]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/sched.h
Merge tag 'mfd-for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void cpu_load_update_nohz_start(void);
181 extern void cpu_load_update_nohz_stop(void);
182 #else
183 static inline void cpu_load_update_nohz_start(void) { }
184 static inline void cpu_load_update_nohz_stop(void) { }
185 #endif
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_NEW 2048
223 #define TASK_STATE_MAX 4096
224
225 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
226
227 extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
229
230 /* Convenience macros for the sake of set_task_state */
231 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
234
235 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
237 /* Convenience macros for the sake of wake_up */
238 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
239 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
240
241 /* get_task_state() */
242 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
245
246 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
248 #define task_is_stopped_or_traced(task) \
249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
250 #define task_contributes_to_load(task) \
251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
254
255 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257 #define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262 #define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
265 smp_store_mb((tsk)->state, (state_value)); \
266 } while (0)
267
268 #define __set_current_state(state_value) \
269 do { \
270 current->task_state_change = _THIS_IP_; \
271 current->state = (state_value); \
272 } while (0)
273 #define set_current_state(state_value) \
274 do { \
275 current->task_state_change = _THIS_IP_; \
276 smp_store_mb(current->state, (state_value)); \
277 } while (0)
278
279 #else
280
281 /*
282 * @tsk had better be current, or you get to keep the pieces.
283 *
284 * The only reason is that computing current can be more expensive than
285 * using a pointer that's already available.
286 *
287 * Therefore, see set_current_state().
288 */
289 #define __set_task_state(tsk, state_value) \
290 do { (tsk)->state = (state_value); } while (0)
291 #define set_task_state(tsk, state_value) \
292 smp_store_mb((tsk)->state, (state_value))
293
294 /*
295 * set_current_state() includes a barrier so that the write of current->state
296 * is correctly serialised wrt the caller's subsequent test of whether to
297 * actually sleep:
298 *
299 * for (;;) {
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (!need_sleep)
302 * break;
303 *
304 * schedule();
305 * }
306 * __set_current_state(TASK_RUNNING);
307 *
308 * If the caller does not need such serialisation (because, for instance, the
309 * condition test and condition change and wakeup are under the same lock) then
310 * use __set_current_state().
311 *
312 * The above is typically ordered against the wakeup, which does:
313 *
314 * need_sleep = false;
315 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
316 *
317 * Where wake_up_state() (and all other wakeup primitives) imply enough
318 * barriers to order the store of the variable against wakeup.
319 *
320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
323 *
324 * This is obviously fine, since they both store the exact same value.
325 *
326 * Also see the comments of try_to_wake_up().
327 */
328 #define __set_current_state(state_value) \
329 do { current->state = (state_value); } while (0)
330 #define set_current_state(state_value) \
331 smp_store_mb(current->state, (state_value))
332
333 #endif
334
335 /* Task command name length */
336 #define TASK_COMM_LEN 16
337
338 #include <linux/spinlock.h>
339
340 /*
341 * This serializes "schedule()" and also protects
342 * the run-queue from deletions/modifications (but
343 * _adding_ to the beginning of the run-queue has
344 * a separate lock).
345 */
346 extern rwlock_t tasklist_lock;
347 extern spinlock_t mmlist_lock;
348
349 struct task_struct;
350
351 #ifdef CONFIG_PROVE_RCU
352 extern int lockdep_tasklist_lock_is_held(void);
353 #endif /* #ifdef CONFIG_PROVE_RCU */
354
355 extern void sched_init(void);
356 extern void sched_init_smp(void);
357 extern asmlinkage void schedule_tail(struct task_struct *prev);
358 extern void init_idle(struct task_struct *idle, int cpu);
359 extern void init_idle_bootup_task(struct task_struct *idle);
360
361 extern cpumask_var_t cpu_isolated_map;
362
363 extern int runqueue_is_locked(int cpu);
364
365 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
366 extern void nohz_balance_enter_idle(int cpu);
367 extern void set_cpu_sd_state_idle(void);
368 extern int get_nohz_timer_target(void);
369 #else
370 static inline void nohz_balance_enter_idle(int cpu) { }
371 static inline void set_cpu_sd_state_idle(void) { }
372 #endif
373
374 /*
375 * Only dump TASK_* tasks. (0 for all tasks)
376 */
377 extern void show_state_filter(unsigned long state_filter);
378
379 static inline void show_state(void)
380 {
381 show_state_filter(0);
382 }
383
384 extern void show_regs(struct pt_regs *);
385
386 /*
387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
388 * task), SP is the stack pointer of the first frame that should be shown in the back
389 * trace (or NULL if the entire call-chain of the task should be shown).
390 */
391 extern void show_stack(struct task_struct *task, unsigned long *sp);
392
393 extern void cpu_init (void);
394 extern void trap_init(void);
395 extern void update_process_times(int user);
396 extern void scheduler_tick(void);
397 extern int sched_cpu_starting(unsigned int cpu);
398 extern int sched_cpu_activate(unsigned int cpu);
399 extern int sched_cpu_deactivate(unsigned int cpu);
400
401 #ifdef CONFIG_HOTPLUG_CPU
402 extern int sched_cpu_dying(unsigned int cpu);
403 #else
404 # define sched_cpu_dying NULL
405 #endif
406
407 extern void sched_show_task(struct task_struct *p);
408
409 #ifdef CONFIG_LOCKUP_DETECTOR
410 extern void touch_softlockup_watchdog_sched(void);
411 extern void touch_softlockup_watchdog(void);
412 extern void touch_softlockup_watchdog_sync(void);
413 extern void touch_all_softlockup_watchdogs(void);
414 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
415 void __user *buffer,
416 size_t *lenp, loff_t *ppos);
417 extern unsigned int softlockup_panic;
418 extern unsigned int hardlockup_panic;
419 void lockup_detector_init(void);
420 #else
421 static inline void touch_softlockup_watchdog_sched(void)
422 {
423 }
424 static inline void touch_softlockup_watchdog(void)
425 {
426 }
427 static inline void touch_softlockup_watchdog_sync(void)
428 {
429 }
430 static inline void touch_all_softlockup_watchdogs(void)
431 {
432 }
433 static inline void lockup_detector_init(void)
434 {
435 }
436 #endif
437
438 #ifdef CONFIG_DETECT_HUNG_TASK
439 void reset_hung_task_detector(void);
440 #else
441 static inline void reset_hung_task_detector(void)
442 {
443 }
444 #endif
445
446 /* Attach to any functions which should be ignored in wchan output. */
447 #define __sched __attribute__((__section__(".sched.text")))
448
449 /* Linker adds these: start and end of __sched functions */
450 extern char __sched_text_start[], __sched_text_end[];
451
452 /* Is this address in the __sched functions? */
453 extern int in_sched_functions(unsigned long addr);
454
455 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
456 extern signed long schedule_timeout(signed long timeout);
457 extern signed long schedule_timeout_interruptible(signed long timeout);
458 extern signed long schedule_timeout_killable(signed long timeout);
459 extern signed long schedule_timeout_uninterruptible(signed long timeout);
460 extern signed long schedule_timeout_idle(signed long timeout);
461 asmlinkage void schedule(void);
462 extern void schedule_preempt_disabled(void);
463
464 extern long io_schedule_timeout(long timeout);
465
466 static inline void io_schedule(void)
467 {
468 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
469 }
470
471 void __noreturn do_task_dead(void);
472
473 struct nsproxy;
474 struct user_namespace;
475
476 #ifdef CONFIG_MMU
477 extern void arch_pick_mmap_layout(struct mm_struct *mm);
478 extern unsigned long
479 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
480 unsigned long, unsigned long);
481 extern unsigned long
482 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
483 unsigned long len, unsigned long pgoff,
484 unsigned long flags);
485 #else
486 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
487 #endif
488
489 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
490 #define SUID_DUMP_USER 1 /* Dump as user of process */
491 #define SUID_DUMP_ROOT 2 /* Dump as root */
492
493 /* mm flags */
494
495 /* for SUID_DUMP_* above */
496 #define MMF_DUMPABLE_BITS 2
497 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
498
499 extern void set_dumpable(struct mm_struct *mm, int value);
500 /*
501 * This returns the actual value of the suid_dumpable flag. For things
502 * that are using this for checking for privilege transitions, it must
503 * test against SUID_DUMP_USER rather than treating it as a boolean
504 * value.
505 */
506 static inline int __get_dumpable(unsigned long mm_flags)
507 {
508 return mm_flags & MMF_DUMPABLE_MASK;
509 }
510
511 static inline int get_dumpable(struct mm_struct *mm)
512 {
513 return __get_dumpable(mm->flags);
514 }
515
516 /* coredump filter bits */
517 #define MMF_DUMP_ANON_PRIVATE 2
518 #define MMF_DUMP_ANON_SHARED 3
519 #define MMF_DUMP_MAPPED_PRIVATE 4
520 #define MMF_DUMP_MAPPED_SHARED 5
521 #define MMF_DUMP_ELF_HEADERS 6
522 #define MMF_DUMP_HUGETLB_PRIVATE 7
523 #define MMF_DUMP_HUGETLB_SHARED 8
524 #define MMF_DUMP_DAX_PRIVATE 9
525 #define MMF_DUMP_DAX_SHARED 10
526
527 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
528 #define MMF_DUMP_FILTER_BITS 9
529 #define MMF_DUMP_FILTER_MASK \
530 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
531 #define MMF_DUMP_FILTER_DEFAULT \
532 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
533 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
534
535 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
536 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
537 #else
538 # define MMF_DUMP_MASK_DEFAULT_ELF 0
539 #endif
540 /* leave room for more dump flags */
541 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
542 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
543 /*
544 * This one-shot flag is dropped due to necessity of changing exe once again
545 * on NFS restore
546 */
547 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
548
549 #define MMF_HAS_UPROBES 19 /* has uprobes */
550 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
551 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
552 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
553 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
554
555 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
556
557 struct sighand_struct {
558 atomic_t count;
559 struct k_sigaction action[_NSIG];
560 spinlock_t siglock;
561 wait_queue_head_t signalfd_wqh;
562 };
563
564 struct pacct_struct {
565 int ac_flag;
566 long ac_exitcode;
567 unsigned long ac_mem;
568 cputime_t ac_utime, ac_stime;
569 unsigned long ac_minflt, ac_majflt;
570 };
571
572 struct cpu_itimer {
573 cputime_t expires;
574 cputime_t incr;
575 u32 error;
576 u32 incr_error;
577 };
578
579 /**
580 * struct prev_cputime - snaphsot of system and user cputime
581 * @utime: time spent in user mode
582 * @stime: time spent in system mode
583 * @lock: protects the above two fields
584 *
585 * Stores previous user/system time values such that we can guarantee
586 * monotonicity.
587 */
588 struct prev_cputime {
589 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
590 cputime_t utime;
591 cputime_t stime;
592 raw_spinlock_t lock;
593 #endif
594 };
595
596 static inline void prev_cputime_init(struct prev_cputime *prev)
597 {
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
599 prev->utime = prev->stime = 0;
600 raw_spin_lock_init(&prev->lock);
601 #endif
602 }
603
604 /**
605 * struct task_cputime - collected CPU time counts
606 * @utime: time spent in user mode, in &cputime_t units
607 * @stime: time spent in kernel mode, in &cputime_t units
608 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
609 *
610 * This structure groups together three kinds of CPU time that are tracked for
611 * threads and thread groups. Most things considering CPU time want to group
612 * these counts together and treat all three of them in parallel.
613 */
614 struct task_cputime {
615 cputime_t utime;
616 cputime_t stime;
617 unsigned long long sum_exec_runtime;
618 };
619
620 /* Alternate field names when used to cache expirations. */
621 #define virt_exp utime
622 #define prof_exp stime
623 #define sched_exp sum_exec_runtime
624
625 #define INIT_CPUTIME \
626 (struct task_cputime) { \
627 .utime = 0, \
628 .stime = 0, \
629 .sum_exec_runtime = 0, \
630 }
631
632 /*
633 * This is the atomic variant of task_cputime, which can be used for
634 * storing and updating task_cputime statistics without locking.
635 */
636 struct task_cputime_atomic {
637 atomic64_t utime;
638 atomic64_t stime;
639 atomic64_t sum_exec_runtime;
640 };
641
642 #define INIT_CPUTIME_ATOMIC \
643 (struct task_cputime_atomic) { \
644 .utime = ATOMIC64_INIT(0), \
645 .stime = ATOMIC64_INIT(0), \
646 .sum_exec_runtime = ATOMIC64_INIT(0), \
647 }
648
649 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
650
651 /*
652 * Disable preemption until the scheduler is running -- use an unconditional
653 * value so that it also works on !PREEMPT_COUNT kernels.
654 *
655 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
656 */
657 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
658
659 /*
660 * Initial preempt_count value; reflects the preempt_count schedule invariant
661 * which states that during context switches:
662 *
663 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
664 *
665 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
666 * Note: See finish_task_switch().
667 */
668 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
669
670 /**
671 * struct thread_group_cputimer - thread group interval timer counts
672 * @cputime_atomic: atomic thread group interval timers.
673 * @running: true when there are timers running and
674 * @cputime_atomic receives updates.
675 * @checking_timer: true when a thread in the group is in the
676 * process of checking for thread group timers.
677 *
678 * This structure contains the version of task_cputime, above, that is
679 * used for thread group CPU timer calculations.
680 */
681 struct thread_group_cputimer {
682 struct task_cputime_atomic cputime_atomic;
683 bool running;
684 bool checking_timer;
685 };
686
687 #include <linux/rwsem.h>
688 struct autogroup;
689
690 /*
691 * NOTE! "signal_struct" does not have its own
692 * locking, because a shared signal_struct always
693 * implies a shared sighand_struct, so locking
694 * sighand_struct is always a proper superset of
695 * the locking of signal_struct.
696 */
697 struct signal_struct {
698 atomic_t sigcnt;
699 atomic_t live;
700 int nr_threads;
701 struct list_head thread_head;
702
703 wait_queue_head_t wait_chldexit; /* for wait4() */
704
705 /* current thread group signal load-balancing target: */
706 struct task_struct *curr_target;
707
708 /* shared signal handling: */
709 struct sigpending shared_pending;
710
711 /* thread group exit support */
712 int group_exit_code;
713 /* overloaded:
714 * - notify group_exit_task when ->count is equal to notify_count
715 * - everyone except group_exit_task is stopped during signal delivery
716 * of fatal signals, group_exit_task processes the signal.
717 */
718 int notify_count;
719 struct task_struct *group_exit_task;
720
721 /* thread group stop support, overloads group_exit_code too */
722 int group_stop_count;
723 unsigned int flags; /* see SIGNAL_* flags below */
724
725 /*
726 * PR_SET_CHILD_SUBREAPER marks a process, like a service
727 * manager, to re-parent orphan (double-forking) child processes
728 * to this process instead of 'init'. The service manager is
729 * able to receive SIGCHLD signals and is able to investigate
730 * the process until it calls wait(). All children of this
731 * process will inherit a flag if they should look for a
732 * child_subreaper process at exit.
733 */
734 unsigned int is_child_subreaper:1;
735 unsigned int has_child_subreaper:1;
736
737 /* POSIX.1b Interval Timers */
738 int posix_timer_id;
739 struct list_head posix_timers;
740
741 /* ITIMER_REAL timer for the process */
742 struct hrtimer real_timer;
743 struct pid *leader_pid;
744 ktime_t it_real_incr;
745
746 /*
747 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
748 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
749 * values are defined to 0 and 1 respectively
750 */
751 struct cpu_itimer it[2];
752
753 /*
754 * Thread group totals for process CPU timers.
755 * See thread_group_cputimer(), et al, for details.
756 */
757 struct thread_group_cputimer cputimer;
758
759 /* Earliest-expiration cache. */
760 struct task_cputime cputime_expires;
761
762 #ifdef CONFIG_NO_HZ_FULL
763 atomic_t tick_dep_mask;
764 #endif
765
766 struct list_head cpu_timers[3];
767
768 struct pid *tty_old_pgrp;
769
770 /* boolean value for session group leader */
771 int leader;
772
773 struct tty_struct *tty; /* NULL if no tty */
774
775 #ifdef CONFIG_SCHED_AUTOGROUP
776 struct autogroup *autogroup;
777 #endif
778 /*
779 * Cumulative resource counters for dead threads in the group,
780 * and for reaped dead child processes forked by this group.
781 * Live threads maintain their own counters and add to these
782 * in __exit_signal, except for the group leader.
783 */
784 seqlock_t stats_lock;
785 cputime_t utime, stime, cutime, cstime;
786 cputime_t gtime;
787 cputime_t cgtime;
788 struct prev_cputime prev_cputime;
789 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
790 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
791 unsigned long inblock, oublock, cinblock, coublock;
792 unsigned long maxrss, cmaxrss;
793 struct task_io_accounting ioac;
794
795 /*
796 * Cumulative ns of schedule CPU time fo dead threads in the
797 * group, not including a zombie group leader, (This only differs
798 * from jiffies_to_ns(utime + stime) if sched_clock uses something
799 * other than jiffies.)
800 */
801 unsigned long long sum_sched_runtime;
802
803 /*
804 * We don't bother to synchronize most readers of this at all,
805 * because there is no reader checking a limit that actually needs
806 * to get both rlim_cur and rlim_max atomically, and either one
807 * alone is a single word that can safely be read normally.
808 * getrlimit/setrlimit use task_lock(current->group_leader) to
809 * protect this instead of the siglock, because they really
810 * have no need to disable irqs.
811 */
812 struct rlimit rlim[RLIM_NLIMITS];
813
814 #ifdef CONFIG_BSD_PROCESS_ACCT
815 struct pacct_struct pacct; /* per-process accounting information */
816 #endif
817 #ifdef CONFIG_TASKSTATS
818 struct taskstats *stats;
819 #endif
820 #ifdef CONFIG_AUDIT
821 unsigned audit_tty;
822 struct tty_audit_buf *tty_audit_buf;
823 #endif
824
825 /*
826 * Thread is the potential origin of an oom condition; kill first on
827 * oom
828 */
829 bool oom_flag_origin;
830 short oom_score_adj; /* OOM kill score adjustment */
831 short oom_score_adj_min; /* OOM kill score adjustment min value.
832 * Only settable by CAP_SYS_RESOURCE. */
833 struct mm_struct *oom_mm; /* recorded mm when the thread group got
834 * killed by the oom killer */
835
836 struct mutex cred_guard_mutex; /* guard against foreign influences on
837 * credential calculations
838 * (notably. ptrace) */
839 };
840
841 /*
842 * Bits in flags field of signal_struct.
843 */
844 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
845 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
846 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
847 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
848 /*
849 * Pending notifications to parent.
850 */
851 #define SIGNAL_CLD_STOPPED 0x00000010
852 #define SIGNAL_CLD_CONTINUED 0x00000020
853 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
854
855 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
856
857 /* If true, all threads except ->group_exit_task have pending SIGKILL */
858 static inline int signal_group_exit(const struct signal_struct *sig)
859 {
860 return (sig->flags & SIGNAL_GROUP_EXIT) ||
861 (sig->group_exit_task != NULL);
862 }
863
864 /*
865 * Some day this will be a full-fledged user tracking system..
866 */
867 struct user_struct {
868 atomic_t __count; /* reference count */
869 atomic_t processes; /* How many processes does this user have? */
870 atomic_t sigpending; /* How many pending signals does this user have? */
871 #ifdef CONFIG_INOTIFY_USER
872 atomic_t inotify_watches; /* How many inotify watches does this user have? */
873 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
874 #endif
875 #ifdef CONFIG_FANOTIFY
876 atomic_t fanotify_listeners;
877 #endif
878 #ifdef CONFIG_EPOLL
879 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
880 #endif
881 #ifdef CONFIG_POSIX_MQUEUE
882 /* protected by mq_lock */
883 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
884 #endif
885 unsigned long locked_shm; /* How many pages of mlocked shm ? */
886 unsigned long unix_inflight; /* How many files in flight in unix sockets */
887 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
888
889 #ifdef CONFIG_KEYS
890 struct key *uid_keyring; /* UID specific keyring */
891 struct key *session_keyring; /* UID's default session keyring */
892 #endif
893
894 /* Hash table maintenance information */
895 struct hlist_node uidhash_node;
896 kuid_t uid;
897
898 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
899 atomic_long_t locked_vm;
900 #endif
901 };
902
903 extern int uids_sysfs_init(void);
904
905 extern struct user_struct *find_user(kuid_t);
906
907 extern struct user_struct root_user;
908 #define INIT_USER (&root_user)
909
910
911 struct backing_dev_info;
912 struct reclaim_state;
913
914 #ifdef CONFIG_SCHED_INFO
915 struct sched_info {
916 /* cumulative counters */
917 unsigned long pcount; /* # of times run on this cpu */
918 unsigned long long run_delay; /* time spent waiting on a runqueue */
919
920 /* timestamps */
921 unsigned long long last_arrival,/* when we last ran on a cpu */
922 last_queued; /* when we were last queued to run */
923 };
924 #endif /* CONFIG_SCHED_INFO */
925
926 #ifdef CONFIG_TASK_DELAY_ACCT
927 struct task_delay_info {
928 spinlock_t lock;
929 unsigned int flags; /* Private per-task flags */
930
931 /* For each stat XXX, add following, aligned appropriately
932 *
933 * struct timespec XXX_start, XXX_end;
934 * u64 XXX_delay;
935 * u32 XXX_count;
936 *
937 * Atomicity of updates to XXX_delay, XXX_count protected by
938 * single lock above (split into XXX_lock if contention is an issue).
939 */
940
941 /*
942 * XXX_count is incremented on every XXX operation, the delay
943 * associated with the operation is added to XXX_delay.
944 * XXX_delay contains the accumulated delay time in nanoseconds.
945 */
946 u64 blkio_start; /* Shared by blkio, swapin */
947 u64 blkio_delay; /* wait for sync block io completion */
948 u64 swapin_delay; /* wait for swapin block io completion */
949 u32 blkio_count; /* total count of the number of sync block */
950 /* io operations performed */
951 u32 swapin_count; /* total count of the number of swapin block */
952 /* io operations performed */
953
954 u64 freepages_start;
955 u64 freepages_delay; /* wait for memory reclaim */
956 u32 freepages_count; /* total count of memory reclaim */
957 };
958 #endif /* CONFIG_TASK_DELAY_ACCT */
959
960 static inline int sched_info_on(void)
961 {
962 #ifdef CONFIG_SCHEDSTATS
963 return 1;
964 #elif defined(CONFIG_TASK_DELAY_ACCT)
965 extern int delayacct_on;
966 return delayacct_on;
967 #else
968 return 0;
969 #endif
970 }
971
972 #ifdef CONFIG_SCHEDSTATS
973 void force_schedstat_enabled(void);
974 #endif
975
976 enum cpu_idle_type {
977 CPU_IDLE,
978 CPU_NOT_IDLE,
979 CPU_NEWLY_IDLE,
980 CPU_MAX_IDLE_TYPES
981 };
982
983 /*
984 * Integer metrics need fixed point arithmetic, e.g., sched/fair
985 * has a few: load, load_avg, util_avg, freq, and capacity.
986 *
987 * We define a basic fixed point arithmetic range, and then formalize
988 * all these metrics based on that basic range.
989 */
990 # define SCHED_FIXEDPOINT_SHIFT 10
991 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
992
993 /*
994 * Increase resolution of cpu_capacity calculations
995 */
996 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
997 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
998
999 /*
1000 * Wake-queues are lists of tasks with a pending wakeup, whose
1001 * callers have already marked the task as woken internally,
1002 * and can thus carry on. A common use case is being able to
1003 * do the wakeups once the corresponding user lock as been
1004 * released.
1005 *
1006 * We hold reference to each task in the list across the wakeup,
1007 * thus guaranteeing that the memory is still valid by the time
1008 * the actual wakeups are performed in wake_up_q().
1009 *
1010 * One per task suffices, because there's never a need for a task to be
1011 * in two wake queues simultaneously; it is forbidden to abandon a task
1012 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1013 * already in a wake queue, the wakeup will happen soon and the second
1014 * waker can just skip it.
1015 *
1016 * The DEFINE_WAKE_Q macro declares and initializes the list head.
1017 * wake_up_q() does NOT reinitialize the list; it's expected to be
1018 * called near the end of a function, where the fact that the queue is
1019 * not used again will be easy to see by inspection.
1020 *
1021 * Note that this can cause spurious wakeups. schedule() callers
1022 * must ensure the call is done inside a loop, confirming that the
1023 * wakeup condition has in fact occurred.
1024 */
1025 struct wake_q_node {
1026 struct wake_q_node *next;
1027 };
1028
1029 struct wake_q_head {
1030 struct wake_q_node *first;
1031 struct wake_q_node **lastp;
1032 };
1033
1034 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1035
1036 #define DEFINE_WAKE_Q(name) \
1037 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1038
1039 extern void wake_q_add(struct wake_q_head *head,
1040 struct task_struct *task);
1041 extern void wake_up_q(struct wake_q_head *head);
1042
1043 /*
1044 * sched-domains (multiprocessor balancing) declarations:
1045 */
1046 #ifdef CONFIG_SMP
1047 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1048 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1049 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1050 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1051 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1052 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1053 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1054 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1055 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1056 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1057 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1058 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1059 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1060 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1061 #define SD_NUMA 0x4000 /* cross-node balancing */
1062
1063 #ifdef CONFIG_SCHED_SMT
1064 static inline int cpu_smt_flags(void)
1065 {
1066 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1067 }
1068 #endif
1069
1070 #ifdef CONFIG_SCHED_MC
1071 static inline int cpu_core_flags(void)
1072 {
1073 return SD_SHARE_PKG_RESOURCES;
1074 }
1075 #endif
1076
1077 #ifdef CONFIG_NUMA
1078 static inline int cpu_numa_flags(void)
1079 {
1080 return SD_NUMA;
1081 }
1082 #endif
1083
1084 extern int arch_asym_cpu_priority(int cpu);
1085
1086 struct sched_domain_attr {
1087 int relax_domain_level;
1088 };
1089
1090 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1091 .relax_domain_level = -1, \
1092 }
1093
1094 extern int sched_domain_level_max;
1095
1096 struct sched_group;
1097
1098 struct sched_domain_shared {
1099 atomic_t ref;
1100 atomic_t nr_busy_cpus;
1101 int has_idle_cores;
1102 };
1103
1104 struct sched_domain {
1105 /* These fields must be setup */
1106 struct sched_domain *parent; /* top domain must be null terminated */
1107 struct sched_domain *child; /* bottom domain must be null terminated */
1108 struct sched_group *groups; /* the balancing groups of the domain */
1109 unsigned long min_interval; /* Minimum balance interval ms */
1110 unsigned long max_interval; /* Maximum balance interval ms */
1111 unsigned int busy_factor; /* less balancing by factor if busy */
1112 unsigned int imbalance_pct; /* No balance until over watermark */
1113 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1114 unsigned int busy_idx;
1115 unsigned int idle_idx;
1116 unsigned int newidle_idx;
1117 unsigned int wake_idx;
1118 unsigned int forkexec_idx;
1119 unsigned int smt_gain;
1120
1121 int nohz_idle; /* NOHZ IDLE status */
1122 int flags; /* See SD_* */
1123 int level;
1124
1125 /* Runtime fields. */
1126 unsigned long last_balance; /* init to jiffies. units in jiffies */
1127 unsigned int balance_interval; /* initialise to 1. units in ms. */
1128 unsigned int nr_balance_failed; /* initialise to 0 */
1129
1130 /* idle_balance() stats */
1131 u64 max_newidle_lb_cost;
1132 unsigned long next_decay_max_lb_cost;
1133
1134 u64 avg_scan_cost; /* select_idle_sibling */
1135
1136 #ifdef CONFIG_SCHEDSTATS
1137 /* load_balance() stats */
1138 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1139 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1140 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1141 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1142 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1143 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1144 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1145 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1146
1147 /* Active load balancing */
1148 unsigned int alb_count;
1149 unsigned int alb_failed;
1150 unsigned int alb_pushed;
1151
1152 /* SD_BALANCE_EXEC stats */
1153 unsigned int sbe_count;
1154 unsigned int sbe_balanced;
1155 unsigned int sbe_pushed;
1156
1157 /* SD_BALANCE_FORK stats */
1158 unsigned int sbf_count;
1159 unsigned int sbf_balanced;
1160 unsigned int sbf_pushed;
1161
1162 /* try_to_wake_up() stats */
1163 unsigned int ttwu_wake_remote;
1164 unsigned int ttwu_move_affine;
1165 unsigned int ttwu_move_balance;
1166 #endif
1167 #ifdef CONFIG_SCHED_DEBUG
1168 char *name;
1169 #endif
1170 union {
1171 void *private; /* used during construction */
1172 struct rcu_head rcu; /* used during destruction */
1173 };
1174 struct sched_domain_shared *shared;
1175
1176 unsigned int span_weight;
1177 /*
1178 * Span of all CPUs in this domain.
1179 *
1180 * NOTE: this field is variable length. (Allocated dynamically
1181 * by attaching extra space to the end of the structure,
1182 * depending on how many CPUs the kernel has booted up with)
1183 */
1184 unsigned long span[0];
1185 };
1186
1187 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1188 {
1189 return to_cpumask(sd->span);
1190 }
1191
1192 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1193 struct sched_domain_attr *dattr_new);
1194
1195 /* Allocate an array of sched domains, for partition_sched_domains(). */
1196 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1197 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1198
1199 bool cpus_share_cache(int this_cpu, int that_cpu);
1200
1201 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1202 typedef int (*sched_domain_flags_f)(void);
1203
1204 #define SDTL_OVERLAP 0x01
1205
1206 struct sd_data {
1207 struct sched_domain **__percpu sd;
1208 struct sched_domain_shared **__percpu sds;
1209 struct sched_group **__percpu sg;
1210 struct sched_group_capacity **__percpu sgc;
1211 };
1212
1213 struct sched_domain_topology_level {
1214 sched_domain_mask_f mask;
1215 sched_domain_flags_f sd_flags;
1216 int flags;
1217 int numa_level;
1218 struct sd_data data;
1219 #ifdef CONFIG_SCHED_DEBUG
1220 char *name;
1221 #endif
1222 };
1223
1224 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1225 extern void wake_up_if_idle(int cpu);
1226
1227 #ifdef CONFIG_SCHED_DEBUG
1228 # define SD_INIT_NAME(type) .name = #type
1229 #else
1230 # define SD_INIT_NAME(type)
1231 #endif
1232
1233 #else /* CONFIG_SMP */
1234
1235 struct sched_domain_attr;
1236
1237 static inline void
1238 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1239 struct sched_domain_attr *dattr_new)
1240 {
1241 }
1242
1243 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1244 {
1245 return true;
1246 }
1247
1248 #endif /* !CONFIG_SMP */
1249
1250
1251 struct io_context; /* See blkdev.h */
1252
1253
1254 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1255 extern void prefetch_stack(struct task_struct *t);
1256 #else
1257 static inline void prefetch_stack(struct task_struct *t) { }
1258 #endif
1259
1260 struct audit_context; /* See audit.c */
1261 struct mempolicy;
1262 struct pipe_inode_info;
1263 struct uts_namespace;
1264
1265 struct load_weight {
1266 unsigned long weight;
1267 u32 inv_weight;
1268 };
1269
1270 /*
1271 * The load_avg/util_avg accumulates an infinite geometric series
1272 * (see __update_load_avg() in kernel/sched/fair.c).
1273 *
1274 * [load_avg definition]
1275 *
1276 * load_avg = runnable% * scale_load_down(load)
1277 *
1278 * where runnable% is the time ratio that a sched_entity is runnable.
1279 * For cfs_rq, it is the aggregated load_avg of all runnable and
1280 * blocked sched_entities.
1281 *
1282 * load_avg may also take frequency scaling into account:
1283 *
1284 * load_avg = runnable% * scale_load_down(load) * freq%
1285 *
1286 * where freq% is the CPU frequency normalized to the highest frequency.
1287 *
1288 * [util_avg definition]
1289 *
1290 * util_avg = running% * SCHED_CAPACITY_SCALE
1291 *
1292 * where running% is the time ratio that a sched_entity is running on
1293 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1294 * and blocked sched_entities.
1295 *
1296 * util_avg may also factor frequency scaling and CPU capacity scaling:
1297 *
1298 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1299 *
1300 * where freq% is the same as above, and capacity% is the CPU capacity
1301 * normalized to the greatest capacity (due to uarch differences, etc).
1302 *
1303 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1304 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1305 * we therefore scale them to as large a range as necessary. This is for
1306 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1307 *
1308 * [Overflow issue]
1309 *
1310 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1311 * with the highest load (=88761), always runnable on a single cfs_rq,
1312 * and should not overflow as the number already hits PID_MAX_LIMIT.
1313 *
1314 * For all other cases (including 32-bit kernels), struct load_weight's
1315 * weight will overflow first before we do, because:
1316 *
1317 * Max(load_avg) <= Max(load.weight)
1318 *
1319 * Then it is the load_weight's responsibility to consider overflow
1320 * issues.
1321 */
1322 struct sched_avg {
1323 u64 last_update_time, load_sum;
1324 u32 util_sum, period_contrib;
1325 unsigned long load_avg, util_avg;
1326 };
1327
1328 #ifdef CONFIG_SCHEDSTATS
1329 struct sched_statistics {
1330 u64 wait_start;
1331 u64 wait_max;
1332 u64 wait_count;
1333 u64 wait_sum;
1334 u64 iowait_count;
1335 u64 iowait_sum;
1336
1337 u64 sleep_start;
1338 u64 sleep_max;
1339 s64 sum_sleep_runtime;
1340
1341 u64 block_start;
1342 u64 block_max;
1343 u64 exec_max;
1344 u64 slice_max;
1345
1346 u64 nr_migrations_cold;
1347 u64 nr_failed_migrations_affine;
1348 u64 nr_failed_migrations_running;
1349 u64 nr_failed_migrations_hot;
1350 u64 nr_forced_migrations;
1351
1352 u64 nr_wakeups;
1353 u64 nr_wakeups_sync;
1354 u64 nr_wakeups_migrate;
1355 u64 nr_wakeups_local;
1356 u64 nr_wakeups_remote;
1357 u64 nr_wakeups_affine;
1358 u64 nr_wakeups_affine_attempts;
1359 u64 nr_wakeups_passive;
1360 u64 nr_wakeups_idle;
1361 };
1362 #endif
1363
1364 struct sched_entity {
1365 struct load_weight load; /* for load-balancing */
1366 struct rb_node run_node;
1367 struct list_head group_node;
1368 unsigned int on_rq;
1369
1370 u64 exec_start;
1371 u64 sum_exec_runtime;
1372 u64 vruntime;
1373 u64 prev_sum_exec_runtime;
1374
1375 u64 nr_migrations;
1376
1377 #ifdef CONFIG_SCHEDSTATS
1378 struct sched_statistics statistics;
1379 #endif
1380
1381 #ifdef CONFIG_FAIR_GROUP_SCHED
1382 int depth;
1383 struct sched_entity *parent;
1384 /* rq on which this entity is (to be) queued: */
1385 struct cfs_rq *cfs_rq;
1386 /* rq "owned" by this entity/group: */
1387 struct cfs_rq *my_q;
1388 #endif
1389
1390 #ifdef CONFIG_SMP
1391 /*
1392 * Per entity load average tracking.
1393 *
1394 * Put into separate cache line so it does not
1395 * collide with read-mostly values above.
1396 */
1397 struct sched_avg avg ____cacheline_aligned_in_smp;
1398 #endif
1399 };
1400
1401 struct sched_rt_entity {
1402 struct list_head run_list;
1403 unsigned long timeout;
1404 unsigned long watchdog_stamp;
1405 unsigned int time_slice;
1406 unsigned short on_rq;
1407 unsigned short on_list;
1408
1409 struct sched_rt_entity *back;
1410 #ifdef CONFIG_RT_GROUP_SCHED
1411 struct sched_rt_entity *parent;
1412 /* rq on which this entity is (to be) queued: */
1413 struct rt_rq *rt_rq;
1414 /* rq "owned" by this entity/group: */
1415 struct rt_rq *my_q;
1416 #endif
1417 };
1418
1419 struct sched_dl_entity {
1420 struct rb_node rb_node;
1421
1422 /*
1423 * Original scheduling parameters. Copied here from sched_attr
1424 * during sched_setattr(), they will remain the same until
1425 * the next sched_setattr().
1426 */
1427 u64 dl_runtime; /* maximum runtime for each instance */
1428 u64 dl_deadline; /* relative deadline of each instance */
1429 u64 dl_period; /* separation of two instances (period) */
1430 u64 dl_bw; /* dl_runtime / dl_deadline */
1431
1432 /*
1433 * Actual scheduling parameters. Initialized with the values above,
1434 * they are continously updated during task execution. Note that
1435 * the remaining runtime could be < 0 in case we are in overrun.
1436 */
1437 s64 runtime; /* remaining runtime for this instance */
1438 u64 deadline; /* absolute deadline for this instance */
1439 unsigned int flags; /* specifying the scheduler behaviour */
1440
1441 /*
1442 * Some bool flags:
1443 *
1444 * @dl_throttled tells if we exhausted the runtime. If so, the
1445 * task has to wait for a replenishment to be performed at the
1446 * next firing of dl_timer.
1447 *
1448 * @dl_boosted tells if we are boosted due to DI. If so we are
1449 * outside bandwidth enforcement mechanism (but only until we
1450 * exit the critical section);
1451 *
1452 * @dl_yielded tells if task gave up the cpu before consuming
1453 * all its available runtime during the last job.
1454 */
1455 int dl_throttled, dl_boosted, dl_yielded;
1456
1457 /*
1458 * Bandwidth enforcement timer. Each -deadline task has its
1459 * own bandwidth to be enforced, thus we need one timer per task.
1460 */
1461 struct hrtimer dl_timer;
1462 };
1463
1464 union rcu_special {
1465 struct {
1466 u8 blocked;
1467 u8 need_qs;
1468 u8 exp_need_qs;
1469 u8 pad; /* Otherwise the compiler can store garbage here. */
1470 } b; /* Bits. */
1471 u32 s; /* Set of bits. */
1472 };
1473 struct rcu_node;
1474
1475 enum perf_event_task_context {
1476 perf_invalid_context = -1,
1477 perf_hw_context = 0,
1478 perf_sw_context,
1479 perf_nr_task_contexts,
1480 };
1481
1482 /* Track pages that require TLB flushes */
1483 struct tlbflush_unmap_batch {
1484 /*
1485 * Each bit set is a CPU that potentially has a TLB entry for one of
1486 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1487 */
1488 struct cpumask cpumask;
1489
1490 /* True if any bit in cpumask is set */
1491 bool flush_required;
1492
1493 /*
1494 * If true then the PTE was dirty when unmapped. The entry must be
1495 * flushed before IO is initiated or a stale TLB entry potentially
1496 * allows an update without redirtying the page.
1497 */
1498 bool writable;
1499 };
1500
1501 struct task_struct {
1502 #ifdef CONFIG_THREAD_INFO_IN_TASK
1503 /*
1504 * For reasons of header soup (see current_thread_info()), this
1505 * must be the first element of task_struct.
1506 */
1507 struct thread_info thread_info;
1508 #endif
1509 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1510 void *stack;
1511 atomic_t usage;
1512 unsigned int flags; /* per process flags, defined below */
1513 unsigned int ptrace;
1514
1515 #ifdef CONFIG_SMP
1516 struct llist_node wake_entry;
1517 int on_cpu;
1518 #ifdef CONFIG_THREAD_INFO_IN_TASK
1519 unsigned int cpu; /* current CPU */
1520 #endif
1521 unsigned int wakee_flips;
1522 unsigned long wakee_flip_decay_ts;
1523 struct task_struct *last_wakee;
1524
1525 int wake_cpu;
1526 #endif
1527 int on_rq;
1528
1529 int prio, static_prio, normal_prio;
1530 unsigned int rt_priority;
1531 const struct sched_class *sched_class;
1532 struct sched_entity se;
1533 struct sched_rt_entity rt;
1534 #ifdef CONFIG_CGROUP_SCHED
1535 struct task_group *sched_task_group;
1536 #endif
1537 struct sched_dl_entity dl;
1538
1539 #ifdef CONFIG_PREEMPT_NOTIFIERS
1540 /* list of struct preempt_notifier: */
1541 struct hlist_head preempt_notifiers;
1542 #endif
1543
1544 #ifdef CONFIG_BLK_DEV_IO_TRACE
1545 unsigned int btrace_seq;
1546 #endif
1547
1548 unsigned int policy;
1549 int nr_cpus_allowed;
1550 cpumask_t cpus_allowed;
1551
1552 #ifdef CONFIG_PREEMPT_RCU
1553 int rcu_read_lock_nesting;
1554 union rcu_special rcu_read_unlock_special;
1555 struct list_head rcu_node_entry;
1556 struct rcu_node *rcu_blocked_node;
1557 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1558 #ifdef CONFIG_TASKS_RCU
1559 unsigned long rcu_tasks_nvcsw;
1560 bool rcu_tasks_holdout;
1561 struct list_head rcu_tasks_holdout_list;
1562 int rcu_tasks_idle_cpu;
1563 #endif /* #ifdef CONFIG_TASKS_RCU */
1564
1565 #ifdef CONFIG_SCHED_INFO
1566 struct sched_info sched_info;
1567 #endif
1568
1569 struct list_head tasks;
1570 #ifdef CONFIG_SMP
1571 struct plist_node pushable_tasks;
1572 struct rb_node pushable_dl_tasks;
1573 #endif
1574
1575 struct mm_struct *mm, *active_mm;
1576 /* per-thread vma caching */
1577 u32 vmacache_seqnum;
1578 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1579 #if defined(SPLIT_RSS_COUNTING)
1580 struct task_rss_stat rss_stat;
1581 #endif
1582 /* task state */
1583 int exit_state;
1584 int exit_code, exit_signal;
1585 int pdeath_signal; /* The signal sent when the parent dies */
1586 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1587
1588 /* Used for emulating ABI behavior of previous Linux versions */
1589 unsigned int personality;
1590
1591 /* scheduler bits, serialized by scheduler locks */
1592 unsigned sched_reset_on_fork:1;
1593 unsigned sched_contributes_to_load:1;
1594 unsigned sched_migrated:1;
1595 unsigned sched_remote_wakeup:1;
1596 unsigned :0; /* force alignment to the next boundary */
1597
1598 /* unserialized, strictly 'current' */
1599 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1600 unsigned in_iowait:1;
1601 #if !defined(TIF_RESTORE_SIGMASK)
1602 unsigned restore_sigmask:1;
1603 #endif
1604 #ifdef CONFIG_MEMCG
1605 unsigned memcg_may_oom:1;
1606 #ifndef CONFIG_SLOB
1607 unsigned memcg_kmem_skip_account:1;
1608 #endif
1609 #endif
1610 #ifdef CONFIG_COMPAT_BRK
1611 unsigned brk_randomized:1;
1612 #endif
1613
1614 unsigned long atomic_flags; /* Flags needing atomic access. */
1615
1616 struct restart_block restart_block;
1617
1618 pid_t pid;
1619 pid_t tgid;
1620
1621 #ifdef CONFIG_CC_STACKPROTECTOR
1622 /* Canary value for the -fstack-protector gcc feature */
1623 unsigned long stack_canary;
1624 #endif
1625 /*
1626 * pointers to (original) parent process, youngest child, younger sibling,
1627 * older sibling, respectively. (p->father can be replaced with
1628 * p->real_parent->pid)
1629 */
1630 struct task_struct __rcu *real_parent; /* real parent process */
1631 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1632 /*
1633 * children/sibling forms the list of my natural children
1634 */
1635 struct list_head children; /* list of my children */
1636 struct list_head sibling; /* linkage in my parent's children list */
1637 struct task_struct *group_leader; /* threadgroup leader */
1638
1639 /*
1640 * ptraced is the list of tasks this task is using ptrace on.
1641 * This includes both natural children and PTRACE_ATTACH targets.
1642 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1643 */
1644 struct list_head ptraced;
1645 struct list_head ptrace_entry;
1646
1647 /* PID/PID hash table linkage. */
1648 struct pid_link pids[PIDTYPE_MAX];
1649 struct list_head thread_group;
1650 struct list_head thread_node;
1651
1652 struct completion *vfork_done; /* for vfork() */
1653 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1654 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1655
1656 cputime_t utime, stime;
1657 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1658 cputime_t utimescaled, stimescaled;
1659 #endif
1660 cputime_t gtime;
1661 struct prev_cputime prev_cputime;
1662 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1663 seqcount_t vtime_seqcount;
1664 unsigned long long vtime_snap;
1665 enum {
1666 /* Task is sleeping or running in a CPU with VTIME inactive */
1667 VTIME_INACTIVE = 0,
1668 /* Task runs in userspace in a CPU with VTIME active */
1669 VTIME_USER,
1670 /* Task runs in kernelspace in a CPU with VTIME active */
1671 VTIME_SYS,
1672 } vtime_snap_whence;
1673 #endif
1674
1675 #ifdef CONFIG_NO_HZ_FULL
1676 atomic_t tick_dep_mask;
1677 #endif
1678 unsigned long nvcsw, nivcsw; /* context switch counts */
1679 u64 start_time; /* monotonic time in nsec */
1680 u64 real_start_time; /* boot based time in nsec */
1681 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1682 unsigned long min_flt, maj_flt;
1683
1684 struct task_cputime cputime_expires;
1685 struct list_head cpu_timers[3];
1686
1687 /* process credentials */
1688 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1689 const struct cred __rcu *real_cred; /* objective and real subjective task
1690 * credentials (COW) */
1691 const struct cred __rcu *cred; /* effective (overridable) subjective task
1692 * credentials (COW) */
1693 char comm[TASK_COMM_LEN]; /* executable name excluding path
1694 - access with [gs]et_task_comm (which lock
1695 it with task_lock())
1696 - initialized normally by setup_new_exec */
1697 /* file system info */
1698 struct nameidata *nameidata;
1699 #ifdef CONFIG_SYSVIPC
1700 /* ipc stuff */
1701 struct sysv_sem sysvsem;
1702 struct sysv_shm sysvshm;
1703 #endif
1704 #ifdef CONFIG_DETECT_HUNG_TASK
1705 /* hung task detection */
1706 unsigned long last_switch_count;
1707 #endif
1708 /* filesystem information */
1709 struct fs_struct *fs;
1710 /* open file information */
1711 struct files_struct *files;
1712 /* namespaces */
1713 struct nsproxy *nsproxy;
1714 /* signal handlers */
1715 struct signal_struct *signal;
1716 struct sighand_struct *sighand;
1717
1718 sigset_t blocked, real_blocked;
1719 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1720 struct sigpending pending;
1721
1722 unsigned long sas_ss_sp;
1723 size_t sas_ss_size;
1724 unsigned sas_ss_flags;
1725
1726 struct callback_head *task_works;
1727
1728 struct audit_context *audit_context;
1729 #ifdef CONFIG_AUDITSYSCALL
1730 kuid_t loginuid;
1731 unsigned int sessionid;
1732 #endif
1733 struct seccomp seccomp;
1734
1735 /* Thread group tracking */
1736 u32 parent_exec_id;
1737 u32 self_exec_id;
1738 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1739 * mempolicy */
1740 spinlock_t alloc_lock;
1741
1742 /* Protection of the PI data structures: */
1743 raw_spinlock_t pi_lock;
1744
1745 struct wake_q_node wake_q;
1746
1747 #ifdef CONFIG_RT_MUTEXES
1748 /* PI waiters blocked on a rt_mutex held by this task */
1749 struct rb_root pi_waiters;
1750 struct rb_node *pi_waiters_leftmost;
1751 /* Deadlock detection and priority inheritance handling */
1752 struct rt_mutex_waiter *pi_blocked_on;
1753 #endif
1754
1755 #ifdef CONFIG_DEBUG_MUTEXES
1756 /* mutex deadlock detection */
1757 struct mutex_waiter *blocked_on;
1758 #endif
1759 #ifdef CONFIG_TRACE_IRQFLAGS
1760 unsigned int irq_events;
1761 unsigned long hardirq_enable_ip;
1762 unsigned long hardirq_disable_ip;
1763 unsigned int hardirq_enable_event;
1764 unsigned int hardirq_disable_event;
1765 int hardirqs_enabled;
1766 int hardirq_context;
1767 unsigned long softirq_disable_ip;
1768 unsigned long softirq_enable_ip;
1769 unsigned int softirq_disable_event;
1770 unsigned int softirq_enable_event;
1771 int softirqs_enabled;
1772 int softirq_context;
1773 #endif
1774 #ifdef CONFIG_LOCKDEP
1775 # define MAX_LOCK_DEPTH 48UL
1776 u64 curr_chain_key;
1777 int lockdep_depth;
1778 unsigned int lockdep_recursion;
1779 struct held_lock held_locks[MAX_LOCK_DEPTH];
1780 gfp_t lockdep_reclaim_gfp;
1781 #endif
1782 #ifdef CONFIG_UBSAN
1783 unsigned int in_ubsan;
1784 #endif
1785
1786 /* journalling filesystem info */
1787 void *journal_info;
1788
1789 /* stacked block device info */
1790 struct bio_list *bio_list;
1791
1792 #ifdef CONFIG_BLOCK
1793 /* stack plugging */
1794 struct blk_plug *plug;
1795 #endif
1796
1797 /* VM state */
1798 struct reclaim_state *reclaim_state;
1799
1800 struct backing_dev_info *backing_dev_info;
1801
1802 struct io_context *io_context;
1803
1804 unsigned long ptrace_message;
1805 siginfo_t *last_siginfo; /* For ptrace use. */
1806 struct task_io_accounting ioac;
1807 #if defined(CONFIG_TASK_XACCT)
1808 u64 acct_rss_mem1; /* accumulated rss usage */
1809 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1810 cputime_t acct_timexpd; /* stime + utime since last update */
1811 #endif
1812 #ifdef CONFIG_CPUSETS
1813 nodemask_t mems_allowed; /* Protected by alloc_lock */
1814 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1815 int cpuset_mem_spread_rotor;
1816 int cpuset_slab_spread_rotor;
1817 #endif
1818 #ifdef CONFIG_CGROUPS
1819 /* Control Group info protected by css_set_lock */
1820 struct css_set __rcu *cgroups;
1821 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1822 struct list_head cg_list;
1823 #endif
1824 #ifdef CONFIG_FUTEX
1825 struct robust_list_head __user *robust_list;
1826 #ifdef CONFIG_COMPAT
1827 struct compat_robust_list_head __user *compat_robust_list;
1828 #endif
1829 struct list_head pi_state_list;
1830 struct futex_pi_state *pi_state_cache;
1831 #endif
1832 #ifdef CONFIG_PERF_EVENTS
1833 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1834 struct mutex perf_event_mutex;
1835 struct list_head perf_event_list;
1836 #endif
1837 #ifdef CONFIG_DEBUG_PREEMPT
1838 unsigned long preempt_disable_ip;
1839 #endif
1840 #ifdef CONFIG_NUMA
1841 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1842 short il_next;
1843 short pref_node_fork;
1844 #endif
1845 #ifdef CONFIG_NUMA_BALANCING
1846 int numa_scan_seq;
1847 unsigned int numa_scan_period;
1848 unsigned int numa_scan_period_max;
1849 int numa_preferred_nid;
1850 unsigned long numa_migrate_retry;
1851 u64 node_stamp; /* migration stamp */
1852 u64 last_task_numa_placement;
1853 u64 last_sum_exec_runtime;
1854 struct callback_head numa_work;
1855
1856 struct list_head numa_entry;
1857 struct numa_group *numa_group;
1858
1859 /*
1860 * numa_faults is an array split into four regions:
1861 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1862 * in this precise order.
1863 *
1864 * faults_memory: Exponential decaying average of faults on a per-node
1865 * basis. Scheduling placement decisions are made based on these
1866 * counts. The values remain static for the duration of a PTE scan.
1867 * faults_cpu: Track the nodes the process was running on when a NUMA
1868 * hinting fault was incurred.
1869 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1870 * during the current scan window. When the scan completes, the counts
1871 * in faults_memory and faults_cpu decay and these values are copied.
1872 */
1873 unsigned long *numa_faults;
1874 unsigned long total_numa_faults;
1875
1876 /*
1877 * numa_faults_locality tracks if faults recorded during the last
1878 * scan window were remote/local or failed to migrate. The task scan
1879 * period is adapted based on the locality of the faults with different
1880 * weights depending on whether they were shared or private faults
1881 */
1882 unsigned long numa_faults_locality[3];
1883
1884 unsigned long numa_pages_migrated;
1885 #endif /* CONFIG_NUMA_BALANCING */
1886
1887 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1888 struct tlbflush_unmap_batch tlb_ubc;
1889 #endif
1890
1891 struct rcu_head rcu;
1892
1893 /*
1894 * cache last used pipe for splice
1895 */
1896 struct pipe_inode_info *splice_pipe;
1897
1898 struct page_frag task_frag;
1899
1900 #ifdef CONFIG_TASK_DELAY_ACCT
1901 struct task_delay_info *delays;
1902 #endif
1903 #ifdef CONFIG_FAULT_INJECTION
1904 int make_it_fail;
1905 #endif
1906 /*
1907 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1908 * balance_dirty_pages() for some dirty throttling pause
1909 */
1910 int nr_dirtied;
1911 int nr_dirtied_pause;
1912 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1913
1914 #ifdef CONFIG_LATENCYTOP
1915 int latency_record_count;
1916 struct latency_record latency_record[LT_SAVECOUNT];
1917 #endif
1918 /*
1919 * time slack values; these are used to round up poll() and
1920 * select() etc timeout values. These are in nanoseconds.
1921 */
1922 u64 timer_slack_ns;
1923 u64 default_timer_slack_ns;
1924
1925 #ifdef CONFIG_KASAN
1926 unsigned int kasan_depth;
1927 #endif
1928 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1929 /* Index of current stored address in ret_stack */
1930 int curr_ret_stack;
1931 /* Stack of return addresses for return function tracing */
1932 struct ftrace_ret_stack *ret_stack;
1933 /* time stamp for last schedule */
1934 unsigned long long ftrace_timestamp;
1935 /*
1936 * Number of functions that haven't been traced
1937 * because of depth overrun.
1938 */
1939 atomic_t trace_overrun;
1940 /* Pause for the tracing */
1941 atomic_t tracing_graph_pause;
1942 #endif
1943 #ifdef CONFIG_TRACING
1944 /* state flags for use by tracers */
1945 unsigned long trace;
1946 /* bitmask and counter of trace recursion */
1947 unsigned long trace_recursion;
1948 #endif /* CONFIG_TRACING */
1949 #ifdef CONFIG_KCOV
1950 /* Coverage collection mode enabled for this task (0 if disabled). */
1951 enum kcov_mode kcov_mode;
1952 /* Size of the kcov_area. */
1953 unsigned kcov_size;
1954 /* Buffer for coverage collection. */
1955 void *kcov_area;
1956 /* kcov desciptor wired with this task or NULL. */
1957 struct kcov *kcov;
1958 #endif
1959 #ifdef CONFIG_MEMCG
1960 struct mem_cgroup *memcg_in_oom;
1961 gfp_t memcg_oom_gfp_mask;
1962 int memcg_oom_order;
1963
1964 /* number of pages to reclaim on returning to userland */
1965 unsigned int memcg_nr_pages_over_high;
1966 #endif
1967 #ifdef CONFIG_UPROBES
1968 struct uprobe_task *utask;
1969 #endif
1970 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1971 unsigned int sequential_io;
1972 unsigned int sequential_io_avg;
1973 #endif
1974 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1975 unsigned long task_state_change;
1976 #endif
1977 int pagefault_disabled;
1978 #ifdef CONFIG_MMU
1979 struct task_struct *oom_reaper_list;
1980 #endif
1981 #ifdef CONFIG_VMAP_STACK
1982 struct vm_struct *stack_vm_area;
1983 #endif
1984 #ifdef CONFIG_THREAD_INFO_IN_TASK
1985 /* A live task holds one reference. */
1986 atomic_t stack_refcount;
1987 #endif
1988 /* CPU-specific state of this task */
1989 struct thread_struct thread;
1990 /*
1991 * WARNING: on x86, 'thread_struct' contains a variable-sized
1992 * structure. It *MUST* be at the end of 'task_struct'.
1993 *
1994 * Do not put anything below here!
1995 */
1996 };
1997
1998 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1999 extern int arch_task_struct_size __read_mostly;
2000 #else
2001 # define arch_task_struct_size (sizeof(struct task_struct))
2002 #endif
2003
2004 #ifdef CONFIG_VMAP_STACK
2005 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2006 {
2007 return t->stack_vm_area;
2008 }
2009 #else
2010 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2011 {
2012 return NULL;
2013 }
2014 #endif
2015
2016 /* Future-safe accessor for struct task_struct's cpus_allowed. */
2017 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2018
2019 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2020 {
2021 return p->nr_cpus_allowed;
2022 }
2023
2024 #define TNF_MIGRATED 0x01
2025 #define TNF_NO_GROUP 0x02
2026 #define TNF_SHARED 0x04
2027 #define TNF_FAULT_LOCAL 0x08
2028 #define TNF_MIGRATE_FAIL 0x10
2029
2030 static inline bool in_vfork(struct task_struct *tsk)
2031 {
2032 bool ret;
2033
2034 /*
2035 * need RCU to access ->real_parent if CLONE_VM was used along with
2036 * CLONE_PARENT.
2037 *
2038 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2039 * imply CLONE_VM
2040 *
2041 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2042 * ->real_parent is not necessarily the task doing vfork(), so in
2043 * theory we can't rely on task_lock() if we want to dereference it.
2044 *
2045 * And in this case we can't trust the real_parent->mm == tsk->mm
2046 * check, it can be false negative. But we do not care, if init or
2047 * another oom-unkillable task does this it should blame itself.
2048 */
2049 rcu_read_lock();
2050 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2051 rcu_read_unlock();
2052
2053 return ret;
2054 }
2055
2056 #ifdef CONFIG_NUMA_BALANCING
2057 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2058 extern pid_t task_numa_group_id(struct task_struct *p);
2059 extern void set_numabalancing_state(bool enabled);
2060 extern void task_numa_free(struct task_struct *p);
2061 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2062 int src_nid, int dst_cpu);
2063 #else
2064 static inline void task_numa_fault(int last_node, int node, int pages,
2065 int flags)
2066 {
2067 }
2068 static inline pid_t task_numa_group_id(struct task_struct *p)
2069 {
2070 return 0;
2071 }
2072 static inline void set_numabalancing_state(bool enabled)
2073 {
2074 }
2075 static inline void task_numa_free(struct task_struct *p)
2076 {
2077 }
2078 static inline bool should_numa_migrate_memory(struct task_struct *p,
2079 struct page *page, int src_nid, int dst_cpu)
2080 {
2081 return true;
2082 }
2083 #endif
2084
2085 static inline struct pid *task_pid(struct task_struct *task)
2086 {
2087 return task->pids[PIDTYPE_PID].pid;
2088 }
2089
2090 static inline struct pid *task_tgid(struct task_struct *task)
2091 {
2092 return task->group_leader->pids[PIDTYPE_PID].pid;
2093 }
2094
2095 /*
2096 * Without tasklist or rcu lock it is not safe to dereference
2097 * the result of task_pgrp/task_session even if task == current,
2098 * we can race with another thread doing sys_setsid/sys_setpgid.
2099 */
2100 static inline struct pid *task_pgrp(struct task_struct *task)
2101 {
2102 return task->group_leader->pids[PIDTYPE_PGID].pid;
2103 }
2104
2105 static inline struct pid *task_session(struct task_struct *task)
2106 {
2107 return task->group_leader->pids[PIDTYPE_SID].pid;
2108 }
2109
2110 struct pid_namespace;
2111
2112 /*
2113 * the helpers to get the task's different pids as they are seen
2114 * from various namespaces
2115 *
2116 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2117 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2118 * current.
2119 * task_xid_nr_ns() : id seen from the ns specified;
2120 *
2121 * set_task_vxid() : assigns a virtual id to a task;
2122 *
2123 * see also pid_nr() etc in include/linux/pid.h
2124 */
2125 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2126 struct pid_namespace *ns);
2127
2128 static inline pid_t task_pid_nr(struct task_struct *tsk)
2129 {
2130 return tsk->pid;
2131 }
2132
2133 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2134 struct pid_namespace *ns)
2135 {
2136 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2137 }
2138
2139 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2140 {
2141 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2142 }
2143
2144
2145 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2146 {
2147 return tsk->tgid;
2148 }
2149
2150 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2151
2152 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2153 {
2154 return pid_vnr(task_tgid(tsk));
2155 }
2156
2157
2158 static inline int pid_alive(const struct task_struct *p);
2159 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2160 {
2161 pid_t pid = 0;
2162
2163 rcu_read_lock();
2164 if (pid_alive(tsk))
2165 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2166 rcu_read_unlock();
2167
2168 return pid;
2169 }
2170
2171 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2172 {
2173 return task_ppid_nr_ns(tsk, &init_pid_ns);
2174 }
2175
2176 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2177 struct pid_namespace *ns)
2178 {
2179 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2180 }
2181
2182 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2183 {
2184 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2185 }
2186
2187
2188 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2189 struct pid_namespace *ns)
2190 {
2191 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2192 }
2193
2194 static inline pid_t task_session_vnr(struct task_struct *tsk)
2195 {
2196 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2197 }
2198
2199 /* obsolete, do not use */
2200 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2201 {
2202 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2203 }
2204
2205 /**
2206 * pid_alive - check that a task structure is not stale
2207 * @p: Task structure to be checked.
2208 *
2209 * Test if a process is not yet dead (at most zombie state)
2210 * If pid_alive fails, then pointers within the task structure
2211 * can be stale and must not be dereferenced.
2212 *
2213 * Return: 1 if the process is alive. 0 otherwise.
2214 */
2215 static inline int pid_alive(const struct task_struct *p)
2216 {
2217 return p->pids[PIDTYPE_PID].pid != NULL;
2218 }
2219
2220 /**
2221 * is_global_init - check if a task structure is init. Since init
2222 * is free to have sub-threads we need to check tgid.
2223 * @tsk: Task structure to be checked.
2224 *
2225 * Check if a task structure is the first user space task the kernel created.
2226 *
2227 * Return: 1 if the task structure is init. 0 otherwise.
2228 */
2229 static inline int is_global_init(struct task_struct *tsk)
2230 {
2231 return task_tgid_nr(tsk) == 1;
2232 }
2233
2234 extern struct pid *cad_pid;
2235
2236 extern void free_task(struct task_struct *tsk);
2237 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2238
2239 extern void __put_task_struct(struct task_struct *t);
2240
2241 static inline void put_task_struct(struct task_struct *t)
2242 {
2243 if (atomic_dec_and_test(&t->usage))
2244 __put_task_struct(t);
2245 }
2246
2247 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2248 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2249
2250 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2251 extern void task_cputime(struct task_struct *t,
2252 cputime_t *utime, cputime_t *stime);
2253 extern cputime_t task_gtime(struct task_struct *t);
2254 #else
2255 static inline void task_cputime(struct task_struct *t,
2256 cputime_t *utime, cputime_t *stime)
2257 {
2258 *utime = t->utime;
2259 *stime = t->stime;
2260 }
2261
2262 static inline cputime_t task_gtime(struct task_struct *t)
2263 {
2264 return t->gtime;
2265 }
2266 #endif
2267
2268 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2269 static inline void task_cputime_scaled(struct task_struct *t,
2270 cputime_t *utimescaled,
2271 cputime_t *stimescaled)
2272 {
2273 *utimescaled = t->utimescaled;
2274 *stimescaled = t->stimescaled;
2275 }
2276 #else
2277 static inline void task_cputime_scaled(struct task_struct *t,
2278 cputime_t *utimescaled,
2279 cputime_t *stimescaled)
2280 {
2281 task_cputime(t, utimescaled, stimescaled);
2282 }
2283 #endif
2284
2285 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2286 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2287
2288 /*
2289 * Per process flags
2290 */
2291 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
2292 #define PF_EXITING 0x00000004 /* getting shut down */
2293 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2294 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2295 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2296 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2297 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2298 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2299 #define PF_DUMPCORE 0x00000200 /* dumped core */
2300 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2301 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2302 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2303 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2304 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2305 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2306 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2307 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2308 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2309 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2310 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2311 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2312 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2313 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2314 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2315 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2316 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2317 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2318 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2319
2320 /*
2321 * Only the _current_ task can read/write to tsk->flags, but other
2322 * tasks can access tsk->flags in readonly mode for example
2323 * with tsk_used_math (like during threaded core dumping).
2324 * There is however an exception to this rule during ptrace
2325 * or during fork: the ptracer task is allowed to write to the
2326 * child->flags of its traced child (same goes for fork, the parent
2327 * can write to the child->flags), because we're guaranteed the
2328 * child is not running and in turn not changing child->flags
2329 * at the same time the parent does it.
2330 */
2331 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2332 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2333 #define clear_used_math() clear_stopped_child_used_math(current)
2334 #define set_used_math() set_stopped_child_used_math(current)
2335 #define conditional_stopped_child_used_math(condition, child) \
2336 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2337 #define conditional_used_math(condition) \
2338 conditional_stopped_child_used_math(condition, current)
2339 #define copy_to_stopped_child_used_math(child) \
2340 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2341 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2342 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2343 #define used_math() tsk_used_math(current)
2344
2345 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2346 * __GFP_FS is also cleared as it implies __GFP_IO.
2347 */
2348 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2349 {
2350 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2351 flags &= ~(__GFP_IO | __GFP_FS);
2352 return flags;
2353 }
2354
2355 static inline unsigned int memalloc_noio_save(void)
2356 {
2357 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2358 current->flags |= PF_MEMALLOC_NOIO;
2359 return flags;
2360 }
2361
2362 static inline void memalloc_noio_restore(unsigned int flags)
2363 {
2364 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2365 }
2366
2367 /* Per-process atomic flags. */
2368 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2369 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2370 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2371 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2372
2373
2374 #define TASK_PFA_TEST(name, func) \
2375 static inline bool task_##func(struct task_struct *p) \
2376 { return test_bit(PFA_##name, &p->atomic_flags); }
2377 #define TASK_PFA_SET(name, func) \
2378 static inline void task_set_##func(struct task_struct *p) \
2379 { set_bit(PFA_##name, &p->atomic_flags); }
2380 #define TASK_PFA_CLEAR(name, func) \
2381 static inline void task_clear_##func(struct task_struct *p) \
2382 { clear_bit(PFA_##name, &p->atomic_flags); }
2383
2384 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2385 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2386
2387 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2388 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2389 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2390
2391 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2392 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2393 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2394
2395 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2396 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2397
2398 /*
2399 * task->jobctl flags
2400 */
2401 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2402
2403 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2404 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2405 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2406 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2407 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2408 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2409 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2410
2411 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2412 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2413 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2414 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2415 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2416 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2417 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2418
2419 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2420 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2421
2422 extern bool task_set_jobctl_pending(struct task_struct *task,
2423 unsigned long mask);
2424 extern void task_clear_jobctl_trapping(struct task_struct *task);
2425 extern void task_clear_jobctl_pending(struct task_struct *task,
2426 unsigned long mask);
2427
2428 static inline void rcu_copy_process(struct task_struct *p)
2429 {
2430 #ifdef CONFIG_PREEMPT_RCU
2431 p->rcu_read_lock_nesting = 0;
2432 p->rcu_read_unlock_special.s = 0;
2433 p->rcu_blocked_node = NULL;
2434 INIT_LIST_HEAD(&p->rcu_node_entry);
2435 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2436 #ifdef CONFIG_TASKS_RCU
2437 p->rcu_tasks_holdout = false;
2438 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2439 p->rcu_tasks_idle_cpu = -1;
2440 #endif /* #ifdef CONFIG_TASKS_RCU */
2441 }
2442
2443 static inline void tsk_restore_flags(struct task_struct *task,
2444 unsigned long orig_flags, unsigned long flags)
2445 {
2446 task->flags &= ~flags;
2447 task->flags |= orig_flags & flags;
2448 }
2449
2450 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2451 const struct cpumask *trial);
2452 extern int task_can_attach(struct task_struct *p,
2453 const struct cpumask *cs_cpus_allowed);
2454 #ifdef CONFIG_SMP
2455 extern void do_set_cpus_allowed(struct task_struct *p,
2456 const struct cpumask *new_mask);
2457
2458 extern int set_cpus_allowed_ptr(struct task_struct *p,
2459 const struct cpumask *new_mask);
2460 #else
2461 static inline void do_set_cpus_allowed(struct task_struct *p,
2462 const struct cpumask *new_mask)
2463 {
2464 }
2465 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2466 const struct cpumask *new_mask)
2467 {
2468 if (!cpumask_test_cpu(0, new_mask))
2469 return -EINVAL;
2470 return 0;
2471 }
2472 #endif
2473
2474 #ifdef CONFIG_NO_HZ_COMMON
2475 void calc_load_enter_idle(void);
2476 void calc_load_exit_idle(void);
2477 #else
2478 static inline void calc_load_enter_idle(void) { }
2479 static inline void calc_load_exit_idle(void) { }
2480 #endif /* CONFIG_NO_HZ_COMMON */
2481
2482 #ifndef cpu_relax_yield
2483 #define cpu_relax_yield() cpu_relax()
2484 #endif
2485
2486 /*
2487 * Do not use outside of architecture code which knows its limitations.
2488 *
2489 * sched_clock() has no promise of monotonicity or bounded drift between
2490 * CPUs, use (which you should not) requires disabling IRQs.
2491 *
2492 * Please use one of the three interfaces below.
2493 */
2494 extern unsigned long long notrace sched_clock(void);
2495 /*
2496 * See the comment in kernel/sched/clock.c
2497 */
2498 extern u64 running_clock(void);
2499 extern u64 sched_clock_cpu(int cpu);
2500
2501
2502 extern void sched_clock_init(void);
2503
2504 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2505 static inline void sched_clock_tick(void)
2506 {
2507 }
2508
2509 static inline void sched_clock_idle_sleep_event(void)
2510 {
2511 }
2512
2513 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2514 {
2515 }
2516
2517 static inline u64 cpu_clock(int cpu)
2518 {
2519 return sched_clock();
2520 }
2521
2522 static inline u64 local_clock(void)
2523 {
2524 return sched_clock();
2525 }
2526 #else
2527 /*
2528 * Architectures can set this to 1 if they have specified
2529 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2530 * but then during bootup it turns out that sched_clock()
2531 * is reliable after all:
2532 */
2533 extern int sched_clock_stable(void);
2534 extern void set_sched_clock_stable(void);
2535 extern void clear_sched_clock_stable(void);
2536
2537 extern void sched_clock_tick(void);
2538 extern void sched_clock_idle_sleep_event(void);
2539 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2540
2541 /*
2542 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2543 * time source that is monotonic per cpu argument and has bounded drift
2544 * between cpus.
2545 *
2546 * ######################### BIG FAT WARNING ##########################
2547 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2548 * # go backwards !! #
2549 * ####################################################################
2550 */
2551 static inline u64 cpu_clock(int cpu)
2552 {
2553 return sched_clock_cpu(cpu);
2554 }
2555
2556 static inline u64 local_clock(void)
2557 {
2558 return sched_clock_cpu(raw_smp_processor_id());
2559 }
2560 #endif
2561
2562 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2563 /*
2564 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2565 * The reason for this explicit opt-in is not to have perf penalty with
2566 * slow sched_clocks.
2567 */
2568 extern void enable_sched_clock_irqtime(void);
2569 extern void disable_sched_clock_irqtime(void);
2570 #else
2571 static inline void enable_sched_clock_irqtime(void) {}
2572 static inline void disable_sched_clock_irqtime(void) {}
2573 #endif
2574
2575 extern unsigned long long
2576 task_sched_runtime(struct task_struct *task);
2577
2578 /* sched_exec is called by processes performing an exec */
2579 #ifdef CONFIG_SMP
2580 extern void sched_exec(void);
2581 #else
2582 #define sched_exec() {}
2583 #endif
2584
2585 extern void sched_clock_idle_sleep_event(void);
2586 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2587
2588 #ifdef CONFIG_HOTPLUG_CPU
2589 extern void idle_task_exit(void);
2590 #else
2591 static inline void idle_task_exit(void) {}
2592 #endif
2593
2594 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2595 extern void wake_up_nohz_cpu(int cpu);
2596 #else
2597 static inline void wake_up_nohz_cpu(int cpu) { }
2598 #endif
2599
2600 #ifdef CONFIG_NO_HZ_FULL
2601 extern u64 scheduler_tick_max_deferment(void);
2602 #endif
2603
2604 #ifdef CONFIG_SCHED_AUTOGROUP
2605 extern void sched_autogroup_create_attach(struct task_struct *p);
2606 extern void sched_autogroup_detach(struct task_struct *p);
2607 extern void sched_autogroup_fork(struct signal_struct *sig);
2608 extern void sched_autogroup_exit(struct signal_struct *sig);
2609 extern void sched_autogroup_exit_task(struct task_struct *p);
2610 #ifdef CONFIG_PROC_FS
2611 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2612 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2613 #endif
2614 #else
2615 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2616 static inline void sched_autogroup_detach(struct task_struct *p) { }
2617 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2618 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2619 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2620 #endif
2621
2622 extern int yield_to(struct task_struct *p, bool preempt);
2623 extern void set_user_nice(struct task_struct *p, long nice);
2624 extern int task_prio(const struct task_struct *p);
2625 /**
2626 * task_nice - return the nice value of a given task.
2627 * @p: the task in question.
2628 *
2629 * Return: The nice value [ -20 ... 0 ... 19 ].
2630 */
2631 static inline int task_nice(const struct task_struct *p)
2632 {
2633 return PRIO_TO_NICE((p)->static_prio);
2634 }
2635 extern int can_nice(const struct task_struct *p, const int nice);
2636 extern int task_curr(const struct task_struct *p);
2637 extern int idle_cpu(int cpu);
2638 extern int sched_setscheduler(struct task_struct *, int,
2639 const struct sched_param *);
2640 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2641 const struct sched_param *);
2642 extern int sched_setattr(struct task_struct *,
2643 const struct sched_attr *);
2644 extern struct task_struct *idle_task(int cpu);
2645 /**
2646 * is_idle_task - is the specified task an idle task?
2647 * @p: the task in question.
2648 *
2649 * Return: 1 if @p is an idle task. 0 otherwise.
2650 */
2651 static inline bool is_idle_task(const struct task_struct *p)
2652 {
2653 return !!(p->flags & PF_IDLE);
2654 }
2655 extern struct task_struct *curr_task(int cpu);
2656 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2657
2658 void yield(void);
2659
2660 union thread_union {
2661 #ifndef CONFIG_THREAD_INFO_IN_TASK
2662 struct thread_info thread_info;
2663 #endif
2664 unsigned long stack[THREAD_SIZE/sizeof(long)];
2665 };
2666
2667 #ifndef __HAVE_ARCH_KSTACK_END
2668 static inline int kstack_end(void *addr)
2669 {
2670 /* Reliable end of stack detection:
2671 * Some APM bios versions misalign the stack
2672 */
2673 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2674 }
2675 #endif
2676
2677 extern union thread_union init_thread_union;
2678 extern struct task_struct init_task;
2679
2680 extern struct mm_struct init_mm;
2681
2682 extern struct pid_namespace init_pid_ns;
2683
2684 /*
2685 * find a task by one of its numerical ids
2686 *
2687 * find_task_by_pid_ns():
2688 * finds a task by its pid in the specified namespace
2689 * find_task_by_vpid():
2690 * finds a task by its virtual pid
2691 *
2692 * see also find_vpid() etc in include/linux/pid.h
2693 */
2694
2695 extern struct task_struct *find_task_by_vpid(pid_t nr);
2696 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2697 struct pid_namespace *ns);
2698
2699 /* per-UID process charging. */
2700 extern struct user_struct * alloc_uid(kuid_t);
2701 static inline struct user_struct *get_uid(struct user_struct *u)
2702 {
2703 atomic_inc(&u->__count);
2704 return u;
2705 }
2706 extern void free_uid(struct user_struct *);
2707
2708 #include <asm/current.h>
2709
2710 extern void xtime_update(unsigned long ticks);
2711
2712 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2713 extern int wake_up_process(struct task_struct *tsk);
2714 extern void wake_up_new_task(struct task_struct *tsk);
2715 #ifdef CONFIG_SMP
2716 extern void kick_process(struct task_struct *tsk);
2717 #else
2718 static inline void kick_process(struct task_struct *tsk) { }
2719 #endif
2720 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2721 extern void sched_dead(struct task_struct *p);
2722
2723 extern void proc_caches_init(void);
2724 extern void flush_signals(struct task_struct *);
2725 extern void ignore_signals(struct task_struct *);
2726 extern void flush_signal_handlers(struct task_struct *, int force_default);
2727 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2728
2729 static inline int kernel_dequeue_signal(siginfo_t *info)
2730 {
2731 struct task_struct *tsk = current;
2732 siginfo_t __info;
2733 int ret;
2734
2735 spin_lock_irq(&tsk->sighand->siglock);
2736 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2737 spin_unlock_irq(&tsk->sighand->siglock);
2738
2739 return ret;
2740 }
2741
2742 static inline void kernel_signal_stop(void)
2743 {
2744 spin_lock_irq(&current->sighand->siglock);
2745 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2746 __set_current_state(TASK_STOPPED);
2747 spin_unlock_irq(&current->sighand->siglock);
2748
2749 schedule();
2750 }
2751
2752 extern void release_task(struct task_struct * p);
2753 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2754 extern int force_sigsegv(int, struct task_struct *);
2755 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2756 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2757 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2758 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2759 const struct cred *, u32);
2760 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2761 extern int kill_pid(struct pid *pid, int sig, int priv);
2762 extern int kill_proc_info(int, struct siginfo *, pid_t);
2763 extern __must_check bool do_notify_parent(struct task_struct *, int);
2764 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2765 extern void force_sig(int, struct task_struct *);
2766 extern int send_sig(int, struct task_struct *, int);
2767 extern int zap_other_threads(struct task_struct *p);
2768 extern struct sigqueue *sigqueue_alloc(void);
2769 extern void sigqueue_free(struct sigqueue *);
2770 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2771 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2772
2773 #ifdef TIF_RESTORE_SIGMASK
2774 /*
2775 * Legacy restore_sigmask accessors. These are inefficient on
2776 * SMP architectures because they require atomic operations.
2777 */
2778
2779 /**
2780 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2781 *
2782 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2783 * will run before returning to user mode, to process the flag. For
2784 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2785 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2786 * arch code will notice on return to user mode, in case those bits
2787 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2788 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2789 */
2790 static inline void set_restore_sigmask(void)
2791 {
2792 set_thread_flag(TIF_RESTORE_SIGMASK);
2793 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2794 }
2795 static inline void clear_restore_sigmask(void)
2796 {
2797 clear_thread_flag(TIF_RESTORE_SIGMASK);
2798 }
2799 static inline bool test_restore_sigmask(void)
2800 {
2801 return test_thread_flag(TIF_RESTORE_SIGMASK);
2802 }
2803 static inline bool test_and_clear_restore_sigmask(void)
2804 {
2805 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2806 }
2807
2808 #else /* TIF_RESTORE_SIGMASK */
2809
2810 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2811 static inline void set_restore_sigmask(void)
2812 {
2813 current->restore_sigmask = true;
2814 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2815 }
2816 static inline void clear_restore_sigmask(void)
2817 {
2818 current->restore_sigmask = false;
2819 }
2820 static inline bool test_restore_sigmask(void)
2821 {
2822 return current->restore_sigmask;
2823 }
2824 static inline bool test_and_clear_restore_sigmask(void)
2825 {
2826 if (!current->restore_sigmask)
2827 return false;
2828 current->restore_sigmask = false;
2829 return true;
2830 }
2831 #endif
2832
2833 static inline void restore_saved_sigmask(void)
2834 {
2835 if (test_and_clear_restore_sigmask())
2836 __set_current_blocked(&current->saved_sigmask);
2837 }
2838
2839 static inline sigset_t *sigmask_to_save(void)
2840 {
2841 sigset_t *res = &current->blocked;
2842 if (unlikely(test_restore_sigmask()))
2843 res = &current->saved_sigmask;
2844 return res;
2845 }
2846
2847 static inline int kill_cad_pid(int sig, int priv)
2848 {
2849 return kill_pid(cad_pid, sig, priv);
2850 }
2851
2852 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2853 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2854 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2855 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2856
2857 /*
2858 * True if we are on the alternate signal stack.
2859 */
2860 static inline int on_sig_stack(unsigned long sp)
2861 {
2862 /*
2863 * If the signal stack is SS_AUTODISARM then, by construction, we
2864 * can't be on the signal stack unless user code deliberately set
2865 * SS_AUTODISARM when we were already on it.
2866 *
2867 * This improves reliability: if user state gets corrupted such that
2868 * the stack pointer points very close to the end of the signal stack,
2869 * then this check will enable the signal to be handled anyway.
2870 */
2871 if (current->sas_ss_flags & SS_AUTODISARM)
2872 return 0;
2873
2874 #ifdef CONFIG_STACK_GROWSUP
2875 return sp >= current->sas_ss_sp &&
2876 sp - current->sas_ss_sp < current->sas_ss_size;
2877 #else
2878 return sp > current->sas_ss_sp &&
2879 sp - current->sas_ss_sp <= current->sas_ss_size;
2880 #endif
2881 }
2882
2883 static inline int sas_ss_flags(unsigned long sp)
2884 {
2885 if (!current->sas_ss_size)
2886 return SS_DISABLE;
2887
2888 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2889 }
2890
2891 static inline void sas_ss_reset(struct task_struct *p)
2892 {
2893 p->sas_ss_sp = 0;
2894 p->sas_ss_size = 0;
2895 p->sas_ss_flags = SS_DISABLE;
2896 }
2897
2898 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2899 {
2900 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2901 #ifdef CONFIG_STACK_GROWSUP
2902 return current->sas_ss_sp;
2903 #else
2904 return current->sas_ss_sp + current->sas_ss_size;
2905 #endif
2906 return sp;
2907 }
2908
2909 /*
2910 * Routines for handling mm_structs
2911 */
2912 extern struct mm_struct * mm_alloc(void);
2913
2914 /* mmdrop drops the mm and the page tables */
2915 extern void __mmdrop(struct mm_struct *);
2916 static inline void mmdrop(struct mm_struct *mm)
2917 {
2918 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2919 __mmdrop(mm);
2920 }
2921
2922 static inline void mmdrop_async_fn(struct work_struct *work)
2923 {
2924 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2925 __mmdrop(mm);
2926 }
2927
2928 static inline void mmdrop_async(struct mm_struct *mm)
2929 {
2930 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2931 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2932 schedule_work(&mm->async_put_work);
2933 }
2934 }
2935
2936 static inline bool mmget_not_zero(struct mm_struct *mm)
2937 {
2938 return atomic_inc_not_zero(&mm->mm_users);
2939 }
2940
2941 /* mmput gets rid of the mappings and all user-space */
2942 extern void mmput(struct mm_struct *);
2943 #ifdef CONFIG_MMU
2944 /* same as above but performs the slow path from the async context. Can
2945 * be called from the atomic context as well
2946 */
2947 extern void mmput_async(struct mm_struct *);
2948 #endif
2949
2950 /* Grab a reference to a task's mm, if it is not already going away */
2951 extern struct mm_struct *get_task_mm(struct task_struct *task);
2952 /*
2953 * Grab a reference to a task's mm, if it is not already going away
2954 * and ptrace_may_access with the mode parameter passed to it
2955 * succeeds.
2956 */
2957 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2958 /* Remove the current tasks stale references to the old mm_struct */
2959 extern void mm_release(struct task_struct *, struct mm_struct *);
2960
2961 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2962 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2963 struct task_struct *, unsigned long);
2964 #else
2965 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2966 struct task_struct *);
2967
2968 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2969 * via pt_regs, so ignore the tls argument passed via C. */
2970 static inline int copy_thread_tls(
2971 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2972 struct task_struct *p, unsigned long tls)
2973 {
2974 return copy_thread(clone_flags, sp, arg, p);
2975 }
2976 #endif
2977 extern void flush_thread(void);
2978
2979 #ifdef CONFIG_HAVE_EXIT_THREAD
2980 extern void exit_thread(struct task_struct *tsk);
2981 #else
2982 static inline void exit_thread(struct task_struct *tsk)
2983 {
2984 }
2985 #endif
2986
2987 extern void exit_files(struct task_struct *);
2988 extern void __cleanup_sighand(struct sighand_struct *);
2989
2990 extern void exit_itimers(struct signal_struct *);
2991 extern void flush_itimer_signals(void);
2992
2993 extern void do_group_exit(int);
2994
2995 extern int do_execve(struct filename *,
2996 const char __user * const __user *,
2997 const char __user * const __user *);
2998 extern int do_execveat(int, struct filename *,
2999 const char __user * const __user *,
3000 const char __user * const __user *,
3001 int);
3002 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3003 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3004 struct task_struct *fork_idle(int);
3005 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3006
3007 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3008 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3009 {
3010 __set_task_comm(tsk, from, false);
3011 }
3012 extern char *get_task_comm(char *to, struct task_struct *tsk);
3013
3014 #ifdef CONFIG_SMP
3015 void scheduler_ipi(void);
3016 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3017 #else
3018 static inline void scheduler_ipi(void) { }
3019 static inline unsigned long wait_task_inactive(struct task_struct *p,
3020 long match_state)
3021 {
3022 return 1;
3023 }
3024 #endif
3025
3026 #define tasklist_empty() \
3027 list_empty(&init_task.tasks)
3028
3029 #define next_task(p) \
3030 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3031
3032 #define for_each_process(p) \
3033 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3034
3035 extern bool current_is_single_threaded(void);
3036
3037 /*
3038 * Careful: do_each_thread/while_each_thread is a double loop so
3039 * 'break' will not work as expected - use goto instead.
3040 */
3041 #define do_each_thread(g, t) \
3042 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3043
3044 #define while_each_thread(g, t) \
3045 while ((t = next_thread(t)) != g)
3046
3047 #define __for_each_thread(signal, t) \
3048 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3049
3050 #define for_each_thread(p, t) \
3051 __for_each_thread((p)->signal, t)
3052
3053 /* Careful: this is a double loop, 'break' won't work as expected. */
3054 #define for_each_process_thread(p, t) \
3055 for_each_process(p) for_each_thread(p, t)
3056
3057 static inline int get_nr_threads(struct task_struct *tsk)
3058 {
3059 return tsk->signal->nr_threads;
3060 }
3061
3062 static inline bool thread_group_leader(struct task_struct *p)
3063 {
3064 return p->exit_signal >= 0;
3065 }
3066
3067 /* Do to the insanities of de_thread it is possible for a process
3068 * to have the pid of the thread group leader without actually being
3069 * the thread group leader. For iteration through the pids in proc
3070 * all we care about is that we have a task with the appropriate
3071 * pid, we don't actually care if we have the right task.
3072 */
3073 static inline bool has_group_leader_pid(struct task_struct *p)
3074 {
3075 return task_pid(p) == p->signal->leader_pid;
3076 }
3077
3078 static inline
3079 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3080 {
3081 return p1->signal == p2->signal;
3082 }
3083
3084 static inline struct task_struct *next_thread(const struct task_struct *p)
3085 {
3086 return list_entry_rcu(p->thread_group.next,
3087 struct task_struct, thread_group);
3088 }
3089
3090 static inline int thread_group_empty(struct task_struct *p)
3091 {
3092 return list_empty(&p->thread_group);
3093 }
3094
3095 #define delay_group_leader(p) \
3096 (thread_group_leader(p) && !thread_group_empty(p))
3097
3098 /*
3099 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3100 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3101 * pins the final release of task.io_context. Also protects ->cpuset and
3102 * ->cgroup.subsys[]. And ->vfork_done.
3103 *
3104 * Nests both inside and outside of read_lock(&tasklist_lock).
3105 * It must not be nested with write_lock_irq(&tasklist_lock),
3106 * neither inside nor outside.
3107 */
3108 static inline void task_lock(struct task_struct *p)
3109 {
3110 spin_lock(&p->alloc_lock);
3111 }
3112
3113 static inline void task_unlock(struct task_struct *p)
3114 {
3115 spin_unlock(&p->alloc_lock);
3116 }
3117
3118 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3119 unsigned long *flags);
3120
3121 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3122 unsigned long *flags)
3123 {
3124 struct sighand_struct *ret;
3125
3126 ret = __lock_task_sighand(tsk, flags);
3127 (void)__cond_lock(&tsk->sighand->siglock, ret);
3128 return ret;
3129 }
3130
3131 static inline void unlock_task_sighand(struct task_struct *tsk,
3132 unsigned long *flags)
3133 {
3134 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3135 }
3136
3137 /**
3138 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3139 * @tsk: task causing the changes
3140 *
3141 * All operations which modify a threadgroup - a new thread joining the
3142 * group, death of a member thread (the assertion of PF_EXITING) and
3143 * exec(2) dethreading the process and replacing the leader - are wrapped
3144 * by threadgroup_change_{begin|end}(). This is to provide a place which
3145 * subsystems needing threadgroup stability can hook into for
3146 * synchronization.
3147 */
3148 static inline void threadgroup_change_begin(struct task_struct *tsk)
3149 {
3150 might_sleep();
3151 cgroup_threadgroup_change_begin(tsk);
3152 }
3153
3154 /**
3155 * threadgroup_change_end - mark the end of changes to a threadgroup
3156 * @tsk: task causing the changes
3157 *
3158 * See threadgroup_change_begin().
3159 */
3160 static inline void threadgroup_change_end(struct task_struct *tsk)
3161 {
3162 cgroup_threadgroup_change_end(tsk);
3163 }
3164
3165 #ifdef CONFIG_THREAD_INFO_IN_TASK
3166
3167 static inline struct thread_info *task_thread_info(struct task_struct *task)
3168 {
3169 return &task->thread_info;
3170 }
3171
3172 /*
3173 * When accessing the stack of a non-current task that might exit, use
3174 * try_get_task_stack() instead. task_stack_page will return a pointer
3175 * that could get freed out from under you.
3176 */
3177 static inline void *task_stack_page(const struct task_struct *task)
3178 {
3179 return task->stack;
3180 }
3181
3182 #define setup_thread_stack(new,old) do { } while(0)
3183
3184 static inline unsigned long *end_of_stack(const struct task_struct *task)
3185 {
3186 return task->stack;
3187 }
3188
3189 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3190
3191 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
3192 #define task_stack_page(task) ((void *)(task)->stack)
3193
3194 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3195 {
3196 *task_thread_info(p) = *task_thread_info(org);
3197 task_thread_info(p)->task = p;
3198 }
3199
3200 /*
3201 * Return the address of the last usable long on the stack.
3202 *
3203 * When the stack grows down, this is just above the thread
3204 * info struct. Going any lower will corrupt the threadinfo.
3205 *
3206 * When the stack grows up, this is the highest address.
3207 * Beyond that position, we corrupt data on the next page.
3208 */
3209 static inline unsigned long *end_of_stack(struct task_struct *p)
3210 {
3211 #ifdef CONFIG_STACK_GROWSUP
3212 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3213 #else
3214 return (unsigned long *)(task_thread_info(p) + 1);
3215 #endif
3216 }
3217
3218 #endif
3219
3220 #ifdef CONFIG_THREAD_INFO_IN_TASK
3221 static inline void *try_get_task_stack(struct task_struct *tsk)
3222 {
3223 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3224 task_stack_page(tsk) : NULL;
3225 }
3226
3227 extern void put_task_stack(struct task_struct *tsk);
3228 #else
3229 static inline void *try_get_task_stack(struct task_struct *tsk)
3230 {
3231 return task_stack_page(tsk);
3232 }
3233
3234 static inline void put_task_stack(struct task_struct *tsk) {}
3235 #endif
3236
3237 #define task_stack_end_corrupted(task) \
3238 (*(end_of_stack(task)) != STACK_END_MAGIC)
3239
3240 static inline int object_is_on_stack(void *obj)
3241 {
3242 void *stack = task_stack_page(current);
3243
3244 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3245 }
3246
3247 extern void thread_stack_cache_init(void);
3248
3249 #ifdef CONFIG_DEBUG_STACK_USAGE
3250 static inline unsigned long stack_not_used(struct task_struct *p)
3251 {
3252 unsigned long *n = end_of_stack(p);
3253
3254 do { /* Skip over canary */
3255 # ifdef CONFIG_STACK_GROWSUP
3256 n--;
3257 # else
3258 n++;
3259 # endif
3260 } while (!*n);
3261
3262 # ifdef CONFIG_STACK_GROWSUP
3263 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3264 # else
3265 return (unsigned long)n - (unsigned long)end_of_stack(p);
3266 # endif
3267 }
3268 #endif
3269 extern void set_task_stack_end_magic(struct task_struct *tsk);
3270
3271 /* set thread flags in other task's structures
3272 * - see asm/thread_info.h for TIF_xxxx flags available
3273 */
3274 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3275 {
3276 set_ti_thread_flag(task_thread_info(tsk), flag);
3277 }
3278
3279 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3280 {
3281 clear_ti_thread_flag(task_thread_info(tsk), flag);
3282 }
3283
3284 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3285 {
3286 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3287 }
3288
3289 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3290 {
3291 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3292 }
3293
3294 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3295 {
3296 return test_ti_thread_flag(task_thread_info(tsk), flag);
3297 }
3298
3299 static inline void set_tsk_need_resched(struct task_struct *tsk)
3300 {
3301 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3302 }
3303
3304 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3305 {
3306 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3307 }
3308
3309 static inline int test_tsk_need_resched(struct task_struct *tsk)
3310 {
3311 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3312 }
3313
3314 static inline int restart_syscall(void)
3315 {
3316 set_tsk_thread_flag(current, TIF_SIGPENDING);
3317 return -ERESTARTNOINTR;
3318 }
3319
3320 static inline int signal_pending(struct task_struct *p)
3321 {
3322 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3323 }
3324
3325 static inline int __fatal_signal_pending(struct task_struct *p)
3326 {
3327 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3328 }
3329
3330 static inline int fatal_signal_pending(struct task_struct *p)
3331 {
3332 return signal_pending(p) && __fatal_signal_pending(p);
3333 }
3334
3335 static inline int signal_pending_state(long state, struct task_struct *p)
3336 {
3337 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3338 return 0;
3339 if (!signal_pending(p))
3340 return 0;
3341
3342 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3343 }
3344
3345 /*
3346 * cond_resched() and cond_resched_lock(): latency reduction via
3347 * explicit rescheduling in places that are safe. The return
3348 * value indicates whether a reschedule was done in fact.
3349 * cond_resched_lock() will drop the spinlock before scheduling,
3350 * cond_resched_softirq() will enable bhs before scheduling.
3351 */
3352 #ifndef CONFIG_PREEMPT
3353 extern int _cond_resched(void);
3354 #else
3355 static inline int _cond_resched(void) { return 0; }
3356 #endif
3357
3358 #define cond_resched() ({ \
3359 ___might_sleep(__FILE__, __LINE__, 0); \
3360 _cond_resched(); \
3361 })
3362
3363 extern int __cond_resched_lock(spinlock_t *lock);
3364
3365 #define cond_resched_lock(lock) ({ \
3366 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3367 __cond_resched_lock(lock); \
3368 })
3369
3370 extern int __cond_resched_softirq(void);
3371
3372 #define cond_resched_softirq() ({ \
3373 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3374 __cond_resched_softirq(); \
3375 })
3376
3377 static inline void cond_resched_rcu(void)
3378 {
3379 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3380 rcu_read_unlock();
3381 cond_resched();
3382 rcu_read_lock();
3383 #endif
3384 }
3385
3386 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3387 {
3388 #ifdef CONFIG_DEBUG_PREEMPT
3389 return p->preempt_disable_ip;
3390 #else
3391 return 0;
3392 #endif
3393 }
3394
3395 /*
3396 * Does a critical section need to be broken due to another
3397 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3398 * but a general need for low latency)
3399 */
3400 static inline int spin_needbreak(spinlock_t *lock)
3401 {
3402 #ifdef CONFIG_PREEMPT
3403 return spin_is_contended(lock);
3404 #else
3405 return 0;
3406 #endif
3407 }
3408
3409 /*
3410 * Idle thread specific functions to determine the need_resched
3411 * polling state.
3412 */
3413 #ifdef TIF_POLLING_NRFLAG
3414 static inline int tsk_is_polling(struct task_struct *p)
3415 {
3416 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3417 }
3418
3419 static inline void __current_set_polling(void)
3420 {
3421 set_thread_flag(TIF_POLLING_NRFLAG);
3422 }
3423
3424 static inline bool __must_check current_set_polling_and_test(void)
3425 {
3426 __current_set_polling();
3427
3428 /*
3429 * Polling state must be visible before we test NEED_RESCHED,
3430 * paired by resched_curr()
3431 */
3432 smp_mb__after_atomic();
3433
3434 return unlikely(tif_need_resched());
3435 }
3436
3437 static inline void __current_clr_polling(void)
3438 {
3439 clear_thread_flag(TIF_POLLING_NRFLAG);
3440 }
3441
3442 static inline bool __must_check current_clr_polling_and_test(void)
3443 {
3444 __current_clr_polling();
3445
3446 /*
3447 * Polling state must be visible before we test NEED_RESCHED,
3448 * paired by resched_curr()
3449 */
3450 smp_mb__after_atomic();
3451
3452 return unlikely(tif_need_resched());
3453 }
3454
3455 #else
3456 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3457 static inline void __current_set_polling(void) { }
3458 static inline void __current_clr_polling(void) { }
3459
3460 static inline bool __must_check current_set_polling_and_test(void)
3461 {
3462 return unlikely(tif_need_resched());
3463 }
3464 static inline bool __must_check current_clr_polling_and_test(void)
3465 {
3466 return unlikely(tif_need_resched());
3467 }
3468 #endif
3469
3470 static inline void current_clr_polling(void)
3471 {
3472 __current_clr_polling();
3473
3474 /*
3475 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3476 * Once the bit is cleared, we'll get IPIs with every new
3477 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3478 * fold.
3479 */
3480 smp_mb(); /* paired with resched_curr() */
3481
3482 preempt_fold_need_resched();
3483 }
3484
3485 static __always_inline bool need_resched(void)
3486 {
3487 return unlikely(tif_need_resched());
3488 }
3489
3490 /*
3491 * Thread group CPU time accounting.
3492 */
3493 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3494 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3495
3496 /*
3497 * Reevaluate whether the task has signals pending delivery.
3498 * Wake the task if so.
3499 * This is required every time the blocked sigset_t changes.
3500 * callers must hold sighand->siglock.
3501 */
3502 extern void recalc_sigpending_and_wake(struct task_struct *t);
3503 extern void recalc_sigpending(void);
3504
3505 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3506
3507 static inline void signal_wake_up(struct task_struct *t, bool resume)
3508 {
3509 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3510 }
3511 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3512 {
3513 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3514 }
3515
3516 /*
3517 * Wrappers for p->thread_info->cpu access. No-op on UP.
3518 */
3519 #ifdef CONFIG_SMP
3520
3521 static inline unsigned int task_cpu(const struct task_struct *p)
3522 {
3523 #ifdef CONFIG_THREAD_INFO_IN_TASK
3524 return p->cpu;
3525 #else
3526 return task_thread_info(p)->cpu;
3527 #endif
3528 }
3529
3530 static inline int task_node(const struct task_struct *p)
3531 {
3532 return cpu_to_node(task_cpu(p));
3533 }
3534
3535 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3536
3537 #else
3538
3539 static inline unsigned int task_cpu(const struct task_struct *p)
3540 {
3541 return 0;
3542 }
3543
3544 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3545 {
3546 }
3547
3548 #endif /* CONFIG_SMP */
3549
3550 /*
3551 * In order to reduce various lock holder preemption latencies provide an
3552 * interface to see if a vCPU is currently running or not.
3553 *
3554 * This allows us to terminate optimistic spin loops and block, analogous to
3555 * the native optimistic spin heuristic of testing if the lock owner task is
3556 * running or not.
3557 */
3558 #ifndef vcpu_is_preempted
3559 # define vcpu_is_preempted(cpu) false
3560 #endif
3561
3562 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3563 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3564
3565 #ifdef CONFIG_CGROUP_SCHED
3566 extern struct task_group root_task_group;
3567 #endif /* CONFIG_CGROUP_SCHED */
3568
3569 extern int task_can_switch_user(struct user_struct *up,
3570 struct task_struct *tsk);
3571
3572 #ifdef CONFIG_TASK_XACCT
3573 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3574 {
3575 tsk->ioac.rchar += amt;
3576 }
3577
3578 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3579 {
3580 tsk->ioac.wchar += amt;
3581 }
3582
3583 static inline void inc_syscr(struct task_struct *tsk)
3584 {
3585 tsk->ioac.syscr++;
3586 }
3587
3588 static inline void inc_syscw(struct task_struct *tsk)
3589 {
3590 tsk->ioac.syscw++;
3591 }
3592 #else
3593 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3594 {
3595 }
3596
3597 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3598 {
3599 }
3600
3601 static inline void inc_syscr(struct task_struct *tsk)
3602 {
3603 }
3604
3605 static inline void inc_syscw(struct task_struct *tsk)
3606 {
3607 }
3608 #endif
3609
3610 #ifndef TASK_SIZE_OF
3611 #define TASK_SIZE_OF(tsk) TASK_SIZE
3612 #endif
3613
3614 #ifdef CONFIG_MEMCG
3615 extern void mm_update_next_owner(struct mm_struct *mm);
3616 #else
3617 static inline void mm_update_next_owner(struct mm_struct *mm)
3618 {
3619 }
3620 #endif /* CONFIG_MEMCG */
3621
3622 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3623 unsigned int limit)
3624 {
3625 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3626 }
3627
3628 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3629 unsigned int limit)
3630 {
3631 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3632 }
3633
3634 static inline unsigned long rlimit(unsigned int limit)
3635 {
3636 return task_rlimit(current, limit);
3637 }
3638
3639 static inline unsigned long rlimit_max(unsigned int limit)
3640 {
3641 return task_rlimit_max(current, limit);
3642 }
3643
3644 #define SCHED_CPUFREQ_RT (1U << 0)
3645 #define SCHED_CPUFREQ_DL (1U << 1)
3646 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
3647
3648 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3649
3650 #ifdef CONFIG_CPU_FREQ
3651 struct update_util_data {
3652 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3653 };
3654
3655 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3656 void (*func)(struct update_util_data *data, u64 time,
3657 unsigned int flags));
3658 void cpufreq_remove_update_util_hook(int cpu);
3659 #endif /* CONFIG_CPU_FREQ */
3660
3661 #endif