]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge branch 'linux-2.6' into merge
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30
31 /*
32 * Scheduling policies
33 */
34 #define SCHED_NORMAL 0
35 #define SCHED_FIFO 1
36 #define SCHED_RR 2
37 #define SCHED_BATCH 3
38 /* SCHED_ISO: reserved but not implemented yet */
39 #define SCHED_IDLE 5
40
41 #ifdef __KERNEL__
42
43 struct sched_param {
44 int sched_priority;
45 };
46
47 #include <asm/param.h> /* for HZ */
48
49 #include <linux/capability.h>
50 #include <linux/threads.h>
51 #include <linux/kernel.h>
52 #include <linux/types.h>
53 #include <linux/timex.h>
54 #include <linux/jiffies.h>
55 #include <linux/rbtree.h>
56 #include <linux/thread_info.h>
57 #include <linux/cpumask.h>
58 #include <linux/errno.h>
59 #include <linux/nodemask.h>
60 #include <linux/mm_types.h>
61
62 #include <asm/system.h>
63 #include <asm/semaphore.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/securebits.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/futex.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91
92 #include <asm/processor.h>
93
94 struct exec_domain;
95 struct futex_pi_state;
96 struct bio;
97
98 /*
99 * List of flags we want to share for kernel threads,
100 * if only because they are not used by them anyway.
101 */
102 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
103
104 /*
105 * These are the constant used to fake the fixed-point load-average
106 * counting. Some notes:
107 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
108 * a load-average precision of 10 bits integer + 11 bits fractional
109 * - if you want to count load-averages more often, you need more
110 * precision, or rounding will get you. With 2-second counting freq,
111 * the EXP_n values would be 1981, 2034 and 2043 if still using only
112 * 11 bit fractions.
113 */
114 extern unsigned long avenrun[]; /* Load averages */
115
116 #define FSHIFT 11 /* nr of bits of precision */
117 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
118 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
119 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
120 #define EXP_5 2014 /* 1/exp(5sec/5min) */
121 #define EXP_15 2037 /* 1/exp(5sec/15min) */
122
123 #define CALC_LOAD(load,exp,n) \
124 load *= exp; \
125 load += n*(FIXED_1-exp); \
126 load >>= FSHIFT;
127
128 extern unsigned long total_forks;
129 extern int nr_threads;
130 DECLARE_PER_CPU(unsigned long, process_counts);
131 extern int nr_processes(void);
132 extern unsigned long nr_running(void);
133 extern unsigned long nr_uninterruptible(void);
134 extern unsigned long nr_active(void);
135 extern unsigned long nr_iowait(void);
136 extern unsigned long weighted_cpuload(const int cpu);
137
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159
160 /*
161 * Task state bitmask. NOTE! These bits are also
162 * encoded in fs/proc/array.c: get_task_state().
163 *
164 * We have two separate sets of flags: task->state
165 * is about runnability, while task->exit_state are
166 * about the task exiting. Confusing, but this way
167 * modifying one set can't modify the other one by
168 * mistake.
169 */
170 #define TASK_RUNNING 0
171 #define TASK_INTERRUPTIBLE 1
172 #define TASK_UNINTERRUPTIBLE 2
173 #define TASK_STOPPED 4
174 #define TASK_TRACED 8
175 /* in tsk->exit_state */
176 #define EXIT_ZOMBIE 16
177 #define EXIT_DEAD 32
178 /* in tsk->state again */
179 #define TASK_DEAD 64
180
181 #define __set_task_state(tsk, state_value) \
182 do { (tsk)->state = (state_value); } while (0)
183 #define set_task_state(tsk, state_value) \
184 set_mb((tsk)->state, (state_value))
185
186 /*
187 * set_current_state() includes a barrier so that the write of current->state
188 * is correctly serialised wrt the caller's subsequent test of whether to
189 * actually sleep:
190 *
191 * set_current_state(TASK_UNINTERRUPTIBLE);
192 * if (do_i_need_to_sleep())
193 * schedule();
194 *
195 * If the caller does not need such serialisation then use __set_current_state()
196 */
197 #define __set_current_state(state_value) \
198 do { current->state = (state_value); } while (0)
199 #define set_current_state(state_value) \
200 set_mb(current->state, (state_value))
201
202 /* Task command name length */
203 #define TASK_COMM_LEN 16
204
205 #include <linux/spinlock.h>
206
207 /*
208 * This serializes "schedule()" and also protects
209 * the run-queue from deletions/modifications (but
210 * _adding_ to the beginning of the run-queue has
211 * a separate lock).
212 */
213 extern rwlock_t tasklist_lock;
214 extern spinlock_t mmlist_lock;
215
216 struct task_struct;
217
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern void init_idle(struct task_struct *idle, int cpu);
221 extern void init_idle_bootup_task(struct task_struct *idle);
222
223 extern cpumask_t nohz_cpu_mask;
224 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225 extern int select_nohz_load_balancer(int cpu);
226 #else
227 static inline int select_nohz_load_balancer(int cpu)
228 {
229 return 0;
230 }
231 #endif
232
233 /*
234 * Only dump TASK_* tasks. (0 for all tasks)
235 */
236 extern void show_state_filter(unsigned long state_filter);
237
238 static inline void show_state(void)
239 {
240 show_state_filter(0);
241 }
242
243 extern void show_regs(struct pt_regs *);
244
245 /*
246 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247 * task), SP is the stack pointer of the first frame that should be shown in the back
248 * trace (or NULL if the entire call-chain of the task should be shown).
249 */
250 extern void show_stack(struct task_struct *task, unsigned long *sp);
251
252 void io_schedule(void);
253 long io_schedule_timeout(long timeout);
254
255 extern void cpu_init (void);
256 extern void trap_init(void);
257 extern void update_process_times(int user);
258 extern void scheduler_tick(void);
259
260 #ifdef CONFIG_DETECT_SOFTLOCKUP
261 extern void softlockup_tick(void);
262 extern void spawn_softlockup_task(void);
263 extern void touch_softlockup_watchdog(void);
264 extern void touch_all_softlockup_watchdogs(void);
265 extern int softlockup_thresh;
266 #else
267 static inline void softlockup_tick(void)
268 {
269 }
270 static inline void spawn_softlockup_task(void)
271 {
272 }
273 static inline void touch_softlockup_watchdog(void)
274 {
275 }
276 static inline void touch_all_softlockup_watchdogs(void)
277 {
278 }
279 #endif
280
281
282 /* Attach to any functions which should be ignored in wchan output. */
283 #define __sched __attribute__((__section__(".sched.text")))
284 /* Is this address in the __sched functions? */
285 extern int in_sched_functions(unsigned long addr);
286
287 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
288 extern signed long FASTCALL(schedule_timeout(signed long timeout));
289 extern signed long schedule_timeout_interruptible(signed long timeout);
290 extern signed long schedule_timeout_uninterruptible(signed long timeout);
291 asmlinkage void schedule(void);
292
293 struct nsproxy;
294 struct user_namespace;
295
296 /* Maximum number of active map areas.. This is a random (large) number */
297 #define DEFAULT_MAX_MAP_COUNT 65536
298
299 extern int sysctl_max_map_count;
300
301 #include <linux/aio.h>
302
303 extern unsigned long
304 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
305 unsigned long, unsigned long);
306 extern unsigned long
307 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
308 unsigned long len, unsigned long pgoff,
309 unsigned long flags);
310 extern void arch_unmap_area(struct mm_struct *, unsigned long);
311 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
312
313 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
314 /*
315 * The mm counters are not protected by its page_table_lock,
316 * so must be incremented atomically.
317 */
318 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
319 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
320 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
321 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
322 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
323
324 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
325 /*
326 * The mm counters are protected by its page_table_lock,
327 * so can be incremented directly.
328 */
329 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
330 #define get_mm_counter(mm, member) ((mm)->_##member)
331 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
332 #define inc_mm_counter(mm, member) (mm)->_##member++
333 #define dec_mm_counter(mm, member) (mm)->_##member--
334
335 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
336
337 #define get_mm_rss(mm) \
338 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
339 #define update_hiwater_rss(mm) do { \
340 unsigned long _rss = get_mm_rss(mm); \
341 if ((mm)->hiwater_rss < _rss) \
342 (mm)->hiwater_rss = _rss; \
343 } while (0)
344 #define update_hiwater_vm(mm) do { \
345 if ((mm)->hiwater_vm < (mm)->total_vm) \
346 (mm)->hiwater_vm = (mm)->total_vm; \
347 } while (0)
348
349 extern void set_dumpable(struct mm_struct *mm, int value);
350 extern int get_dumpable(struct mm_struct *mm);
351
352 /* mm flags */
353 /* dumpable bits */
354 #define MMF_DUMPABLE 0 /* core dump is permitted */
355 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
356 #define MMF_DUMPABLE_BITS 2
357
358 /* coredump filter bits */
359 #define MMF_DUMP_ANON_PRIVATE 2
360 #define MMF_DUMP_ANON_SHARED 3
361 #define MMF_DUMP_MAPPED_PRIVATE 4
362 #define MMF_DUMP_MAPPED_SHARED 5
363 #define MMF_DUMP_ELF_HEADERS 6
364 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
365 #define MMF_DUMP_FILTER_BITS 5
366 #define MMF_DUMP_FILTER_MASK \
367 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
368 #define MMF_DUMP_FILTER_DEFAULT \
369 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
370
371 struct sighand_struct {
372 atomic_t count;
373 struct k_sigaction action[_NSIG];
374 spinlock_t siglock;
375 wait_queue_head_t signalfd_wqh;
376 };
377
378 struct pacct_struct {
379 int ac_flag;
380 long ac_exitcode;
381 unsigned long ac_mem;
382 cputime_t ac_utime, ac_stime;
383 unsigned long ac_minflt, ac_majflt;
384 };
385
386 /*
387 * NOTE! "signal_struct" does not have it's own
388 * locking, because a shared signal_struct always
389 * implies a shared sighand_struct, so locking
390 * sighand_struct is always a proper superset of
391 * the locking of signal_struct.
392 */
393 struct signal_struct {
394 atomic_t count;
395 atomic_t live;
396
397 wait_queue_head_t wait_chldexit; /* for wait4() */
398
399 /* current thread group signal load-balancing target: */
400 struct task_struct *curr_target;
401
402 /* shared signal handling: */
403 struct sigpending shared_pending;
404
405 /* thread group exit support */
406 int group_exit_code;
407 /* overloaded:
408 * - notify group_exit_task when ->count is equal to notify_count
409 * - everyone except group_exit_task is stopped during signal delivery
410 * of fatal signals, group_exit_task processes the signal.
411 */
412 struct task_struct *group_exit_task;
413 int notify_count;
414
415 /* thread group stop support, overloads group_exit_code too */
416 int group_stop_count;
417 unsigned int flags; /* see SIGNAL_* flags below */
418
419 /* POSIX.1b Interval Timers */
420 struct list_head posix_timers;
421
422 /* ITIMER_REAL timer for the process */
423 struct hrtimer real_timer;
424 struct task_struct *tsk;
425 ktime_t it_real_incr;
426
427 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
428 cputime_t it_prof_expires, it_virt_expires;
429 cputime_t it_prof_incr, it_virt_incr;
430
431 /* job control IDs */
432
433 /*
434 * pgrp and session fields are deprecated.
435 * use the task_session_Xnr and task_pgrp_Xnr routines below
436 */
437
438 union {
439 pid_t pgrp __deprecated;
440 pid_t __pgrp;
441 };
442
443 struct pid *tty_old_pgrp;
444
445 union {
446 pid_t session __deprecated;
447 pid_t __session;
448 };
449
450 /* boolean value for session group leader */
451 int leader;
452
453 struct tty_struct *tty; /* NULL if no tty */
454
455 /*
456 * Cumulative resource counters for dead threads in the group,
457 * and for reaped dead child processes forked by this group.
458 * Live threads maintain their own counters and add to these
459 * in __exit_signal, except for the group leader.
460 */
461 cputime_t utime, stime, cutime, cstime;
462 cputime_t gtime;
463 cputime_t cgtime;
464 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
465 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
466 unsigned long inblock, oublock, cinblock, coublock;
467
468 /*
469 * Cumulative ns of scheduled CPU time for dead threads in the
470 * group, not including a zombie group leader. (This only differs
471 * from jiffies_to_ns(utime + stime) if sched_clock uses something
472 * other than jiffies.)
473 */
474 unsigned long long sum_sched_runtime;
475
476 /*
477 * We don't bother to synchronize most readers of this at all,
478 * because there is no reader checking a limit that actually needs
479 * to get both rlim_cur and rlim_max atomically, and either one
480 * alone is a single word that can safely be read normally.
481 * getrlimit/setrlimit use task_lock(current->group_leader) to
482 * protect this instead of the siglock, because they really
483 * have no need to disable irqs.
484 */
485 struct rlimit rlim[RLIM_NLIMITS];
486
487 struct list_head cpu_timers[3];
488
489 /* keep the process-shared keyrings here so that they do the right
490 * thing in threads created with CLONE_THREAD */
491 #ifdef CONFIG_KEYS
492 struct key *session_keyring; /* keyring inherited over fork */
493 struct key *process_keyring; /* keyring private to this process */
494 #endif
495 #ifdef CONFIG_BSD_PROCESS_ACCT
496 struct pacct_struct pacct; /* per-process accounting information */
497 #endif
498 #ifdef CONFIG_TASKSTATS
499 struct taskstats *stats;
500 #endif
501 #ifdef CONFIG_AUDIT
502 unsigned audit_tty;
503 struct tty_audit_buf *tty_audit_buf;
504 #endif
505 };
506
507 /* Context switch must be unlocked if interrupts are to be enabled */
508 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
509 # define __ARCH_WANT_UNLOCKED_CTXSW
510 #endif
511
512 /*
513 * Bits in flags field of signal_struct.
514 */
515 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
516 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
517 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
518 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
519
520 /*
521 * Some day this will be a full-fledged user tracking system..
522 */
523 struct user_struct {
524 atomic_t __count; /* reference count */
525 atomic_t processes; /* How many processes does this user have? */
526 atomic_t files; /* How many open files does this user have? */
527 atomic_t sigpending; /* How many pending signals does this user have? */
528 #ifdef CONFIG_INOTIFY_USER
529 atomic_t inotify_watches; /* How many inotify watches does this user have? */
530 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
531 #endif
532 #ifdef CONFIG_POSIX_MQUEUE
533 /* protected by mq_lock */
534 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
535 #endif
536 unsigned long locked_shm; /* How many pages of mlocked shm ? */
537
538 #ifdef CONFIG_KEYS
539 struct key *uid_keyring; /* UID specific keyring */
540 struct key *session_keyring; /* UID's default session keyring */
541 #endif
542
543 /* Hash table maintenance information */
544 struct hlist_node uidhash_node;
545 uid_t uid;
546
547 #ifdef CONFIG_FAIR_USER_SCHED
548 struct task_group *tg;
549 #ifdef CONFIG_SYSFS
550 struct kset kset;
551 struct subsys_attribute user_attr;
552 struct work_struct work;
553 #endif
554 #endif
555 };
556
557 #ifdef CONFIG_FAIR_USER_SCHED
558 extern int uids_kobject_init(void);
559 #else
560 static inline int uids_kobject_init(void) { return 0; }
561 #endif
562
563 extern struct user_struct *find_user(uid_t);
564
565 extern struct user_struct root_user;
566 #define INIT_USER (&root_user)
567
568 struct backing_dev_info;
569 struct reclaim_state;
570
571 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
572 struct sched_info {
573 /* cumulative counters */
574 unsigned long pcount; /* # of times run on this cpu */
575 unsigned long long cpu_time, /* time spent on the cpu */
576 run_delay; /* time spent waiting on a runqueue */
577
578 /* timestamps */
579 unsigned long long last_arrival,/* when we last ran on a cpu */
580 last_queued; /* when we were last queued to run */
581 #ifdef CONFIG_SCHEDSTATS
582 /* BKL stats */
583 unsigned int bkl_count;
584 #endif
585 };
586 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
587
588 #ifdef CONFIG_SCHEDSTATS
589 extern const struct file_operations proc_schedstat_operations;
590 #endif /* CONFIG_SCHEDSTATS */
591
592 #ifdef CONFIG_TASK_DELAY_ACCT
593 struct task_delay_info {
594 spinlock_t lock;
595 unsigned int flags; /* Private per-task flags */
596
597 /* For each stat XXX, add following, aligned appropriately
598 *
599 * struct timespec XXX_start, XXX_end;
600 * u64 XXX_delay;
601 * u32 XXX_count;
602 *
603 * Atomicity of updates to XXX_delay, XXX_count protected by
604 * single lock above (split into XXX_lock if contention is an issue).
605 */
606
607 /*
608 * XXX_count is incremented on every XXX operation, the delay
609 * associated with the operation is added to XXX_delay.
610 * XXX_delay contains the accumulated delay time in nanoseconds.
611 */
612 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
613 u64 blkio_delay; /* wait for sync block io completion */
614 u64 swapin_delay; /* wait for swapin block io completion */
615 u32 blkio_count; /* total count of the number of sync block */
616 /* io operations performed */
617 u32 swapin_count; /* total count of the number of swapin block */
618 /* io operations performed */
619 };
620 #endif /* CONFIG_TASK_DELAY_ACCT */
621
622 static inline int sched_info_on(void)
623 {
624 #ifdef CONFIG_SCHEDSTATS
625 return 1;
626 #elif defined(CONFIG_TASK_DELAY_ACCT)
627 extern int delayacct_on;
628 return delayacct_on;
629 #else
630 return 0;
631 #endif
632 }
633
634 enum cpu_idle_type {
635 CPU_IDLE,
636 CPU_NOT_IDLE,
637 CPU_NEWLY_IDLE,
638 CPU_MAX_IDLE_TYPES
639 };
640
641 /*
642 * sched-domains (multiprocessor balancing) declarations:
643 */
644
645 /*
646 * Increase resolution of nice-level calculations:
647 */
648 #define SCHED_LOAD_SHIFT 10
649 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
650
651 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
652
653 #ifdef CONFIG_SMP
654 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
655 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
656 #define SD_BALANCE_EXEC 4 /* Balance on exec */
657 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
658 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
659 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
660 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
661 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
662 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
663 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
664 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
665
666 #define BALANCE_FOR_MC_POWER \
667 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
668
669 #define BALANCE_FOR_PKG_POWER \
670 ((sched_mc_power_savings || sched_smt_power_savings) ? \
671 SD_POWERSAVINGS_BALANCE : 0)
672
673 #define test_sd_parent(sd, flag) ((sd->parent && \
674 (sd->parent->flags & flag)) ? 1 : 0)
675
676
677 struct sched_group {
678 struct sched_group *next; /* Must be a circular list */
679 cpumask_t cpumask;
680
681 /*
682 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
683 * single CPU. This is read only (except for setup, hotplug CPU).
684 * Note : Never change cpu_power without recompute its reciprocal
685 */
686 unsigned int __cpu_power;
687 /*
688 * reciprocal value of cpu_power to avoid expensive divides
689 * (see include/linux/reciprocal_div.h)
690 */
691 u32 reciprocal_cpu_power;
692 };
693
694 struct sched_domain {
695 /* These fields must be setup */
696 struct sched_domain *parent; /* top domain must be null terminated */
697 struct sched_domain *child; /* bottom domain must be null terminated */
698 struct sched_group *groups; /* the balancing groups of the domain */
699 cpumask_t span; /* span of all CPUs in this domain */
700 unsigned long min_interval; /* Minimum balance interval ms */
701 unsigned long max_interval; /* Maximum balance interval ms */
702 unsigned int busy_factor; /* less balancing by factor if busy */
703 unsigned int imbalance_pct; /* No balance until over watermark */
704 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
705 unsigned int busy_idx;
706 unsigned int idle_idx;
707 unsigned int newidle_idx;
708 unsigned int wake_idx;
709 unsigned int forkexec_idx;
710 int flags; /* See SD_* */
711
712 /* Runtime fields. */
713 unsigned long last_balance; /* init to jiffies. units in jiffies */
714 unsigned int balance_interval; /* initialise to 1. units in ms. */
715 unsigned int nr_balance_failed; /* initialise to 0 */
716
717 #ifdef CONFIG_SCHEDSTATS
718 /* load_balance() stats */
719 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
720 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
721 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
722 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
723 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
724 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
725 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
726 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
727
728 /* Active load balancing */
729 unsigned int alb_count;
730 unsigned int alb_failed;
731 unsigned int alb_pushed;
732
733 /* SD_BALANCE_EXEC stats */
734 unsigned int sbe_count;
735 unsigned int sbe_balanced;
736 unsigned int sbe_pushed;
737
738 /* SD_BALANCE_FORK stats */
739 unsigned int sbf_count;
740 unsigned int sbf_balanced;
741 unsigned int sbf_pushed;
742
743 /* try_to_wake_up() stats */
744 unsigned int ttwu_wake_remote;
745 unsigned int ttwu_move_affine;
746 unsigned int ttwu_move_balance;
747 #endif
748 };
749
750 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
751
752 #endif /* CONFIG_SMP */
753
754 /*
755 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
756 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
757 * task of nice 0 or enough lower priority tasks to bring up the
758 * weighted_cpuload
759 */
760 static inline int above_background_load(void)
761 {
762 unsigned long cpu;
763
764 for_each_online_cpu(cpu) {
765 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
766 return 1;
767 }
768 return 0;
769 }
770
771 struct io_context; /* See blkdev.h */
772 #define NGROUPS_SMALL 32
773 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
774 struct group_info {
775 int ngroups;
776 atomic_t usage;
777 gid_t small_block[NGROUPS_SMALL];
778 int nblocks;
779 gid_t *blocks[0];
780 };
781
782 /*
783 * get_group_info() must be called with the owning task locked (via task_lock())
784 * when task != current. The reason being that the vast majority of callers are
785 * looking at current->group_info, which can not be changed except by the
786 * current task. Changing current->group_info requires the task lock, too.
787 */
788 #define get_group_info(group_info) do { \
789 atomic_inc(&(group_info)->usage); \
790 } while (0)
791
792 #define put_group_info(group_info) do { \
793 if (atomic_dec_and_test(&(group_info)->usage)) \
794 groups_free(group_info); \
795 } while (0)
796
797 extern struct group_info *groups_alloc(int gidsetsize);
798 extern void groups_free(struct group_info *group_info);
799 extern int set_current_groups(struct group_info *group_info);
800 extern int groups_search(struct group_info *group_info, gid_t grp);
801 /* access the groups "array" with this macro */
802 #define GROUP_AT(gi, i) \
803 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
804
805 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
806 extern void prefetch_stack(struct task_struct *t);
807 #else
808 static inline void prefetch_stack(struct task_struct *t) { }
809 #endif
810
811 struct audit_context; /* See audit.c */
812 struct mempolicy;
813 struct pipe_inode_info;
814 struct uts_namespace;
815
816 struct rq;
817 struct sched_domain;
818
819 struct sched_class {
820 const struct sched_class *next;
821
822 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
823 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
824 void (*yield_task) (struct rq *rq);
825
826 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
827
828 struct task_struct * (*pick_next_task) (struct rq *rq);
829 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
830
831 #ifdef CONFIG_SMP
832 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
833 struct rq *busiest, unsigned long max_load_move,
834 struct sched_domain *sd, enum cpu_idle_type idle,
835 int *all_pinned, int *this_best_prio);
836
837 int (*move_one_task) (struct rq *this_rq, int this_cpu,
838 struct rq *busiest, struct sched_domain *sd,
839 enum cpu_idle_type idle);
840 #endif
841
842 void (*set_curr_task) (struct rq *rq);
843 void (*task_tick) (struct rq *rq, struct task_struct *p);
844 void (*task_new) (struct rq *rq, struct task_struct *p);
845 };
846
847 struct load_weight {
848 unsigned long weight, inv_weight;
849 };
850
851 /*
852 * CFS stats for a schedulable entity (task, task-group etc)
853 *
854 * Current field usage histogram:
855 *
856 * 4 se->block_start
857 * 4 se->run_node
858 * 4 se->sleep_start
859 * 6 se->load.weight
860 */
861 struct sched_entity {
862 struct load_weight load; /* for load-balancing */
863 struct rb_node run_node;
864 unsigned int on_rq;
865 int peer_preempt;
866
867 u64 exec_start;
868 u64 sum_exec_runtime;
869 u64 vruntime;
870 u64 prev_sum_exec_runtime;
871
872 #ifdef CONFIG_SCHEDSTATS
873 u64 wait_start;
874 u64 wait_max;
875
876 u64 sleep_start;
877 u64 sleep_max;
878 s64 sum_sleep_runtime;
879
880 u64 block_start;
881 u64 block_max;
882 u64 exec_max;
883 u64 slice_max;
884
885 u64 nr_migrations;
886 u64 nr_migrations_cold;
887 u64 nr_failed_migrations_affine;
888 u64 nr_failed_migrations_running;
889 u64 nr_failed_migrations_hot;
890 u64 nr_forced_migrations;
891 u64 nr_forced2_migrations;
892
893 u64 nr_wakeups;
894 u64 nr_wakeups_sync;
895 u64 nr_wakeups_migrate;
896 u64 nr_wakeups_local;
897 u64 nr_wakeups_remote;
898 u64 nr_wakeups_affine;
899 u64 nr_wakeups_affine_attempts;
900 u64 nr_wakeups_passive;
901 u64 nr_wakeups_idle;
902 #endif
903
904 #ifdef CONFIG_FAIR_GROUP_SCHED
905 struct sched_entity *parent;
906 /* rq on which this entity is (to be) queued: */
907 struct cfs_rq *cfs_rq;
908 /* rq "owned" by this entity/group: */
909 struct cfs_rq *my_q;
910 #endif
911 };
912
913 struct task_struct {
914 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
915 void *stack;
916 atomic_t usage;
917 unsigned int flags; /* per process flags, defined below */
918 unsigned int ptrace;
919
920 int lock_depth; /* BKL lock depth */
921
922 #ifdef CONFIG_SMP
923 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
924 int oncpu;
925 #endif
926 #endif
927
928 int prio, static_prio, normal_prio;
929 struct list_head run_list;
930 const struct sched_class *sched_class;
931 struct sched_entity se;
932
933 #ifdef CONFIG_PREEMPT_NOTIFIERS
934 /* list of struct preempt_notifier: */
935 struct hlist_head preempt_notifiers;
936 #endif
937
938 unsigned short ioprio;
939 /*
940 * fpu_counter contains the number of consecutive context switches
941 * that the FPU is used. If this is over a threshold, the lazy fpu
942 * saving becomes unlazy to save the trap. This is an unsigned char
943 * so that after 256 times the counter wraps and the behavior turns
944 * lazy again; this to deal with bursty apps that only use FPU for
945 * a short time
946 */
947 unsigned char fpu_counter;
948 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
949 #ifdef CONFIG_BLK_DEV_IO_TRACE
950 unsigned int btrace_seq;
951 #endif
952
953 unsigned int policy;
954 cpumask_t cpus_allowed;
955 unsigned int time_slice;
956
957 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
958 struct sched_info sched_info;
959 #endif
960
961 struct list_head tasks;
962 /*
963 * ptrace_list/ptrace_children forms the list of my children
964 * that were stolen by a ptracer.
965 */
966 struct list_head ptrace_children;
967 struct list_head ptrace_list;
968
969 struct mm_struct *mm, *active_mm;
970
971 /* task state */
972 struct linux_binfmt *binfmt;
973 int exit_state;
974 int exit_code, exit_signal;
975 int pdeath_signal; /* The signal sent when the parent dies */
976 /* ??? */
977 unsigned int personality;
978 unsigned did_exec:1;
979 pid_t pid;
980 pid_t tgid;
981
982 #ifdef CONFIG_CC_STACKPROTECTOR
983 /* Canary value for the -fstack-protector gcc feature */
984 unsigned long stack_canary;
985 #endif
986 /*
987 * pointers to (original) parent process, youngest child, younger sibling,
988 * older sibling, respectively. (p->father can be replaced with
989 * p->parent->pid)
990 */
991 struct task_struct *real_parent; /* real parent process (when being debugged) */
992 struct task_struct *parent; /* parent process */
993 /*
994 * children/sibling forms the list of my children plus the
995 * tasks I'm ptracing.
996 */
997 struct list_head children; /* list of my children */
998 struct list_head sibling; /* linkage in my parent's children list */
999 struct task_struct *group_leader; /* threadgroup leader */
1000
1001 /* PID/PID hash table linkage. */
1002 struct pid_link pids[PIDTYPE_MAX];
1003 struct list_head thread_group;
1004
1005 struct completion *vfork_done; /* for vfork() */
1006 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1007 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1008
1009 unsigned int rt_priority;
1010 cputime_t utime, stime, utimescaled, stimescaled;
1011 cputime_t gtime;
1012 cputime_t prev_utime, prev_stime;
1013 unsigned long nvcsw, nivcsw; /* context switch counts */
1014 struct timespec start_time; /* monotonic time */
1015 struct timespec real_start_time; /* boot based time */
1016 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1017 unsigned long min_flt, maj_flt;
1018
1019 cputime_t it_prof_expires, it_virt_expires;
1020 unsigned long long it_sched_expires;
1021 struct list_head cpu_timers[3];
1022
1023 /* process credentials */
1024 uid_t uid,euid,suid,fsuid;
1025 gid_t gid,egid,sgid,fsgid;
1026 struct group_info *group_info;
1027 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1028 unsigned keep_capabilities:1;
1029 struct user_struct *user;
1030 #ifdef CONFIG_KEYS
1031 struct key *request_key_auth; /* assumed request_key authority */
1032 struct key *thread_keyring; /* keyring private to this thread */
1033 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1034 #endif
1035 char comm[TASK_COMM_LEN]; /* executable name excluding path
1036 - access with [gs]et_task_comm (which lock
1037 it with task_lock())
1038 - initialized normally by flush_old_exec */
1039 /* file system info */
1040 int link_count, total_link_count;
1041 #ifdef CONFIG_SYSVIPC
1042 /* ipc stuff */
1043 struct sysv_sem sysvsem;
1044 #endif
1045 /* CPU-specific state of this task */
1046 struct thread_struct thread;
1047 /* filesystem information */
1048 struct fs_struct *fs;
1049 /* open file information */
1050 struct files_struct *files;
1051 /* namespaces */
1052 struct nsproxy *nsproxy;
1053 /* signal handlers */
1054 struct signal_struct *signal;
1055 struct sighand_struct *sighand;
1056
1057 sigset_t blocked, real_blocked;
1058 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1059 struct sigpending pending;
1060
1061 unsigned long sas_ss_sp;
1062 size_t sas_ss_size;
1063 int (*notifier)(void *priv);
1064 void *notifier_data;
1065 sigset_t *notifier_mask;
1066 #ifdef CONFIG_SECURITY
1067 void *security;
1068 #endif
1069 struct audit_context *audit_context;
1070 seccomp_t seccomp;
1071
1072 /* Thread group tracking */
1073 u32 parent_exec_id;
1074 u32 self_exec_id;
1075 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1076 spinlock_t alloc_lock;
1077
1078 /* Protection of the PI data structures: */
1079 spinlock_t pi_lock;
1080
1081 #ifdef CONFIG_RT_MUTEXES
1082 /* PI waiters blocked on a rt_mutex held by this task */
1083 struct plist_head pi_waiters;
1084 /* Deadlock detection and priority inheritance handling */
1085 struct rt_mutex_waiter *pi_blocked_on;
1086 #endif
1087
1088 #ifdef CONFIG_DEBUG_MUTEXES
1089 /* mutex deadlock detection */
1090 struct mutex_waiter *blocked_on;
1091 #endif
1092 #ifdef CONFIG_TRACE_IRQFLAGS
1093 unsigned int irq_events;
1094 int hardirqs_enabled;
1095 unsigned long hardirq_enable_ip;
1096 unsigned int hardirq_enable_event;
1097 unsigned long hardirq_disable_ip;
1098 unsigned int hardirq_disable_event;
1099 int softirqs_enabled;
1100 unsigned long softirq_disable_ip;
1101 unsigned int softirq_disable_event;
1102 unsigned long softirq_enable_ip;
1103 unsigned int softirq_enable_event;
1104 int hardirq_context;
1105 int softirq_context;
1106 #endif
1107 #ifdef CONFIG_LOCKDEP
1108 # define MAX_LOCK_DEPTH 30UL
1109 u64 curr_chain_key;
1110 int lockdep_depth;
1111 struct held_lock held_locks[MAX_LOCK_DEPTH];
1112 unsigned int lockdep_recursion;
1113 #endif
1114
1115 /* journalling filesystem info */
1116 void *journal_info;
1117
1118 /* stacked block device info */
1119 struct bio *bio_list, **bio_tail;
1120
1121 /* VM state */
1122 struct reclaim_state *reclaim_state;
1123
1124 struct backing_dev_info *backing_dev_info;
1125
1126 struct io_context *io_context;
1127
1128 unsigned long ptrace_message;
1129 siginfo_t *last_siginfo; /* For ptrace use. */
1130 #ifdef CONFIG_TASK_XACCT
1131 /* i/o counters(bytes read/written, #syscalls */
1132 u64 rchar, wchar, syscr, syscw;
1133 #endif
1134 struct task_io_accounting ioac;
1135 #if defined(CONFIG_TASK_XACCT)
1136 u64 acct_rss_mem1; /* accumulated rss usage */
1137 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1138 cputime_t acct_stimexpd;/* stime since last update */
1139 #endif
1140 #ifdef CONFIG_NUMA
1141 struct mempolicy *mempolicy;
1142 short il_next;
1143 #endif
1144 #ifdef CONFIG_CPUSETS
1145 nodemask_t mems_allowed;
1146 int cpuset_mems_generation;
1147 int cpuset_mem_spread_rotor;
1148 #endif
1149 #ifdef CONFIG_CGROUPS
1150 /* Control Group info protected by css_set_lock */
1151 struct css_set *cgroups;
1152 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1153 struct list_head cg_list;
1154 #endif
1155 #ifdef CONFIG_FUTEX
1156 struct robust_list_head __user *robust_list;
1157 #ifdef CONFIG_COMPAT
1158 struct compat_robust_list_head __user *compat_robust_list;
1159 #endif
1160 struct list_head pi_state_list;
1161 struct futex_pi_state *pi_state_cache;
1162 #endif
1163 atomic_t fs_excl; /* holding fs exclusive resources */
1164 struct rcu_head rcu;
1165
1166 /*
1167 * cache last used pipe for splice
1168 */
1169 struct pipe_inode_info *splice_pipe;
1170 #ifdef CONFIG_TASK_DELAY_ACCT
1171 struct task_delay_info *delays;
1172 #endif
1173 #ifdef CONFIG_FAULT_INJECTION
1174 int make_it_fail;
1175 #endif
1176 struct prop_local_single dirties;
1177 };
1178
1179 /*
1180 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1181 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1182 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1183 * values are inverted: lower p->prio value means higher priority.
1184 *
1185 * The MAX_USER_RT_PRIO value allows the actual maximum
1186 * RT priority to be separate from the value exported to
1187 * user-space. This allows kernel threads to set their
1188 * priority to a value higher than any user task. Note:
1189 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1190 */
1191
1192 #define MAX_USER_RT_PRIO 100
1193 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1194
1195 #define MAX_PRIO (MAX_RT_PRIO + 40)
1196 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1197
1198 static inline int rt_prio(int prio)
1199 {
1200 if (unlikely(prio < MAX_RT_PRIO))
1201 return 1;
1202 return 0;
1203 }
1204
1205 static inline int rt_task(struct task_struct *p)
1206 {
1207 return rt_prio(p->prio);
1208 }
1209
1210 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1211 {
1212 tsk->signal->__session = session;
1213 }
1214
1215 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1216 {
1217 tsk->signal->__pgrp = pgrp;
1218 }
1219
1220 static inline struct pid *task_pid(struct task_struct *task)
1221 {
1222 return task->pids[PIDTYPE_PID].pid;
1223 }
1224
1225 static inline struct pid *task_tgid(struct task_struct *task)
1226 {
1227 return task->group_leader->pids[PIDTYPE_PID].pid;
1228 }
1229
1230 static inline struct pid *task_pgrp(struct task_struct *task)
1231 {
1232 return task->group_leader->pids[PIDTYPE_PGID].pid;
1233 }
1234
1235 static inline struct pid *task_session(struct task_struct *task)
1236 {
1237 return task->group_leader->pids[PIDTYPE_SID].pid;
1238 }
1239
1240 struct pid_namespace;
1241
1242 /*
1243 * the helpers to get the task's different pids as they are seen
1244 * from various namespaces
1245 *
1246 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1247 * task_xid_vnr() : virtual id, i.e. the id seen from the namespace the task
1248 * belongs to. this only makes sence when called in the
1249 * context of the task that belongs to the same namespace;
1250 * task_xid_nr_ns() : id seen from the ns specified;
1251 *
1252 * set_task_vxid() : assigns a virtual id to a task;
1253 *
1254 * task_ppid_nr_ns() : the parent's id as seen from the namespace specified.
1255 * the result depends on the namespace and whether the
1256 * task in question is the namespace's init. e.g. for the
1257 * namespace's init this will return 0 when called from
1258 * the namespace of this init, or appropriate id otherwise.
1259 *
1260 *
1261 * see also pid_nr() etc in include/linux/pid.h
1262 */
1263
1264 static inline pid_t task_pid_nr(struct task_struct *tsk)
1265 {
1266 return tsk->pid;
1267 }
1268
1269 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1270
1271 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1272 {
1273 return pid_vnr(task_pid(tsk));
1274 }
1275
1276
1277 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1278 {
1279 return tsk->tgid;
1280 }
1281
1282 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1283
1284 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1285 {
1286 return pid_vnr(task_tgid(tsk));
1287 }
1288
1289
1290 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1291 {
1292 return tsk->signal->__pgrp;
1293 }
1294
1295 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1296
1297 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1298 {
1299 return pid_vnr(task_pgrp(tsk));
1300 }
1301
1302
1303 static inline pid_t task_session_nr(struct task_struct *tsk)
1304 {
1305 return tsk->signal->__session;
1306 }
1307
1308 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1309
1310 static inline pid_t task_session_vnr(struct task_struct *tsk)
1311 {
1312 return pid_vnr(task_session(tsk));
1313 }
1314
1315
1316 static inline pid_t task_ppid_nr_ns(struct task_struct *tsk,
1317 struct pid_namespace *ns)
1318 {
1319 return pid_nr_ns(task_pid(rcu_dereference(tsk->real_parent)), ns);
1320 }
1321
1322 /**
1323 * pid_alive - check that a task structure is not stale
1324 * @p: Task structure to be checked.
1325 *
1326 * Test if a process is not yet dead (at most zombie state)
1327 * If pid_alive fails, then pointers within the task structure
1328 * can be stale and must not be dereferenced.
1329 */
1330 static inline int pid_alive(struct task_struct *p)
1331 {
1332 return p->pids[PIDTYPE_PID].pid != NULL;
1333 }
1334
1335 /**
1336 * is_global_init - check if a task structure is init
1337 * @tsk: Task structure to be checked.
1338 *
1339 * Check if a task structure is the first user space task the kernel created.
1340 */
1341 static inline int is_global_init(struct task_struct *tsk)
1342 {
1343 return tsk->pid == 1;
1344 }
1345
1346 /*
1347 * is_container_init:
1348 * check whether in the task is init in its own pid namespace.
1349 */
1350 extern int is_container_init(struct task_struct *tsk);
1351
1352 extern struct pid *cad_pid;
1353
1354 extern void free_task(struct task_struct *tsk);
1355 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1356
1357 extern void __put_task_struct(struct task_struct *t);
1358
1359 static inline void put_task_struct(struct task_struct *t)
1360 {
1361 if (atomic_dec_and_test(&t->usage))
1362 __put_task_struct(t);
1363 }
1364
1365 /*
1366 * Per process flags
1367 */
1368 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1369 /* Not implemented yet, only for 486*/
1370 #define PF_STARTING 0x00000002 /* being created */
1371 #define PF_EXITING 0x00000004 /* getting shut down */
1372 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1373 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1374 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1375 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1376 #define PF_DUMPCORE 0x00000200 /* dumped core */
1377 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1378 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1379 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1380 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1381 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1382 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1383 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1384 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1385 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1386 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1387 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1388 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1389 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1390 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1391 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1392 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1393 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1394 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1395
1396 /*
1397 * Only the _current_ task can read/write to tsk->flags, but other
1398 * tasks can access tsk->flags in readonly mode for example
1399 * with tsk_used_math (like during threaded core dumping).
1400 * There is however an exception to this rule during ptrace
1401 * or during fork: the ptracer task is allowed to write to the
1402 * child->flags of its traced child (same goes for fork, the parent
1403 * can write to the child->flags), because we're guaranteed the
1404 * child is not running and in turn not changing child->flags
1405 * at the same time the parent does it.
1406 */
1407 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1408 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1409 #define clear_used_math() clear_stopped_child_used_math(current)
1410 #define set_used_math() set_stopped_child_used_math(current)
1411 #define conditional_stopped_child_used_math(condition, child) \
1412 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1413 #define conditional_used_math(condition) \
1414 conditional_stopped_child_used_math(condition, current)
1415 #define copy_to_stopped_child_used_math(child) \
1416 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1417 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1418 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1419 #define used_math() tsk_used_math(current)
1420
1421 #ifdef CONFIG_SMP
1422 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1423 #else
1424 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1425 {
1426 if (!cpu_isset(0, new_mask))
1427 return -EINVAL;
1428 return 0;
1429 }
1430 #endif
1431
1432 extern unsigned long long sched_clock(void);
1433
1434 /*
1435 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1436 * clock constructed from sched_clock():
1437 */
1438 extern unsigned long long cpu_clock(int cpu);
1439
1440 extern unsigned long long
1441 task_sched_runtime(struct task_struct *task);
1442
1443 /* sched_exec is called by processes performing an exec */
1444 #ifdef CONFIG_SMP
1445 extern void sched_exec(void);
1446 #else
1447 #define sched_exec() {}
1448 #endif
1449
1450 extern void sched_clock_idle_sleep_event(void);
1451 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1452
1453 #ifdef CONFIG_HOTPLUG_CPU
1454 extern void idle_task_exit(void);
1455 #else
1456 static inline void idle_task_exit(void) {}
1457 #endif
1458
1459 extern void sched_idle_next(void);
1460
1461 #ifdef CONFIG_SCHED_DEBUG
1462 extern unsigned int sysctl_sched_latency;
1463 extern unsigned int sysctl_sched_nr_latency;
1464 extern unsigned int sysctl_sched_wakeup_granularity;
1465 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1466 extern unsigned int sysctl_sched_child_runs_first;
1467 extern unsigned int sysctl_sched_features;
1468 extern unsigned int sysctl_sched_migration_cost;
1469 #endif
1470
1471 extern unsigned int sysctl_sched_compat_yield;
1472
1473 #ifdef CONFIG_RT_MUTEXES
1474 extern int rt_mutex_getprio(struct task_struct *p);
1475 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1476 extern void rt_mutex_adjust_pi(struct task_struct *p);
1477 #else
1478 static inline int rt_mutex_getprio(struct task_struct *p)
1479 {
1480 return p->normal_prio;
1481 }
1482 # define rt_mutex_adjust_pi(p) do { } while (0)
1483 #endif
1484
1485 extern void set_user_nice(struct task_struct *p, long nice);
1486 extern int task_prio(const struct task_struct *p);
1487 extern int task_nice(const struct task_struct *p);
1488 extern int can_nice(const struct task_struct *p, const int nice);
1489 extern int task_curr(const struct task_struct *p);
1490 extern int idle_cpu(int cpu);
1491 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1492 extern struct task_struct *idle_task(int cpu);
1493 extern struct task_struct *curr_task(int cpu);
1494 extern void set_curr_task(int cpu, struct task_struct *p);
1495
1496 void yield(void);
1497
1498 /*
1499 * The default (Linux) execution domain.
1500 */
1501 extern struct exec_domain default_exec_domain;
1502
1503 union thread_union {
1504 struct thread_info thread_info;
1505 unsigned long stack[THREAD_SIZE/sizeof(long)];
1506 };
1507
1508 #ifndef __HAVE_ARCH_KSTACK_END
1509 static inline int kstack_end(void *addr)
1510 {
1511 /* Reliable end of stack detection:
1512 * Some APM bios versions misalign the stack
1513 */
1514 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1515 }
1516 #endif
1517
1518 extern union thread_union init_thread_union;
1519 extern struct task_struct init_task;
1520
1521 extern struct mm_struct init_mm;
1522
1523 extern struct pid_namespace init_pid_ns;
1524
1525 /*
1526 * find a task by one of its numerical ids
1527 *
1528 * find_task_by_pid_type_ns():
1529 * it is the most generic call - it finds a task by all id,
1530 * type and namespace specified
1531 * find_task_by_pid_ns():
1532 * finds a task by its pid in the specified namespace
1533 * find_task_by_vpid():
1534 * finds a task by its virtual pid
1535 * find_task_by_pid():
1536 * finds a task by its global pid
1537 *
1538 * see also find_pid() etc in include/linux/pid.h
1539 */
1540
1541 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1542 struct pid_namespace *ns);
1543
1544 extern struct task_struct *find_task_by_pid(pid_t nr);
1545 extern struct task_struct *find_task_by_vpid(pid_t nr);
1546 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1547 struct pid_namespace *ns);
1548
1549 extern void __set_special_pids(pid_t session, pid_t pgrp);
1550
1551 /* per-UID process charging. */
1552 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1553 static inline struct user_struct *get_uid(struct user_struct *u)
1554 {
1555 atomic_inc(&u->__count);
1556 return u;
1557 }
1558 extern void free_uid(struct user_struct *);
1559 extern void switch_uid(struct user_struct *);
1560 extern void release_uids(struct user_namespace *ns);
1561
1562 #include <asm/current.h>
1563
1564 extern void do_timer(unsigned long ticks);
1565
1566 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1567 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1568 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1569 unsigned long clone_flags));
1570 #ifdef CONFIG_SMP
1571 extern void kick_process(struct task_struct *tsk);
1572 #else
1573 static inline void kick_process(struct task_struct *tsk) { }
1574 #endif
1575 extern void sched_fork(struct task_struct *p, int clone_flags);
1576 extern void sched_dead(struct task_struct *p);
1577
1578 extern int in_group_p(gid_t);
1579 extern int in_egroup_p(gid_t);
1580
1581 extern void proc_caches_init(void);
1582 extern void flush_signals(struct task_struct *);
1583 extern void ignore_signals(struct task_struct *);
1584 extern void flush_signal_handlers(struct task_struct *, int force_default);
1585 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1586
1587 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1588 {
1589 unsigned long flags;
1590 int ret;
1591
1592 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1593 ret = dequeue_signal(tsk, mask, info);
1594 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1595
1596 return ret;
1597 }
1598
1599 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1600 sigset_t *mask);
1601 extern void unblock_all_signals(void);
1602 extern void release_task(struct task_struct * p);
1603 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1604 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1605 extern int force_sigsegv(int, struct task_struct *);
1606 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1607 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1608 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1609 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1610 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1611 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1612 extern int kill_pid(struct pid *pid, int sig, int priv);
1613 extern int kill_proc_info(int, struct siginfo *, pid_t);
1614 extern void do_notify_parent(struct task_struct *, int);
1615 extern void force_sig(int, struct task_struct *);
1616 extern void force_sig_specific(int, struct task_struct *);
1617 extern int send_sig(int, struct task_struct *, int);
1618 extern void zap_other_threads(struct task_struct *p);
1619 extern int kill_proc(pid_t, int, int);
1620 extern struct sigqueue *sigqueue_alloc(void);
1621 extern void sigqueue_free(struct sigqueue *);
1622 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1623 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1624 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1625 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1626
1627 static inline int kill_cad_pid(int sig, int priv)
1628 {
1629 return kill_pid(cad_pid, sig, priv);
1630 }
1631
1632 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1633 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1634 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1635 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1636
1637 static inline int is_si_special(const struct siginfo *info)
1638 {
1639 return info <= SEND_SIG_FORCED;
1640 }
1641
1642 /* True if we are on the alternate signal stack. */
1643
1644 static inline int on_sig_stack(unsigned long sp)
1645 {
1646 return (sp - current->sas_ss_sp < current->sas_ss_size);
1647 }
1648
1649 static inline int sas_ss_flags(unsigned long sp)
1650 {
1651 return (current->sas_ss_size == 0 ? SS_DISABLE
1652 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1653 }
1654
1655 /*
1656 * Routines for handling mm_structs
1657 */
1658 extern struct mm_struct * mm_alloc(void);
1659
1660 /* mmdrop drops the mm and the page tables */
1661 extern void FASTCALL(__mmdrop(struct mm_struct *));
1662 static inline void mmdrop(struct mm_struct * mm)
1663 {
1664 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1665 __mmdrop(mm);
1666 }
1667
1668 /* mmput gets rid of the mappings and all user-space */
1669 extern void mmput(struct mm_struct *);
1670 /* Grab a reference to a task's mm, if it is not already going away */
1671 extern struct mm_struct *get_task_mm(struct task_struct *task);
1672 /* Remove the current tasks stale references to the old mm_struct */
1673 extern void mm_release(struct task_struct *, struct mm_struct *);
1674
1675 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1676 extern void flush_thread(void);
1677 extern void exit_thread(void);
1678
1679 extern void exit_files(struct task_struct *);
1680 extern void __cleanup_signal(struct signal_struct *);
1681 extern void __cleanup_sighand(struct sighand_struct *);
1682 extern void exit_itimers(struct signal_struct *);
1683
1684 extern NORET_TYPE void do_group_exit(int);
1685
1686 extern void daemonize(const char *, ...);
1687 extern int allow_signal(int);
1688 extern int disallow_signal(int);
1689
1690 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1691 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1692 struct task_struct *fork_idle(int);
1693
1694 extern void set_task_comm(struct task_struct *tsk, char *from);
1695 extern void get_task_comm(char *to, struct task_struct *tsk);
1696
1697 #ifdef CONFIG_SMP
1698 extern void wait_task_inactive(struct task_struct * p);
1699 #else
1700 #define wait_task_inactive(p) do { } while (0)
1701 #endif
1702
1703 #define remove_parent(p) list_del_init(&(p)->sibling)
1704 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1705
1706 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1707
1708 #define for_each_process(p) \
1709 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1710
1711 /*
1712 * Careful: do_each_thread/while_each_thread is a double loop so
1713 * 'break' will not work as expected - use goto instead.
1714 */
1715 #define do_each_thread(g, t) \
1716 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1717
1718 #define while_each_thread(g, t) \
1719 while ((t = next_thread(t)) != g)
1720
1721 /* de_thread depends on thread_group_leader not being a pid based check */
1722 #define thread_group_leader(p) (p == p->group_leader)
1723
1724 /* Do to the insanities of de_thread it is possible for a process
1725 * to have the pid of the thread group leader without actually being
1726 * the thread group leader. For iteration through the pids in proc
1727 * all we care about is that we have a task with the appropriate
1728 * pid, we don't actually care if we have the right task.
1729 */
1730 static inline int has_group_leader_pid(struct task_struct *p)
1731 {
1732 return p->pid == p->tgid;
1733 }
1734
1735 static inline
1736 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1737 {
1738 return p1->tgid == p2->tgid;
1739 }
1740
1741 static inline struct task_struct *next_thread(const struct task_struct *p)
1742 {
1743 return list_entry(rcu_dereference(p->thread_group.next),
1744 struct task_struct, thread_group);
1745 }
1746
1747 static inline int thread_group_empty(struct task_struct *p)
1748 {
1749 return list_empty(&p->thread_group);
1750 }
1751
1752 #define delay_group_leader(p) \
1753 (thread_group_leader(p) && !thread_group_empty(p))
1754
1755 /*
1756 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1757 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1758 * pins the final release of task.io_context. Also protects ->cpuset and
1759 * ->cgroup.subsys[].
1760 *
1761 * Nests both inside and outside of read_lock(&tasklist_lock).
1762 * It must not be nested with write_lock_irq(&tasklist_lock),
1763 * neither inside nor outside.
1764 */
1765 static inline void task_lock(struct task_struct *p)
1766 {
1767 spin_lock(&p->alloc_lock);
1768 }
1769
1770 static inline void task_unlock(struct task_struct *p)
1771 {
1772 spin_unlock(&p->alloc_lock);
1773 }
1774
1775 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1776 unsigned long *flags);
1777
1778 static inline void unlock_task_sighand(struct task_struct *tsk,
1779 unsigned long *flags)
1780 {
1781 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1782 }
1783
1784 #ifndef __HAVE_THREAD_FUNCTIONS
1785
1786 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1787 #define task_stack_page(task) ((task)->stack)
1788
1789 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1790 {
1791 *task_thread_info(p) = *task_thread_info(org);
1792 task_thread_info(p)->task = p;
1793 }
1794
1795 static inline unsigned long *end_of_stack(struct task_struct *p)
1796 {
1797 return (unsigned long *)(task_thread_info(p) + 1);
1798 }
1799
1800 #endif
1801
1802 /* set thread flags in other task's structures
1803 * - see asm/thread_info.h for TIF_xxxx flags available
1804 */
1805 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1806 {
1807 set_ti_thread_flag(task_thread_info(tsk), flag);
1808 }
1809
1810 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1811 {
1812 clear_ti_thread_flag(task_thread_info(tsk), flag);
1813 }
1814
1815 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1816 {
1817 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1818 }
1819
1820 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1821 {
1822 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1823 }
1824
1825 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1826 {
1827 return test_ti_thread_flag(task_thread_info(tsk), flag);
1828 }
1829
1830 static inline void set_tsk_need_resched(struct task_struct *tsk)
1831 {
1832 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1833 }
1834
1835 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1836 {
1837 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1838 }
1839
1840 static inline int signal_pending(struct task_struct *p)
1841 {
1842 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1843 }
1844
1845 static inline int need_resched(void)
1846 {
1847 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1848 }
1849
1850 /*
1851 * cond_resched() and cond_resched_lock(): latency reduction via
1852 * explicit rescheduling in places that are safe. The return
1853 * value indicates whether a reschedule was done in fact.
1854 * cond_resched_lock() will drop the spinlock before scheduling,
1855 * cond_resched_softirq() will enable bhs before scheduling.
1856 */
1857 extern int cond_resched(void);
1858 extern int cond_resched_lock(spinlock_t * lock);
1859 extern int cond_resched_softirq(void);
1860
1861 /*
1862 * Does a critical section need to be broken due to another
1863 * task waiting?:
1864 */
1865 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1866 # define need_lockbreak(lock) ((lock)->break_lock)
1867 #else
1868 # define need_lockbreak(lock) 0
1869 #endif
1870
1871 /*
1872 * Does a critical section need to be broken due to another
1873 * task waiting or preemption being signalled:
1874 */
1875 static inline int lock_need_resched(spinlock_t *lock)
1876 {
1877 if (need_lockbreak(lock) || need_resched())
1878 return 1;
1879 return 0;
1880 }
1881
1882 /*
1883 * Reevaluate whether the task has signals pending delivery.
1884 * Wake the task if so.
1885 * This is required every time the blocked sigset_t changes.
1886 * callers must hold sighand->siglock.
1887 */
1888 extern void recalc_sigpending_and_wake(struct task_struct *t);
1889 extern void recalc_sigpending(void);
1890
1891 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1892
1893 /*
1894 * Wrappers for p->thread_info->cpu access. No-op on UP.
1895 */
1896 #ifdef CONFIG_SMP
1897
1898 static inline unsigned int task_cpu(const struct task_struct *p)
1899 {
1900 return task_thread_info(p)->cpu;
1901 }
1902
1903 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1904
1905 #else
1906
1907 static inline unsigned int task_cpu(const struct task_struct *p)
1908 {
1909 return 0;
1910 }
1911
1912 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1913 {
1914 }
1915
1916 #endif /* CONFIG_SMP */
1917
1918 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1919 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1920 #else
1921 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1922 {
1923 mm->mmap_base = TASK_UNMAPPED_BASE;
1924 mm->get_unmapped_area = arch_get_unmapped_area;
1925 mm->unmap_area = arch_unmap_area;
1926 }
1927 #endif
1928
1929 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1930 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1931
1932 extern int sched_mc_power_savings, sched_smt_power_savings;
1933
1934 extern void normalize_rt_tasks(void);
1935
1936 #ifdef CONFIG_FAIR_GROUP_SCHED
1937
1938 extern struct task_group init_task_group;
1939
1940 extern struct task_group *sched_create_group(void);
1941 extern void sched_destroy_group(struct task_group *tg);
1942 extern void sched_move_task(struct task_struct *tsk);
1943 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1944 extern unsigned long sched_group_shares(struct task_group *tg);
1945
1946 #endif
1947
1948 #ifdef CONFIG_TASK_XACCT
1949 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1950 {
1951 tsk->rchar += amt;
1952 }
1953
1954 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1955 {
1956 tsk->wchar += amt;
1957 }
1958
1959 static inline void inc_syscr(struct task_struct *tsk)
1960 {
1961 tsk->syscr++;
1962 }
1963
1964 static inline void inc_syscw(struct task_struct *tsk)
1965 {
1966 tsk->syscw++;
1967 }
1968 #else
1969 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1970 {
1971 }
1972
1973 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1974 {
1975 }
1976
1977 static inline void inc_syscr(struct task_struct *tsk)
1978 {
1979 }
1980
1981 static inline void inc_syscw(struct task_struct *tsk)
1982 {
1983 }
1984 #endif
1985
1986 #endif /* __KERNEL__ */
1987
1988 #endif