
1491 bool flush_required;
1492
1493 /*
1494 * If true then the PTE was dirty when unmapped. The entry must be
1495 * flushed before IO is initiated or a stale TLB entry potentially
1496 * allows an update without redirtying the page.
1497 */
1498 bool writable;
1499 };
1500
1501 struct task_struct {
1502 #ifdef CONFIG_THREAD_INFO_IN_TASK
1503 /*
1504 * For reasons of header soup (see current_thread_info()), this
1505 * must be the first element of task_struct.
1506 */
1507 struct thread_info thread_info;
1508 #endif
1509 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1510 void *stack;
1511 atomic_t usage;
1512 unsigned int flags; /* per process flags, defined below */
1513 unsigned int ptrace;
1514
1515 #ifdef CONFIG_SMP
1516 struct llist_node wake_entry;
1517 int on_cpu;
1518 #ifdef CONFIG_THREAD_INFO_IN_TASK
1519 unsigned int cpu; /* current CPU */
1520 #endif
1521 unsigned int wakee_flips;
1522 unsigned long wakee_flip_decay_ts;
1523 struct task_struct *last_wakee;
1524
1525 int wake_cpu;
1526 #endif
1527 int on_rq;
1528
1529 int prio, static_prio, normal_prio;
1530 unsigned int rt_priority;
1531 const struct sched_class *sched_class;
1532 struct sched_entity se;
1533 struct sched_rt_entity rt;
1534 #ifdef CONFIG_CGROUP_SCHED
1535 struct task_group *sched_task_group;
1536 #endif
1537 struct sched_dl_entity dl;
1538
1539 #ifdef CONFIG_PREEMPT_NOTIFIERS
1540 /* list of struct preempt_notifier: */
1541 struct hlist_head preempt_notifiers;
1542 #endif
1543
1544 #ifdef CONFIG_BLK_DEV_IO_TRACE
1545 unsigned int btrace_seq;
1546 #endif
1547
1548 unsigned int policy;
1549 int nr_cpus_allowed;
1550 cpumask_t cpus_allowed;
1551
1552 #ifdef CONFIG_PREEMPT_RCU
1553 int rcu_read_lock_nesting;
1554 union rcu_special rcu_read_unlock_special;
1555 struct list_head rcu_node_entry;
1556 struct rcu_node *rcu_blocked_node;
1557 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1558 #ifdef CONFIG_TASKS_RCU
1559 unsigned long rcu_tasks_nvcsw;
1560 bool rcu_tasks_holdout;
1561 struct list_head rcu_tasks_holdout_list;
1562 int rcu_tasks_idle_cpu;
1563 #endif /* #ifdef CONFIG_TASKS_RCU */
1564
1565 #ifdef CONFIG_SCHED_INFO
1566 struct sched_info sched_info;
1567 #endif
1568
1569 struct list_head tasks;
1570 #ifdef CONFIG_SMP
1571 struct plist_node pushable_tasks;
1572 struct rb_node pushable_dl_tasks;
1573 #endif
1574
1575 struct mm_struct *mm, *active_mm;
1576 /* per-thread vma caching */
1577 u32 vmacache_seqnum;
1578 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1579 #if defined(SPLIT_RSS_COUNTING)
1580 struct task_rss_stat rss_stat;
1581 #endif
1582 /* task state */
1583 int exit_state;
1584 int exit_code, exit_signal;
1585 int pdeath_signal; /* The signal sent when the parent dies */
1586 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1587
1588 /* Used for emulating ABI behavior of previous Linux versions */
1589 unsigned int personality;
1590
1591 /* scheduler bits, serialized by scheduler locks */
1592 unsigned sched_reset_on_fork:1;
1593 unsigned sched_contributes_to_load:1;
1594 unsigned sched_migrated:1;
1595 unsigned sched_remote_wakeup:1;
1596 unsigned :0; /* force alignment to the next boundary */
1597
1598 /* unserialized, strictly 'current' */
1599 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1600 unsigned in_iowait:1;
1601 #if !defined(TIF_RESTORE_SIGMASK)
1602 unsigned restore_sigmask:1;
1603 #endif
1604 #ifdef CONFIG_MEMCG
1605 unsigned memcg_may_oom:1;
1606 #ifndef CONFIG_SLOB
1607 unsigned memcg_kmem_skip_account:1;
1608 #endif
1609 #endif
1610 #ifdef CONFIG_COMPAT_BRK
1611 unsigned brk_randomized:1;
1612 #endif
1613
1614 unsigned long atomic_flags; /* Flags needing atomic access. */
1615
1616 struct restart_block restart_block;
1617
1618 pid_t pid;
1619 pid_t tgid;
1620
1621 #ifdef CONFIG_CC_STACKPROTECTOR
1622 /* Canary value for the -fstack-protector gcc feature */
1623 unsigned long stack_canary;
1624 #endif
1625 /*
1626 * pointers to (original) parent process, youngest child, younger sibling,
1627 * older sibling, respectively. (p->father can be replaced with
1628 * p->real_parent->pid)
1629 */
1630 struct task_struct __rcu *real_parent; /* real parent process */
1631 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1632 /*
1633 * children/sibling forms the list of my natural children
1634 */
1635 struct list_head children; /* list of my children */
1636 struct list_head sibling; /* linkage in my parent's children list */
1637 struct task_struct *group_leader; /* threadgroup leader */
1638
1639 /*
1640 * ptraced is the list of tasks this task is using ptrace on.
1641 * This includes both natural children and PTRACE_ATTACH targets.
1642 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1643 */
1644 struct list_head ptraced;
1645 struct list_head ptrace_entry;
1646
1647 /* PID/PID hash table linkage. */
1648 struct pid_link pids[PIDTYPE_MAX];
1649 struct list_head thread_group;
1650 struct list_head thread_node;
1651
1652 struct completion *vfork_done; /* for vfork() */
1653 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1654 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1655
1656 cputime_t utime, stime;
1657 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1658 cputime_t utimescaled, stimescaled;
1659 #endif
1660 cputime_t gtime;
1661 struct prev_cputime prev_cputime;
1662 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1663 seqcount_t vtime_seqcount;
1664 unsigned long long vtime_snap;
1665 enum {
1666 /* Task is sleeping or running in a CPU with VTIME inactive */
1667 VTIME_INACTIVE = 0,
1668 /* Task runs in userspace in a CPU with VTIME active */
1669 VTIME_USER,
1670 /* Task runs in kernelspace in a CPU with VTIME active */
1671 VTIME_SYS,
1672 } vtime_snap_whence;
1673 #endif
1674
1675 #ifdef CONFIG_NO_HZ_FULL
1676 atomic_t tick_dep_mask;
1677 #endif
1678 unsigned long nvcsw, nivcsw; /* context switch counts */
1679 u64 start_time; /* monotonic time in nsec */
1680 u64 real_start_time; /* boot based time in nsec */
1681 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1682 unsigned long min_flt, maj_flt;
1683
1684 struct task_cputime cputime_expires;
1685 struct list_head cpu_timers[3];
1686
1687 /* process credentials */
1688 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1689 const struct cred __rcu *real_cred; /* objective and real subjective task
1690 * credentials (COW) */
1691 const struct cred __rcu *cred; /* effective (overridable) subjective task
1692 * credentials (COW) */
1693 char comm[TASK_COMM_LEN]; /* executable name excluding path
1694 - access with [gs]et_task_comm (which lock
1695 it with task_lock())
1696 - initialized normally by setup_new_exec */
1697 /* file system info */
1698 struct nameidata *nameidata;
1699 #ifdef CONFIG_SYSVIPC
1700 /* ipc stuff */
1701 struct sysv_sem sysvsem;
1702 struct sysv_shm sysvshm;
1703 #endif
1704 #ifdef CONFIG_DETECT_HUNG_TASK
1705 /* hung task detection */
1706 unsigned long last_switch_count;
1707 #endif
1708 /* filesystem information */
1709 struct fs_struct *fs;
1710 /* open file information */
1711 struct files_struct *files;
1712 /* namespaces */
1713 struct nsproxy *nsproxy;
1714 /* signal handlers */
1715 struct signal_struct *signal;
1716 struct sighand_struct *sighand;
1717
1718 sigset_t blocked, real_blocked;
1719 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1720 struct sigpending pending;
1721
1722 unsigned long sas_ss_sp;
1723 size_t sas_ss_size;
1724 unsigned sas_ss_flags;
1725
1726 struct callback_head *task_works;
1727
1728 struct audit_context *audit_context;
1729 #ifdef CONFIG_AUDITSYSCALL
1730 kuid_t loginuid;
1731 unsigned int sessionid;
1732 #endif
1733 struct seccomp seccomp;
1734
1735 /* Thread group tracking */
1736 u32 parent_exec_id;
1737 u32 self_exec_id;
1738 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1739 * mempolicy */
1740 spinlock_t alloc_lock;
1741
1742 /* Protection of the PI data structures: */
1743 raw_spinlock_t pi_lock;
1744
1745 struct wake_q_node wake_q;
1746
1747 #ifdef CONFIG_RT_MUTEXES
1748 /* PI waiters blocked on a rt_mutex held by this task */
1749 struct rb_root pi_waiters;
1750 struct rb_node *pi_waiters_leftmost;
1751 /* Deadlock detection and priority inheritance handling */
1752 struct rt_mutex_waiter *pi_blocked_on;
1753 #endif
1754
1755 #ifdef CONFIG_DEBUG_MUTEXES
1756 /* mutex deadlock detection */
1757 struct mutex_waiter *blocked_on;
1758 #endif
1759 #ifdef CONFIG_TRACE_IRQFLAGS
1760 unsigned int irq_events;
1761 unsigned long hardirq_enable_ip;
1762 unsigned long hardirq_disable_ip;
1763 unsigned int hardirq_enable_event;
1764 unsigned int hardirq_disable_event;
1765 int hardirqs_enabled;
1766 int hardirq_context;
1767 unsigned long softirq_disable_ip;
1768 unsigned long softirq_enable_ip;
1769 unsigned int softirq_disable_event;
1770 unsigned int softirq_enable_event;
1771 int softirqs_enabled;
1772 int softirq_context;
1773 #endif
1774 #ifdef CONFIG_LOCKDEP
1775 # define MAX_LOCK_DEPTH 48UL
1776 u64 curr_chain_key;
1777 int lockdep_depth;
1778 unsigned int lockdep_recursion;
1779 struct held_lock held_locks[MAX_LOCK_DEPTH];
1780 gfp_t lockdep_reclaim_gfp;
1781 #endif
1782 #ifdef CONFIG_UBSAN
1783 unsigned int in_ubsan;
1784 #endif
1785
1786 /* journalling filesystem info */
1787 void *journal_info;
1788
1789 /* stacked block device info */
1790 struct bio_list *bio_list;
1791
1792 #ifdef CONFIG_BLOCK
1793 /* stack plugging */
1794 struct blk_plug *plug;
1795 #endif
1796
1797 /* VM state */
1798 struct reclaim_state *reclaim_state;
1799
1800 struct backing_dev_info *backing_dev_info;
1801
1802 struct io_context *io_context;
1803
1804 unsigned long ptrace_message;
1805 siginfo_t *last_siginfo; /* For ptrace use. */
1806 struct task_io_accounting ioac;
1807 #if defined(CONFIG_TASK_XACCT)
1808 u64 acct_rss_mem1; /* accumulated rss usage */
1809 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1810 cputime_t acct_timexpd; /* stime + utime since last update */
1811 #endif
1812 #ifdef CONFIG_CPUSETS
1813 nodemask_t mems_allowed; /* Protected by alloc_lock */
1814 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1815 int cpuset_mem_spread_rotor;
1816 int cpuset_slab_spread_rotor;
1817 #endif
1818 #ifdef CONFIG_CGROUPS
1819 /* Control Group info protected by css_set_lock */
1820 struct css_set __rcu *cgroups;
1821 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1822 struct list_head cg_list;
1823 #endif
1824 #ifdef CONFIG_INTEL_RDT_A
1825 int closid;
1826 #endif
1827 #ifdef CONFIG_FUTEX
1828 struct robust_list_head __user *robust_list;
1829 #ifdef CONFIG_COMPAT
1830 struct compat_robust_list_head __user *compat_robust_list;
1831 #endif
1832 struct list_head pi_state_list;
1833 struct futex_pi_state *pi_state_cache;
1834 #endif
1835 #ifdef CONFIG_PERF_EVENTS
1836 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1837 struct mutex perf_event_mutex;
1838 struct list_head perf_event_list;
1839 #endif
1840 #ifdef CONFIG_DEBUG_PREEMPT
1841 unsigned long preempt_disable_ip;
1842 #endif
1843 #ifdef CONFIG_NUMA
1844 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1845 short il_next;
1846 short pref_node_fork;
1847 #endif
1848 #ifdef CONFIG_NUMA_BALANCING
1849 int numa_scan_seq;
1850 unsigned int numa_scan_period;
1851 unsigned int numa_scan_period_max;
1852 int numa_preferred_nid;
1853 unsigned long numa_migrate_retry;
1854 u64 node_stamp; /* migration stamp */
1855 u64 last_task_numa_placement;
1856 u64 last_sum_exec_runtime;
1857 struct callback_head numa_work;
1858
1859 struct list_head numa_entry;
1860 struct numa_group *numa_group;
1861
1862 /*
1863 * numa_faults is an array split into four regions:
1864 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1865 * in this precise order.
1866 *
1867 * faults_memory: Exponential decaying average of faults on a per-node
1868 * basis. Scheduling placement decisions are made based on these
1869 * counts. The values remain static for the duration of a PTE scan.
1870 * faults_cpu: Track the nodes the process was running on when a NUMA
1871 * hinting fault was incurred.
1872 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1873 * during the current scan window. When the scan completes, the counts
1874 * in faults_memory and faults_cpu decay and these values are copied.
1875 */
1876 unsigned long *numa_faults;
1877 unsigned long total_numa_faults;
1878
1879 /*
1880 * numa_faults_locality tracks if faults recorded during the last
1881 * scan window were remote/local or failed to migrate. The task scan
1882 * period is adapted based on the locality of the faults with different
1883 * weights depending on whether they were shared or private faults
1884 */
1885 unsigned long numa_faults_locality[3];
1886
1887 unsigned long numa_pages_migrated;
1888 #endif /* CONFIG_NUMA_BALANCING */
1889
1890 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1891 struct tlbflush_unmap_batch tlb_ubc;
1892 #endif
1893
1894 struct rcu_head rcu;
1895
1896 /*
1897 * cache last used pipe for splice
1898 */
1899 struct pipe_inode_info *splice_pipe;
1900
1901 struct page_frag task_frag;
1902
1903 #ifdef CONFIG_TASK_DELAY_ACCT
1904 struct task_delay_info *delays;
1905 #endif
1906 #ifdef CONFIG_FAULT_INJECTION
1907 int make_it_fail;
1908 #endif
1909 /*
1910 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1911 * balance_dirty_pages() for some dirty throttling pause
1912 */
1913 int nr_dirtied;
1914 int nr_dirtied_pause;
1915 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1916
1917 #ifdef CONFIG_LATENCYTOP
1918 int latency_record_count;
1919 struct latency_record latency_record[LT_SAVECOUNT];
1920 #endif
1921 /*
1922 * time slack values; these are used to round up poll() and
1923 * select() etc timeout values. These are in nanoseconds.
1924 */
1925 u64 timer_slack_ns;
1926 u64 default_timer_slack_ns;
1927
1928 #ifdef CONFIG_KASAN
1929 unsigned int kasan_depth;
1930 #endif
1931 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1932 /* Index of current stored address in ret_stack */
1933 int curr_ret_stack;
1934 /* Stack of return addresses for return function tracing */
1935 struct ftrace_ret_stack *ret_stack;
1936 /* time stamp for last schedule */
1937 unsigned long long ftrace_timestamp;
1938 /*
1939 * Number of functions that haven't been traced
1940 * because of depth overrun.
1941 */
1942 atomic_t trace_overrun;
1943 /* Pause for the tracing */
1944 atomic_t tracing_graph_pause;
1945 #endif
1946 #ifdef CONFIG_TRACING
1947 /* state flags for use by tracers */
1948 unsigned long trace;
1949 /* bitmask and counter of trace recursion */
1950 unsigned long trace_recursion;
1951 #endif /* CONFIG_TRACING */
1952 #ifdef CONFIG_KCOV
1953 /* Coverage collection mode enabled for this task (0 if disabled). */
1954 enum kcov_mode kcov_mode;
1955 /* Size of the kcov_area. */
1956 unsigned kcov_size;
1957 /* Buffer for coverage collection. */
1958 void *kcov_area;
1959 /* kcov desciptor wired with this task or NULL. */
1960 struct kcov *kcov;
1961 #endif
1962 #ifdef CONFIG_MEMCG
1963 struct mem_cgroup *memcg_in_oom;
1964 gfp_t memcg_oom_gfp_mask;
1965 int memcg_oom_order;
1966
1967 /* number of pages to reclaim on returning to userland */
1968 unsigned int memcg_nr_pages_over_high;
1969 #endif
1970 #ifdef CONFIG_UPROBES
1971 struct uprobe_task *utask;
1972 #endif
1973 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1974 unsigned int sequential_io;
1975 unsigned int sequential_io_avg;
1976 #endif
1977 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1978 unsigned long task_state_change;
1979 #endif
1980 int pagefault_disabled;
1981 #ifdef CONFIG_MMU
1982 struct task_struct *oom_reaper_list;
1983 #endif
1984 #ifdef CONFIG_VMAP_STACK
1985 struct vm_struct *stack_vm_area;
1986 #endif
1987 #ifdef CONFIG_THREAD_INFO_IN_TASK
1988 /* A live task holds one reference. */
1989 atomic_t stack_refcount;
1990 #endif
1991 /* CPU-specific state of this task */
1992 struct thread_struct thread;
1993 /*
1994 * WARNING: on x86, 'thread_struct' contains a variable-sized
1995 * structure. It *MUST* be at the end of 'task_struct'.
1996 *
1997 * Do not put anything below here!
1998 */
1999 };
2000
2001 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
2002 extern int arch_task_struct_size __read_mostly;
2003 #else
2004 # define arch_task_struct_size (sizeof(struct task_struct))
2005 #endif
2006
2007 #ifdef CONFIG_VMAP_STACK
2008 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2009 {
2010 return t->stack_vm_area;
2011 }
2012 #else
2013 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2014 {
2015 return NULL;
2016 }
2017 #endif
2018
2019 /* Future-safe accessor for struct task_struct's cpus_allowed. */
2020 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2021
2022 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2023 {
2024 return p->nr_cpus_allowed;
2025 }
2026
2027 #define TNF_MIGRATED 0x01
2028 #define TNF_NO_GROUP 0x02
2029 #define TNF_SHARED 0x04
2030 #define TNF_FAULT_LOCAL 0x08
2031 #define TNF_MIGRATE_FAIL 0x10
2032
2033 static inline bool in_vfork(struct task_struct *tsk)
2034 {
2035 bool ret;
2036
2037 /*
2038 * need RCU to access ->real_parent if CLONE_VM was used along with
2039 * CLONE_PARENT.
2040 *
2041 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2042 * imply CLONE_VM
2043 *
2044 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2045 * ->real_parent is not necessarily the task doing vfork(), so in
2046 * theory we can't rely on task_lock() if we want to dereference it.
2047 *
2048 * And in this case we can't trust the real_parent->mm == tsk->mm
2049 * check, it can be false negative. But we do not care, if init or
2050 * another oom-unkillable task does this it should blame itself.
2051 */
2052 rcu_read_lock();
2053 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2054 rcu_read_unlock();
2055
2056 return ret;
2057 }
2058
2059 #ifdef CONFIG_NUMA_BALANCING
2060 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2061 extern pid_t task_numa_group_id(struct task_struct *p);
2062 extern void set_numabalancing_state(bool enabled);
2063 extern void task_numa_free(struct task_struct *p);
2064 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2065 int src_nid, int dst_cpu);
2066 #else
2067 static inline void task_numa_fault(int last_node, int node, int pages,
2068 int flags)
2069 {
2070 }
2071 static inline pid_t task_numa_group_id(struct task_struct *p)
2072 {
2073 return 0;
2074 }
2075 static inline void set_numabalancing_state(bool enabled)
2076 {
2077 }
2078 static inline void task_numa_free(struct task_struct *p)
2079 {
2080 }
2081 static inline bool should_numa_migrate_memory(struct task_struct *p,
2082 struct page *page, int src_nid, int dst_cpu)
2083 {
2084 return true;
2085 }
2086 #endif
2087
2088 static inline struct pid *task_pid(struct task_struct *task)
2089 {
2090 return task->pids[PIDTYPE_PID].pid;
2091 }
2092
2093 static inline struct pid *task_tgid(struct task_struct *task)
2094 {
2095 return task->group_leader->pids[PIDTYPE_PID].pid;
2096 }
2097
2098 /*
2099 * Without tasklist or rcu lock it is not safe to dereference
2100 * the result of task_pgrp/task_session even if task == current,
2101 * we can race with another thread doing sys_setsid/sys_setpgid.
2102 */
2103 static inline struct pid *task_pgrp(struct task_struct *task)
2104 {
2105 return task->group_leader->pids[PIDTYPE_PGID].pid;
2106 }
2107
2108 static inline struct pid *task_session(struct task_struct *task)
2109 {
2110 return task->group_leader->pids[PIDTYPE_SID].pid;
2111 }
2112
2113 struct pid_namespace;
2114
2115 /*
2116 * the helpers to get the task's different pids as they are seen
2117 * from various namespaces
2118 *
2119 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2120 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2121 * current.
2122 * task_xid_nr_ns() : id seen from the ns specified;
2123 *
2124 * set_task_vxid() : assigns a virtual id to a task;
2125 *
2126 * see also pid_nr() etc in include/linux/pid.h
2127 */
2128 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2129 struct pid_namespace *ns);
2130
2131 static inline pid_t task_pid_nr(struct task_struct *tsk)
2132 {
2133 return tsk->pid;
2134 }
2135
2136 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2137 struct pid_namespace *ns)
2138 {
2139 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2140 }
2141
2142 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2143 {
2144 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2145 }
2146
2147
2148 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2149 {
2150 return tsk->tgid;
2151 }
2152
2153 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2154
2155 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2156 {
2157 return pid_vnr(task_tgid(tsk));
2158 }
2159
2160
2161 static inline int pid_alive(const struct task_struct *p);
2162 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2163 {
2164 pid_t pid = 0;
2165
2166 rcu_read_lock();
2167 if (pid_alive(tsk))
2168 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2169 rcu_read_unlock();
2170
2171 return pid;
2172 }
2173
2174 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2175 {
2176 return task_ppid_nr_ns(tsk, &init_pid_ns);
2177 }
2178
2179 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2180 struct pid_namespace *ns)
2181 {
2182 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2183 }
2184
2185 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2186 {
2187 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2188 }
2189
2190
2191 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2192 struct pid_namespace *ns)
2193 {
2194 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2195 }
2196
2197 static inline pid_t task_session_vnr(struct task_struct *tsk)
2198 {
2199 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2200 }
2201
2202 /* obsolete, do not use */
2203 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2204 {
2205 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2206 }
2207
2208 /**
2209 * pid_alive - check that a task structure is not stale
2210 * @p: Task structure to be checked.
2211 *
2212 * Test if a process is not yet dead (at most zombie state)
2213 * If pid_alive fails, then pointers within the task structure
2214 * can be stale and must not be dereferenced.
2215 *
2216 * Return: 1 if the process is alive. 0 otherwise.
2217 */
2218 static inline int pid_alive(const struct task_struct *p)
2219 {
2220 return p->pids[PIDTYPE_PID].pid != NULL;
2221 }
2222
2223 /**
2224 * is_global_init - check if a task structure is init. Since init
2225 * is free to have sub-threads we need to check tgid.
2226 * @tsk: Task structure to be checked.
2227 *
2228 * Check if a task structure is the first user space task the kernel created.
2229 *
2230 * Return: 1 if the task structure is init. 0 otherwise.
2231 */
2232 static inline int is_global_init(struct task_struct *tsk)
2233 {
2234 return task_tgid_nr(tsk) == 1;
2235 }
2236
2237 extern struct pid *cad_pid;
2238
2239 extern void free_task(struct task_struct *tsk);
2240 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2241
2242 extern void __put_task_struct(struct task_struct *t);
2243
2244 static inline void put_task_struct(struct task_struct *t)
2245 {
2246 if (atomic_dec_and_test(&t->usage))
2247 __put_task_struct(t);
2248 }
2249
2250 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2251 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2252
2253 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2254 extern void task_cputime(struct task_struct *t,
2255 cputime_t *utime, cputime_t *stime);
2256 extern cputime_t task_gtime(struct task_struct *t);
2257 #else
2258 static inline void task_cputime(struct task_struct *t,
2259 cputime_t *utime, cputime_t *stime)
2260 {
2261 *utime = t->utime;
2262 *stime = t->stime;
2263 }
2264
2265 static inline cputime_t task_gtime(struct task_struct *t)
2266 {
2267 return t->gtime;
2268 }
2269 #endif
2270
2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2272 static inline void task_cputime_scaled(struct task_struct *t,
2273 cputime_t *utimescaled,
2274 cputime_t *stimescaled)
2275 {
2276 *utimescaled = t->utimescaled;
2277 *stimescaled = t->stimescaled;
2278 }
2279 #else
2280 static inline void task_cputime_scaled(struct task_struct *t,
2281 cputime_t *utimescaled,
2282 cputime_t *stimescaled)
2283 {
2284 task_cputime(t, utimescaled, stimescaled);
2285 }
2286 #endif
2287
2288 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2289 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2290
2291 /*
2292 * Per process flags
2293 */
2294 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
2295 #define PF_EXITING 0x00000004 /* getting shut down */
2296 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2297 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2298 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2299 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2300 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2301 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2302 #define PF_DUMPCORE 0x00000200 /* dumped core */
2303 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2304 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2305 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2306 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2307 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2308 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2309 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2310 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2311 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2312 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2313 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2314 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2315 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2316 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2317 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2318 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2319 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2320 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2321 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2322
2323 /*
2324 * Only the _current_ task can read/write to tsk->flags, but other
2325 * tasks can access tsk->flags in readonly mode for example
2326 * with tsk_used_math (like during threaded core dumping).
2327 * There is however an exception to this rule during ptrace
2328 * or during fork: the ptracer task is allowed to write to the
2329 * child->flags of its traced child (same goes for fork, the parent
2330 * can write to the child->flags), because we're guaranteed the
2331 * child is not running and in turn not changing child->flags
2332 * at the same time the parent does it.
2333 */
2334 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2335 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2336 #define clear_used_math() clear_stopped_child_used_math(current)
2337 #define set_used_math() set_stopped_child_used_math(current)
2338 #define conditional_stopped_child_used_math(condition, child) \
2339 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2340 #define conditional_used_math(condition) \
2341 conditional_stopped_child_used_math(condition, current)
2342 #define copy_to_stopped_child_used_math(child) \
2343 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2344 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2345 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2346 #define used_math() tsk_used_math(current)
2347
2348 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2349 * __GFP_FS is also cleared as it implies __GFP_IO.
2350 */
2351 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2352 {
2353 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2354 flags &= ~(__GFP_IO | __GFP_FS);
2355 return flags;
2356 }
2357
2358 static inline unsigned int memalloc_noio_save(void)
2359 {
2360 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2361 current->flags |= PF_MEMALLOC_NOIO;
2362 return flags;
2363 }
2364
2365 static inline void memalloc_noio_restore(unsigned int flags)
2366 {
2367 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2368 }
2369
2370 /* Per-process atomic flags. */
2371 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2372 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2373 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2374 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2375
2376
2377 #define TASK_PFA_TEST(name, func) \
2378 static inline bool task_##func(struct task_struct *p) \
2379 { return test_bit(PFA_##name, &p->atomic_flags); }
2380 #define TASK_PFA_SET(name, func) \
2381 static inline void task_set_##func(struct task_struct *p) \
2382 { set_bit(PFA_##name, &p->atomic_flags); }
2383 #define TASK_PFA_CLEAR(name, func) \
2384 static inline void task_clear_##func(struct task_struct *p) \
2385 { clear_bit(PFA_##name, &p->atomic_flags); }
2386
2387 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2388 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2389
2390 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2391 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2392 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2393
2394 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2395 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2396 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2397
2398 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2399 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2400
2401 /*
2402 * task->jobctl flags
2403 */
2404 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2405
2406 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2407 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2408 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2409 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2410 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2411 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2412 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2413
2414 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2415 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2416 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2417 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2418 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2419 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2420 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2421
2422 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2423 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2424
2425 extern bool task_set_jobctl_pending(struct task_struct *task,
2426 unsigned long mask);
2427 extern void task_clear_jobctl_trapping(struct task_struct *task);
2428 extern void task_clear_jobctl_pending(struct task_struct *task,
2429 unsigned long mask);
2430
2431 static inline void rcu_copy_process(struct task_struct *p)
2432 {
2433 #ifdef CONFIG_PREEMPT_RCU
2434 p->rcu_read_lock_nesting = 0;
2435 p->rcu_read_unlock_special.s = 0;
2436 p->rcu_blocked_node = NULL;
2437 INIT_LIST_HEAD(&p->rcu_node_entry);
2438 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2439 #ifdef CONFIG_TASKS_RCU
2440 p->rcu_tasks_holdout = false;
2441 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2442 p->rcu_tasks_idle_cpu = -1;
2443 #endif /* #ifdef CONFIG_TASKS_RCU */
2444 }
2445
2446 static inline void tsk_restore_flags(struct task_struct *task,
2447 unsigned long orig_flags, unsigned long flags)
2448 {
2449 task->flags &= ~flags;
2450 task->flags |= orig_flags & flags;
2451 }
2452
2453 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2454 const struct cpumask *trial);
2455 extern int task_can_attach(struct task_struct *p,
2456 const struct cpumask *cs_cpus_allowed);
2457 #ifdef CONFIG_SMP
2458 extern void do_set_cpus_allowed(struct task_struct *p,
2459 const struct cpumask *new_mask);
2460
2461 extern int set_cpus_allowed_ptr(struct task_struct *p,
2462 const struct cpumask *new_mask);
2463 #else
2464 static inline void do_set_cpus_allowed(struct task_struct *p,
2465 const struct cpumask *new_mask)
2466 {
2467 }
2468 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2469 const struct cpumask *new_mask)
2470 {
2471 if (!cpumask_test_cpu(0, new_mask))
2472 return -EINVAL;
2473 return 0;
2474 }
2475 #endif
2476
2477 #ifdef CONFIG_NO_HZ_COMMON
2478 void calc_load_enter_idle(void);
2479 void calc_load_exit_idle(void);
2480 #else
2481 static inline void calc_load_enter_idle(void) { }
2482 static inline void calc_load_exit_idle(void) { }
2483 #endif /* CONFIG_NO_HZ_COMMON */
2484
2485 #ifndef cpu_relax_yield
2486 #define cpu_relax_yield() cpu_relax()
2487 #endif
2488
2489 /*
2490 * Do not use outside of architecture code which knows its limitations.
2491 *
2492 * sched_clock() has no promise of monotonicity or bounded drift between
2493 * CPUs, use (which you should not) requires disabling IRQs.
2494 *
2495 * Please use one of the three interfaces below.
2496 */
2497 extern unsigned long long notrace sched_clock(void);
2498 /*
2499 * See the comment in kernel/sched/clock.c
2500 */
2501 extern u64 running_clock(void);
2502 extern u64 sched_clock_cpu(int cpu);
2503
2504
2505 extern void sched_clock_init(void);
2506
2507 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2508 static inline void sched_clock_tick(void)
2509 {
2510 }
2511
2512 static inline void sched_clock_idle_sleep_event(void)
2513 {
2514 }
2515
2516 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2517 {
2518 }
2519
2520 static inline u64 cpu_clock(int cpu)
2521 {
2522 return sched_clock();
2523 }
2524
2525 static inline u64 local_clock(void)
2526 {
2527 return sched_clock();
2528 }
2529 #else
2530 /*
2531 * Architectures can set this to 1 if they have specified
2532 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2533 * but then during bootup it turns out that sched_clock()
2534 * is reliable after all:
2535 */
2536 extern int sched_clock_stable(void);
2537 extern void set_sched_clock_stable(void);
2538 extern void clear_sched_clock_stable(void);
2539
2540 extern void sched_clock_tick(void);
2541 extern void sched_clock_idle_sleep_event(void);
2542 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2543
2544 /*
2545 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2546 * time source that is monotonic per cpu argument and has bounded drift
2547 * between cpus.
2548 *
2549 * ######################### BIG FAT WARNING ##########################
2550 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2551 * # go backwards !! #
2552 * ####################################################################
2553 */
2554 static inline u64 cpu_clock(int cpu)
2555 {
2556 return sched_clock_cpu(cpu);
2557 }
2558
2559 static inline u64 local_clock(void)
2560 {
2561 return sched_clock_cpu(raw_smp_processor_id());
2562 }
2563 #endif
2564
2565 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2566 /*
2567 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2568 * The reason for this explicit opt-in is not to have perf penalty with
2569 * slow sched_clocks.
2570 */
2571 extern void enable_sched_clock_irqtime(void);
2572 extern void disable_sched_clock_irqtime(void);
2573 #else
2574 static inline void enable_sched_clock_irqtime(void) {}
2575 static inline void disable_sched_clock_irqtime(void) {}
2576 #endif
2577
2578 extern unsigned long long
2579 task_sched_runtime(struct task_struct *task);
2580
2581 /* sched_exec is called by processes performing an exec */
2582 #ifdef CONFIG_SMP
2583 extern void sched_exec(void);
2584 #else
2585 #define sched_exec() {}
2586 #endif
2587
2588 extern void sched_clock_idle_sleep_event(void);
2589 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2590
2591 #ifdef CONFIG_HOTPLUG_CPU
2592 extern void idle_task_exit(void);
2593 #else
2594 static inline void idle_task_exit(void) {}
2595 #endif
2596
2597 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2598 extern void wake_up_nohz_cpu(int cpu);
2599 #else
2600 static inline void wake_up_nohz_cpu(int cpu) { }
2601 #endif
2602
2603 #ifdef CONFIG_NO_HZ_FULL
2604 extern u64 scheduler_tick_max_deferment(void);
2605 #endif
2606
2607 #ifdef CONFIG_SCHED_AUTOGROUP
2608 extern void sched_autogroup_create_attach(struct task_struct *p);
2609 extern void sched_autogroup_detach(struct task_struct *p);
2610 extern void sched_autogroup_fork(struct signal_struct *sig);
2611 extern void sched_autogroup_exit(struct signal_struct *sig);
2612 extern void sched_autogroup_exit_task(struct task_struct *p);
2613 #ifdef CONFIG_PROC_FS
2614 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2615 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2616 #endif
2617 #else
2618 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2619 static inline void sched_autogroup_detach(struct task_struct *p) { }
2620 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2621 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2622 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2623 #endif
2624
2625 extern int yield_to(struct task_struct *p, bool preempt);
2626 extern void set_user_nice(struct task_struct *p, long nice);
2627 extern int task_prio(const struct task_struct *p);
2628 /**
2629 * task_nice - return the nice value of a given task.
2630 * @p: the task in question.
2631 *
2632 * Return: The nice value [ -20 ... 0 ... 19 ].
2633 */
2634 static inline int task_nice(const struct task_struct *p)
2635 {
2636 return PRIO_TO_NICE((p)->static_prio);
2637 }
2638 extern int can_nice(const struct task_struct *p, const int nice);
2639 extern int task_curr(const struct task_struct *p);
2640 extern int idle_cpu(int cpu);
2641 extern int sched_setscheduler(struct task_struct *, int,
2642 const struct sched_param *);
2643 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2644 const struct sched_param *);
2645 extern int sched_setattr(struct task_struct *,
2646 const struct sched_attr *);
2647 extern struct task_struct *idle_task(int cpu);
2648 /**
2649 * is_idle_task - is the specified task an idle task?
2650 * @p: the task in question.
2651 *
2652 * Return: 1 if @p is an idle task. 0 otherwise.
2653 */
2654 static inline bool is_idle_task(const struct task_struct *p)
2655 {
2656 return !!(p->flags & PF_IDLE);
2657 }
2658 extern struct task_struct *curr_task(int cpu);
2659 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2660
2661 void yield(void);
2662
2663 union thread_union {
2664 #ifndef CONFIG_THREAD_INFO_IN_TASK
2665 struct thread_info thread_info;
2666 #endif
2667 unsigned long stack[THREAD_SIZE/sizeof(long)];
2668 };
2669
2670 #ifndef __HAVE_ARCH_KSTACK_END
2671 static inline int kstack_end(void *addr)
2672 {
2673 /* Reliable end of stack detection:
2674 * Some APM bios versions misalign the stack
2675 */
2676 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2677 }
2678 #endif
2679
2680 extern union thread_union init_thread_union;
2681 extern struct task_struct init_task;
2682
2683 extern struct mm_struct init_mm;
2684
2685 extern struct pid_namespace init_pid_ns;
2686
2687 /*
2688 * find a task by one of its numerical ids
2689 *
2690 * find_task_by_pid_ns():
2691 * finds a task by its pid in the specified namespace
2692 * find_task_by_vpid():
2693 * finds a task by its virtual pid
2694 *
2695 * see also find_vpid() etc in include/linux/pid.h
2696 */
2697
2698 extern struct task_struct *find_task_by_vpid(pid_t nr);
2699 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2700 struct pid_namespace *ns);
2701
2702 /* per-UID process charging. */
2703 extern struct user_struct * alloc_uid(kuid_t);
2704 static inline struct user_struct *get_uid(struct user_struct *u)
2705 {
2706 atomic_inc(&u->__count);
2707 return u;
2708 }
2709 extern void free_uid(struct user_struct *);
2710
2711 #include <asm/current.h>
2712
2713 extern void xtime_update(unsigned long ticks);
2714
2715 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2716 extern int wake_up_process(struct task_struct *tsk);
2717 extern void wake_up_new_task(struct task_struct *tsk);
2718 #ifdef CONFIG_SMP
2719 extern void kick_process(struct task_struct *tsk);
2720 #else
2721 static inline void kick_process(struct task_struct *tsk) { }
2722 #endif
2723 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2724 extern void sched_dead(struct task_struct *p);
2725
2726 extern void proc_caches_init(void);
2727 extern void flush_signals(struct task_struct *);
2728 extern void ignore_signals(struct task_struct *);
2729 extern void flush_signal_handlers(struct task_struct *, int force_default);
2730 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2731
2732 static inline int kernel_dequeue_signal(siginfo_t *info)
2733 {
2734 struct task_struct *tsk = current;
2735 siginfo_t __info;
2736 int ret;
2737
2738 spin_lock_irq(&tsk->sighand->siglock);
2739 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2740 spin_unlock_irq(&tsk->sighand->siglock);
2741
2742 return ret;
2743 }
2744
2745 static inline void kernel_signal_stop(void)
2746 {
2747 spin_lock_irq(&current->sighand->siglock);
2748 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2749 __set_current_state(TASK_STOPPED);
2750 spin_unlock_irq(&current->sighand->siglock);
2751
2752 schedule();
2753 }
2754
2755 extern void release_task(struct task_struct * p);
2756 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2757 extern int force_sigsegv(int, struct task_struct *);
2758 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2759 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2760 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2761 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2762 const struct cred *, u32);
2763 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2764 extern int kill_pid(struct pid *pid, int sig, int priv);
2765 extern int kill_proc_info(int, struct siginfo *, pid_t);
2766 extern __must_check bool do_notify_parent(struct task_struct *, int);
2767 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2768 extern void force_sig(int, struct task_struct *);
2769 extern int send_sig(int, struct task_struct *, int);
2770 extern int zap_other_threads(struct task_struct *p);
2771 extern struct sigqueue *sigqueue_alloc(void);
2772 extern void sigqueue_free(struct sigqueue *);
2773 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2774 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2775
2776 #ifdef TIF_RESTORE_SIGMASK
2777 /*
2778 * Legacy restore_sigmask accessors. These are inefficient on
2779 * SMP architectures because they require atomic operations.
2780 */
2781
2782 /**
2783 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2784 *
2785 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2786 * will run before returning to user mode, to process the flag. For
2787 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2788 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2789 * arch code will notice on return to user mode, in case those bits
2790 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2791 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2792 */
2793 static inline void set_restore_sigmask(void)
2794 {
2795 set_thread_flag(TIF_RESTORE_SIGMASK);
2796 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2797 }
2798 static inline void clear_restore_sigmask(void)
2799 {
2800 clear_thread_flag(TIF_RESTORE_SIGMASK);
2801 }
2802 static inline bool test_restore_sigmask(void)
2803 {
2804 return test_thread_flag(TIF_RESTORE_SIGMASK);
2805 }
2806 static inline bool test_and_clear_restore_sigmask(void)
2807 {
2808 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2809 }
2810
2811 #else /* TIF_RESTORE_SIGMASK */
2812
2813 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2814 static inline void set_restore_sigmask(void)
2815 {
2816 current->restore_sigmask = true;
2817 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2818 }
2819 static inline void clear_restore_sigmask(void)
2820 {
2821 current->restore_sigmask = false;
2822 }
2823 static inline bool test_restore_sigmask(void)
2824 {
2825 return current->restore_sigmask;
2826 }
2827 static inline bool test_and_clear_restore_sigmask(void)
2828 {
2829 if (!current->restore_sigmask)
2830 return false;
2831 current->restore_sigmask = false;
2832 return true;
2833 }
2834 #endif
2835
2836 static inline void restore_saved_sigmask(void)
2837 {
2838 if (test_and_clear_restore_sigmask())
2839 __set_current_blocked(&current->saved_sigmask);
2840 }
2841
2842 static inline sigset_t *sigmask_to_save(void)
2843 {
2844 sigset_t *res = &current->blocked;
2845 if (unlikely(test_restore_sigmask()))
2846 res = &current->saved_sigmask;
2847 return res;
2848 }
2849
2850 static inline int kill_cad_pid(int sig, int priv)
2851 {
2852 return kill_pid(cad_pid, sig, priv);
2853 }
2854
2855 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2856 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2857 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2858 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2859
2860 /*
2861 * True if we are on the alternate signal stack.
2862 */
2863 static inline int on_sig_stack(unsigned long sp)
2864 {
2865 /*
2866 * If the signal stack is SS_AUTODISARM then, by construction, we
2867 * can't be on the signal stack unless user code deliberately set
2868 * SS_AUTODISARM when we were already on it.
2869 *
2870 * This improves reliability: if user state gets corrupted such that
2871 * the stack pointer points very close to the end of the signal stack,
2872 * then this check will enable the signal to be handled anyway.
2873 */
2874 if (current->sas_ss_flags & SS_AUTODISARM)
2875 return 0;
2876
2877 #ifdef CONFIG_STACK_GROWSUP
2878 return sp >= current->sas_ss_sp &&
2879 sp - current->sas_ss_sp < current->sas_ss_size;
2880 #else
2881 return sp > current->sas_ss_sp &&
2882 sp - current->sas_ss_sp <= current->sas_ss_size;
2883 #endif
2884 }
2885
2886 static inline int sas_ss_flags(unsigned long sp)
2887 {
2888 if (!current->sas_ss_size)
2889 return SS_DISABLE;
2890
2891 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2892 }
2893
2894 static inline void sas_ss_reset(struct task_struct *p)
2895 {
2896 p->sas_ss_sp = 0;
2897 p->sas_ss_size = 0;
2898 p->sas_ss_flags = SS_DISABLE;
2899 }
2900
2901 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2902 {
2903 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2904 #ifdef CONFIG_STACK_GROWSUP
2905 return current->sas_ss_sp;
2906 #else
2907 return current->sas_ss_sp + current->sas_ss_size;
2908 #endif
2909 return sp;
2910 }
2911
2912 /*
2913 * Routines for handling mm_structs
2914 */
2915 extern struct mm_struct * mm_alloc(void);
2916
2917 /* mmdrop drops the mm and the page tables */
2918 extern void __mmdrop(struct mm_struct *);
2919 static inline void mmdrop(struct mm_struct *mm)
2920 {
2921 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2922 __mmdrop(mm);
2923 }
2924
2925 static inline void mmdrop_async_fn(struct work_struct *work)
2926 {
2927 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2928 __mmdrop(mm);
2929 }
2930
2931 static inline void mmdrop_async(struct mm_struct *mm)
2932 {
2933 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2934 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2935 schedule_work(&mm->async_put_work);
2936 }
2937 }
2938
2939 static inline bool mmget_not_zero(struct mm_struct *mm)
2940 {
2941 return atomic_inc_not_zero(&mm->mm_users);
2942 }
2943
2944 /* mmput gets rid of the mappings and all user-space */
2945 extern void mmput(struct mm_struct *);
2946 #ifdef CONFIG_MMU
2947 /* same as above but performs the slow path from the async context. Can
2948 * be called from the atomic context as well
2949 */
2950 extern void mmput_async(struct mm_struct *);
2951 #endif
2952
2953 /* Grab a reference to a task's mm, if it is not already going away */
2954 extern struct mm_struct *get_task_mm(struct task_struct *task);
2955 /*
2956 * Grab a reference to a task's mm, if it is not already going away
2957 * and ptrace_may_access with the mode parameter passed to it
2958 * succeeds.
2959 */
2960 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2961 /* Remove the current tasks stale references to the old mm_struct */
2962 extern void mm_release(struct task_struct *, struct mm_struct *);
2963
2964 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2965 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2966 struct task_struct *, unsigned long);
2967 #else
2968 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2969 struct task_struct *);
2970
2971 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2972 * via pt_regs, so ignore the tls argument passed via C. */
2973 static inline int copy_thread_tls(
2974 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2975 struct task_struct *p, unsigned long tls)
2976 {
2977 return copy_thread(clone_flags, sp, arg, p);
2978 }
2979 #endif
2980 extern void flush_thread(void);
2981
2982 #ifdef CONFIG_HAVE_EXIT_THREAD
2983 extern void exit_thread(struct task_struct *tsk);
2984 #else
2985 static inline void exit_thread(struct task_struct *tsk)
2986 {
2987 }
2988 #endif
2989
2990 extern void exit_files(struct task_struct *);
2991 extern void __cleanup_sighand(struct sighand_struct *);
2992
2993 extern void exit_itimers(struct signal_struct *);
2994 extern void flush_itimer_signals(void);
2995
2996 extern void do_group_exit(int);
2997
2998 extern int do_execve(struct filename *,
2999 const char __user * const __user *,
3000 const char __user * const __user *);
3001 extern int do_execveat(int, struct filename *,
3002 const char __user * const __user *,
3003 const char __user * const __user *,
3004 int);
3005 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3006 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3007 struct task_struct *fork_idle(int);
3008 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3009
3010 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3011 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3012 {
3013 __set_task_comm(tsk, from, false);
3014 }
3015 extern char *get_task_comm(char *to, struct task_struct *tsk);
3016
3017 #ifdef CONFIG_SMP
3018 void scheduler_ipi(void);
3019 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3020 #else
3021 static inline void scheduler_ipi(void) { }
3022 static inline unsigned long wait_task_inactive(struct task_struct *p,
3023 long match_state)
3024 {
3025 return 1;
3026 }
3027 #endif
3028
3029 #define tasklist_empty() \
3030 list_empty(&init_task.tasks)
3031
3032 #define next_task(p) \
3033 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3034
3035 #define for_each_process(p) \
3036 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3037
3038 extern bool current_is_single_threaded(void);
3039
3040 /*
3041 * Careful: do_each_thread/while_each_thread is a double loop so
3042 * 'break' will not work as expected - use goto instead.
3043 */
3044 #define do_each_thread(g, t) \
3045 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3046
3047 #define while_each_thread(g, t) \
3048 while ((t = next_thread(t)) != g)
3049
3050 #define __for_each_thread(signal, t) \
3051 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3052
3053 #define for_each_thread(p, t) \
3054 __for_each_thread((p)->signal, t)
3055
3056 /* Careful: this is a double loop, 'break' won't work as expected. */
3057 #define for_each_process_thread(p, t) \
3058 for_each_process(p) for_each_thread(p, t)
3059
3060 static inline int get_nr_threads(struct task_struct *tsk)
3061 {
3062 return tsk->signal->nr_threads;
3063 }
3064
3065 static inline bool thread_group_leader(struct task_struct *p)
3066 {
3067 return p->exit_signal >= 0;
3068 }
3069
3070 /* Do to the insanities of de_thread it is possible for a process
3071 * to have the pid of the thread group leader without actually being
3072 * the thread group leader. For iteration through the pids in proc
3073 * all we care about is that we have a task with the appropriate
3074 * pid, we don't actually care if we have the right task.
3075 */
3076 static inline bool has_group_leader_pid(struct task_struct *p)
3077 {
3078 return task_pid(p) == p->signal->leader_pid;
3079 }
3080
3081 static inline
3082 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3083 {
3084 return p1->signal == p2->signal;
3085 }
3086
3087 static inline struct task_struct *next_thread(const struct task_struct *p)
3088 {
3089 return list_entry_rcu(p->thread_group.next,
3090 struct task_struct, thread_group);
3091 }
3092
3093 static inline int thread_group_empty(struct task_struct *p)
3094 {
3095 return list_empty(&p->thread_group);
3096 }
3097
3098 #define delay_group_leader(p) \
3099 (thread_group_leader(p) && !thread_group_empty(p))
3100
3101 /*
3102 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3103 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3104 * pins the final release of task.io_context. Also protects ->cpuset and
3105 * ->cgroup.subsys[]. And ->vfork_done.
3106 *
3107 * Nests both inside and outside of read_lock(&tasklist_lock).
3108 * It must not be nested with write_lock_irq(&tasklist_lock),
3109 * neither inside nor outside.
3110 */
3111 static inline void task_lock(struct task_struct *p)
3112 {
3113 spin_lock(&p->alloc_lock);
3114 }
3115
3116 static inline void task_unlock(struct task_struct *p)
3117 {
3118 spin_unlock(&p->alloc_lock);
3119 }
3120
3121 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3122 unsigned long *flags);
3123
3124 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3125 unsigned long *flags)
3126 {
3127 struct sighand_struct *ret;
3128
3129 ret = __lock_task_sighand(tsk, flags);
3130 (void)__cond_lock(&tsk->sighand->siglock, ret);
3131 return ret;
3132 }
3133
3134 static inline void unlock_task_sighand(struct task_struct *tsk,
3135 unsigned long *flags)
3136 {
3137 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3138 }
3139
3140 /**
3141 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3142 * @tsk: task causing the changes
3143 *
3144 * All operations which modify a threadgroup - a new thread joining the
3145 * group, death of a member thread (the assertion of PF_EXITING) and
3146 * exec(2) dethreading the process and replacing the leader - are wrapped
3147 * by threadgroup_change_{begin|end}(). This is to provide a place which
3148 * subsystems needing threadgroup stability can hook into for
3149 * synchronization.
3150 */
3151 static inline void threadgroup_change_begin(struct task_struct *tsk)
3152 {
3153 might_sleep();
3154 cgroup_threadgroup_change_begin(tsk);
3155 }
3156
3157 /**
3158 * threadgroup_change_end - mark the end of changes to a threadgroup
3159 * @tsk: task causing the changes
3160 *
3161 * See threadgroup_change_begin().
3162 */
3163 static inline void threadgroup_change_end(struct task_struct *tsk)
3164 {
3165 cgroup_threadgroup_change_end(tsk);
3166 }
3167
3168 #ifdef CONFIG_THREAD_INFO_IN_TASK
3169
3170 static inline struct thread_info *task_thread_info(struct task_struct *task)
3171 {
3172 return &task->thread_info;
3173 }
3174
3175 /*
3176 * When accessing the stack of a non-current task that might exit, use
3177 * try_get_task_stack() instead. task_stack_page will return a pointer
3178 * that could get freed out from under you.
3179 */
3180 static inline void *task_stack_page(const struct task_struct *task)
3181 {
3182 return task->stack;
3183 }
3184
3185 #define setup_thread_stack(new,old) do { } while(0)
3186
3187 static inline unsigned long *end_of_stack(const struct task_struct *task)
3188 {
3189 return task->stack;
3190 }
3191
3192 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3193
3194 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
3195 #define task_stack_page(task) ((void *)(task)->stack)
3196
3197 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3198 {
3199 *task_thread_info(p) = *task_thread_info(org);
3200 task_thread_info(p)->task = p;
3201 }
3202
3203 /*
3204 * Return the address of the last usable long on the stack.
3205 *
3206 * When the stack grows down, this is just above the thread
3207 * info struct. Going any lower will corrupt the threadinfo.
3208 *
3209 * When the stack grows up, this is the highest address.
3210 * Beyond that position, we corrupt data on the next page.
3211 */
3212 static inline unsigned long *end_of_stack(struct task_struct *p)
3213 {
3214 #ifdef CONFIG_STACK_GROWSUP
3215 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3216 #else
3217 return (unsigned long *)(task_thread_info(p) + 1);
3218 #endif
3219 }
3220
3221 #endif
3222
3223 #ifdef CONFIG_THREAD_INFO_IN_TASK
3224 static inline void *try_get_task_stack(struct task_struct *tsk)
3225 {
3226 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3227 task_stack_page(tsk) : NULL;
3228 }
3229
3230 extern void put_task_stack(struct task_struct *tsk);
3231 #else
3232 static inline void *try_get_task_stack(struct task_struct *tsk)
3233 {
3234 return task_stack_page(tsk);
3235 }
3236
3237 static inline void put_task_stack(struct task_struct *tsk) {}
3238 #endif
3239
3240 #define task_stack_end_corrupted(task) \
3241 (*(end_of_stack(task)) != STACK_END_MAGIC)
3242
3243 static inline int object_is_on_stack(void *obj)
3244 {
3245 void *stack = task_stack_page(current);
3246
3247 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3248 }
3249
3250 extern void thread_stack_cache_init(void);
3251
3252 #ifdef CONFIG_DEBUG_STACK_USAGE
3253 static inline unsigned long stack_not_used(struct task_struct *p)
3254 {
3255 unsigned long *n = end_of_stack(p);
3256
3257 do { /* Skip over canary */
3258 # ifdef CONFIG_STACK_GROWSUP
3259 n--;
3260 # else
3261 n++;
3262 # endif
3263 } while (!*n);
3264
3265 # ifdef CONFIG_STACK_GROWSUP
3266 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3267 # else
3268 return (unsigned long)n - (unsigned long)end_of_stack(p);
3269 # endif
3270 }
3271 #endif
3272 extern void set_task_stack_end_magic(struct task_struct *tsk);
3273
3274 /* set thread flags in other task's structures
3275 * - see asm/thread_info.h for TIF_xxxx flags available
3276 */
3277 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3278 {
3279 set_ti_thread_flag(task_thread_info(tsk), flag);
3280 }
3281
3282 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3283 {
3284 clear_ti_thread_flag(task_thread_info(tsk), flag);
3285 }
3286
3287 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3288 {
3289 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3290 }
3291
3292 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3293 {
3294 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3295 }
3296
3297 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3298 {
3299 return test_ti_thread_flag(task_thread_info(tsk), flag);
3300 }
3301
3302 static inline void set_tsk_need_resched(struct task_struct *tsk)
3303 {
3304 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3305 }
3306
3307 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3308 {
3309 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3310 }
3311
3312 static inline int test_tsk_need_resched(struct task_struct *tsk)
3313 {
3314 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3315 }
3316
3317 static inline int restart_syscall(void)
3318 {
3319 set_tsk_thread_flag(current, TIF_SIGPENDING);
3320 return -ERESTARTNOINTR;
3321 }
3322
3323 static inline int signal_pending(struct task_struct *p)
3324 {
3325 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3326 }
3327
3328 static inline int __fatal_signal_pending(struct task_struct *p)
3329 {
3330 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3331 }
3332
3333 static inline int fatal_signal_pending(struct task_struct *p)
3334 {
3335 return signal_pending(p) && __fatal_signal_pending(p);
3336 }
3337
3338 static inline int signal_pending_state(long state, struct task_struct *p)
3339 {
3340 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3341 return 0;
3342 if (!signal_pending(p))
3343 return 0;
3344
3345 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3346 }
3347
3348 /*
3349 * cond_resched() and cond_resched_lock(): latency reduction via
3350 * explicit rescheduling in places that are safe. The return
3351 * value indicates whether a reschedule was done in fact.
3352 * cond_resched_lock() will drop the spinlock before scheduling,
3353 * cond_resched_softirq() will enable bhs before scheduling.
3354 */
3355 #ifndef CONFIG_PREEMPT
3356 extern int _cond_resched(void);
3357 #else
3358 static inline int _cond_resched(void) { return 0; }
3359 #endif
3360
3361 #define cond_resched() ({ \
3362 ___might_sleep(__FILE__, __LINE__, 0); \
3363 _cond_resched(); \
3364 })
3365
3366 extern int __cond_resched_lock(spinlock_t *lock);
3367
3368 #define cond_resched_lock(lock) ({ \
3369 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3370 __cond_resched_lock(lock); \
3371 })
3372
3373 extern int __cond_resched_softirq(void);
3374
3375 #define cond_resched_softirq() ({ \
3376 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3377 __cond_resched_softirq(); \
3378 })
3379
3380 static inline void cond_resched_rcu(void)
3381 {
3382 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3383 rcu_read_unlock();
3384 cond_resched();
3385 rcu_read_lock();
3386 #endif
3387 }
3388
3389 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3390 {
3391 #ifdef CONFIG_DEBUG_PREEMPT
3392 return p->preempt_disable_ip;
3393 #else
3394 return 0;
3395 #endif
3396 }
3397
3398 /*
3399 * Does a critical section need to be broken due to another
3400 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3401 * but a general need for low latency)
3402 */
3403 static inline int spin_needbreak(spinlock_t *lock)
3404 {
3405 #ifdef CONFIG_PREEMPT
3406 return spin_is_contended(lock);
3407 #else
3408 return 0;
3409 #endif
3410 }
3411
3412 /*
3413 * Idle thread specific functions to determine the need_resched
3414 * polling state.
3415 */
3416 #ifdef TIF_POLLING_NRFLAG
3417 static inline int tsk_is_polling(struct task_struct *p)
3418 {
3419 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3420 }
3421
3422 static inline void __current_set_polling(void)
3423 {
3424 set_thread_flag(TIF_POLLING_NRFLAG);
3425 }
3426
3427 static inline bool __must_check current_set_polling_and_test(void)
3428 {
3429 __current_set_polling();
3430
3431 /*
3432 * Polling state must be visible before we test NEED_RESCHED,
3433 * paired by resched_curr()
3434 */
3435 smp_mb__after_atomic();
3436
3437 return unlikely(tif_need_resched());
3438 }
3439
3440 static inline void __current_clr_polling(void)
3441 {
3442 clear_thread_flag(TIF_POLLING_NRFLAG);
3443 }
3444
3445 static inline bool __must_check current_clr_polling_and_test(void)
3446 {
3447 __current_clr_polling();
3448
3449 /*
3450 * Polling state must be visible before we test NEED_RESCHED,
3451 * paired by resched_curr()
3452 */
3453 smp_mb__after_atomic();
3454
3455 return unlikely(tif_need_resched());
3456 }
3457
3458 #else
3459 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3460 static inline void __current_set_polling(void) { }
3461 static inline void __current_clr_polling(void) { }
3462
3463 static inline bool __must_check current_set_polling_and_test(void)
3464 {
3465 return unlikely(tif_need_resched());
3466 }
3467 static inline bool __must_check current_clr_polling_and_test(void)
3468 {
3469 return unlikely(tif_need_resched());
3470 }
3471 #endif
3472
3473 static inline void current_clr_polling(void)
3474 {
3475 __current_clr_polling();
3476
3477 /*
3478 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3479 * Once the bit is cleared, we'll get IPIs with every new
3480 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3481 * fold.
3482 */
3483 smp_mb(); /* paired with resched_curr() */
3484
3485 preempt_fold_need_resched();
3486 }
3487
3488 static __always_inline bool need_resched(void)
3489 {
3490 return unlikely(tif_need_resched());
3491 }
3492
3493 /*
3494 * Thread group CPU time accounting.
3495 */
3496 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3497 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3498
3499 /*
3500 * Reevaluate whether the task has signals pending delivery.
3501 * Wake the task if so.
3502 * This is required every time the blocked sigset_t changes.
3503 * callers must hold sighand->siglock.
3504 */
3505 extern void recalc_sigpending_and_wake(struct task_struct *t);
3506 extern void recalc_sigpending(void);
3507
3508 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3509
3510 static inline void signal_wake_up(struct task_struct *t, bool resume)
3511 {
3512 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3513 }
3514 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3515 {
3516 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3517 }
3518
3519 /*
3520 * Wrappers for p->thread_info->cpu access. No-op on UP.
3521 */
3522 #ifdef CONFIG_SMP
3523
3524 static inline unsigned int task_cpu(const struct task_struct *p)
3525 {
3526 #ifdef CONFIG_THREAD_INFO_IN_TASK
3527 return p->cpu;
3528 #else
3529 return task_thread_info(p)->cpu;
3530 #endif
3531 }
3532
3533 static inline int task_node(const struct task_struct *p)
3534 {
3535 return cpu_to_node(task_cpu(p));
3536 }
3537
3538 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3539
3540 #else
3541
3542 static inline unsigned int task_cpu(const struct task_struct *p)
3543 {
3544 return 0;
3545 }
3546
3547 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3548 {
3549 }
3550
3551 #endif /* CONFIG_SMP */
3552
3553 /*
3554 * In order to reduce various lock holder preemption latencies provide an
3555 * interface to see if a vCPU is currently running or not.
3556 *
3557 * This allows us to terminate optimistic spin loops and block, analogous to
3558 * the native optimistic spin heuristic of testing if the lock owner task is
3559 * running or not.
3560 */
3561 #ifndef vcpu_is_preempted
3562 # define vcpu_is_preempted(cpu) false
3563 #endif
3564
3565 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3566 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3567
3568 #ifdef CONFIG_CGROUP_SCHED
3569 extern struct task_group root_task_group;
3570 #endif /* CONFIG_CGROUP_SCHED */
3571
3572 extern int task_can_switch_user(struct user_struct *up,
3573 struct task_struct *tsk);
3574
3575 #ifdef CONFIG_TASK_XACCT
3576 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3577 {
3578 tsk->ioac.rchar += amt;
3579 }
3580
3581 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3582 {
3583 tsk->ioac.wchar += amt;
3584 }
3585
3586 static inline void inc_syscr(struct task_struct *tsk)
3587 {
3588 tsk->ioac.syscr++;
3589 }
3590
3591 static inline void inc_syscw(struct task_struct *tsk)
3592 {
3593 tsk->ioac.syscw++;
3594 }
3595 #else
3596 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3597 {
3598 }
3599
3600 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3601 {
3602 }
3603
3604 static inline void inc_syscr(struct task_struct *tsk)
3605 {
3606 }
3607
3608 static inline void inc_syscw(struct task_struct *tsk)
3609 {
3610 }
3611 #endif
3612
3613 #ifndef TASK_SIZE_OF
3614 #define TASK_SIZE_OF(tsk) TASK_SIZE
3615 #endif
3616
3617 #ifdef CONFIG_MEMCG
3618 extern void mm_update_next_owner(struct mm_struct *mm);
3619 #else
3620 static inline void mm_update_next_owner(struct mm_struct *mm)
3621 {
3622 }
3623 #endif /* CONFIG_MEMCG */
3624
3625 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3626 unsigned int limit)
3627 {
3628 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3629 }
3630
3631 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3632 unsigned int limit)
3633 {
3634 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3635 }
3636
3637 static inline unsigned long rlimit(unsigned int limit)
3638 {
3639 return task_rlimit(current, limit);
3640 }
3641
3642 static inline unsigned long rlimit_max(unsigned int limit)
3643 {
3644 return task_rlimit_max(current, limit);
3645 }
3646
3647 #define SCHED_CPUFREQ_RT (1U << 0)
3648 #define SCHED_CPUFREQ_DL (1U << 1)
3649 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
3650
3651 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3652
3653 #ifdef CONFIG_CPU_FREQ
3654 struct update_util_data {
3655 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3656 };
3657
3658 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3659 void (*func)(struct update_util_data *data, u64 time,
3660 unsigned int flags));
3661 void cpufreq_remove_update_util_hook(int cpu);
3662 #endif /* CONFIG_CPU_FREQ */
3663
3664 #endif