]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(void);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272 extern void task_rq_unlock_wait(struct task_struct *p);
273
274 extern cpumask_var_t nohz_cpu_mask;
275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
276 extern int select_nohz_load_balancer(int cpu);
277 extern int get_nohz_load_balancer(void);
278 #else
279 static inline int select_nohz_load_balancer(int cpu)
280 {
281 return 0;
282 }
283 #endif
284
285 /*
286 * Only dump TASK_* tasks. (0 for all tasks)
287 */
288 extern void show_state_filter(unsigned long state_filter);
289
290 static inline void show_state(void)
291 {
292 show_state_filter(0);
293 }
294
295 extern void show_regs(struct pt_regs *);
296
297 /*
298 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
299 * task), SP is the stack pointer of the first frame that should be shown in the back
300 * trace (or NULL if the entire call-chain of the task should be shown).
301 */
302 extern void show_stack(struct task_struct *task, unsigned long *sp);
303
304 void io_schedule(void);
305 long io_schedule_timeout(long timeout);
306
307 extern void cpu_init (void);
308 extern void trap_init(void);
309 extern void update_process_times(int user);
310 extern void scheduler_tick(void);
311
312 extern void sched_show_task(struct task_struct *p);
313
314 #ifdef CONFIG_DETECT_SOFTLOCKUP
315 extern void softlockup_tick(void);
316 extern void touch_softlockup_watchdog(void);
317 extern void touch_softlockup_watchdog_sync(void);
318 extern void touch_all_softlockup_watchdogs(void);
319 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
320 void __user *buffer,
321 size_t *lenp, loff_t *ppos);
322 extern unsigned int softlockup_panic;
323 extern int softlockup_thresh;
324 #else
325 static inline void softlockup_tick(void)
326 {
327 }
328 static inline void touch_softlockup_watchdog(void)
329 {
330 }
331 static inline void touch_softlockup_watchdog_sync(void)
332 {
333 }
334 static inline void touch_all_softlockup_watchdogs(void)
335 {
336 }
337 #endif
338
339 #ifdef CONFIG_DETECT_HUNG_TASK
340 extern unsigned int sysctl_hung_task_panic;
341 extern unsigned long sysctl_hung_task_check_count;
342 extern unsigned long sysctl_hung_task_timeout_secs;
343 extern unsigned long sysctl_hung_task_warnings;
344 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
345 void __user *buffer,
346 size_t *lenp, loff_t *ppos);
347 #endif
348
349 /* Attach to any functions which should be ignored in wchan output. */
350 #define __sched __attribute__((__section__(".sched.text")))
351
352 /* Linker adds these: start and end of __sched functions */
353 extern char __sched_text_start[], __sched_text_end[];
354
355 /* Is this address in the __sched functions? */
356 extern int in_sched_functions(unsigned long addr);
357
358 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
359 extern signed long schedule_timeout(signed long timeout);
360 extern signed long schedule_timeout_interruptible(signed long timeout);
361 extern signed long schedule_timeout_killable(signed long timeout);
362 extern signed long schedule_timeout_uninterruptible(signed long timeout);
363 asmlinkage void schedule(void);
364 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
365
366 struct nsproxy;
367 struct user_namespace;
368
369 /*
370 * Default maximum number of active map areas, this limits the number of vmas
371 * per mm struct. Users can overwrite this number by sysctl but there is a
372 * problem.
373 *
374 * When a program's coredump is generated as ELF format, a section is created
375 * per a vma. In ELF, the number of sections is represented in unsigned short.
376 * This means the number of sections should be smaller than 65535 at coredump.
377 * Because the kernel adds some informative sections to a image of program at
378 * generating coredump, we need some margin. The number of extra sections is
379 * 1-3 now and depends on arch. We use "5" as safe margin, here.
380 */
381 #define MAPCOUNT_ELF_CORE_MARGIN (5)
382 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
383
384 extern int sysctl_max_map_count;
385
386 #include <linux/aio.h>
387
388 #ifdef CONFIG_MMU
389 extern void arch_pick_mmap_layout(struct mm_struct *mm);
390 extern unsigned long
391 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
392 unsigned long, unsigned long);
393 extern unsigned long
394 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
395 unsigned long len, unsigned long pgoff,
396 unsigned long flags);
397 extern void arch_unmap_area(struct mm_struct *, unsigned long);
398 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
399 #else
400 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
401 #endif
402
403
404 extern void set_dumpable(struct mm_struct *mm, int value);
405 extern int get_dumpable(struct mm_struct *mm);
406
407 /* mm flags */
408 /* dumpable bits */
409 #define MMF_DUMPABLE 0 /* core dump is permitted */
410 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
411
412 #define MMF_DUMPABLE_BITS 2
413 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
414
415 /* coredump filter bits */
416 #define MMF_DUMP_ANON_PRIVATE 2
417 #define MMF_DUMP_ANON_SHARED 3
418 #define MMF_DUMP_MAPPED_PRIVATE 4
419 #define MMF_DUMP_MAPPED_SHARED 5
420 #define MMF_DUMP_ELF_HEADERS 6
421 #define MMF_DUMP_HUGETLB_PRIVATE 7
422 #define MMF_DUMP_HUGETLB_SHARED 8
423
424 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
425 #define MMF_DUMP_FILTER_BITS 7
426 #define MMF_DUMP_FILTER_MASK \
427 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
428 #define MMF_DUMP_FILTER_DEFAULT \
429 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
430 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
431
432 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
433 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
434 #else
435 # define MMF_DUMP_MASK_DEFAULT_ELF 0
436 #endif
437 /* leave room for more dump flags */
438 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
439
440 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
441
442 struct sighand_struct {
443 atomic_t count;
444 struct k_sigaction action[_NSIG];
445 spinlock_t siglock;
446 wait_queue_head_t signalfd_wqh;
447 };
448
449 struct pacct_struct {
450 int ac_flag;
451 long ac_exitcode;
452 unsigned long ac_mem;
453 cputime_t ac_utime, ac_stime;
454 unsigned long ac_minflt, ac_majflt;
455 };
456
457 struct cpu_itimer {
458 cputime_t expires;
459 cputime_t incr;
460 u32 error;
461 u32 incr_error;
462 };
463
464 /**
465 * struct task_cputime - collected CPU time counts
466 * @utime: time spent in user mode, in &cputime_t units
467 * @stime: time spent in kernel mode, in &cputime_t units
468 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
469 *
470 * This structure groups together three kinds of CPU time that are
471 * tracked for threads and thread groups. Most things considering
472 * CPU time want to group these counts together and treat all three
473 * of them in parallel.
474 */
475 struct task_cputime {
476 cputime_t utime;
477 cputime_t stime;
478 unsigned long long sum_exec_runtime;
479 };
480 /* Alternate field names when used to cache expirations. */
481 #define prof_exp stime
482 #define virt_exp utime
483 #define sched_exp sum_exec_runtime
484
485 #define INIT_CPUTIME \
486 (struct task_cputime) { \
487 .utime = cputime_zero, \
488 .stime = cputime_zero, \
489 .sum_exec_runtime = 0, \
490 }
491
492 /*
493 * Disable preemption until the scheduler is running.
494 * Reset by start_kernel()->sched_init()->init_idle().
495 *
496 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
497 * before the scheduler is active -- see should_resched().
498 */
499 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
500
501 /**
502 * struct thread_group_cputimer - thread group interval timer counts
503 * @cputime: thread group interval timers.
504 * @running: non-zero when there are timers running and
505 * @cputime receives updates.
506 * @lock: lock for fields in this struct.
507 *
508 * This structure contains the version of task_cputime, above, that is
509 * used for thread group CPU timer calculations.
510 */
511 struct thread_group_cputimer {
512 struct task_cputime cputime;
513 int running;
514 spinlock_t lock;
515 };
516
517 /*
518 * NOTE! "signal_struct" does not have it's own
519 * locking, because a shared signal_struct always
520 * implies a shared sighand_struct, so locking
521 * sighand_struct is always a proper superset of
522 * the locking of signal_struct.
523 */
524 struct signal_struct {
525 atomic_t count;
526 atomic_t live;
527
528 wait_queue_head_t wait_chldexit; /* for wait4() */
529
530 /* current thread group signal load-balancing target: */
531 struct task_struct *curr_target;
532
533 /* shared signal handling: */
534 struct sigpending shared_pending;
535
536 /* thread group exit support */
537 int group_exit_code;
538 /* overloaded:
539 * - notify group_exit_task when ->count is equal to notify_count
540 * - everyone except group_exit_task is stopped during signal delivery
541 * of fatal signals, group_exit_task processes the signal.
542 */
543 int notify_count;
544 struct task_struct *group_exit_task;
545
546 /* thread group stop support, overloads group_exit_code too */
547 int group_stop_count;
548 unsigned int flags; /* see SIGNAL_* flags below */
549
550 /* POSIX.1b Interval Timers */
551 struct list_head posix_timers;
552
553 /* ITIMER_REAL timer for the process */
554 struct hrtimer real_timer;
555 struct pid *leader_pid;
556 ktime_t it_real_incr;
557
558 /*
559 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
560 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
561 * values are defined to 0 and 1 respectively
562 */
563 struct cpu_itimer it[2];
564
565 /*
566 * Thread group totals for process CPU timers.
567 * See thread_group_cputimer(), et al, for details.
568 */
569 struct thread_group_cputimer cputimer;
570
571 /* Earliest-expiration cache. */
572 struct task_cputime cputime_expires;
573
574 struct list_head cpu_timers[3];
575
576 struct pid *tty_old_pgrp;
577
578 /* boolean value for session group leader */
579 int leader;
580
581 struct tty_struct *tty; /* NULL if no tty */
582
583 /*
584 * Cumulative resource counters for dead threads in the group,
585 * and for reaped dead child processes forked by this group.
586 * Live threads maintain their own counters and add to these
587 * in __exit_signal, except for the group leader.
588 */
589 cputime_t utime, stime, cutime, cstime;
590 cputime_t gtime;
591 cputime_t cgtime;
592 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
593 cputime_t prev_utime, prev_stime;
594 #endif
595 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
596 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
597 unsigned long inblock, oublock, cinblock, coublock;
598 unsigned long maxrss, cmaxrss;
599 struct task_io_accounting ioac;
600
601 /*
602 * Cumulative ns of schedule CPU time fo dead threads in the
603 * group, not including a zombie group leader, (This only differs
604 * from jiffies_to_ns(utime + stime) if sched_clock uses something
605 * other than jiffies.)
606 */
607 unsigned long long sum_sched_runtime;
608
609 /*
610 * We don't bother to synchronize most readers of this at all,
611 * because there is no reader checking a limit that actually needs
612 * to get both rlim_cur and rlim_max atomically, and either one
613 * alone is a single word that can safely be read normally.
614 * getrlimit/setrlimit use task_lock(current->group_leader) to
615 * protect this instead of the siglock, because they really
616 * have no need to disable irqs.
617 */
618 struct rlimit rlim[RLIM_NLIMITS];
619
620 #ifdef CONFIG_BSD_PROCESS_ACCT
621 struct pacct_struct pacct; /* per-process accounting information */
622 #endif
623 #ifdef CONFIG_TASKSTATS
624 struct taskstats *stats;
625 #endif
626 #ifdef CONFIG_AUDIT
627 unsigned audit_tty;
628 struct tty_audit_buf *tty_audit_buf;
629 #endif
630
631 int oom_adj; /* OOM kill score adjustment (bit shift) */
632 };
633
634 /* Context switch must be unlocked if interrupts are to be enabled */
635 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
636 # define __ARCH_WANT_UNLOCKED_CTXSW
637 #endif
638
639 /*
640 * Bits in flags field of signal_struct.
641 */
642 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
643 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
644 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
645 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
646 /*
647 * Pending notifications to parent.
648 */
649 #define SIGNAL_CLD_STOPPED 0x00000010
650 #define SIGNAL_CLD_CONTINUED 0x00000020
651 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
652
653 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
654
655 /* If true, all threads except ->group_exit_task have pending SIGKILL */
656 static inline int signal_group_exit(const struct signal_struct *sig)
657 {
658 return (sig->flags & SIGNAL_GROUP_EXIT) ||
659 (sig->group_exit_task != NULL);
660 }
661
662 /*
663 * Some day this will be a full-fledged user tracking system..
664 */
665 struct user_struct {
666 atomic_t __count; /* reference count */
667 atomic_t processes; /* How many processes does this user have? */
668 atomic_t files; /* How many open files does this user have? */
669 atomic_t sigpending; /* How many pending signals does this user have? */
670 #ifdef CONFIG_INOTIFY_USER
671 atomic_t inotify_watches; /* How many inotify watches does this user have? */
672 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
673 #endif
674 #ifdef CONFIG_EPOLL
675 atomic_t epoll_watches; /* The number of file descriptors currently watched */
676 #endif
677 #ifdef CONFIG_POSIX_MQUEUE
678 /* protected by mq_lock */
679 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
680 #endif
681 unsigned long locked_shm; /* How many pages of mlocked shm ? */
682
683 #ifdef CONFIG_KEYS
684 struct key *uid_keyring; /* UID specific keyring */
685 struct key *session_keyring; /* UID's default session keyring */
686 #endif
687
688 /* Hash table maintenance information */
689 struct hlist_node uidhash_node;
690 uid_t uid;
691 struct user_namespace *user_ns;
692
693 #ifdef CONFIG_PERF_EVENTS
694 atomic_long_t locked_vm;
695 #endif
696 };
697
698 extern int uids_sysfs_init(void);
699
700 extern struct user_struct *find_user(uid_t);
701
702 extern struct user_struct root_user;
703 #define INIT_USER (&root_user)
704
705
706 struct backing_dev_info;
707 struct reclaim_state;
708
709 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
710 struct sched_info {
711 /* cumulative counters */
712 unsigned long pcount; /* # of times run on this cpu */
713 unsigned long long run_delay; /* time spent waiting on a runqueue */
714
715 /* timestamps */
716 unsigned long long last_arrival,/* when we last ran on a cpu */
717 last_queued; /* when we were last queued to run */
718 #ifdef CONFIG_SCHEDSTATS
719 /* BKL stats */
720 unsigned int bkl_count;
721 #endif
722 };
723 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
724
725 #ifdef CONFIG_TASK_DELAY_ACCT
726 struct task_delay_info {
727 spinlock_t lock;
728 unsigned int flags; /* Private per-task flags */
729
730 /* For each stat XXX, add following, aligned appropriately
731 *
732 * struct timespec XXX_start, XXX_end;
733 * u64 XXX_delay;
734 * u32 XXX_count;
735 *
736 * Atomicity of updates to XXX_delay, XXX_count protected by
737 * single lock above (split into XXX_lock if contention is an issue).
738 */
739
740 /*
741 * XXX_count is incremented on every XXX operation, the delay
742 * associated with the operation is added to XXX_delay.
743 * XXX_delay contains the accumulated delay time in nanoseconds.
744 */
745 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
746 u64 blkio_delay; /* wait for sync block io completion */
747 u64 swapin_delay; /* wait for swapin block io completion */
748 u32 blkio_count; /* total count of the number of sync block */
749 /* io operations performed */
750 u32 swapin_count; /* total count of the number of swapin block */
751 /* io operations performed */
752
753 struct timespec freepages_start, freepages_end;
754 u64 freepages_delay; /* wait for memory reclaim */
755 u32 freepages_count; /* total count of memory reclaim */
756 };
757 #endif /* CONFIG_TASK_DELAY_ACCT */
758
759 static inline int sched_info_on(void)
760 {
761 #ifdef CONFIG_SCHEDSTATS
762 return 1;
763 #elif defined(CONFIG_TASK_DELAY_ACCT)
764 extern int delayacct_on;
765 return delayacct_on;
766 #else
767 return 0;
768 #endif
769 }
770
771 enum cpu_idle_type {
772 CPU_IDLE,
773 CPU_NOT_IDLE,
774 CPU_NEWLY_IDLE,
775 CPU_MAX_IDLE_TYPES
776 };
777
778 /*
779 * sched-domains (multiprocessor balancing) declarations:
780 */
781
782 /*
783 * Increase resolution of nice-level calculations:
784 */
785 #define SCHED_LOAD_SHIFT 10
786 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
787
788 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
789
790 #ifdef CONFIG_SMP
791 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
792 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
793 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
794 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
795 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
796 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
797 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
798 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
799 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
800 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
801 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
802
803 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
804
805 enum powersavings_balance_level {
806 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
807 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
808 * first for long running threads
809 */
810 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
811 * cpu package for power savings
812 */
813 MAX_POWERSAVINGS_BALANCE_LEVELS
814 };
815
816 extern int sched_mc_power_savings, sched_smt_power_savings;
817
818 static inline int sd_balance_for_mc_power(void)
819 {
820 if (sched_smt_power_savings)
821 return SD_POWERSAVINGS_BALANCE;
822
823 if (!sched_mc_power_savings)
824 return SD_PREFER_SIBLING;
825
826 return 0;
827 }
828
829 static inline int sd_balance_for_package_power(void)
830 {
831 if (sched_mc_power_savings | sched_smt_power_savings)
832 return SD_POWERSAVINGS_BALANCE;
833
834 return SD_PREFER_SIBLING;
835 }
836
837 /*
838 * Optimise SD flags for power savings:
839 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
840 * Keep default SD flags if sched_{smt,mc}_power_saving=0
841 */
842
843 static inline int sd_power_saving_flags(void)
844 {
845 if (sched_mc_power_savings | sched_smt_power_savings)
846 return SD_BALANCE_NEWIDLE;
847
848 return 0;
849 }
850
851 struct sched_group {
852 struct sched_group *next; /* Must be a circular list */
853
854 /*
855 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
856 * single CPU.
857 */
858 unsigned int cpu_power;
859
860 /*
861 * The CPUs this group covers.
862 *
863 * NOTE: this field is variable length. (Allocated dynamically
864 * by attaching extra space to the end of the structure,
865 * depending on how many CPUs the kernel has booted up with)
866 *
867 * It is also be embedded into static data structures at build
868 * time. (See 'struct static_sched_group' in kernel/sched.c)
869 */
870 unsigned long cpumask[0];
871 };
872
873 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
874 {
875 return to_cpumask(sg->cpumask);
876 }
877
878 enum sched_domain_level {
879 SD_LV_NONE = 0,
880 SD_LV_SIBLING,
881 SD_LV_MC,
882 SD_LV_CPU,
883 SD_LV_NODE,
884 SD_LV_ALLNODES,
885 SD_LV_MAX
886 };
887
888 struct sched_domain_attr {
889 int relax_domain_level;
890 };
891
892 #define SD_ATTR_INIT (struct sched_domain_attr) { \
893 .relax_domain_level = -1, \
894 }
895
896 struct sched_domain {
897 /* These fields must be setup */
898 struct sched_domain *parent; /* top domain must be null terminated */
899 struct sched_domain *child; /* bottom domain must be null terminated */
900 struct sched_group *groups; /* the balancing groups of the domain */
901 unsigned long min_interval; /* Minimum balance interval ms */
902 unsigned long max_interval; /* Maximum balance interval ms */
903 unsigned int busy_factor; /* less balancing by factor if busy */
904 unsigned int imbalance_pct; /* No balance until over watermark */
905 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
906 unsigned int busy_idx;
907 unsigned int idle_idx;
908 unsigned int newidle_idx;
909 unsigned int wake_idx;
910 unsigned int forkexec_idx;
911 unsigned int smt_gain;
912 int flags; /* See SD_* */
913 enum sched_domain_level level;
914
915 /* Runtime fields. */
916 unsigned long last_balance; /* init to jiffies. units in jiffies */
917 unsigned int balance_interval; /* initialise to 1. units in ms. */
918 unsigned int nr_balance_failed; /* initialise to 0 */
919
920 u64 last_update;
921
922 #ifdef CONFIG_SCHEDSTATS
923 /* load_balance() stats */
924 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
932
933 /* Active load balancing */
934 unsigned int alb_count;
935 unsigned int alb_failed;
936 unsigned int alb_pushed;
937
938 /* SD_BALANCE_EXEC stats */
939 unsigned int sbe_count;
940 unsigned int sbe_balanced;
941 unsigned int sbe_pushed;
942
943 /* SD_BALANCE_FORK stats */
944 unsigned int sbf_count;
945 unsigned int sbf_balanced;
946 unsigned int sbf_pushed;
947
948 /* try_to_wake_up() stats */
949 unsigned int ttwu_wake_remote;
950 unsigned int ttwu_move_affine;
951 unsigned int ttwu_move_balance;
952 #endif
953 #ifdef CONFIG_SCHED_DEBUG
954 char *name;
955 #endif
956
957 /*
958 * Span of all CPUs in this domain.
959 *
960 * NOTE: this field is variable length. (Allocated dynamically
961 * by attaching extra space to the end of the structure,
962 * depending on how many CPUs the kernel has booted up with)
963 *
964 * It is also be embedded into static data structures at build
965 * time. (See 'struct static_sched_domain' in kernel/sched.c)
966 */
967 unsigned long span[0];
968 };
969
970 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
971 {
972 return to_cpumask(sd->span);
973 }
974
975 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
976 struct sched_domain_attr *dattr_new);
977
978 /* Allocate an array of sched domains, for partition_sched_domains(). */
979 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
980 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
981
982 /* Test a flag in parent sched domain */
983 static inline int test_sd_parent(struct sched_domain *sd, int flag)
984 {
985 if (sd->parent && (sd->parent->flags & flag))
986 return 1;
987
988 return 0;
989 }
990
991 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
992 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
993
994 #else /* CONFIG_SMP */
995
996 struct sched_domain_attr;
997
998 static inline void
999 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1000 struct sched_domain_attr *dattr_new)
1001 {
1002 }
1003 #endif /* !CONFIG_SMP */
1004
1005
1006 struct io_context; /* See blkdev.h */
1007
1008
1009 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1010 extern void prefetch_stack(struct task_struct *t);
1011 #else
1012 static inline void prefetch_stack(struct task_struct *t) { }
1013 #endif
1014
1015 struct audit_context; /* See audit.c */
1016 struct mempolicy;
1017 struct pipe_inode_info;
1018 struct uts_namespace;
1019
1020 struct rq;
1021 struct sched_domain;
1022
1023 /*
1024 * wake flags
1025 */
1026 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1027 #define WF_FORK 0x02 /* child wakeup after fork */
1028
1029 struct sched_class {
1030 const struct sched_class *next;
1031
1032 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup,
1033 bool head);
1034 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1035 void (*yield_task) (struct rq *rq);
1036
1037 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1038
1039 struct task_struct * (*pick_next_task) (struct rq *rq);
1040 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1041
1042 #ifdef CONFIG_SMP
1043 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1044
1045 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1046 void (*post_schedule) (struct rq *this_rq);
1047 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1048 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1049
1050 void (*set_cpus_allowed)(struct task_struct *p,
1051 const struct cpumask *newmask);
1052
1053 void (*rq_online)(struct rq *rq);
1054 void (*rq_offline)(struct rq *rq);
1055 #endif
1056
1057 void (*set_curr_task) (struct rq *rq);
1058 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1059 void (*task_fork) (struct task_struct *p);
1060
1061 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1062 int running);
1063 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1064 int running);
1065 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1066 int oldprio, int running);
1067
1068 unsigned int (*get_rr_interval) (struct rq *rq,
1069 struct task_struct *task);
1070
1071 #ifdef CONFIG_FAIR_GROUP_SCHED
1072 void (*moved_group) (struct task_struct *p, int on_rq);
1073 #endif
1074 };
1075
1076 struct load_weight {
1077 unsigned long weight, inv_weight;
1078 };
1079
1080 /*
1081 * CFS stats for a schedulable entity (task, task-group etc)
1082 *
1083 * Current field usage histogram:
1084 *
1085 * 4 se->block_start
1086 * 4 se->run_node
1087 * 4 se->sleep_start
1088 * 6 se->load.weight
1089 */
1090 struct sched_entity {
1091 struct load_weight load; /* for load-balancing */
1092 struct rb_node run_node;
1093 struct list_head group_node;
1094 unsigned int on_rq;
1095
1096 u64 exec_start;
1097 u64 sum_exec_runtime;
1098 u64 vruntime;
1099 u64 prev_sum_exec_runtime;
1100
1101 u64 last_wakeup;
1102 u64 avg_overlap;
1103
1104 u64 nr_migrations;
1105
1106 u64 start_runtime;
1107 u64 avg_wakeup;
1108
1109 #ifdef CONFIG_SCHEDSTATS
1110 u64 wait_start;
1111 u64 wait_max;
1112 u64 wait_count;
1113 u64 wait_sum;
1114 u64 iowait_count;
1115 u64 iowait_sum;
1116
1117 u64 sleep_start;
1118 u64 sleep_max;
1119 s64 sum_sleep_runtime;
1120
1121 u64 block_start;
1122 u64 block_max;
1123 u64 exec_max;
1124 u64 slice_max;
1125
1126 u64 nr_migrations_cold;
1127 u64 nr_failed_migrations_affine;
1128 u64 nr_failed_migrations_running;
1129 u64 nr_failed_migrations_hot;
1130 u64 nr_forced_migrations;
1131
1132 u64 nr_wakeups;
1133 u64 nr_wakeups_sync;
1134 u64 nr_wakeups_migrate;
1135 u64 nr_wakeups_local;
1136 u64 nr_wakeups_remote;
1137 u64 nr_wakeups_affine;
1138 u64 nr_wakeups_affine_attempts;
1139 u64 nr_wakeups_passive;
1140 u64 nr_wakeups_idle;
1141 #endif
1142
1143 #ifdef CONFIG_FAIR_GROUP_SCHED
1144 struct sched_entity *parent;
1145 /* rq on which this entity is (to be) queued: */
1146 struct cfs_rq *cfs_rq;
1147 /* rq "owned" by this entity/group: */
1148 struct cfs_rq *my_q;
1149 #endif
1150 };
1151
1152 struct sched_rt_entity {
1153 struct list_head run_list;
1154 unsigned long timeout;
1155 unsigned int time_slice;
1156 int nr_cpus_allowed;
1157
1158 struct sched_rt_entity *back;
1159 #ifdef CONFIG_RT_GROUP_SCHED
1160 struct sched_rt_entity *parent;
1161 /* rq on which this entity is (to be) queued: */
1162 struct rt_rq *rt_rq;
1163 /* rq "owned" by this entity/group: */
1164 struct rt_rq *my_q;
1165 #endif
1166 };
1167
1168 struct rcu_node;
1169
1170 struct task_struct {
1171 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1172 void *stack;
1173 atomic_t usage;
1174 unsigned int flags; /* per process flags, defined below */
1175 unsigned int ptrace;
1176
1177 int lock_depth; /* BKL lock depth */
1178
1179 #ifdef CONFIG_SMP
1180 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1181 int oncpu;
1182 #endif
1183 #endif
1184
1185 int prio, static_prio, normal_prio;
1186 unsigned int rt_priority;
1187 const struct sched_class *sched_class;
1188 struct sched_entity se;
1189 struct sched_rt_entity rt;
1190
1191 #ifdef CONFIG_PREEMPT_NOTIFIERS
1192 /* list of struct preempt_notifier: */
1193 struct hlist_head preempt_notifiers;
1194 #endif
1195
1196 /*
1197 * fpu_counter contains the number of consecutive context switches
1198 * that the FPU is used. If this is over a threshold, the lazy fpu
1199 * saving becomes unlazy to save the trap. This is an unsigned char
1200 * so that after 256 times the counter wraps and the behavior turns
1201 * lazy again; this to deal with bursty apps that only use FPU for
1202 * a short time
1203 */
1204 unsigned char fpu_counter;
1205 #ifdef CONFIG_BLK_DEV_IO_TRACE
1206 unsigned int btrace_seq;
1207 #endif
1208
1209 unsigned int policy;
1210 cpumask_t cpus_allowed;
1211
1212 #ifdef CONFIG_TREE_PREEMPT_RCU
1213 int rcu_read_lock_nesting;
1214 char rcu_read_unlock_special;
1215 struct rcu_node *rcu_blocked_node;
1216 struct list_head rcu_node_entry;
1217 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1218
1219 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1220 struct sched_info sched_info;
1221 #endif
1222
1223 struct list_head tasks;
1224 struct plist_node pushable_tasks;
1225
1226 struct mm_struct *mm, *active_mm;
1227 #if defined(SPLIT_RSS_COUNTING)
1228 struct task_rss_stat rss_stat;
1229 #endif
1230 /* task state */
1231 int exit_state;
1232 int exit_code, exit_signal;
1233 int pdeath_signal; /* The signal sent when the parent dies */
1234 /* ??? */
1235 unsigned int personality;
1236 unsigned did_exec:1;
1237 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1238 * execve */
1239 unsigned in_iowait:1;
1240
1241
1242 /* Revert to default priority/policy when forking */
1243 unsigned sched_reset_on_fork:1;
1244
1245 pid_t pid;
1246 pid_t tgid;
1247
1248 #ifdef CONFIG_CC_STACKPROTECTOR
1249 /* Canary value for the -fstack-protector gcc feature */
1250 unsigned long stack_canary;
1251 #endif
1252
1253 /*
1254 * pointers to (original) parent process, youngest child, younger sibling,
1255 * older sibling, respectively. (p->father can be replaced with
1256 * p->real_parent->pid)
1257 */
1258 struct task_struct *real_parent; /* real parent process */
1259 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1260 /*
1261 * children/sibling forms the list of my natural children
1262 */
1263 struct list_head children; /* list of my children */
1264 struct list_head sibling; /* linkage in my parent's children list */
1265 struct task_struct *group_leader; /* threadgroup leader */
1266
1267 /*
1268 * ptraced is the list of tasks this task is using ptrace on.
1269 * This includes both natural children and PTRACE_ATTACH targets.
1270 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1271 */
1272 struct list_head ptraced;
1273 struct list_head ptrace_entry;
1274
1275 /*
1276 * This is the tracer handle for the ptrace BTS extension.
1277 * This field actually belongs to the ptracer task.
1278 */
1279 struct bts_context *bts;
1280
1281 /* PID/PID hash table linkage. */
1282 struct pid_link pids[PIDTYPE_MAX];
1283 struct list_head thread_group;
1284
1285 struct completion *vfork_done; /* for vfork() */
1286 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1287 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1288
1289 cputime_t utime, stime, utimescaled, stimescaled;
1290 cputime_t gtime;
1291 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1292 cputime_t prev_utime, prev_stime;
1293 #endif
1294 unsigned long nvcsw, nivcsw; /* context switch counts */
1295 struct timespec start_time; /* monotonic time */
1296 struct timespec real_start_time; /* boot based time */
1297 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1298 unsigned long min_flt, maj_flt;
1299
1300 struct task_cputime cputime_expires;
1301 struct list_head cpu_timers[3];
1302
1303 /* process credentials */
1304 const struct cred *real_cred; /* objective and real subjective task
1305 * credentials (COW) */
1306 const struct cred *cred; /* effective (overridable) subjective task
1307 * credentials (COW) */
1308 struct mutex cred_guard_mutex; /* guard against foreign influences on
1309 * credential calculations
1310 * (notably. ptrace) */
1311 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1312
1313 char comm[TASK_COMM_LEN]; /* executable name excluding path
1314 - access with [gs]et_task_comm (which lock
1315 it with task_lock())
1316 - initialized normally by setup_new_exec */
1317 /* file system info */
1318 int link_count, total_link_count;
1319 #ifdef CONFIG_SYSVIPC
1320 /* ipc stuff */
1321 struct sysv_sem sysvsem;
1322 #endif
1323 #ifdef CONFIG_DETECT_HUNG_TASK
1324 /* hung task detection */
1325 unsigned long last_switch_count;
1326 #endif
1327 /* CPU-specific state of this task */
1328 struct thread_struct thread;
1329 /* filesystem information */
1330 struct fs_struct *fs;
1331 /* open file information */
1332 struct files_struct *files;
1333 /* namespaces */
1334 struct nsproxy *nsproxy;
1335 /* signal handlers */
1336 struct signal_struct *signal;
1337 struct sighand_struct *sighand;
1338
1339 sigset_t blocked, real_blocked;
1340 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1341 struct sigpending pending;
1342
1343 unsigned long sas_ss_sp;
1344 size_t sas_ss_size;
1345 int (*notifier)(void *priv);
1346 void *notifier_data;
1347 sigset_t *notifier_mask;
1348 struct audit_context *audit_context;
1349 #ifdef CONFIG_AUDITSYSCALL
1350 uid_t loginuid;
1351 unsigned int sessionid;
1352 #endif
1353 seccomp_t seccomp;
1354
1355 /* Thread group tracking */
1356 u32 parent_exec_id;
1357 u32 self_exec_id;
1358 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1359 * mempolicy */
1360 spinlock_t alloc_lock;
1361
1362 #ifdef CONFIG_GENERIC_HARDIRQS
1363 /* IRQ handler threads */
1364 struct irqaction *irqaction;
1365 #endif
1366
1367 /* Protection of the PI data structures: */
1368 raw_spinlock_t pi_lock;
1369
1370 #ifdef CONFIG_RT_MUTEXES
1371 /* PI waiters blocked on a rt_mutex held by this task */
1372 struct plist_head pi_waiters;
1373 /* Deadlock detection and priority inheritance handling */
1374 struct rt_mutex_waiter *pi_blocked_on;
1375 #endif
1376
1377 #ifdef CONFIG_DEBUG_MUTEXES
1378 /* mutex deadlock detection */
1379 struct mutex_waiter *blocked_on;
1380 #endif
1381 #ifdef CONFIG_TRACE_IRQFLAGS
1382 unsigned int irq_events;
1383 unsigned long hardirq_enable_ip;
1384 unsigned long hardirq_disable_ip;
1385 unsigned int hardirq_enable_event;
1386 unsigned int hardirq_disable_event;
1387 int hardirqs_enabled;
1388 int hardirq_context;
1389 unsigned long softirq_disable_ip;
1390 unsigned long softirq_enable_ip;
1391 unsigned int softirq_disable_event;
1392 unsigned int softirq_enable_event;
1393 int softirqs_enabled;
1394 int softirq_context;
1395 #endif
1396 #ifdef CONFIG_LOCKDEP
1397 # define MAX_LOCK_DEPTH 48UL
1398 u64 curr_chain_key;
1399 int lockdep_depth;
1400 unsigned int lockdep_recursion;
1401 struct held_lock held_locks[MAX_LOCK_DEPTH];
1402 gfp_t lockdep_reclaim_gfp;
1403 #endif
1404
1405 /* journalling filesystem info */
1406 void *journal_info;
1407
1408 /* stacked block device info */
1409 struct bio_list *bio_list;
1410
1411 /* VM state */
1412 struct reclaim_state *reclaim_state;
1413
1414 struct backing_dev_info *backing_dev_info;
1415
1416 struct io_context *io_context;
1417
1418 unsigned long ptrace_message;
1419 siginfo_t *last_siginfo; /* For ptrace use. */
1420 struct task_io_accounting ioac;
1421 #if defined(CONFIG_TASK_XACCT)
1422 u64 acct_rss_mem1; /* accumulated rss usage */
1423 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1424 cputime_t acct_timexpd; /* stime + utime since last update */
1425 #endif
1426 #ifdef CONFIG_CPUSETS
1427 nodemask_t mems_allowed; /* Protected by alloc_lock */
1428 int cpuset_mem_spread_rotor;
1429 #endif
1430 #ifdef CONFIG_CGROUPS
1431 /* Control Group info protected by css_set_lock */
1432 struct css_set *cgroups;
1433 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1434 struct list_head cg_list;
1435 #endif
1436 #ifdef CONFIG_FUTEX
1437 struct robust_list_head __user *robust_list;
1438 #ifdef CONFIG_COMPAT
1439 struct compat_robust_list_head __user *compat_robust_list;
1440 #endif
1441 struct list_head pi_state_list;
1442 struct futex_pi_state *pi_state_cache;
1443 #endif
1444 #ifdef CONFIG_PERF_EVENTS
1445 struct perf_event_context *perf_event_ctxp;
1446 struct mutex perf_event_mutex;
1447 struct list_head perf_event_list;
1448 #endif
1449 #ifdef CONFIG_NUMA
1450 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1451 short il_next;
1452 #endif
1453 atomic_t fs_excl; /* holding fs exclusive resources */
1454 struct rcu_head rcu;
1455
1456 /*
1457 * cache last used pipe for splice
1458 */
1459 struct pipe_inode_info *splice_pipe;
1460 #ifdef CONFIG_TASK_DELAY_ACCT
1461 struct task_delay_info *delays;
1462 #endif
1463 #ifdef CONFIG_FAULT_INJECTION
1464 int make_it_fail;
1465 #endif
1466 struct prop_local_single dirties;
1467 #ifdef CONFIG_LATENCYTOP
1468 int latency_record_count;
1469 struct latency_record latency_record[LT_SAVECOUNT];
1470 #endif
1471 /*
1472 * time slack values; these are used to round up poll() and
1473 * select() etc timeout values. These are in nanoseconds.
1474 */
1475 unsigned long timer_slack_ns;
1476 unsigned long default_timer_slack_ns;
1477
1478 struct list_head *scm_work_list;
1479 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1480 /* Index of current stored address in ret_stack */
1481 int curr_ret_stack;
1482 /* Stack of return addresses for return function tracing */
1483 struct ftrace_ret_stack *ret_stack;
1484 /* time stamp for last schedule */
1485 unsigned long long ftrace_timestamp;
1486 /*
1487 * Number of functions that haven't been traced
1488 * because of depth overrun.
1489 */
1490 atomic_t trace_overrun;
1491 /* Pause for the tracing */
1492 atomic_t tracing_graph_pause;
1493 #endif
1494 #ifdef CONFIG_TRACING
1495 /* state flags for use by tracers */
1496 unsigned long trace;
1497 /* bitmask of trace recursion */
1498 unsigned long trace_recursion;
1499 #endif /* CONFIG_TRACING */
1500 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1501 struct memcg_batch_info {
1502 int do_batch; /* incremented when batch uncharge started */
1503 struct mem_cgroup *memcg; /* target memcg of uncharge */
1504 unsigned long bytes; /* uncharged usage */
1505 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1506 } memcg_batch;
1507 #endif
1508 };
1509
1510 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1511 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1512
1513 /*
1514 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1515 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1516 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1517 * values are inverted: lower p->prio value means higher priority.
1518 *
1519 * The MAX_USER_RT_PRIO value allows the actual maximum
1520 * RT priority to be separate from the value exported to
1521 * user-space. This allows kernel threads to set their
1522 * priority to a value higher than any user task. Note:
1523 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1524 */
1525
1526 #define MAX_USER_RT_PRIO 100
1527 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1528
1529 #define MAX_PRIO (MAX_RT_PRIO + 40)
1530 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1531
1532 static inline int rt_prio(int prio)
1533 {
1534 if (unlikely(prio < MAX_RT_PRIO))
1535 return 1;
1536 return 0;
1537 }
1538
1539 static inline int rt_task(struct task_struct *p)
1540 {
1541 return rt_prio(p->prio);
1542 }
1543
1544 static inline struct pid *task_pid(struct task_struct *task)
1545 {
1546 return task->pids[PIDTYPE_PID].pid;
1547 }
1548
1549 static inline struct pid *task_tgid(struct task_struct *task)
1550 {
1551 return task->group_leader->pids[PIDTYPE_PID].pid;
1552 }
1553
1554 /*
1555 * Without tasklist or rcu lock it is not safe to dereference
1556 * the result of task_pgrp/task_session even if task == current,
1557 * we can race with another thread doing sys_setsid/sys_setpgid.
1558 */
1559 static inline struct pid *task_pgrp(struct task_struct *task)
1560 {
1561 return task->group_leader->pids[PIDTYPE_PGID].pid;
1562 }
1563
1564 static inline struct pid *task_session(struct task_struct *task)
1565 {
1566 return task->group_leader->pids[PIDTYPE_SID].pid;
1567 }
1568
1569 struct pid_namespace;
1570
1571 /*
1572 * the helpers to get the task's different pids as they are seen
1573 * from various namespaces
1574 *
1575 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1576 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1577 * current.
1578 * task_xid_nr_ns() : id seen from the ns specified;
1579 *
1580 * set_task_vxid() : assigns a virtual id to a task;
1581 *
1582 * see also pid_nr() etc in include/linux/pid.h
1583 */
1584 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1585 struct pid_namespace *ns);
1586
1587 static inline pid_t task_pid_nr(struct task_struct *tsk)
1588 {
1589 return tsk->pid;
1590 }
1591
1592 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1593 struct pid_namespace *ns)
1594 {
1595 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1596 }
1597
1598 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1599 {
1600 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1601 }
1602
1603
1604 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1605 {
1606 return tsk->tgid;
1607 }
1608
1609 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1610
1611 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1612 {
1613 return pid_vnr(task_tgid(tsk));
1614 }
1615
1616
1617 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1618 struct pid_namespace *ns)
1619 {
1620 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1621 }
1622
1623 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1624 {
1625 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1626 }
1627
1628
1629 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1630 struct pid_namespace *ns)
1631 {
1632 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1633 }
1634
1635 static inline pid_t task_session_vnr(struct task_struct *tsk)
1636 {
1637 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1638 }
1639
1640 /* obsolete, do not use */
1641 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1642 {
1643 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1644 }
1645
1646 /**
1647 * pid_alive - check that a task structure is not stale
1648 * @p: Task structure to be checked.
1649 *
1650 * Test if a process is not yet dead (at most zombie state)
1651 * If pid_alive fails, then pointers within the task structure
1652 * can be stale and must not be dereferenced.
1653 */
1654 static inline int pid_alive(struct task_struct *p)
1655 {
1656 return p->pids[PIDTYPE_PID].pid != NULL;
1657 }
1658
1659 /**
1660 * is_global_init - check if a task structure is init
1661 * @tsk: Task structure to be checked.
1662 *
1663 * Check if a task structure is the first user space task the kernel created.
1664 */
1665 static inline int is_global_init(struct task_struct *tsk)
1666 {
1667 return tsk->pid == 1;
1668 }
1669
1670 /*
1671 * is_container_init:
1672 * check whether in the task is init in its own pid namespace.
1673 */
1674 extern int is_container_init(struct task_struct *tsk);
1675
1676 extern struct pid *cad_pid;
1677
1678 extern void free_task(struct task_struct *tsk);
1679 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1680
1681 extern void __put_task_struct(struct task_struct *t);
1682
1683 static inline void put_task_struct(struct task_struct *t)
1684 {
1685 if (atomic_dec_and_test(&t->usage))
1686 __put_task_struct(t);
1687 }
1688
1689 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1690 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1691
1692 /*
1693 * Per process flags
1694 */
1695 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1696 /* Not implemented yet, only for 486*/
1697 #define PF_STARTING 0x00000002 /* being created */
1698 #define PF_EXITING 0x00000004 /* getting shut down */
1699 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1700 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1701 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1702 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1703 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1704 #define PF_DUMPCORE 0x00000200 /* dumped core */
1705 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1706 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1707 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1708 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1709 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1710 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1711 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1712 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1713 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1714 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1715 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1716 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1717 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1718 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1719 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1720 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1721 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1722 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1723 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1724 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1725 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1726 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1727
1728 /*
1729 * Only the _current_ task can read/write to tsk->flags, but other
1730 * tasks can access tsk->flags in readonly mode for example
1731 * with tsk_used_math (like during threaded core dumping).
1732 * There is however an exception to this rule during ptrace
1733 * or during fork: the ptracer task is allowed to write to the
1734 * child->flags of its traced child (same goes for fork, the parent
1735 * can write to the child->flags), because we're guaranteed the
1736 * child is not running and in turn not changing child->flags
1737 * at the same time the parent does it.
1738 */
1739 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1740 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1741 #define clear_used_math() clear_stopped_child_used_math(current)
1742 #define set_used_math() set_stopped_child_used_math(current)
1743 #define conditional_stopped_child_used_math(condition, child) \
1744 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1745 #define conditional_used_math(condition) \
1746 conditional_stopped_child_used_math(condition, current)
1747 #define copy_to_stopped_child_used_math(child) \
1748 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1749 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1750 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1751 #define used_math() tsk_used_math(current)
1752
1753 #ifdef CONFIG_TREE_PREEMPT_RCU
1754
1755 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1756 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1757
1758 static inline void rcu_copy_process(struct task_struct *p)
1759 {
1760 p->rcu_read_lock_nesting = 0;
1761 p->rcu_read_unlock_special = 0;
1762 p->rcu_blocked_node = NULL;
1763 INIT_LIST_HEAD(&p->rcu_node_entry);
1764 }
1765
1766 #else
1767
1768 static inline void rcu_copy_process(struct task_struct *p)
1769 {
1770 }
1771
1772 #endif
1773
1774 #ifdef CONFIG_SMP
1775 extern int set_cpus_allowed_ptr(struct task_struct *p,
1776 const struct cpumask *new_mask);
1777 #else
1778 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1779 const struct cpumask *new_mask)
1780 {
1781 if (!cpumask_test_cpu(0, new_mask))
1782 return -EINVAL;
1783 return 0;
1784 }
1785 #endif
1786
1787 #ifndef CONFIG_CPUMASK_OFFSTACK
1788 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1789 {
1790 return set_cpus_allowed_ptr(p, &new_mask);
1791 }
1792 #endif
1793
1794 /*
1795 * Architectures can set this to 1 if they have specified
1796 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1797 * but then during bootup it turns out that sched_clock()
1798 * is reliable after all:
1799 */
1800 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1801 extern int sched_clock_stable;
1802 #endif
1803
1804 /* ftrace calls sched_clock() directly */
1805 extern unsigned long long notrace sched_clock(void);
1806
1807 extern void sched_clock_init(void);
1808 extern u64 sched_clock_cpu(int cpu);
1809
1810 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1811 static inline void sched_clock_tick(void)
1812 {
1813 }
1814
1815 static inline void sched_clock_idle_sleep_event(void)
1816 {
1817 }
1818
1819 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1820 {
1821 }
1822 #else
1823 extern void sched_clock_tick(void);
1824 extern void sched_clock_idle_sleep_event(void);
1825 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1826 #endif
1827
1828 /*
1829 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1830 * clock constructed from sched_clock():
1831 */
1832 extern unsigned long long cpu_clock(int cpu);
1833
1834 extern unsigned long long
1835 task_sched_runtime(struct task_struct *task);
1836 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1837
1838 /* sched_exec is called by processes performing an exec */
1839 #ifdef CONFIG_SMP
1840 extern void sched_exec(void);
1841 #else
1842 #define sched_exec() {}
1843 #endif
1844
1845 extern void sched_clock_idle_sleep_event(void);
1846 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1847
1848 #ifdef CONFIG_HOTPLUG_CPU
1849 extern void idle_task_exit(void);
1850 #else
1851 static inline void idle_task_exit(void) {}
1852 #endif
1853
1854 extern void sched_idle_next(void);
1855
1856 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1857 extern void wake_up_idle_cpu(int cpu);
1858 #else
1859 static inline void wake_up_idle_cpu(int cpu) { }
1860 #endif
1861
1862 extern unsigned int sysctl_sched_latency;
1863 extern unsigned int sysctl_sched_min_granularity;
1864 extern unsigned int sysctl_sched_wakeup_granularity;
1865 extern unsigned int sysctl_sched_shares_ratelimit;
1866 extern unsigned int sysctl_sched_shares_thresh;
1867 extern unsigned int sysctl_sched_child_runs_first;
1868
1869 enum sched_tunable_scaling {
1870 SCHED_TUNABLESCALING_NONE,
1871 SCHED_TUNABLESCALING_LOG,
1872 SCHED_TUNABLESCALING_LINEAR,
1873 SCHED_TUNABLESCALING_END,
1874 };
1875 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1876
1877 #ifdef CONFIG_SCHED_DEBUG
1878 extern unsigned int sysctl_sched_migration_cost;
1879 extern unsigned int sysctl_sched_nr_migrate;
1880 extern unsigned int sysctl_sched_time_avg;
1881 extern unsigned int sysctl_timer_migration;
1882
1883 int sched_proc_update_handler(struct ctl_table *table, int write,
1884 void __user *buffer, size_t *length,
1885 loff_t *ppos);
1886 #endif
1887 #ifdef CONFIG_SCHED_DEBUG
1888 static inline unsigned int get_sysctl_timer_migration(void)
1889 {
1890 return sysctl_timer_migration;
1891 }
1892 #else
1893 static inline unsigned int get_sysctl_timer_migration(void)
1894 {
1895 return 1;
1896 }
1897 #endif
1898 extern unsigned int sysctl_sched_rt_period;
1899 extern int sysctl_sched_rt_runtime;
1900
1901 int sched_rt_handler(struct ctl_table *table, int write,
1902 void __user *buffer, size_t *lenp,
1903 loff_t *ppos);
1904
1905 extern unsigned int sysctl_sched_compat_yield;
1906
1907 #ifdef CONFIG_RT_MUTEXES
1908 extern int rt_mutex_getprio(struct task_struct *p);
1909 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1910 extern void rt_mutex_adjust_pi(struct task_struct *p);
1911 #else
1912 static inline int rt_mutex_getprio(struct task_struct *p)
1913 {
1914 return p->normal_prio;
1915 }
1916 # define rt_mutex_adjust_pi(p) do { } while (0)
1917 #endif
1918
1919 extern void set_user_nice(struct task_struct *p, long nice);
1920 extern int task_prio(const struct task_struct *p);
1921 extern int task_nice(const struct task_struct *p);
1922 extern int can_nice(const struct task_struct *p, const int nice);
1923 extern int task_curr(const struct task_struct *p);
1924 extern int idle_cpu(int cpu);
1925 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1926 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1927 struct sched_param *);
1928 extern struct task_struct *idle_task(int cpu);
1929 extern struct task_struct *curr_task(int cpu);
1930 extern void set_curr_task(int cpu, struct task_struct *p);
1931
1932 void yield(void);
1933
1934 /*
1935 * The default (Linux) execution domain.
1936 */
1937 extern struct exec_domain default_exec_domain;
1938
1939 union thread_union {
1940 struct thread_info thread_info;
1941 unsigned long stack[THREAD_SIZE/sizeof(long)];
1942 };
1943
1944 #ifndef __HAVE_ARCH_KSTACK_END
1945 static inline int kstack_end(void *addr)
1946 {
1947 /* Reliable end of stack detection:
1948 * Some APM bios versions misalign the stack
1949 */
1950 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1951 }
1952 #endif
1953
1954 extern union thread_union init_thread_union;
1955 extern struct task_struct init_task;
1956
1957 extern struct mm_struct init_mm;
1958
1959 extern struct pid_namespace init_pid_ns;
1960
1961 /*
1962 * find a task by one of its numerical ids
1963 *
1964 * find_task_by_pid_ns():
1965 * finds a task by its pid in the specified namespace
1966 * find_task_by_vpid():
1967 * finds a task by its virtual pid
1968 *
1969 * see also find_vpid() etc in include/linux/pid.h
1970 */
1971
1972 extern struct task_struct *find_task_by_vpid(pid_t nr);
1973 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1974 struct pid_namespace *ns);
1975
1976 extern void __set_special_pids(struct pid *pid);
1977
1978 /* per-UID process charging. */
1979 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1980 static inline struct user_struct *get_uid(struct user_struct *u)
1981 {
1982 atomic_inc(&u->__count);
1983 return u;
1984 }
1985 extern void free_uid(struct user_struct *);
1986 extern void release_uids(struct user_namespace *ns);
1987
1988 #include <asm/current.h>
1989
1990 extern void do_timer(unsigned long ticks);
1991
1992 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1993 extern int wake_up_process(struct task_struct *tsk);
1994 extern void wake_up_new_task(struct task_struct *tsk,
1995 unsigned long clone_flags);
1996 #ifdef CONFIG_SMP
1997 extern void kick_process(struct task_struct *tsk);
1998 #else
1999 static inline void kick_process(struct task_struct *tsk) { }
2000 #endif
2001 extern void sched_fork(struct task_struct *p, int clone_flags);
2002 extern void sched_dead(struct task_struct *p);
2003
2004 extern void proc_caches_init(void);
2005 extern void flush_signals(struct task_struct *);
2006 extern void __flush_signals(struct task_struct *);
2007 extern void ignore_signals(struct task_struct *);
2008 extern void flush_signal_handlers(struct task_struct *, int force_default);
2009 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2010
2011 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2012 {
2013 unsigned long flags;
2014 int ret;
2015
2016 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2017 ret = dequeue_signal(tsk, mask, info);
2018 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2019
2020 return ret;
2021 }
2022
2023 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2024 sigset_t *mask);
2025 extern void unblock_all_signals(void);
2026 extern void release_task(struct task_struct * p);
2027 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2028 extern int force_sigsegv(int, struct task_struct *);
2029 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2030 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2031 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2032 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2033 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2034 extern int kill_pid(struct pid *pid, int sig, int priv);
2035 extern int kill_proc_info(int, struct siginfo *, pid_t);
2036 extern int do_notify_parent(struct task_struct *, int);
2037 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2038 extern void force_sig(int, struct task_struct *);
2039 extern int send_sig(int, struct task_struct *, int);
2040 extern void zap_other_threads(struct task_struct *p);
2041 extern struct sigqueue *sigqueue_alloc(void);
2042 extern void sigqueue_free(struct sigqueue *);
2043 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2044 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2045 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2046
2047 static inline int kill_cad_pid(int sig, int priv)
2048 {
2049 return kill_pid(cad_pid, sig, priv);
2050 }
2051
2052 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2053 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2054 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2055 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2056
2057 /*
2058 * True if we are on the alternate signal stack.
2059 */
2060 static inline int on_sig_stack(unsigned long sp)
2061 {
2062 #ifdef CONFIG_STACK_GROWSUP
2063 return sp >= current->sas_ss_sp &&
2064 sp - current->sas_ss_sp < current->sas_ss_size;
2065 #else
2066 return sp > current->sas_ss_sp &&
2067 sp - current->sas_ss_sp <= current->sas_ss_size;
2068 #endif
2069 }
2070
2071 static inline int sas_ss_flags(unsigned long sp)
2072 {
2073 return (current->sas_ss_size == 0 ? SS_DISABLE
2074 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2075 }
2076
2077 /*
2078 * Routines for handling mm_structs
2079 */
2080 extern struct mm_struct * mm_alloc(void);
2081
2082 /* mmdrop drops the mm and the page tables */
2083 extern void __mmdrop(struct mm_struct *);
2084 static inline void mmdrop(struct mm_struct * mm)
2085 {
2086 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2087 __mmdrop(mm);
2088 }
2089
2090 /* mmput gets rid of the mappings and all user-space */
2091 extern void mmput(struct mm_struct *);
2092 /* Grab a reference to a task's mm, if it is not already going away */
2093 extern struct mm_struct *get_task_mm(struct task_struct *task);
2094 /* Remove the current tasks stale references to the old mm_struct */
2095 extern void mm_release(struct task_struct *, struct mm_struct *);
2096 /* Allocate a new mm structure and copy contents from tsk->mm */
2097 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2098
2099 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2100 struct task_struct *, struct pt_regs *);
2101 extern void flush_thread(void);
2102 extern void exit_thread(void);
2103
2104 extern void exit_files(struct task_struct *);
2105 extern void __cleanup_signal(struct signal_struct *);
2106 extern void __cleanup_sighand(struct sighand_struct *);
2107
2108 extern void exit_itimers(struct signal_struct *);
2109 extern void flush_itimer_signals(void);
2110
2111 extern NORET_TYPE void do_group_exit(int);
2112
2113 extern void daemonize(const char *, ...);
2114 extern int allow_signal(int);
2115 extern int disallow_signal(int);
2116
2117 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2118 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2119 struct task_struct *fork_idle(int);
2120
2121 extern void set_task_comm(struct task_struct *tsk, char *from);
2122 extern char *get_task_comm(char *to, struct task_struct *tsk);
2123
2124 #ifdef CONFIG_SMP
2125 extern void wait_task_context_switch(struct task_struct *p);
2126 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2127 #else
2128 static inline void wait_task_context_switch(struct task_struct *p) {}
2129 static inline unsigned long wait_task_inactive(struct task_struct *p,
2130 long match_state)
2131 {
2132 return 1;
2133 }
2134 #endif
2135
2136 #define next_task(p) \
2137 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2138
2139 #define for_each_process(p) \
2140 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2141
2142 extern bool current_is_single_threaded(void);
2143
2144 /*
2145 * Careful: do_each_thread/while_each_thread is a double loop so
2146 * 'break' will not work as expected - use goto instead.
2147 */
2148 #define do_each_thread(g, t) \
2149 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2150
2151 #define while_each_thread(g, t) \
2152 while ((t = next_thread(t)) != g)
2153
2154 /* de_thread depends on thread_group_leader not being a pid based check */
2155 #define thread_group_leader(p) (p == p->group_leader)
2156
2157 /* Do to the insanities of de_thread it is possible for a process
2158 * to have the pid of the thread group leader without actually being
2159 * the thread group leader. For iteration through the pids in proc
2160 * all we care about is that we have a task with the appropriate
2161 * pid, we don't actually care if we have the right task.
2162 */
2163 static inline int has_group_leader_pid(struct task_struct *p)
2164 {
2165 return p->pid == p->tgid;
2166 }
2167
2168 static inline
2169 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2170 {
2171 return p1->tgid == p2->tgid;
2172 }
2173
2174 static inline struct task_struct *next_thread(const struct task_struct *p)
2175 {
2176 return list_entry_rcu(p->thread_group.next,
2177 struct task_struct, thread_group);
2178 }
2179
2180 static inline int thread_group_empty(struct task_struct *p)
2181 {
2182 return list_empty(&p->thread_group);
2183 }
2184
2185 #define delay_group_leader(p) \
2186 (thread_group_leader(p) && !thread_group_empty(p))
2187
2188 static inline int task_detached(struct task_struct *p)
2189 {
2190 return p->exit_signal == -1;
2191 }
2192
2193 /*
2194 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2195 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2196 * pins the final release of task.io_context. Also protects ->cpuset and
2197 * ->cgroup.subsys[].
2198 *
2199 * Nests both inside and outside of read_lock(&tasklist_lock).
2200 * It must not be nested with write_lock_irq(&tasklist_lock),
2201 * neither inside nor outside.
2202 */
2203 static inline void task_lock(struct task_struct *p)
2204 {
2205 spin_lock(&p->alloc_lock);
2206 }
2207
2208 static inline void task_unlock(struct task_struct *p)
2209 {
2210 spin_unlock(&p->alloc_lock);
2211 }
2212
2213 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2214 unsigned long *flags);
2215
2216 static inline void unlock_task_sighand(struct task_struct *tsk,
2217 unsigned long *flags)
2218 {
2219 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2220 }
2221
2222 #ifndef __HAVE_THREAD_FUNCTIONS
2223
2224 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2225 #define task_stack_page(task) ((task)->stack)
2226
2227 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2228 {
2229 *task_thread_info(p) = *task_thread_info(org);
2230 task_thread_info(p)->task = p;
2231 }
2232
2233 static inline unsigned long *end_of_stack(struct task_struct *p)
2234 {
2235 return (unsigned long *)(task_thread_info(p) + 1);
2236 }
2237
2238 #endif
2239
2240 static inline int object_is_on_stack(void *obj)
2241 {
2242 void *stack = task_stack_page(current);
2243
2244 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2245 }
2246
2247 extern void thread_info_cache_init(void);
2248
2249 #ifdef CONFIG_DEBUG_STACK_USAGE
2250 static inline unsigned long stack_not_used(struct task_struct *p)
2251 {
2252 unsigned long *n = end_of_stack(p);
2253
2254 do { /* Skip over canary */
2255 n++;
2256 } while (!*n);
2257
2258 return (unsigned long)n - (unsigned long)end_of_stack(p);
2259 }
2260 #endif
2261
2262 /* set thread flags in other task's structures
2263 * - see asm/thread_info.h for TIF_xxxx flags available
2264 */
2265 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2266 {
2267 set_ti_thread_flag(task_thread_info(tsk), flag);
2268 }
2269
2270 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2271 {
2272 clear_ti_thread_flag(task_thread_info(tsk), flag);
2273 }
2274
2275 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2276 {
2277 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2278 }
2279
2280 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2281 {
2282 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2283 }
2284
2285 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2286 {
2287 return test_ti_thread_flag(task_thread_info(tsk), flag);
2288 }
2289
2290 static inline void set_tsk_need_resched(struct task_struct *tsk)
2291 {
2292 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2293 }
2294
2295 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2296 {
2297 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2298 }
2299
2300 static inline int test_tsk_need_resched(struct task_struct *tsk)
2301 {
2302 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2303 }
2304
2305 static inline int restart_syscall(void)
2306 {
2307 set_tsk_thread_flag(current, TIF_SIGPENDING);
2308 return -ERESTARTNOINTR;
2309 }
2310
2311 static inline int signal_pending(struct task_struct *p)
2312 {
2313 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2314 }
2315
2316 static inline int __fatal_signal_pending(struct task_struct *p)
2317 {
2318 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2319 }
2320
2321 static inline int fatal_signal_pending(struct task_struct *p)
2322 {
2323 return signal_pending(p) && __fatal_signal_pending(p);
2324 }
2325
2326 static inline int signal_pending_state(long state, struct task_struct *p)
2327 {
2328 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2329 return 0;
2330 if (!signal_pending(p))
2331 return 0;
2332
2333 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2334 }
2335
2336 static inline int need_resched(void)
2337 {
2338 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2339 }
2340
2341 /*
2342 * cond_resched() and cond_resched_lock(): latency reduction via
2343 * explicit rescheduling in places that are safe. The return
2344 * value indicates whether a reschedule was done in fact.
2345 * cond_resched_lock() will drop the spinlock before scheduling,
2346 * cond_resched_softirq() will enable bhs before scheduling.
2347 */
2348 extern int _cond_resched(void);
2349
2350 #define cond_resched() ({ \
2351 __might_sleep(__FILE__, __LINE__, 0); \
2352 _cond_resched(); \
2353 })
2354
2355 extern int __cond_resched_lock(spinlock_t *lock);
2356
2357 #ifdef CONFIG_PREEMPT
2358 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2359 #else
2360 #define PREEMPT_LOCK_OFFSET 0
2361 #endif
2362
2363 #define cond_resched_lock(lock) ({ \
2364 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2365 __cond_resched_lock(lock); \
2366 })
2367
2368 extern int __cond_resched_softirq(void);
2369
2370 #define cond_resched_softirq() ({ \
2371 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2372 __cond_resched_softirq(); \
2373 })
2374
2375 /*
2376 * Does a critical section need to be broken due to another
2377 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2378 * but a general need for low latency)
2379 */
2380 static inline int spin_needbreak(spinlock_t *lock)
2381 {
2382 #ifdef CONFIG_PREEMPT
2383 return spin_is_contended(lock);
2384 #else
2385 return 0;
2386 #endif
2387 }
2388
2389 /*
2390 * Thread group CPU time accounting.
2391 */
2392 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2393 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2394
2395 static inline void thread_group_cputime_init(struct signal_struct *sig)
2396 {
2397 spin_lock_init(&sig->cputimer.lock);
2398 }
2399
2400 static inline void thread_group_cputime_free(struct signal_struct *sig)
2401 {
2402 }
2403
2404 /*
2405 * Reevaluate whether the task has signals pending delivery.
2406 * Wake the task if so.
2407 * This is required every time the blocked sigset_t changes.
2408 * callers must hold sighand->siglock.
2409 */
2410 extern void recalc_sigpending_and_wake(struct task_struct *t);
2411 extern void recalc_sigpending(void);
2412
2413 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2414
2415 /*
2416 * Wrappers for p->thread_info->cpu access. No-op on UP.
2417 */
2418 #ifdef CONFIG_SMP
2419
2420 static inline unsigned int task_cpu(const struct task_struct *p)
2421 {
2422 return task_thread_info(p)->cpu;
2423 }
2424
2425 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2426
2427 #else
2428
2429 static inline unsigned int task_cpu(const struct task_struct *p)
2430 {
2431 return 0;
2432 }
2433
2434 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2435 {
2436 }
2437
2438 #endif /* CONFIG_SMP */
2439
2440 #ifdef CONFIG_TRACING
2441 extern void
2442 __trace_special(void *__tr, void *__data,
2443 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2444 #else
2445 static inline void
2446 __trace_special(void *__tr, void *__data,
2447 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2448 {
2449 }
2450 #endif
2451
2452 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2453 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2454
2455 extern void normalize_rt_tasks(void);
2456
2457 #ifdef CONFIG_CGROUP_SCHED
2458
2459 extern struct task_group init_task_group;
2460
2461 extern struct task_group *sched_create_group(struct task_group *parent);
2462 extern void sched_destroy_group(struct task_group *tg);
2463 extern void sched_move_task(struct task_struct *tsk);
2464 #ifdef CONFIG_FAIR_GROUP_SCHED
2465 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2466 extern unsigned long sched_group_shares(struct task_group *tg);
2467 #endif
2468 #ifdef CONFIG_RT_GROUP_SCHED
2469 extern int sched_group_set_rt_runtime(struct task_group *tg,
2470 long rt_runtime_us);
2471 extern long sched_group_rt_runtime(struct task_group *tg);
2472 extern int sched_group_set_rt_period(struct task_group *tg,
2473 long rt_period_us);
2474 extern long sched_group_rt_period(struct task_group *tg);
2475 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2476 #endif
2477 #endif
2478
2479 extern int task_can_switch_user(struct user_struct *up,
2480 struct task_struct *tsk);
2481
2482 #ifdef CONFIG_TASK_XACCT
2483 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2484 {
2485 tsk->ioac.rchar += amt;
2486 }
2487
2488 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2489 {
2490 tsk->ioac.wchar += amt;
2491 }
2492
2493 static inline void inc_syscr(struct task_struct *tsk)
2494 {
2495 tsk->ioac.syscr++;
2496 }
2497
2498 static inline void inc_syscw(struct task_struct *tsk)
2499 {
2500 tsk->ioac.syscw++;
2501 }
2502 #else
2503 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2504 {
2505 }
2506
2507 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2508 {
2509 }
2510
2511 static inline void inc_syscr(struct task_struct *tsk)
2512 {
2513 }
2514
2515 static inline void inc_syscw(struct task_struct *tsk)
2516 {
2517 }
2518 #endif
2519
2520 #ifndef TASK_SIZE_OF
2521 #define TASK_SIZE_OF(tsk) TASK_SIZE
2522 #endif
2523
2524 /*
2525 * Call the function if the target task is executing on a CPU right now:
2526 */
2527 extern void task_oncpu_function_call(struct task_struct *p,
2528 void (*func) (void *info), void *info);
2529
2530
2531 #ifdef CONFIG_MM_OWNER
2532 extern void mm_update_next_owner(struct mm_struct *mm);
2533 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2534 #else
2535 static inline void mm_update_next_owner(struct mm_struct *mm)
2536 {
2537 }
2538
2539 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2540 {
2541 }
2542 #endif /* CONFIG_MM_OWNER */
2543
2544 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2545 unsigned int limit)
2546 {
2547 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2548 }
2549
2550 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2551 unsigned int limit)
2552 {
2553 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2554 }
2555
2556 static inline unsigned long rlimit(unsigned int limit)
2557 {
2558 return task_rlimit(current, limit);
2559 }
2560
2561 static inline unsigned long rlimit_max(unsigned int limit)
2562 {
2563 return task_rlimit_max(current, limit);
2564 }
2565
2566 #endif /* __KERNEL__ */
2567
2568 #endif