]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
sched/headers: Move sched_info_on() and force_schedstat_enabled() from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8 #include <linux/capability.h>
9 #include <linux/mutex.h>
10 #include <linux/plist.h>
11 #include <linux/mm_types_task.h>
12 #include <asm/ptrace.h>
13
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/signal.h>
17 #include <linux/signal_types.h>
18 #include <linux/pid.h>
19 #include <linux/seccomp.h>
20 #include <linux/rculist.h>
21 #include <linux/rtmutex.h>
22
23 #include <linux/resource.h>
24 #include <linux/hrtimer.h>
25 #include <linux/kcov.h>
26 #include <linux/task_io_accounting.h>
27 #include <linux/latencytop.h>
28 #include <linux/cred.h>
29 #include <linux/gfp.h>
30 #include <linux/topology.h>
31 #include <linux/magic.h>
32 #include <linux/cgroup-defs.h>
33
34 #include <asm/current.h>
35
36 /* task_struct member predeclarations: */
37 struct audit_context;
38 struct autogroup;
39 struct backing_dev_info;
40 struct bio_list;
41 struct blk_plug;
42 struct cfs_rq;
43 struct filename;
44 struct fs_struct;
45 struct futex_pi_state;
46 struct io_context;
47 struct mempolicy;
48 struct nameidata;
49 struct nsproxy;
50 struct perf_event_context;
51 struct pid_namespace;
52 struct pipe_inode_info;
53 struct rcu_node;
54 struct reclaim_state;
55 struct robust_list_head;
56 struct sched_attr;
57 struct sched_param;
58 struct seq_file;
59 struct sighand_struct;
60 struct signal_struct;
61 struct task_delay_info;
62 struct task_group;
63 struct task_struct;
64 struct uts_namespace;
65
66 /*
67 * Task state bitmask. NOTE! These bits are also
68 * encoded in fs/proc/array.c: get_task_state().
69 *
70 * We have two separate sets of flags: task->state
71 * is about runnability, while task->exit_state are
72 * about the task exiting. Confusing, but this way
73 * modifying one set can't modify the other one by
74 * mistake.
75 */
76 #define TASK_RUNNING 0
77 #define TASK_INTERRUPTIBLE 1
78 #define TASK_UNINTERRUPTIBLE 2
79 #define __TASK_STOPPED 4
80 #define __TASK_TRACED 8
81 /* in tsk->exit_state */
82 #define EXIT_DEAD 16
83 #define EXIT_ZOMBIE 32
84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85 /* in tsk->state again */
86 #define TASK_DEAD 64
87 #define TASK_WAKEKILL 128
88 #define TASK_WAKING 256
89 #define TASK_PARKED 512
90 #define TASK_NOLOAD 1024
91 #define TASK_NEW 2048
92 #define TASK_STATE_MAX 4096
93
94 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
95
96 /* Convenience macros for the sake of set_current_state */
97 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
98 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
99 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
100
101 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
102
103 /* Convenience macros for the sake of wake_up */
104 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
105 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
106
107 /* get_task_state() */
108 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
109 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
110 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
111
112 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
113 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
114 #define task_is_stopped_or_traced(task) \
115 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
116 #define task_contributes_to_load(task) \
117 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
118 (task->flags & PF_FROZEN) == 0 && \
119 (task->state & TASK_NOLOAD) == 0)
120
121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
122
123 #define __set_current_state(state_value) \
124 do { \
125 current->task_state_change = _THIS_IP_; \
126 current->state = (state_value); \
127 } while (0)
128 #define set_current_state(state_value) \
129 do { \
130 current->task_state_change = _THIS_IP_; \
131 smp_store_mb(current->state, (state_value)); \
132 } while (0)
133
134 #else
135 /*
136 * set_current_state() includes a barrier so that the write of current->state
137 * is correctly serialised wrt the caller's subsequent test of whether to
138 * actually sleep:
139 *
140 * for (;;) {
141 * set_current_state(TASK_UNINTERRUPTIBLE);
142 * if (!need_sleep)
143 * break;
144 *
145 * schedule();
146 * }
147 * __set_current_state(TASK_RUNNING);
148 *
149 * If the caller does not need such serialisation (because, for instance, the
150 * condition test and condition change and wakeup are under the same lock) then
151 * use __set_current_state().
152 *
153 * The above is typically ordered against the wakeup, which does:
154 *
155 * need_sleep = false;
156 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
157 *
158 * Where wake_up_state() (and all other wakeup primitives) imply enough
159 * barriers to order the store of the variable against wakeup.
160 *
161 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
162 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
163 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
164 *
165 * This is obviously fine, since they both store the exact same value.
166 *
167 * Also see the comments of try_to_wake_up().
168 */
169 #define __set_current_state(state_value) \
170 do { current->state = (state_value); } while (0)
171 #define set_current_state(state_value) \
172 smp_store_mb(current->state, (state_value))
173
174 #endif
175
176 /* Task command name length */
177 #define TASK_COMM_LEN 16
178
179 extern void sched_init(void);
180 extern void sched_init_smp(void);
181
182 extern cpumask_var_t cpu_isolated_map;
183
184 extern int runqueue_is_locked(int cpu);
185
186 extern void cpu_init (void);
187 extern void trap_init(void);
188 extern void update_process_times(int user);
189 extern void scheduler_tick(void);
190
191 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
192 extern signed long schedule_timeout(signed long timeout);
193 extern signed long schedule_timeout_interruptible(signed long timeout);
194 extern signed long schedule_timeout_killable(signed long timeout);
195 extern signed long schedule_timeout_uninterruptible(signed long timeout);
196 extern signed long schedule_timeout_idle(signed long timeout);
197 asmlinkage void schedule(void);
198 extern void schedule_preempt_disabled(void);
199
200 extern int __must_check io_schedule_prepare(void);
201 extern void io_schedule_finish(int token);
202 extern long io_schedule_timeout(long timeout);
203 extern void io_schedule(void);
204
205 /**
206 * struct prev_cputime - snaphsot of system and user cputime
207 * @utime: time spent in user mode
208 * @stime: time spent in system mode
209 * @lock: protects the above two fields
210 *
211 * Stores previous user/system time values such that we can guarantee
212 * monotonicity.
213 */
214 struct prev_cputime {
215 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
216 u64 utime;
217 u64 stime;
218 raw_spinlock_t lock;
219 #endif
220 };
221
222 /**
223 * struct task_cputime - collected CPU time counts
224 * @utime: time spent in user mode, in nanoseconds
225 * @stime: time spent in kernel mode, in nanoseconds
226 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
227 *
228 * This structure groups together three kinds of CPU time that are tracked for
229 * threads and thread groups. Most things considering CPU time want to group
230 * these counts together and treat all three of them in parallel.
231 */
232 struct task_cputime {
233 u64 utime;
234 u64 stime;
235 unsigned long long sum_exec_runtime;
236 };
237
238 /* Alternate field names when used to cache expirations. */
239 #define virt_exp utime
240 #define prof_exp stime
241 #define sched_exp sum_exec_runtime
242
243 #include <linux/rwsem.h>
244
245 #ifdef CONFIG_SCHED_INFO
246 struct sched_info {
247 /* cumulative counters */
248 unsigned long pcount; /* # of times run on this cpu */
249 unsigned long long run_delay; /* time spent waiting on a runqueue */
250
251 /* timestamps */
252 unsigned long long last_arrival,/* when we last ran on a cpu */
253 last_queued; /* when we were last queued to run */
254 };
255 #endif /* CONFIG_SCHED_INFO */
256
257 /*
258 * Integer metrics need fixed point arithmetic, e.g., sched/fair
259 * has a few: load, load_avg, util_avg, freq, and capacity.
260 *
261 * We define a basic fixed point arithmetic range, and then formalize
262 * all these metrics based on that basic range.
263 */
264 # define SCHED_FIXEDPOINT_SHIFT 10
265 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
266
267 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
268 extern void prefetch_stack(struct task_struct *t);
269 #else
270 static inline void prefetch_stack(struct task_struct *t) { }
271 #endif
272
273 struct load_weight {
274 unsigned long weight;
275 u32 inv_weight;
276 };
277
278 /*
279 * The load_avg/util_avg accumulates an infinite geometric series
280 * (see __update_load_avg() in kernel/sched/fair.c).
281 *
282 * [load_avg definition]
283 *
284 * load_avg = runnable% * scale_load_down(load)
285 *
286 * where runnable% is the time ratio that a sched_entity is runnable.
287 * For cfs_rq, it is the aggregated load_avg of all runnable and
288 * blocked sched_entities.
289 *
290 * load_avg may also take frequency scaling into account:
291 *
292 * load_avg = runnable% * scale_load_down(load) * freq%
293 *
294 * where freq% is the CPU frequency normalized to the highest frequency.
295 *
296 * [util_avg definition]
297 *
298 * util_avg = running% * SCHED_CAPACITY_SCALE
299 *
300 * where running% is the time ratio that a sched_entity is running on
301 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
302 * and blocked sched_entities.
303 *
304 * util_avg may also factor frequency scaling and CPU capacity scaling:
305 *
306 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
307 *
308 * where freq% is the same as above, and capacity% is the CPU capacity
309 * normalized to the greatest capacity (due to uarch differences, etc).
310 *
311 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
312 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
313 * we therefore scale them to as large a range as necessary. This is for
314 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
315 *
316 * [Overflow issue]
317 *
318 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
319 * with the highest load (=88761), always runnable on a single cfs_rq,
320 * and should not overflow as the number already hits PID_MAX_LIMIT.
321 *
322 * For all other cases (including 32-bit kernels), struct load_weight's
323 * weight will overflow first before we do, because:
324 *
325 * Max(load_avg) <= Max(load.weight)
326 *
327 * Then it is the load_weight's responsibility to consider overflow
328 * issues.
329 */
330 struct sched_avg {
331 u64 last_update_time, load_sum;
332 u32 util_sum, period_contrib;
333 unsigned long load_avg, util_avg;
334 };
335
336 #ifdef CONFIG_SCHEDSTATS
337 struct sched_statistics {
338 u64 wait_start;
339 u64 wait_max;
340 u64 wait_count;
341 u64 wait_sum;
342 u64 iowait_count;
343 u64 iowait_sum;
344
345 u64 sleep_start;
346 u64 sleep_max;
347 s64 sum_sleep_runtime;
348
349 u64 block_start;
350 u64 block_max;
351 u64 exec_max;
352 u64 slice_max;
353
354 u64 nr_migrations_cold;
355 u64 nr_failed_migrations_affine;
356 u64 nr_failed_migrations_running;
357 u64 nr_failed_migrations_hot;
358 u64 nr_forced_migrations;
359
360 u64 nr_wakeups;
361 u64 nr_wakeups_sync;
362 u64 nr_wakeups_migrate;
363 u64 nr_wakeups_local;
364 u64 nr_wakeups_remote;
365 u64 nr_wakeups_affine;
366 u64 nr_wakeups_affine_attempts;
367 u64 nr_wakeups_passive;
368 u64 nr_wakeups_idle;
369 };
370 #endif
371
372 struct sched_entity {
373 struct load_weight load; /* for load-balancing */
374 struct rb_node run_node;
375 struct list_head group_node;
376 unsigned int on_rq;
377
378 u64 exec_start;
379 u64 sum_exec_runtime;
380 u64 vruntime;
381 u64 prev_sum_exec_runtime;
382
383 u64 nr_migrations;
384
385 #ifdef CONFIG_SCHEDSTATS
386 struct sched_statistics statistics;
387 #endif
388
389 #ifdef CONFIG_FAIR_GROUP_SCHED
390 int depth;
391 struct sched_entity *parent;
392 /* rq on which this entity is (to be) queued: */
393 struct cfs_rq *cfs_rq;
394 /* rq "owned" by this entity/group: */
395 struct cfs_rq *my_q;
396 #endif
397
398 #ifdef CONFIG_SMP
399 /*
400 * Per entity load average tracking.
401 *
402 * Put into separate cache line so it does not
403 * collide with read-mostly values above.
404 */
405 struct sched_avg avg ____cacheline_aligned_in_smp;
406 #endif
407 };
408
409 struct sched_rt_entity {
410 struct list_head run_list;
411 unsigned long timeout;
412 unsigned long watchdog_stamp;
413 unsigned int time_slice;
414 unsigned short on_rq;
415 unsigned short on_list;
416
417 struct sched_rt_entity *back;
418 #ifdef CONFIG_RT_GROUP_SCHED
419 struct sched_rt_entity *parent;
420 /* rq on which this entity is (to be) queued: */
421 struct rt_rq *rt_rq;
422 /* rq "owned" by this entity/group: */
423 struct rt_rq *my_q;
424 #endif
425 };
426
427 struct sched_dl_entity {
428 struct rb_node rb_node;
429
430 /*
431 * Original scheduling parameters. Copied here from sched_attr
432 * during sched_setattr(), they will remain the same until
433 * the next sched_setattr().
434 */
435 u64 dl_runtime; /* maximum runtime for each instance */
436 u64 dl_deadline; /* relative deadline of each instance */
437 u64 dl_period; /* separation of two instances (period) */
438 u64 dl_bw; /* dl_runtime / dl_deadline */
439
440 /*
441 * Actual scheduling parameters. Initialized with the values above,
442 * they are continously updated during task execution. Note that
443 * the remaining runtime could be < 0 in case we are in overrun.
444 */
445 s64 runtime; /* remaining runtime for this instance */
446 u64 deadline; /* absolute deadline for this instance */
447 unsigned int flags; /* specifying the scheduler behaviour */
448
449 /*
450 * Some bool flags:
451 *
452 * @dl_throttled tells if we exhausted the runtime. If so, the
453 * task has to wait for a replenishment to be performed at the
454 * next firing of dl_timer.
455 *
456 * @dl_boosted tells if we are boosted due to DI. If so we are
457 * outside bandwidth enforcement mechanism (but only until we
458 * exit the critical section);
459 *
460 * @dl_yielded tells if task gave up the cpu before consuming
461 * all its available runtime during the last job.
462 */
463 int dl_throttled, dl_boosted, dl_yielded;
464
465 /*
466 * Bandwidth enforcement timer. Each -deadline task has its
467 * own bandwidth to be enforced, thus we need one timer per task.
468 */
469 struct hrtimer dl_timer;
470 };
471
472 union rcu_special {
473 struct {
474 u8 blocked;
475 u8 need_qs;
476 u8 exp_need_qs;
477 u8 pad; /* Otherwise the compiler can store garbage here. */
478 } b; /* Bits. */
479 u32 s; /* Set of bits. */
480 };
481
482 enum perf_event_task_context {
483 perf_invalid_context = -1,
484 perf_hw_context = 0,
485 perf_sw_context,
486 perf_nr_task_contexts,
487 };
488
489 struct wake_q_node {
490 struct wake_q_node *next;
491 };
492
493 /* Track pages that require TLB flushes */
494 struct tlbflush_unmap_batch {
495 /*
496 * Each bit set is a CPU that potentially has a TLB entry for one of
497 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
498 */
499 struct cpumask cpumask;
500
501 /* True if any bit in cpumask is set */
502 bool flush_required;
503
504 /*
505 * If true then the PTE was dirty when unmapped. The entry must be
506 * flushed before IO is initiated or a stale TLB entry potentially
507 * allows an update without redirtying the page.
508 */
509 bool writable;
510 };
511
512 struct task_struct {
513 #ifdef CONFIG_THREAD_INFO_IN_TASK
514 /*
515 * For reasons of header soup (see current_thread_info()), this
516 * must be the first element of task_struct.
517 */
518 struct thread_info thread_info;
519 #endif
520 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
521 void *stack;
522 atomic_t usage;
523 unsigned int flags; /* per process flags, defined below */
524 unsigned int ptrace;
525
526 #ifdef CONFIG_SMP
527 struct llist_node wake_entry;
528 int on_cpu;
529 #ifdef CONFIG_THREAD_INFO_IN_TASK
530 unsigned int cpu; /* current CPU */
531 #endif
532 unsigned int wakee_flips;
533 unsigned long wakee_flip_decay_ts;
534 struct task_struct *last_wakee;
535
536 int wake_cpu;
537 #endif
538 int on_rq;
539
540 int prio, static_prio, normal_prio;
541 unsigned int rt_priority;
542 const struct sched_class *sched_class;
543 struct sched_entity se;
544 struct sched_rt_entity rt;
545 #ifdef CONFIG_CGROUP_SCHED
546 struct task_group *sched_task_group;
547 #endif
548 struct sched_dl_entity dl;
549
550 #ifdef CONFIG_PREEMPT_NOTIFIERS
551 /* list of struct preempt_notifier: */
552 struct hlist_head preempt_notifiers;
553 #endif
554
555 #ifdef CONFIG_BLK_DEV_IO_TRACE
556 unsigned int btrace_seq;
557 #endif
558
559 unsigned int policy;
560 int nr_cpus_allowed;
561 cpumask_t cpus_allowed;
562
563 #ifdef CONFIG_PREEMPT_RCU
564 int rcu_read_lock_nesting;
565 union rcu_special rcu_read_unlock_special;
566 struct list_head rcu_node_entry;
567 struct rcu_node *rcu_blocked_node;
568 #endif /* #ifdef CONFIG_PREEMPT_RCU */
569 #ifdef CONFIG_TASKS_RCU
570 unsigned long rcu_tasks_nvcsw;
571 bool rcu_tasks_holdout;
572 struct list_head rcu_tasks_holdout_list;
573 int rcu_tasks_idle_cpu;
574 #endif /* #ifdef CONFIG_TASKS_RCU */
575
576 #ifdef CONFIG_SCHED_INFO
577 struct sched_info sched_info;
578 #endif
579
580 struct list_head tasks;
581 #ifdef CONFIG_SMP
582 struct plist_node pushable_tasks;
583 struct rb_node pushable_dl_tasks;
584 #endif
585
586 struct mm_struct *mm, *active_mm;
587
588 /* Per-thread vma caching: */
589 struct vmacache vmacache;
590
591 #if defined(SPLIT_RSS_COUNTING)
592 struct task_rss_stat rss_stat;
593 #endif
594 /* task state */
595 int exit_state;
596 int exit_code, exit_signal;
597 int pdeath_signal; /* The signal sent when the parent dies */
598 unsigned long jobctl; /* JOBCTL_*, siglock protected */
599
600 /* Used for emulating ABI behavior of previous Linux versions */
601 unsigned int personality;
602
603 /* scheduler bits, serialized by scheduler locks */
604 unsigned sched_reset_on_fork:1;
605 unsigned sched_contributes_to_load:1;
606 unsigned sched_migrated:1;
607 unsigned sched_remote_wakeup:1;
608 unsigned :0; /* force alignment to the next boundary */
609
610 /* unserialized, strictly 'current' */
611 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
612 unsigned in_iowait:1;
613 #if !defined(TIF_RESTORE_SIGMASK)
614 unsigned restore_sigmask:1;
615 #endif
616 #ifdef CONFIG_MEMCG
617 unsigned memcg_may_oom:1;
618 #ifndef CONFIG_SLOB
619 unsigned memcg_kmem_skip_account:1;
620 #endif
621 #endif
622 #ifdef CONFIG_COMPAT_BRK
623 unsigned brk_randomized:1;
624 #endif
625
626 unsigned long atomic_flags; /* Flags needing atomic access. */
627
628 struct restart_block restart_block;
629
630 pid_t pid;
631 pid_t tgid;
632
633 #ifdef CONFIG_CC_STACKPROTECTOR
634 /* Canary value for the -fstack-protector gcc feature */
635 unsigned long stack_canary;
636 #endif
637 /*
638 * pointers to (original) parent process, youngest child, younger sibling,
639 * older sibling, respectively. (p->father can be replaced with
640 * p->real_parent->pid)
641 */
642 struct task_struct __rcu *real_parent; /* real parent process */
643 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
644 /*
645 * children/sibling forms the list of my natural children
646 */
647 struct list_head children; /* list of my children */
648 struct list_head sibling; /* linkage in my parent's children list */
649 struct task_struct *group_leader; /* threadgroup leader */
650
651 /*
652 * ptraced is the list of tasks this task is using ptrace on.
653 * This includes both natural children and PTRACE_ATTACH targets.
654 * p->ptrace_entry is p's link on the p->parent->ptraced list.
655 */
656 struct list_head ptraced;
657 struct list_head ptrace_entry;
658
659 /* PID/PID hash table linkage. */
660 struct pid_link pids[PIDTYPE_MAX];
661 struct list_head thread_group;
662 struct list_head thread_node;
663
664 struct completion *vfork_done; /* for vfork() */
665 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
666 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
667
668 u64 utime, stime;
669 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
670 u64 utimescaled, stimescaled;
671 #endif
672 u64 gtime;
673 struct prev_cputime prev_cputime;
674 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
675 seqcount_t vtime_seqcount;
676 unsigned long long vtime_snap;
677 enum {
678 /* Task is sleeping or running in a CPU with VTIME inactive */
679 VTIME_INACTIVE = 0,
680 /* Task runs in userspace in a CPU with VTIME active */
681 VTIME_USER,
682 /* Task runs in kernelspace in a CPU with VTIME active */
683 VTIME_SYS,
684 } vtime_snap_whence;
685 #endif
686
687 #ifdef CONFIG_NO_HZ_FULL
688 atomic_t tick_dep_mask;
689 #endif
690 unsigned long nvcsw, nivcsw; /* context switch counts */
691 u64 start_time; /* monotonic time in nsec */
692 u64 real_start_time; /* boot based time in nsec */
693 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
694 unsigned long min_flt, maj_flt;
695
696 #ifdef CONFIG_POSIX_TIMERS
697 struct task_cputime cputime_expires;
698 struct list_head cpu_timers[3];
699 #endif
700
701 /* process credentials */
702 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
703 const struct cred __rcu *real_cred; /* objective and real subjective task
704 * credentials (COW) */
705 const struct cred __rcu *cred; /* effective (overridable) subjective task
706 * credentials (COW) */
707 char comm[TASK_COMM_LEN]; /* executable name excluding path
708 - access with [gs]et_task_comm (which lock
709 it with task_lock())
710 - initialized normally by setup_new_exec */
711 /* file system info */
712 struct nameidata *nameidata;
713 #ifdef CONFIG_SYSVIPC
714 /* ipc stuff */
715 struct sysv_sem sysvsem;
716 struct sysv_shm sysvshm;
717 #endif
718 #ifdef CONFIG_DETECT_HUNG_TASK
719 /* hung task detection */
720 unsigned long last_switch_count;
721 #endif
722 /* filesystem information */
723 struct fs_struct *fs;
724 /* open file information */
725 struct files_struct *files;
726 /* namespaces */
727 struct nsproxy *nsproxy;
728 /* signal handlers */
729 struct signal_struct *signal;
730 struct sighand_struct *sighand;
731
732 sigset_t blocked, real_blocked;
733 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
734 struct sigpending pending;
735
736 unsigned long sas_ss_sp;
737 size_t sas_ss_size;
738 unsigned sas_ss_flags;
739
740 struct callback_head *task_works;
741
742 struct audit_context *audit_context;
743 #ifdef CONFIG_AUDITSYSCALL
744 kuid_t loginuid;
745 unsigned int sessionid;
746 #endif
747 struct seccomp seccomp;
748
749 /* Thread group tracking */
750 u32 parent_exec_id;
751 u32 self_exec_id;
752 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
753 * mempolicy */
754 spinlock_t alloc_lock;
755
756 /* Protection of the PI data structures: */
757 raw_spinlock_t pi_lock;
758
759 struct wake_q_node wake_q;
760
761 #ifdef CONFIG_RT_MUTEXES
762 /* PI waiters blocked on a rt_mutex held by this task */
763 struct rb_root pi_waiters;
764 struct rb_node *pi_waiters_leftmost;
765 /* Deadlock detection and priority inheritance handling */
766 struct rt_mutex_waiter *pi_blocked_on;
767 #endif
768
769 #ifdef CONFIG_DEBUG_MUTEXES
770 /* mutex deadlock detection */
771 struct mutex_waiter *blocked_on;
772 #endif
773 #ifdef CONFIG_TRACE_IRQFLAGS
774 unsigned int irq_events;
775 unsigned long hardirq_enable_ip;
776 unsigned long hardirq_disable_ip;
777 unsigned int hardirq_enable_event;
778 unsigned int hardirq_disable_event;
779 int hardirqs_enabled;
780 int hardirq_context;
781 unsigned long softirq_disable_ip;
782 unsigned long softirq_enable_ip;
783 unsigned int softirq_disable_event;
784 unsigned int softirq_enable_event;
785 int softirqs_enabled;
786 int softirq_context;
787 #endif
788 #ifdef CONFIG_LOCKDEP
789 # define MAX_LOCK_DEPTH 48UL
790 u64 curr_chain_key;
791 int lockdep_depth;
792 unsigned int lockdep_recursion;
793 struct held_lock held_locks[MAX_LOCK_DEPTH];
794 gfp_t lockdep_reclaim_gfp;
795 #endif
796 #ifdef CONFIG_UBSAN
797 unsigned int in_ubsan;
798 #endif
799
800 /* journalling filesystem info */
801 void *journal_info;
802
803 /* stacked block device info */
804 struct bio_list *bio_list;
805
806 #ifdef CONFIG_BLOCK
807 /* stack plugging */
808 struct blk_plug *plug;
809 #endif
810
811 /* VM state */
812 struct reclaim_state *reclaim_state;
813
814 struct backing_dev_info *backing_dev_info;
815
816 struct io_context *io_context;
817
818 unsigned long ptrace_message;
819 siginfo_t *last_siginfo; /* For ptrace use. */
820 struct task_io_accounting ioac;
821 #if defined(CONFIG_TASK_XACCT)
822 u64 acct_rss_mem1; /* accumulated rss usage */
823 u64 acct_vm_mem1; /* accumulated virtual memory usage */
824 u64 acct_timexpd; /* stime + utime since last update */
825 #endif
826 #ifdef CONFIG_CPUSETS
827 nodemask_t mems_allowed; /* Protected by alloc_lock */
828 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
829 int cpuset_mem_spread_rotor;
830 int cpuset_slab_spread_rotor;
831 #endif
832 #ifdef CONFIG_CGROUPS
833 /* Control Group info protected by css_set_lock */
834 struct css_set __rcu *cgroups;
835 /* cg_list protected by css_set_lock and tsk->alloc_lock */
836 struct list_head cg_list;
837 #endif
838 #ifdef CONFIG_INTEL_RDT_A
839 int closid;
840 #endif
841 #ifdef CONFIG_FUTEX
842 struct robust_list_head __user *robust_list;
843 #ifdef CONFIG_COMPAT
844 struct compat_robust_list_head __user *compat_robust_list;
845 #endif
846 struct list_head pi_state_list;
847 struct futex_pi_state *pi_state_cache;
848 #endif
849 #ifdef CONFIG_PERF_EVENTS
850 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
851 struct mutex perf_event_mutex;
852 struct list_head perf_event_list;
853 #endif
854 #ifdef CONFIG_DEBUG_PREEMPT
855 unsigned long preempt_disable_ip;
856 #endif
857 #ifdef CONFIG_NUMA
858 struct mempolicy *mempolicy; /* Protected by alloc_lock */
859 short il_next;
860 short pref_node_fork;
861 #endif
862 #ifdef CONFIG_NUMA_BALANCING
863 int numa_scan_seq;
864 unsigned int numa_scan_period;
865 unsigned int numa_scan_period_max;
866 int numa_preferred_nid;
867 unsigned long numa_migrate_retry;
868 u64 node_stamp; /* migration stamp */
869 u64 last_task_numa_placement;
870 u64 last_sum_exec_runtime;
871 struct callback_head numa_work;
872
873 struct list_head numa_entry;
874 struct numa_group *numa_group;
875
876 /*
877 * numa_faults is an array split into four regions:
878 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
879 * in this precise order.
880 *
881 * faults_memory: Exponential decaying average of faults on a per-node
882 * basis. Scheduling placement decisions are made based on these
883 * counts. The values remain static for the duration of a PTE scan.
884 * faults_cpu: Track the nodes the process was running on when a NUMA
885 * hinting fault was incurred.
886 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
887 * during the current scan window. When the scan completes, the counts
888 * in faults_memory and faults_cpu decay and these values are copied.
889 */
890 unsigned long *numa_faults;
891 unsigned long total_numa_faults;
892
893 /*
894 * numa_faults_locality tracks if faults recorded during the last
895 * scan window were remote/local or failed to migrate. The task scan
896 * period is adapted based on the locality of the faults with different
897 * weights depending on whether they were shared or private faults
898 */
899 unsigned long numa_faults_locality[3];
900
901 unsigned long numa_pages_migrated;
902 #endif /* CONFIG_NUMA_BALANCING */
903
904 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
905 struct tlbflush_unmap_batch tlb_ubc;
906 #endif
907
908 struct rcu_head rcu;
909
910 /*
911 * cache last used pipe for splice
912 */
913 struct pipe_inode_info *splice_pipe;
914
915 struct page_frag task_frag;
916
917 #ifdef CONFIG_TASK_DELAY_ACCT
918 struct task_delay_info *delays;
919 #endif
920
921 #ifdef CONFIG_FAULT_INJECTION
922 int make_it_fail;
923 #endif
924 /*
925 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
926 * balance_dirty_pages() for some dirty throttling pause
927 */
928 int nr_dirtied;
929 int nr_dirtied_pause;
930 unsigned long dirty_paused_when; /* start of a write-and-pause period */
931
932 #ifdef CONFIG_LATENCYTOP
933 int latency_record_count;
934 struct latency_record latency_record[LT_SAVECOUNT];
935 #endif
936 /*
937 * time slack values; these are used to round up poll() and
938 * select() etc timeout values. These are in nanoseconds.
939 */
940 u64 timer_slack_ns;
941 u64 default_timer_slack_ns;
942
943 #ifdef CONFIG_KASAN
944 unsigned int kasan_depth;
945 #endif
946 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
947 /* Index of current stored address in ret_stack */
948 int curr_ret_stack;
949 /* Stack of return addresses for return function tracing */
950 struct ftrace_ret_stack *ret_stack;
951 /* time stamp for last schedule */
952 unsigned long long ftrace_timestamp;
953 /*
954 * Number of functions that haven't been traced
955 * because of depth overrun.
956 */
957 atomic_t trace_overrun;
958 /* Pause for the tracing */
959 atomic_t tracing_graph_pause;
960 #endif
961 #ifdef CONFIG_TRACING
962 /* state flags for use by tracers */
963 unsigned long trace;
964 /* bitmask and counter of trace recursion */
965 unsigned long trace_recursion;
966 #endif /* CONFIG_TRACING */
967 #ifdef CONFIG_KCOV
968 /* Coverage collection mode enabled for this task (0 if disabled). */
969 enum kcov_mode kcov_mode;
970 /* Size of the kcov_area. */
971 unsigned kcov_size;
972 /* Buffer for coverage collection. */
973 void *kcov_area;
974 /* kcov desciptor wired with this task or NULL. */
975 struct kcov *kcov;
976 #endif
977 #ifdef CONFIG_MEMCG
978 struct mem_cgroup *memcg_in_oom;
979 gfp_t memcg_oom_gfp_mask;
980 int memcg_oom_order;
981
982 /* number of pages to reclaim on returning to userland */
983 unsigned int memcg_nr_pages_over_high;
984 #endif
985 #ifdef CONFIG_UPROBES
986 struct uprobe_task *utask;
987 #endif
988 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
989 unsigned int sequential_io;
990 unsigned int sequential_io_avg;
991 #endif
992 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
993 unsigned long task_state_change;
994 #endif
995 int pagefault_disabled;
996 #ifdef CONFIG_MMU
997 struct task_struct *oom_reaper_list;
998 #endif
999 #ifdef CONFIG_VMAP_STACK
1000 struct vm_struct *stack_vm_area;
1001 #endif
1002 #ifdef CONFIG_THREAD_INFO_IN_TASK
1003 /* A live task holds one reference. */
1004 atomic_t stack_refcount;
1005 #endif
1006 /* CPU-specific state of this task */
1007 struct thread_struct thread;
1008 /*
1009 * WARNING: on x86, 'thread_struct' contains a variable-sized
1010 * structure. It *MUST* be at the end of 'task_struct'.
1011 *
1012 * Do not put anything below here!
1013 */
1014 };
1015
1016 static inline struct pid *task_pid(struct task_struct *task)
1017 {
1018 return task->pids[PIDTYPE_PID].pid;
1019 }
1020
1021 static inline struct pid *task_tgid(struct task_struct *task)
1022 {
1023 return task->group_leader->pids[PIDTYPE_PID].pid;
1024 }
1025
1026 /*
1027 * Without tasklist or rcu lock it is not safe to dereference
1028 * the result of task_pgrp/task_session even if task == current,
1029 * we can race with another thread doing sys_setsid/sys_setpgid.
1030 */
1031 static inline struct pid *task_pgrp(struct task_struct *task)
1032 {
1033 return task->group_leader->pids[PIDTYPE_PGID].pid;
1034 }
1035
1036 static inline struct pid *task_session(struct task_struct *task)
1037 {
1038 return task->group_leader->pids[PIDTYPE_SID].pid;
1039 }
1040
1041 /*
1042 * the helpers to get the task's different pids as they are seen
1043 * from various namespaces
1044 *
1045 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1046 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1047 * current.
1048 * task_xid_nr_ns() : id seen from the ns specified;
1049 *
1050 * set_task_vxid() : assigns a virtual id to a task;
1051 *
1052 * see also pid_nr() etc in include/linux/pid.h
1053 */
1054 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1055 struct pid_namespace *ns);
1056
1057 static inline pid_t task_pid_nr(struct task_struct *tsk)
1058 {
1059 return tsk->pid;
1060 }
1061
1062 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1063 struct pid_namespace *ns)
1064 {
1065 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1066 }
1067
1068 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1069 {
1070 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1071 }
1072
1073
1074 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1075 {
1076 return tsk->tgid;
1077 }
1078
1079 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1080
1081 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1082 {
1083 return pid_vnr(task_tgid(tsk));
1084 }
1085
1086
1087 static inline int pid_alive(const struct task_struct *p);
1088 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1089 {
1090 pid_t pid = 0;
1091
1092 rcu_read_lock();
1093 if (pid_alive(tsk))
1094 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1095 rcu_read_unlock();
1096
1097 return pid;
1098 }
1099
1100 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1101 {
1102 return task_ppid_nr_ns(tsk, &init_pid_ns);
1103 }
1104
1105 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1106 struct pid_namespace *ns)
1107 {
1108 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1109 }
1110
1111 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1112 {
1113 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1114 }
1115
1116
1117 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1118 struct pid_namespace *ns)
1119 {
1120 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1121 }
1122
1123 static inline pid_t task_session_vnr(struct task_struct *tsk)
1124 {
1125 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1126 }
1127
1128 /* obsolete, do not use */
1129 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1130 {
1131 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1132 }
1133
1134 /**
1135 * pid_alive - check that a task structure is not stale
1136 * @p: Task structure to be checked.
1137 *
1138 * Test if a process is not yet dead (at most zombie state)
1139 * If pid_alive fails, then pointers within the task structure
1140 * can be stale and must not be dereferenced.
1141 *
1142 * Return: 1 if the process is alive. 0 otherwise.
1143 */
1144 static inline int pid_alive(const struct task_struct *p)
1145 {
1146 return p->pids[PIDTYPE_PID].pid != NULL;
1147 }
1148
1149 /**
1150 * is_global_init - check if a task structure is init. Since init
1151 * is free to have sub-threads we need to check tgid.
1152 * @tsk: Task structure to be checked.
1153 *
1154 * Check if a task structure is the first user space task the kernel created.
1155 *
1156 * Return: 1 if the task structure is init. 0 otherwise.
1157 */
1158 static inline int is_global_init(struct task_struct *tsk)
1159 {
1160 return task_tgid_nr(tsk) == 1;
1161 }
1162
1163 extern struct pid *cad_pid;
1164
1165 extern void free_task(struct task_struct *tsk);
1166 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1167
1168 extern void __put_task_struct(struct task_struct *t);
1169
1170 static inline void put_task_struct(struct task_struct *t)
1171 {
1172 if (atomic_dec_and_test(&t->usage))
1173 __put_task_struct(t);
1174 }
1175
1176 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
1177 struct task_struct *try_get_task_struct(struct task_struct **ptask);
1178
1179 /*
1180 * Per process flags
1181 */
1182 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1183 #define PF_EXITING 0x00000004 /* getting shut down */
1184 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1185 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1186 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1187 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1188 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1189 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1190 #define PF_DUMPCORE 0x00000200 /* dumped core */
1191 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1192 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1193 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1194 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1195 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1196 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1197 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1198 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1199 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1200 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1201 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1202 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1203 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1204 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1205 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1206 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1207 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1208 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1209 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1210
1211 /*
1212 * Only the _current_ task can read/write to tsk->flags, but other
1213 * tasks can access tsk->flags in readonly mode for example
1214 * with tsk_used_math (like during threaded core dumping).
1215 * There is however an exception to this rule during ptrace
1216 * or during fork: the ptracer task is allowed to write to the
1217 * child->flags of its traced child (same goes for fork, the parent
1218 * can write to the child->flags), because we're guaranteed the
1219 * child is not running and in turn not changing child->flags
1220 * at the same time the parent does it.
1221 */
1222 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1223 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1224 #define clear_used_math() clear_stopped_child_used_math(current)
1225 #define set_used_math() set_stopped_child_used_math(current)
1226 #define conditional_stopped_child_used_math(condition, child) \
1227 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1228 #define conditional_used_math(condition) \
1229 conditional_stopped_child_used_math(condition, current)
1230 #define copy_to_stopped_child_used_math(child) \
1231 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1232 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1233 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1234 #define used_math() tsk_used_math(current)
1235
1236 /* Per-process atomic flags. */
1237 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1238 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1239 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1240 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
1241
1242
1243 #define TASK_PFA_TEST(name, func) \
1244 static inline bool task_##func(struct task_struct *p) \
1245 { return test_bit(PFA_##name, &p->atomic_flags); }
1246 #define TASK_PFA_SET(name, func) \
1247 static inline void task_set_##func(struct task_struct *p) \
1248 { set_bit(PFA_##name, &p->atomic_flags); }
1249 #define TASK_PFA_CLEAR(name, func) \
1250 static inline void task_clear_##func(struct task_struct *p) \
1251 { clear_bit(PFA_##name, &p->atomic_flags); }
1252
1253 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1254 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1255
1256 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1257 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1258 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1259
1260 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1261 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1262 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1263
1264 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
1265 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
1266
1267 static inline void tsk_restore_flags(struct task_struct *task,
1268 unsigned long orig_flags, unsigned long flags)
1269 {
1270 task->flags &= ~flags;
1271 task->flags |= orig_flags & flags;
1272 }
1273
1274 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
1275 const struct cpumask *trial);
1276 extern int task_can_attach(struct task_struct *p,
1277 const struct cpumask *cs_cpus_allowed);
1278 #ifdef CONFIG_SMP
1279 extern void do_set_cpus_allowed(struct task_struct *p,
1280 const struct cpumask *new_mask);
1281
1282 extern int set_cpus_allowed_ptr(struct task_struct *p,
1283 const struct cpumask *new_mask);
1284 #else
1285 static inline void do_set_cpus_allowed(struct task_struct *p,
1286 const struct cpumask *new_mask)
1287 {
1288 }
1289 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1290 const struct cpumask *new_mask)
1291 {
1292 if (!cpumask_test_cpu(0, new_mask))
1293 return -EINVAL;
1294 return 0;
1295 }
1296 #endif
1297
1298 #ifndef cpu_relax_yield
1299 #define cpu_relax_yield() cpu_relax()
1300 #endif
1301
1302 /* sched_exec is called by processes performing an exec */
1303 #ifdef CONFIG_SMP
1304 extern void sched_exec(void);
1305 #else
1306 #define sched_exec() {}
1307 #endif
1308
1309 extern int yield_to(struct task_struct *p, bool preempt);
1310 extern void set_user_nice(struct task_struct *p, long nice);
1311 extern int task_prio(const struct task_struct *p);
1312 /**
1313 * task_nice - return the nice value of a given task.
1314 * @p: the task in question.
1315 *
1316 * Return: The nice value [ -20 ... 0 ... 19 ].
1317 */
1318 static inline int task_nice(const struct task_struct *p)
1319 {
1320 return PRIO_TO_NICE((p)->static_prio);
1321 }
1322 extern int can_nice(const struct task_struct *p, const int nice);
1323 extern int task_curr(const struct task_struct *p);
1324 extern int idle_cpu(int cpu);
1325 extern int sched_setscheduler(struct task_struct *, int,
1326 const struct sched_param *);
1327 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1328 const struct sched_param *);
1329 extern int sched_setattr(struct task_struct *,
1330 const struct sched_attr *);
1331 extern struct task_struct *idle_task(int cpu);
1332 /**
1333 * is_idle_task - is the specified task an idle task?
1334 * @p: the task in question.
1335 *
1336 * Return: 1 if @p is an idle task. 0 otherwise.
1337 */
1338 static inline bool is_idle_task(const struct task_struct *p)
1339 {
1340 return !!(p->flags & PF_IDLE);
1341 }
1342 extern struct task_struct *curr_task(int cpu);
1343 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1344
1345 void yield(void);
1346
1347 union thread_union {
1348 #ifndef CONFIG_THREAD_INFO_IN_TASK
1349 struct thread_info thread_info;
1350 #endif
1351 unsigned long stack[THREAD_SIZE/sizeof(long)];
1352 };
1353
1354 #ifdef CONFIG_THREAD_INFO_IN_TASK
1355 static inline struct thread_info *task_thread_info(struct task_struct *task)
1356 {
1357 return &task->thread_info;
1358 }
1359 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1360 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1361 #endif
1362
1363 #ifndef __HAVE_ARCH_KSTACK_END
1364 static inline int kstack_end(void *addr)
1365 {
1366 /* Reliable end of stack detection:
1367 * Some APM bios versions misalign the stack
1368 */
1369 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1370 }
1371 #endif
1372
1373 extern struct pid_namespace init_pid_ns;
1374
1375 /*
1376 * find a task by one of its numerical ids
1377 *
1378 * find_task_by_pid_ns():
1379 * finds a task by its pid in the specified namespace
1380 * find_task_by_vpid():
1381 * finds a task by its virtual pid
1382 *
1383 * see also find_vpid() etc in include/linux/pid.h
1384 */
1385
1386 extern struct task_struct *find_task_by_vpid(pid_t nr);
1387 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1388 struct pid_namespace *ns);
1389
1390 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1391 extern int wake_up_process(struct task_struct *tsk);
1392 extern void wake_up_new_task(struct task_struct *tsk);
1393 #ifdef CONFIG_SMP
1394 extern void kick_process(struct task_struct *tsk);
1395 #else
1396 static inline void kick_process(struct task_struct *tsk) { }
1397 #endif
1398
1399 extern void exit_files(struct task_struct *);
1400
1401 extern void exit_itimers(struct signal_struct *);
1402
1403 extern int do_execve(struct filename *,
1404 const char __user * const __user *,
1405 const char __user * const __user *);
1406 extern int do_execveat(int, struct filename *,
1407 const char __user * const __user *,
1408 const char __user * const __user *,
1409 int);
1410
1411 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1412 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1413 {
1414 __set_task_comm(tsk, from, false);
1415 }
1416 extern char *get_task_comm(char *to, struct task_struct *tsk);
1417
1418 #ifdef CONFIG_SMP
1419 void scheduler_ipi(void);
1420 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1421 #else
1422 static inline void scheduler_ipi(void) { }
1423 static inline unsigned long wait_task_inactive(struct task_struct *p,
1424 long match_state)
1425 {
1426 return 1;
1427 }
1428 #endif
1429
1430 /* set thread flags in other task's structures
1431 * - see asm/thread_info.h for TIF_xxxx flags available
1432 */
1433 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1434 {
1435 set_ti_thread_flag(task_thread_info(tsk), flag);
1436 }
1437
1438 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1439 {
1440 clear_ti_thread_flag(task_thread_info(tsk), flag);
1441 }
1442
1443 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1444 {
1445 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1446 }
1447
1448 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1449 {
1450 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1451 }
1452
1453 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1454 {
1455 return test_ti_thread_flag(task_thread_info(tsk), flag);
1456 }
1457
1458 static inline void set_tsk_need_resched(struct task_struct *tsk)
1459 {
1460 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1461 }
1462
1463 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1464 {
1465 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1466 }
1467
1468 static inline int test_tsk_need_resched(struct task_struct *tsk)
1469 {
1470 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1471 }
1472
1473 /*
1474 * cond_resched() and cond_resched_lock(): latency reduction via
1475 * explicit rescheduling in places that are safe. The return
1476 * value indicates whether a reschedule was done in fact.
1477 * cond_resched_lock() will drop the spinlock before scheduling,
1478 * cond_resched_softirq() will enable bhs before scheduling.
1479 */
1480 #ifndef CONFIG_PREEMPT
1481 extern int _cond_resched(void);
1482 #else
1483 static inline int _cond_resched(void) { return 0; }
1484 #endif
1485
1486 #define cond_resched() ({ \
1487 ___might_sleep(__FILE__, __LINE__, 0); \
1488 _cond_resched(); \
1489 })
1490
1491 extern int __cond_resched_lock(spinlock_t *lock);
1492
1493 #define cond_resched_lock(lock) ({ \
1494 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1495 __cond_resched_lock(lock); \
1496 })
1497
1498 extern int __cond_resched_softirq(void);
1499
1500 #define cond_resched_softirq() ({ \
1501 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1502 __cond_resched_softirq(); \
1503 })
1504
1505 static inline void cond_resched_rcu(void)
1506 {
1507 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1508 rcu_read_unlock();
1509 cond_resched();
1510 rcu_read_lock();
1511 #endif
1512 }
1513
1514 /*
1515 * Does a critical section need to be broken due to another
1516 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1517 * but a general need for low latency)
1518 */
1519 static inline int spin_needbreak(spinlock_t *lock)
1520 {
1521 #ifdef CONFIG_PREEMPT
1522 return spin_is_contended(lock);
1523 #else
1524 return 0;
1525 #endif
1526 }
1527
1528 static __always_inline bool need_resched(void)
1529 {
1530 return unlikely(tif_need_resched());
1531 }
1532
1533 /*
1534 * Wrappers for p->thread_info->cpu access. No-op on UP.
1535 */
1536 #ifdef CONFIG_SMP
1537
1538 static inline unsigned int task_cpu(const struct task_struct *p)
1539 {
1540 #ifdef CONFIG_THREAD_INFO_IN_TASK
1541 return p->cpu;
1542 #else
1543 return task_thread_info(p)->cpu;
1544 #endif
1545 }
1546
1547 static inline int task_node(const struct task_struct *p)
1548 {
1549 return cpu_to_node(task_cpu(p));
1550 }
1551
1552 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1553
1554 #else
1555
1556 static inline unsigned int task_cpu(const struct task_struct *p)
1557 {
1558 return 0;
1559 }
1560
1561 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1562 {
1563 }
1564
1565 #endif /* CONFIG_SMP */
1566
1567 /*
1568 * In order to reduce various lock holder preemption latencies provide an
1569 * interface to see if a vCPU is currently running or not.
1570 *
1571 * This allows us to terminate optimistic spin loops and block, analogous to
1572 * the native optimistic spin heuristic of testing if the lock owner task is
1573 * running or not.
1574 */
1575 #ifndef vcpu_is_preempted
1576 # define vcpu_is_preempted(cpu) false
1577 #endif
1578
1579 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1580 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1581
1582 extern int task_can_switch_user(struct user_struct *up,
1583 struct task_struct *tsk);
1584
1585 #ifndef TASK_SIZE_OF
1586 #define TASK_SIZE_OF(tsk) TASK_SIZE
1587 #endif
1588
1589 #endif