]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/security.h
Merge tag 'kmemleak' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux
[mirror_ubuntu-bionic-kernel.git] / include / linux / security.h
1 /*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * Due to this file being licensed under the GPL there is controversy over
16 * whether this permits you to write a module that #includes this file
17 * without placing your module under the GPL. Please consult a lawyer for
18 * advice before doing this.
19 *
20 */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/fsnotify.h>
27 #include <linux/binfmts.h>
28 #include <linux/dcache.h>
29 #include <linux/signal.h>
30 #include <linux/resource.h>
31 #include <linux/sem.h>
32 #include <linux/shm.h>
33 #include <linux/mm.h> /* PAGE_ALIGN */
34 #include <linux/msg.h>
35 #include <linux/sched.h>
36 #include <linux/key.h>
37 #include <linux/xfrm.h>
38 #include <linux/slab.h>
39 #include <linux/xattr.h>
40 #include <net/flow.h>
41
42 /* Maximum number of letters for an LSM name string */
43 #define SECURITY_NAME_MAX 10
44
45 /* If capable should audit the security request */
46 #define SECURITY_CAP_NOAUDIT 0
47 #define SECURITY_CAP_AUDIT 1
48
49 struct ctl_table;
50 struct audit_krule;
51 struct user_namespace;
52
53 /*
54 * These functions are in security/capability.c and are used
55 * as the default capabilities functions
56 */
57 extern int cap_capable(struct task_struct *tsk, const struct cred *cred,
58 struct user_namespace *ns, int cap, int audit);
59 extern int cap_settime(const struct timespec *ts, const struct timezone *tz);
60 extern int cap_ptrace_access_check(struct task_struct *child, unsigned int mode);
61 extern int cap_ptrace_traceme(struct task_struct *parent);
62 extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
63 extern int cap_capset(struct cred *new, const struct cred *old,
64 const kernel_cap_t *effective,
65 const kernel_cap_t *inheritable,
66 const kernel_cap_t *permitted);
67 extern int cap_bprm_set_creds(struct linux_binprm *bprm);
68 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
69 extern int cap_inode_setxattr(struct dentry *dentry, const char *name,
70 const void *value, size_t size, int flags);
71 extern int cap_inode_removexattr(struct dentry *dentry, const char *name);
72 extern int cap_inode_need_killpriv(struct dentry *dentry);
73 extern int cap_inode_killpriv(struct dentry *dentry);
74 extern int cap_file_mmap(struct file *file, unsigned long reqprot,
75 unsigned long prot, unsigned long flags,
76 unsigned long addr, unsigned long addr_only);
77 extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags);
78 extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
79 unsigned long arg4, unsigned long arg5);
80 extern int cap_task_setscheduler(struct task_struct *p);
81 extern int cap_task_setioprio(struct task_struct *p, int ioprio);
82 extern int cap_task_setnice(struct task_struct *p, int nice);
83 extern int cap_vm_enough_memory(struct mm_struct *mm, long pages);
84
85 struct msghdr;
86 struct sk_buff;
87 struct sock;
88 struct sockaddr;
89 struct socket;
90 struct flowi;
91 struct dst_entry;
92 struct xfrm_selector;
93 struct xfrm_policy;
94 struct xfrm_state;
95 struct xfrm_user_sec_ctx;
96 struct seq_file;
97
98 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
99 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
100
101 void reset_security_ops(void);
102
103 #ifdef CONFIG_MMU
104 extern unsigned long mmap_min_addr;
105 extern unsigned long dac_mmap_min_addr;
106 #else
107 #define dac_mmap_min_addr 0UL
108 #endif
109
110 /*
111 * Values used in the task_security_ops calls
112 */
113 /* setuid or setgid, id0 == uid or gid */
114 #define LSM_SETID_ID 1
115
116 /* setreuid or setregid, id0 == real, id1 == eff */
117 #define LSM_SETID_RE 2
118
119 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
120 #define LSM_SETID_RES 4
121
122 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
123 #define LSM_SETID_FS 8
124
125 /* forward declares to avoid warnings */
126 struct sched_param;
127 struct request_sock;
128
129 /* bprm->unsafe reasons */
130 #define LSM_UNSAFE_SHARE 1
131 #define LSM_UNSAFE_PTRACE 2
132 #define LSM_UNSAFE_PTRACE_CAP 4
133
134 #ifdef CONFIG_MMU
135 /*
136 * If a hint addr is less than mmap_min_addr change hint to be as
137 * low as possible but still greater than mmap_min_addr
138 */
139 static inline unsigned long round_hint_to_min(unsigned long hint)
140 {
141 hint &= PAGE_MASK;
142 if (((void *)hint != NULL) &&
143 (hint < mmap_min_addr))
144 return PAGE_ALIGN(mmap_min_addr);
145 return hint;
146 }
147 extern int mmap_min_addr_handler(struct ctl_table *table, int write,
148 void __user *buffer, size_t *lenp, loff_t *ppos);
149 #endif
150
151 /* security_inode_init_security callback function to write xattrs */
152 typedef int (*initxattrs) (struct inode *inode,
153 const struct xattr *xattr_array, void *fs_data);
154
155 #ifdef CONFIG_SECURITY
156
157 struct security_mnt_opts {
158 char **mnt_opts;
159 int *mnt_opts_flags;
160 int num_mnt_opts;
161 };
162
163 static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
164 {
165 opts->mnt_opts = NULL;
166 opts->mnt_opts_flags = NULL;
167 opts->num_mnt_opts = 0;
168 }
169
170 static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
171 {
172 int i;
173 if (opts->mnt_opts)
174 for (i = 0; i < opts->num_mnt_opts; i++)
175 kfree(opts->mnt_opts[i]);
176 kfree(opts->mnt_opts);
177 opts->mnt_opts = NULL;
178 kfree(opts->mnt_opts_flags);
179 opts->mnt_opts_flags = NULL;
180 opts->num_mnt_opts = 0;
181 }
182
183 /**
184 * struct security_operations - main security structure
185 *
186 * Security module identifier.
187 *
188 * @name:
189 * A string that acts as a unique identifier for the LSM with max number
190 * of characters = SECURITY_NAME_MAX.
191 *
192 * Security hooks for program execution operations.
193 *
194 * @bprm_set_creds:
195 * Save security information in the bprm->security field, typically based
196 * on information about the bprm->file, for later use by the apply_creds
197 * hook. This hook may also optionally check permissions (e.g. for
198 * transitions between security domains).
199 * This hook may be called multiple times during a single execve, e.g. for
200 * interpreters. The hook can tell whether it has already been called by
201 * checking to see if @bprm->security is non-NULL. If so, then the hook
202 * may decide either to retain the security information saved earlier or
203 * to replace it.
204 * @bprm contains the linux_binprm structure.
205 * Return 0 if the hook is successful and permission is granted.
206 * @bprm_check_security:
207 * This hook mediates the point when a search for a binary handler will
208 * begin. It allows a check the @bprm->security value which is set in the
209 * preceding set_creds call. The primary difference from set_creds is
210 * that the argv list and envp list are reliably available in @bprm. This
211 * hook may be called multiple times during a single execve; and in each
212 * pass set_creds is called first.
213 * @bprm contains the linux_binprm structure.
214 * Return 0 if the hook is successful and permission is granted.
215 * @bprm_committing_creds:
216 * Prepare to install the new security attributes of a process being
217 * transformed by an execve operation, based on the old credentials
218 * pointed to by @current->cred and the information set in @bprm->cred by
219 * the bprm_set_creds hook. @bprm points to the linux_binprm structure.
220 * This hook is a good place to perform state changes on the process such
221 * as closing open file descriptors to which access will no longer be
222 * granted when the attributes are changed. This is called immediately
223 * before commit_creds().
224 * @bprm_committed_creds:
225 * Tidy up after the installation of the new security attributes of a
226 * process being transformed by an execve operation. The new credentials
227 * have, by this point, been set to @current->cred. @bprm points to the
228 * linux_binprm structure. This hook is a good place to perform state
229 * changes on the process such as clearing out non-inheritable signal
230 * state. This is called immediately after commit_creds().
231 * @bprm_secureexec:
232 * Return a boolean value (0 or 1) indicating whether a "secure exec"
233 * is required. The flag is passed in the auxiliary table
234 * on the initial stack to the ELF interpreter to indicate whether libc
235 * should enable secure mode.
236 * @bprm contains the linux_binprm structure.
237 *
238 * Security hooks for filesystem operations.
239 *
240 * @sb_alloc_security:
241 * Allocate and attach a security structure to the sb->s_security field.
242 * The s_security field is initialized to NULL when the structure is
243 * allocated.
244 * @sb contains the super_block structure to be modified.
245 * Return 0 if operation was successful.
246 * @sb_free_security:
247 * Deallocate and clear the sb->s_security field.
248 * @sb contains the super_block structure to be modified.
249 * @sb_statfs:
250 * Check permission before obtaining filesystem statistics for the @mnt
251 * mountpoint.
252 * @dentry is a handle on the superblock for the filesystem.
253 * Return 0 if permission is granted.
254 * @sb_mount:
255 * Check permission before an object specified by @dev_name is mounted on
256 * the mount point named by @nd. For an ordinary mount, @dev_name
257 * identifies a device if the file system type requires a device. For a
258 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
259 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
260 * pathname of the object being mounted.
261 * @dev_name contains the name for object being mounted.
262 * @path contains the path for mount point object.
263 * @type contains the filesystem type.
264 * @flags contains the mount flags.
265 * @data contains the filesystem-specific data.
266 * Return 0 if permission is granted.
267 * @sb_copy_data:
268 * Allow mount option data to be copied prior to parsing by the filesystem,
269 * so that the security module can extract security-specific mount
270 * options cleanly (a filesystem may modify the data e.g. with strsep()).
271 * This also allows the original mount data to be stripped of security-
272 * specific options to avoid having to make filesystems aware of them.
273 * @type the type of filesystem being mounted.
274 * @orig the original mount data copied from userspace.
275 * @copy copied data which will be passed to the security module.
276 * Returns 0 if the copy was successful.
277 * @sb_remount:
278 * Extracts security system specific mount options and verifies no changes
279 * are being made to those options.
280 * @sb superblock being remounted
281 * @data contains the filesystem-specific data.
282 * Return 0 if permission is granted.
283 * @sb_umount:
284 * Check permission before the @mnt file system is unmounted.
285 * @mnt contains the mounted file system.
286 * @flags contains the unmount flags, e.g. MNT_FORCE.
287 * Return 0 if permission is granted.
288 * @sb_pivotroot:
289 * Check permission before pivoting the root filesystem.
290 * @old_path contains the path for the new location of the current root (put_old).
291 * @new_path contains the path for the new root (new_root).
292 * Return 0 if permission is granted.
293 * @sb_set_mnt_opts:
294 * Set the security relevant mount options used for a superblock
295 * @sb the superblock to set security mount options for
296 * @opts binary data structure containing all lsm mount data
297 * @sb_clone_mnt_opts:
298 * Copy all security options from a given superblock to another
299 * @oldsb old superblock which contain information to clone
300 * @newsb new superblock which needs filled in
301 * @sb_parse_opts_str:
302 * Parse a string of security data filling in the opts structure
303 * @options string containing all mount options known by the LSM
304 * @opts binary data structure usable by the LSM
305 *
306 * Security hooks for inode operations.
307 *
308 * @inode_alloc_security:
309 * Allocate and attach a security structure to @inode->i_security. The
310 * i_security field is initialized to NULL when the inode structure is
311 * allocated.
312 * @inode contains the inode structure.
313 * Return 0 if operation was successful.
314 * @inode_free_security:
315 * @inode contains the inode structure.
316 * Deallocate the inode security structure and set @inode->i_security to
317 * NULL.
318 * @inode_init_security:
319 * Obtain the security attribute name suffix and value to set on a newly
320 * created inode and set up the incore security field for the new inode.
321 * This hook is called by the fs code as part of the inode creation
322 * transaction and provides for atomic labeling of the inode, unlike
323 * the post_create/mkdir/... hooks called by the VFS. The hook function
324 * is expected to allocate the name and value via kmalloc, with the caller
325 * being responsible for calling kfree after using them.
326 * If the security module does not use security attributes or does
327 * not wish to put a security attribute on this particular inode,
328 * then it should return -EOPNOTSUPP to skip this processing.
329 * @inode contains the inode structure of the newly created inode.
330 * @dir contains the inode structure of the parent directory.
331 * @qstr contains the last path component of the new object
332 * @name will be set to the allocated name suffix (e.g. selinux).
333 * @value will be set to the allocated attribute value.
334 * @len will be set to the length of the value.
335 * Returns 0 if @name and @value have been successfully set,
336 * -EOPNOTSUPP if no security attribute is needed, or
337 * -ENOMEM on memory allocation failure.
338 * @inode_create:
339 * Check permission to create a regular file.
340 * @dir contains inode structure of the parent of the new file.
341 * @dentry contains the dentry structure for the file to be created.
342 * @mode contains the file mode of the file to be created.
343 * Return 0 if permission is granted.
344 * @inode_link:
345 * Check permission before creating a new hard link to a file.
346 * @old_dentry contains the dentry structure for an existing link to the file.
347 * @dir contains the inode structure of the parent directory of the new link.
348 * @new_dentry contains the dentry structure for the new link.
349 * Return 0 if permission is granted.
350 * @path_link:
351 * Check permission before creating a new hard link to a file.
352 * @old_dentry contains the dentry structure for an existing link
353 * to the file.
354 * @new_dir contains the path structure of the parent directory of
355 * the new link.
356 * @new_dentry contains the dentry structure for the new link.
357 * Return 0 if permission is granted.
358 * @inode_unlink:
359 * Check the permission to remove a hard link to a file.
360 * @dir contains the inode structure of parent directory of the file.
361 * @dentry contains the dentry structure for file to be unlinked.
362 * Return 0 if permission is granted.
363 * @path_unlink:
364 * Check the permission to remove a hard link to a file.
365 * @dir contains the path structure of parent directory of the file.
366 * @dentry contains the dentry structure for file to be unlinked.
367 * Return 0 if permission is granted.
368 * @inode_symlink:
369 * Check the permission to create a symbolic link to a file.
370 * @dir contains the inode structure of parent directory of the symbolic link.
371 * @dentry contains the dentry structure of the symbolic link.
372 * @old_name contains the pathname of file.
373 * Return 0 if permission is granted.
374 * @path_symlink:
375 * Check the permission to create a symbolic link to a file.
376 * @dir contains the path structure of parent directory of
377 * the symbolic link.
378 * @dentry contains the dentry structure of the symbolic link.
379 * @old_name contains the pathname of file.
380 * Return 0 if permission is granted.
381 * @inode_mkdir:
382 * Check permissions to create a new directory in the existing directory
383 * associated with inode structure @dir.
384 * @dir contains the inode structure of parent of the directory to be created.
385 * @dentry contains the dentry structure of new directory.
386 * @mode contains the mode of new directory.
387 * Return 0 if permission is granted.
388 * @path_mkdir:
389 * Check permissions to create a new directory in the existing directory
390 * associated with path structure @path.
391 * @dir contains the path structure of parent of the directory
392 * to be created.
393 * @dentry contains the dentry structure of new directory.
394 * @mode contains the mode of new directory.
395 * Return 0 if permission is granted.
396 * @inode_rmdir:
397 * Check the permission to remove a directory.
398 * @dir contains the inode structure of parent of the directory to be removed.
399 * @dentry contains the dentry structure of directory to be removed.
400 * Return 0 if permission is granted.
401 * @path_rmdir:
402 * Check the permission to remove a directory.
403 * @dir contains the path structure of parent of the directory to be
404 * removed.
405 * @dentry contains the dentry structure of directory to be removed.
406 * Return 0 if permission is granted.
407 * @inode_mknod:
408 * Check permissions when creating a special file (or a socket or a fifo
409 * file created via the mknod system call). Note that if mknod operation
410 * is being done for a regular file, then the create hook will be called
411 * and not this hook.
412 * @dir contains the inode structure of parent of the new file.
413 * @dentry contains the dentry structure of the new file.
414 * @mode contains the mode of the new file.
415 * @dev contains the device number.
416 * Return 0 if permission is granted.
417 * @path_mknod:
418 * Check permissions when creating a file. Note that this hook is called
419 * even if mknod operation is being done for a regular file.
420 * @dir contains the path structure of parent of the new file.
421 * @dentry contains the dentry structure of the new file.
422 * @mode contains the mode of the new file.
423 * @dev contains the undecoded device number. Use new_decode_dev() to get
424 * the decoded device number.
425 * Return 0 if permission is granted.
426 * @inode_rename:
427 * Check for permission to rename a file or directory.
428 * @old_dir contains the inode structure for parent of the old link.
429 * @old_dentry contains the dentry structure of the old link.
430 * @new_dir contains the inode structure for parent of the new link.
431 * @new_dentry contains the dentry structure of the new link.
432 * Return 0 if permission is granted.
433 * @path_rename:
434 * Check for permission to rename a file or directory.
435 * @old_dir contains the path structure for parent of the old link.
436 * @old_dentry contains the dentry structure of the old link.
437 * @new_dir contains the path structure for parent of the new link.
438 * @new_dentry contains the dentry structure of the new link.
439 * Return 0 if permission is granted.
440 * @path_chmod:
441 * Check for permission to change DAC's permission of a file or directory.
442 * @dentry contains the dentry structure.
443 * @mnt contains the vfsmnt structure.
444 * @mode contains DAC's mode.
445 * Return 0 if permission is granted.
446 * @path_chown:
447 * Check for permission to change owner/group of a file or directory.
448 * @path contains the path structure.
449 * @uid contains new owner's ID.
450 * @gid contains new group's ID.
451 * Return 0 if permission is granted.
452 * @path_chroot:
453 * Check for permission to change root directory.
454 * @path contains the path structure.
455 * Return 0 if permission is granted.
456 * @inode_readlink:
457 * Check the permission to read the symbolic link.
458 * @dentry contains the dentry structure for the file link.
459 * Return 0 if permission is granted.
460 * @inode_follow_link:
461 * Check permission to follow a symbolic link when looking up a pathname.
462 * @dentry contains the dentry structure for the link.
463 * @nd contains the nameidata structure for the parent directory.
464 * Return 0 if permission is granted.
465 * @inode_permission:
466 * Check permission before accessing an inode. This hook is called by the
467 * existing Linux permission function, so a security module can use it to
468 * provide additional checking for existing Linux permission checks.
469 * Notice that this hook is called when a file is opened (as well as many
470 * other operations), whereas the file_security_ops permission hook is
471 * called when the actual read/write operations are performed.
472 * @inode contains the inode structure to check.
473 * @mask contains the permission mask.
474 * Return 0 if permission is granted.
475 * @inode_setattr:
476 * Check permission before setting file attributes. Note that the kernel
477 * call to notify_change is performed from several locations, whenever
478 * file attributes change (such as when a file is truncated, chown/chmod
479 * operations, transferring disk quotas, etc).
480 * @dentry contains the dentry structure for the file.
481 * @attr is the iattr structure containing the new file attributes.
482 * Return 0 if permission is granted.
483 * @path_truncate:
484 * Check permission before truncating a file.
485 * @path contains the path structure for the file.
486 * Return 0 if permission is granted.
487 * @inode_getattr:
488 * Check permission before obtaining file attributes.
489 * @mnt is the vfsmount where the dentry was looked up
490 * @dentry contains the dentry structure for the file.
491 * Return 0 if permission is granted.
492 * @inode_setxattr:
493 * Check permission before setting the extended attributes
494 * @value identified by @name for @dentry.
495 * Return 0 if permission is granted.
496 * @inode_post_setxattr:
497 * Update inode security field after successful setxattr operation.
498 * @value identified by @name for @dentry.
499 * @inode_getxattr:
500 * Check permission before obtaining the extended attributes
501 * identified by @name for @dentry.
502 * Return 0 if permission is granted.
503 * @inode_listxattr:
504 * Check permission before obtaining the list of extended attribute
505 * names for @dentry.
506 * Return 0 if permission is granted.
507 * @inode_removexattr:
508 * Check permission before removing the extended attribute
509 * identified by @name for @dentry.
510 * Return 0 if permission is granted.
511 * @inode_getsecurity:
512 * Retrieve a copy of the extended attribute representation of the
513 * security label associated with @name for @inode via @buffer. Note that
514 * @name is the remainder of the attribute name after the security prefix
515 * has been removed. @alloc is used to specify of the call should return a
516 * value via the buffer or just the value length Return size of buffer on
517 * success.
518 * @inode_setsecurity:
519 * Set the security label associated with @name for @inode from the
520 * extended attribute value @value. @size indicates the size of the
521 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
522 * Note that @name is the remainder of the attribute name after the
523 * security. prefix has been removed.
524 * Return 0 on success.
525 * @inode_listsecurity:
526 * Copy the extended attribute names for the security labels
527 * associated with @inode into @buffer. The maximum size of @buffer
528 * is specified by @buffer_size. @buffer may be NULL to request
529 * the size of the buffer required.
530 * Returns number of bytes used/required on success.
531 * @inode_need_killpriv:
532 * Called when an inode has been changed.
533 * @dentry is the dentry being changed.
534 * Return <0 on error to abort the inode change operation.
535 * Return 0 if inode_killpriv does not need to be called.
536 * Return >0 if inode_killpriv does need to be called.
537 * @inode_killpriv:
538 * The setuid bit is being removed. Remove similar security labels.
539 * Called with the dentry->d_inode->i_mutex held.
540 * @dentry is the dentry being changed.
541 * Return 0 on success. If error is returned, then the operation
542 * causing setuid bit removal is failed.
543 * @inode_getsecid:
544 * Get the secid associated with the node.
545 * @inode contains a pointer to the inode.
546 * @secid contains a pointer to the location where result will be saved.
547 * In case of failure, @secid will be set to zero.
548 *
549 * Security hooks for file operations
550 *
551 * @file_permission:
552 * Check file permissions before accessing an open file. This hook is
553 * called by various operations that read or write files. A security
554 * module can use this hook to perform additional checking on these
555 * operations, e.g. to revalidate permissions on use to support privilege
556 * bracketing or policy changes. Notice that this hook is used when the
557 * actual read/write operations are performed, whereas the
558 * inode_security_ops hook is called when a file is opened (as well as
559 * many other operations).
560 * Caveat: Although this hook can be used to revalidate permissions for
561 * various system call operations that read or write files, it does not
562 * address the revalidation of permissions for memory-mapped files.
563 * Security modules must handle this separately if they need such
564 * revalidation.
565 * @file contains the file structure being accessed.
566 * @mask contains the requested permissions.
567 * Return 0 if permission is granted.
568 * @file_alloc_security:
569 * Allocate and attach a security structure to the file->f_security field.
570 * The security field is initialized to NULL when the structure is first
571 * created.
572 * @file contains the file structure to secure.
573 * Return 0 if the hook is successful and permission is granted.
574 * @file_free_security:
575 * Deallocate and free any security structures stored in file->f_security.
576 * @file contains the file structure being modified.
577 * @file_ioctl:
578 * @file contains the file structure.
579 * @cmd contains the operation to perform.
580 * @arg contains the operational arguments.
581 * Check permission for an ioctl operation on @file. Note that @arg
582 * sometimes represents a user space pointer; in other cases, it may be a
583 * simple integer value. When @arg represents a user space pointer, it
584 * should never be used by the security module.
585 * Return 0 if permission is granted.
586 * @file_mmap :
587 * Check permissions for a mmap operation. The @file may be NULL, e.g.
588 * if mapping anonymous memory.
589 * @file contains the file structure for file to map (may be NULL).
590 * @reqprot contains the protection requested by the application.
591 * @prot contains the protection that will be applied by the kernel.
592 * @flags contains the operational flags.
593 * @addr contains virtual address that will be used for the operation.
594 * @addr_only contains a boolean: 0 if file-backed VMA, otherwise 1.
595 * Return 0 if permission is granted.
596 * @file_mprotect:
597 * Check permissions before changing memory access permissions.
598 * @vma contains the memory region to modify.
599 * @reqprot contains the protection requested by the application.
600 * @prot contains the protection that will be applied by the kernel.
601 * Return 0 if permission is granted.
602 * @file_lock:
603 * Check permission before performing file locking operations.
604 * Note: this hook mediates both flock and fcntl style locks.
605 * @file contains the file structure.
606 * @cmd contains the posix-translated lock operation to perform
607 * (e.g. F_RDLCK, F_WRLCK).
608 * Return 0 if permission is granted.
609 * @file_fcntl:
610 * Check permission before allowing the file operation specified by @cmd
611 * from being performed on the file @file. Note that @arg sometimes
612 * represents a user space pointer; in other cases, it may be a simple
613 * integer value. When @arg represents a user space pointer, it should
614 * never be used by the security module.
615 * @file contains the file structure.
616 * @cmd contains the operation to be performed.
617 * @arg contains the operational arguments.
618 * Return 0 if permission is granted.
619 * @file_set_fowner:
620 * Save owner security information (typically from current->security) in
621 * file->f_security for later use by the send_sigiotask hook.
622 * @file contains the file structure to update.
623 * Return 0 on success.
624 * @file_send_sigiotask:
625 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
626 * process @tsk. Note that this hook is sometimes called from interrupt.
627 * Note that the fown_struct, @fown, is never outside the context of a
628 * struct file, so the file structure (and associated security information)
629 * can always be obtained:
630 * container_of(fown, struct file, f_owner)
631 * @tsk contains the structure of task receiving signal.
632 * @fown contains the file owner information.
633 * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
634 * Return 0 if permission is granted.
635 * @file_receive:
636 * This hook allows security modules to control the ability of a process
637 * to receive an open file descriptor via socket IPC.
638 * @file contains the file structure being received.
639 * Return 0 if permission is granted.
640 *
641 * Security hook for dentry
642 *
643 * @dentry_open
644 * Save open-time permission checking state for later use upon
645 * file_permission, and recheck access if anything has changed
646 * since inode_permission.
647 *
648 * Security hooks for task operations.
649 *
650 * @task_create:
651 * Check permission before creating a child process. See the clone(2)
652 * manual page for definitions of the @clone_flags.
653 * @clone_flags contains the flags indicating what should be shared.
654 * Return 0 if permission is granted.
655 * @cred_alloc_blank:
656 * @cred points to the credentials.
657 * @gfp indicates the atomicity of any memory allocations.
658 * Only allocate sufficient memory and attach to @cred such that
659 * cred_transfer() will not get ENOMEM.
660 * @cred_free:
661 * @cred points to the credentials.
662 * Deallocate and clear the cred->security field in a set of credentials.
663 * @cred_prepare:
664 * @new points to the new credentials.
665 * @old points to the original credentials.
666 * @gfp indicates the atomicity of any memory allocations.
667 * Prepare a new set of credentials by copying the data from the old set.
668 * @cred_transfer:
669 * @new points to the new credentials.
670 * @old points to the original credentials.
671 * Transfer data from original creds to new creds
672 * @kernel_act_as:
673 * Set the credentials for a kernel service to act as (subjective context).
674 * @new points to the credentials to be modified.
675 * @secid specifies the security ID to be set
676 * The current task must be the one that nominated @secid.
677 * Return 0 if successful.
678 * @kernel_create_files_as:
679 * Set the file creation context in a set of credentials to be the same as
680 * the objective context of the specified inode.
681 * @new points to the credentials to be modified.
682 * @inode points to the inode to use as a reference.
683 * The current task must be the one that nominated @inode.
684 * Return 0 if successful.
685 * @kernel_module_request:
686 * Ability to trigger the kernel to automatically upcall to userspace for
687 * userspace to load a kernel module with the given name.
688 * @kmod_name name of the module requested by the kernel
689 * Return 0 if successful.
690 * @task_fix_setuid:
691 * Update the module's state after setting one or more of the user
692 * identity attributes of the current process. The @flags parameter
693 * indicates which of the set*uid system calls invoked this hook. If
694 * @new is the set of credentials that will be installed. Modifications
695 * should be made to this rather than to @current->cred.
696 * @old is the set of credentials that are being replaces
697 * @flags contains one of the LSM_SETID_* values.
698 * Return 0 on success.
699 * @task_setpgid:
700 * Check permission before setting the process group identifier of the
701 * process @p to @pgid.
702 * @p contains the task_struct for process being modified.
703 * @pgid contains the new pgid.
704 * Return 0 if permission is granted.
705 * @task_getpgid:
706 * Check permission before getting the process group identifier of the
707 * process @p.
708 * @p contains the task_struct for the process.
709 * Return 0 if permission is granted.
710 * @task_getsid:
711 * Check permission before getting the session identifier of the process
712 * @p.
713 * @p contains the task_struct for the process.
714 * Return 0 if permission is granted.
715 * @task_getsecid:
716 * Retrieve the security identifier of the process @p.
717 * @p contains the task_struct for the process and place is into @secid.
718 * In case of failure, @secid will be set to zero.
719 *
720 * @task_setnice:
721 * Check permission before setting the nice value of @p to @nice.
722 * @p contains the task_struct of process.
723 * @nice contains the new nice value.
724 * Return 0 if permission is granted.
725 * @task_setioprio
726 * Check permission before setting the ioprio value of @p to @ioprio.
727 * @p contains the task_struct of process.
728 * @ioprio contains the new ioprio value
729 * Return 0 if permission is granted.
730 * @task_getioprio
731 * Check permission before getting the ioprio value of @p.
732 * @p contains the task_struct of process.
733 * Return 0 if permission is granted.
734 * @task_setrlimit:
735 * Check permission before setting the resource limits of the current
736 * process for @resource to @new_rlim. The old resource limit values can
737 * be examined by dereferencing (current->signal->rlim + resource).
738 * @resource contains the resource whose limit is being set.
739 * @new_rlim contains the new limits for @resource.
740 * Return 0 if permission is granted.
741 * @task_setscheduler:
742 * Check permission before setting scheduling policy and/or parameters of
743 * process @p based on @policy and @lp.
744 * @p contains the task_struct for process.
745 * @policy contains the scheduling policy.
746 * @lp contains the scheduling parameters.
747 * Return 0 if permission is granted.
748 * @task_getscheduler:
749 * Check permission before obtaining scheduling information for process
750 * @p.
751 * @p contains the task_struct for process.
752 * Return 0 if permission is granted.
753 * @task_movememory
754 * Check permission before moving memory owned by process @p.
755 * @p contains the task_struct for process.
756 * Return 0 if permission is granted.
757 * @task_kill:
758 * Check permission before sending signal @sig to @p. @info can be NULL,
759 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
760 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
761 * from the kernel and should typically be permitted.
762 * SIGIO signals are handled separately by the send_sigiotask hook in
763 * file_security_ops.
764 * @p contains the task_struct for process.
765 * @info contains the signal information.
766 * @sig contains the signal value.
767 * @secid contains the sid of the process where the signal originated
768 * Return 0 if permission is granted.
769 * @task_wait:
770 * Check permission before allowing a process to reap a child process @p
771 * and collect its status information.
772 * @p contains the task_struct for process.
773 * Return 0 if permission is granted.
774 * @task_prctl:
775 * Check permission before performing a process control operation on the
776 * current process.
777 * @option contains the operation.
778 * @arg2 contains a argument.
779 * @arg3 contains a argument.
780 * @arg4 contains a argument.
781 * @arg5 contains a argument.
782 * Return -ENOSYS if no-one wanted to handle this op, any other value to
783 * cause prctl() to return immediately with that value.
784 * @task_to_inode:
785 * Set the security attributes for an inode based on an associated task's
786 * security attributes, e.g. for /proc/pid inodes.
787 * @p contains the task_struct for the task.
788 * @inode contains the inode structure for the inode.
789 *
790 * Security hooks for Netlink messaging.
791 *
792 * @netlink_send:
793 * Save security information for a netlink message so that permission
794 * checking can be performed when the message is processed. The security
795 * information can be saved using the eff_cap field of the
796 * netlink_skb_parms structure. Also may be used to provide fine
797 * grained control over message transmission.
798 * @sk associated sock of task sending the message.
799 * @skb contains the sk_buff structure for the netlink message.
800 * Return 0 if the information was successfully saved and message
801 * is allowed to be transmitted.
802 * @netlink_recv:
803 * Check permission before processing the received netlink message in
804 * @skb.
805 * @skb contains the sk_buff structure for the netlink message.
806 * @cap indicates the capability required
807 * Return 0 if permission is granted.
808 *
809 * Security hooks for Unix domain networking.
810 *
811 * @unix_stream_connect:
812 * Check permissions before establishing a Unix domain stream connection
813 * between @sock and @other.
814 * @sock contains the sock structure.
815 * @other contains the peer sock structure.
816 * @newsk contains the new sock structure.
817 * Return 0 if permission is granted.
818 * @unix_may_send:
819 * Check permissions before connecting or sending datagrams from @sock to
820 * @other.
821 * @sock contains the socket structure.
822 * @sock contains the peer socket structure.
823 * Return 0 if permission is granted.
824 *
825 * The @unix_stream_connect and @unix_may_send hooks were necessary because
826 * Linux provides an alternative to the conventional file name space for Unix
827 * domain sockets. Whereas binding and connecting to sockets in the file name
828 * space is mediated by the typical file permissions (and caught by the mknod
829 * and permission hooks in inode_security_ops), binding and connecting to
830 * sockets in the abstract name space is completely unmediated. Sufficient
831 * control of Unix domain sockets in the abstract name space isn't possible
832 * using only the socket layer hooks, since we need to know the actual target
833 * socket, which is not looked up until we are inside the af_unix code.
834 *
835 * Security hooks for socket operations.
836 *
837 * @socket_create:
838 * Check permissions prior to creating a new socket.
839 * @family contains the requested protocol family.
840 * @type contains the requested communications type.
841 * @protocol contains the requested protocol.
842 * @kern set to 1 if a kernel socket.
843 * Return 0 if permission is granted.
844 * @socket_post_create:
845 * This hook allows a module to update or allocate a per-socket security
846 * structure. Note that the security field was not added directly to the
847 * socket structure, but rather, the socket security information is stored
848 * in the associated inode. Typically, the inode alloc_security hook will
849 * allocate and and attach security information to
850 * sock->inode->i_security. This hook may be used to update the
851 * sock->inode->i_security field with additional information that wasn't
852 * available when the inode was allocated.
853 * @sock contains the newly created socket structure.
854 * @family contains the requested protocol family.
855 * @type contains the requested communications type.
856 * @protocol contains the requested protocol.
857 * @kern set to 1 if a kernel socket.
858 * @socket_bind:
859 * Check permission before socket protocol layer bind operation is
860 * performed and the socket @sock is bound to the address specified in the
861 * @address parameter.
862 * @sock contains the socket structure.
863 * @address contains the address to bind to.
864 * @addrlen contains the length of address.
865 * Return 0 if permission is granted.
866 * @socket_connect:
867 * Check permission before socket protocol layer connect operation
868 * attempts to connect socket @sock to a remote address, @address.
869 * @sock contains the socket structure.
870 * @address contains the address of remote endpoint.
871 * @addrlen contains the length of address.
872 * Return 0 if permission is granted.
873 * @socket_listen:
874 * Check permission before socket protocol layer listen operation.
875 * @sock contains the socket structure.
876 * @backlog contains the maximum length for the pending connection queue.
877 * Return 0 if permission is granted.
878 * @socket_accept:
879 * Check permission before accepting a new connection. Note that the new
880 * socket, @newsock, has been created and some information copied to it,
881 * but the accept operation has not actually been performed.
882 * @sock contains the listening socket structure.
883 * @newsock contains the newly created server socket for connection.
884 * Return 0 if permission is granted.
885 * @socket_sendmsg:
886 * Check permission before transmitting a message to another socket.
887 * @sock contains the socket structure.
888 * @msg contains the message to be transmitted.
889 * @size contains the size of message.
890 * Return 0 if permission is granted.
891 * @socket_recvmsg:
892 * Check permission before receiving a message from a socket.
893 * @sock contains the socket structure.
894 * @msg contains the message structure.
895 * @size contains the size of message structure.
896 * @flags contains the operational flags.
897 * Return 0 if permission is granted.
898 * @socket_getsockname:
899 * Check permission before the local address (name) of the socket object
900 * @sock is retrieved.
901 * @sock contains the socket structure.
902 * Return 0 if permission is granted.
903 * @socket_getpeername:
904 * Check permission before the remote address (name) of a socket object
905 * @sock is retrieved.
906 * @sock contains the socket structure.
907 * Return 0 if permission is granted.
908 * @socket_getsockopt:
909 * Check permissions before retrieving the options associated with socket
910 * @sock.
911 * @sock contains the socket structure.
912 * @level contains the protocol level to retrieve option from.
913 * @optname contains the name of option to retrieve.
914 * Return 0 if permission is granted.
915 * @socket_setsockopt:
916 * Check permissions before setting the options associated with socket
917 * @sock.
918 * @sock contains the socket structure.
919 * @level contains the protocol level to set options for.
920 * @optname contains the name of the option to set.
921 * Return 0 if permission is granted.
922 * @socket_shutdown:
923 * Checks permission before all or part of a connection on the socket
924 * @sock is shut down.
925 * @sock contains the socket structure.
926 * @how contains the flag indicating how future sends and receives are handled.
927 * Return 0 if permission is granted.
928 * @socket_sock_rcv_skb:
929 * Check permissions on incoming network packets. This hook is distinct
930 * from Netfilter's IP input hooks since it is the first time that the
931 * incoming sk_buff @skb has been associated with a particular socket, @sk.
932 * Must not sleep inside this hook because some callers hold spinlocks.
933 * @sk contains the sock (not socket) associated with the incoming sk_buff.
934 * @skb contains the incoming network data.
935 * @socket_getpeersec_stream:
936 * This hook allows the security module to provide peer socket security
937 * state for unix or connected tcp sockets to userspace via getsockopt
938 * SO_GETPEERSEC. For tcp sockets this can be meaningful if the
939 * socket is associated with an ipsec SA.
940 * @sock is the local socket.
941 * @optval userspace memory where the security state is to be copied.
942 * @optlen userspace int where the module should copy the actual length
943 * of the security state.
944 * @len as input is the maximum length to copy to userspace provided
945 * by the caller.
946 * Return 0 if all is well, otherwise, typical getsockopt return
947 * values.
948 * @socket_getpeersec_dgram:
949 * This hook allows the security module to provide peer socket security
950 * state for udp sockets on a per-packet basis to userspace via
951 * getsockopt SO_GETPEERSEC. The application must first have indicated
952 * the IP_PASSSEC option via getsockopt. It can then retrieve the
953 * security state returned by this hook for a packet via the SCM_SECURITY
954 * ancillary message type.
955 * @skb is the skbuff for the packet being queried
956 * @secdata is a pointer to a buffer in which to copy the security data
957 * @seclen is the maximum length for @secdata
958 * Return 0 on success, error on failure.
959 * @sk_alloc_security:
960 * Allocate and attach a security structure to the sk->sk_security field,
961 * which is used to copy security attributes between local stream sockets.
962 * @sk_free_security:
963 * Deallocate security structure.
964 * @sk_clone_security:
965 * Clone/copy security structure.
966 * @sk_getsecid:
967 * Retrieve the LSM-specific secid for the sock to enable caching of network
968 * authorizations.
969 * @sock_graft:
970 * Sets the socket's isec sid to the sock's sid.
971 * @inet_conn_request:
972 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
973 * @inet_csk_clone:
974 * Sets the new child socket's sid to the openreq sid.
975 * @inet_conn_established:
976 * Sets the connection's peersid to the secmark on skb.
977 * @secmark_relabel_packet:
978 * check if the process should be allowed to relabel packets to the given secid
979 * @security_secmark_refcount_inc
980 * tells the LSM to increment the number of secmark labeling rules loaded
981 * @security_secmark_refcount_dec
982 * tells the LSM to decrement the number of secmark labeling rules loaded
983 * @req_classify_flow:
984 * Sets the flow's sid to the openreq sid.
985 * @tun_dev_create:
986 * Check permissions prior to creating a new TUN device.
987 * @tun_dev_post_create:
988 * This hook allows a module to update or allocate a per-socket security
989 * structure.
990 * @sk contains the newly created sock structure.
991 * @tun_dev_attach:
992 * Check permissions prior to attaching to a persistent TUN device. This
993 * hook can also be used by the module to update any security state
994 * associated with the TUN device's sock structure.
995 * @sk contains the existing sock structure.
996 *
997 * Security hooks for XFRM operations.
998 *
999 * @xfrm_policy_alloc_security:
1000 * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
1001 * Database used by the XFRM system.
1002 * @sec_ctx contains the security context information being provided by
1003 * the user-level policy update program (e.g., setkey).
1004 * Allocate a security structure to the xp->security field; the security
1005 * field is initialized to NULL when the xfrm_policy is allocated.
1006 * Return 0 if operation was successful (memory to allocate, legal context)
1007 * @xfrm_policy_clone_security:
1008 * @old_ctx contains an existing xfrm_sec_ctx.
1009 * @new_ctxp contains a new xfrm_sec_ctx being cloned from old.
1010 * Allocate a security structure in new_ctxp that contains the
1011 * information from the old_ctx structure.
1012 * Return 0 if operation was successful (memory to allocate).
1013 * @xfrm_policy_free_security:
1014 * @ctx contains the xfrm_sec_ctx
1015 * Deallocate xp->security.
1016 * @xfrm_policy_delete_security:
1017 * @ctx contains the xfrm_sec_ctx.
1018 * Authorize deletion of xp->security.
1019 * @xfrm_state_alloc_security:
1020 * @x contains the xfrm_state being added to the Security Association
1021 * Database by the XFRM system.
1022 * @sec_ctx contains the security context information being provided by
1023 * the user-level SA generation program (e.g., setkey or racoon).
1024 * @secid contains the secid from which to take the mls portion of the context.
1025 * Allocate a security structure to the x->security field; the security
1026 * field is initialized to NULL when the xfrm_state is allocated. Set the
1027 * context to correspond to either sec_ctx or polsec, with the mls portion
1028 * taken from secid in the latter case.
1029 * Return 0 if operation was successful (memory to allocate, legal context).
1030 * @xfrm_state_free_security:
1031 * @x contains the xfrm_state.
1032 * Deallocate x->security.
1033 * @xfrm_state_delete_security:
1034 * @x contains the xfrm_state.
1035 * Authorize deletion of x->security.
1036 * @xfrm_policy_lookup:
1037 * @ctx contains the xfrm_sec_ctx for which the access control is being
1038 * checked.
1039 * @fl_secid contains the flow security label that is used to authorize
1040 * access to the policy xp.
1041 * @dir contains the direction of the flow (input or output).
1042 * Check permission when a flow selects a xfrm_policy for processing
1043 * XFRMs on a packet. The hook is called when selecting either a
1044 * per-socket policy or a generic xfrm policy.
1045 * Return 0 if permission is granted, -ESRCH otherwise, or -errno
1046 * on other errors.
1047 * @xfrm_state_pol_flow_match:
1048 * @x contains the state to match.
1049 * @xp contains the policy to check for a match.
1050 * @fl contains the flow to check for a match.
1051 * Return 1 if there is a match.
1052 * @xfrm_decode_session:
1053 * @skb points to skb to decode.
1054 * @secid points to the flow key secid to set.
1055 * @ckall says if all xfrms used should be checked for same secid.
1056 * Return 0 if ckall is zero or all xfrms used have the same secid.
1057 *
1058 * Security hooks affecting all Key Management operations
1059 *
1060 * @key_alloc:
1061 * Permit allocation of a key and assign security data. Note that key does
1062 * not have a serial number assigned at this point.
1063 * @key points to the key.
1064 * @flags is the allocation flags
1065 * Return 0 if permission is granted, -ve error otherwise.
1066 * @key_free:
1067 * Notification of destruction; free security data.
1068 * @key points to the key.
1069 * No return value.
1070 * @key_permission:
1071 * See whether a specific operational right is granted to a process on a
1072 * key.
1073 * @key_ref refers to the key (key pointer + possession attribute bit).
1074 * @cred points to the credentials to provide the context against which to
1075 * evaluate the security data on the key.
1076 * @perm describes the combination of permissions required of this key.
1077 * Return 0 if permission is granted, -ve error otherwise.
1078 * @key_getsecurity:
1079 * Get a textual representation of the security context attached to a key
1080 * for the purposes of honouring KEYCTL_GETSECURITY. This function
1081 * allocates the storage for the NUL-terminated string and the caller
1082 * should free it.
1083 * @key points to the key to be queried.
1084 * @_buffer points to a pointer that should be set to point to the
1085 * resulting string (if no label or an error occurs).
1086 * Return the length of the string (including terminating NUL) or -ve if
1087 * an error.
1088 * May also return 0 (and a NULL buffer pointer) if there is no label.
1089 *
1090 * Security hooks affecting all System V IPC operations.
1091 *
1092 * @ipc_permission:
1093 * Check permissions for access to IPC
1094 * @ipcp contains the kernel IPC permission structure
1095 * @flag contains the desired (requested) permission set
1096 * Return 0 if permission is granted.
1097 * @ipc_getsecid:
1098 * Get the secid associated with the ipc object.
1099 * @ipcp contains the kernel IPC permission structure.
1100 * @secid contains a pointer to the location where result will be saved.
1101 * In case of failure, @secid will be set to zero.
1102 *
1103 * Security hooks for individual messages held in System V IPC message queues
1104 * @msg_msg_alloc_security:
1105 * Allocate and attach a security structure to the msg->security field.
1106 * The security field is initialized to NULL when the structure is first
1107 * created.
1108 * @msg contains the message structure to be modified.
1109 * Return 0 if operation was successful and permission is granted.
1110 * @msg_msg_free_security:
1111 * Deallocate the security structure for this message.
1112 * @msg contains the message structure to be modified.
1113 *
1114 * Security hooks for System V IPC Message Queues
1115 *
1116 * @msg_queue_alloc_security:
1117 * Allocate and attach a security structure to the
1118 * msq->q_perm.security field. The security field is initialized to
1119 * NULL when the structure is first created.
1120 * @msq contains the message queue structure to be modified.
1121 * Return 0 if operation was successful and permission is granted.
1122 * @msg_queue_free_security:
1123 * Deallocate security structure for this message queue.
1124 * @msq contains the message queue structure to be modified.
1125 * @msg_queue_associate:
1126 * Check permission when a message queue is requested through the
1127 * msgget system call. This hook is only called when returning the
1128 * message queue identifier for an existing message queue, not when a
1129 * new message queue is created.
1130 * @msq contains the message queue to act upon.
1131 * @msqflg contains the operation control flags.
1132 * Return 0 if permission is granted.
1133 * @msg_queue_msgctl:
1134 * Check permission when a message control operation specified by @cmd
1135 * is to be performed on the message queue @msq.
1136 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
1137 * @msq contains the message queue to act upon. May be NULL.
1138 * @cmd contains the operation to be performed.
1139 * Return 0 if permission is granted.
1140 * @msg_queue_msgsnd:
1141 * Check permission before a message, @msg, is enqueued on the message
1142 * queue, @msq.
1143 * @msq contains the message queue to send message to.
1144 * @msg contains the message to be enqueued.
1145 * @msqflg contains operational flags.
1146 * Return 0 if permission is granted.
1147 * @msg_queue_msgrcv:
1148 * Check permission before a message, @msg, is removed from the message
1149 * queue, @msq. The @target task structure contains a pointer to the
1150 * process that will be receiving the message (not equal to the current
1151 * process when inline receives are being performed).
1152 * @msq contains the message queue to retrieve message from.
1153 * @msg contains the message destination.
1154 * @target contains the task structure for recipient process.
1155 * @type contains the type of message requested.
1156 * @mode contains the operational flags.
1157 * Return 0 if permission is granted.
1158 *
1159 * Security hooks for System V Shared Memory Segments
1160 *
1161 * @shm_alloc_security:
1162 * Allocate and attach a security structure to the shp->shm_perm.security
1163 * field. The security field is initialized to NULL when the structure is
1164 * first created.
1165 * @shp contains the shared memory structure to be modified.
1166 * Return 0 if operation was successful and permission is granted.
1167 * @shm_free_security:
1168 * Deallocate the security struct for this memory segment.
1169 * @shp contains the shared memory structure to be modified.
1170 * @shm_associate:
1171 * Check permission when a shared memory region is requested through the
1172 * shmget system call. This hook is only called when returning the shared
1173 * memory region identifier for an existing region, not when a new shared
1174 * memory region is created.
1175 * @shp contains the shared memory structure to be modified.
1176 * @shmflg contains the operation control flags.
1177 * Return 0 if permission is granted.
1178 * @shm_shmctl:
1179 * Check permission when a shared memory control operation specified by
1180 * @cmd is to be performed on the shared memory region @shp.
1181 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1182 * @shp contains shared memory structure to be modified.
1183 * @cmd contains the operation to be performed.
1184 * Return 0 if permission is granted.
1185 * @shm_shmat:
1186 * Check permissions prior to allowing the shmat system call to attach the
1187 * shared memory segment @shp to the data segment of the calling process.
1188 * The attaching address is specified by @shmaddr.
1189 * @shp contains the shared memory structure to be modified.
1190 * @shmaddr contains the address to attach memory region to.
1191 * @shmflg contains the operational flags.
1192 * Return 0 if permission is granted.
1193 *
1194 * Security hooks for System V Semaphores
1195 *
1196 * @sem_alloc_security:
1197 * Allocate and attach a security structure to the sma->sem_perm.security
1198 * field. The security field is initialized to NULL when the structure is
1199 * first created.
1200 * @sma contains the semaphore structure
1201 * Return 0 if operation was successful and permission is granted.
1202 * @sem_free_security:
1203 * deallocate security struct for this semaphore
1204 * @sma contains the semaphore structure.
1205 * @sem_associate:
1206 * Check permission when a semaphore is requested through the semget
1207 * system call. This hook is only called when returning the semaphore
1208 * identifier for an existing semaphore, not when a new one must be
1209 * created.
1210 * @sma contains the semaphore structure.
1211 * @semflg contains the operation control flags.
1212 * Return 0 if permission is granted.
1213 * @sem_semctl:
1214 * Check permission when a semaphore operation specified by @cmd is to be
1215 * performed on the semaphore @sma. The @sma may be NULL, e.g. for
1216 * IPC_INFO or SEM_INFO.
1217 * @sma contains the semaphore structure. May be NULL.
1218 * @cmd contains the operation to be performed.
1219 * Return 0 if permission is granted.
1220 * @sem_semop
1221 * Check permissions before performing operations on members of the
1222 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
1223 * may be modified.
1224 * @sma contains the semaphore structure.
1225 * @sops contains the operations to perform.
1226 * @nsops contains the number of operations to perform.
1227 * @alter contains the flag indicating whether changes are to be made.
1228 * Return 0 if permission is granted.
1229 *
1230 * @ptrace_access_check:
1231 * Check permission before allowing the current process to trace the
1232 * @child process.
1233 * Security modules may also want to perform a process tracing check
1234 * during an execve in the set_security or apply_creds hooks of
1235 * tracing check during an execve in the bprm_set_creds hook of
1236 * binprm_security_ops if the process is being traced and its security
1237 * attributes would be changed by the execve.
1238 * @child contains the task_struct structure for the target process.
1239 * @mode contains the PTRACE_MODE flags indicating the form of access.
1240 * Return 0 if permission is granted.
1241 * @ptrace_traceme:
1242 * Check that the @parent process has sufficient permission to trace the
1243 * current process before allowing the current process to present itself
1244 * to the @parent process for tracing.
1245 * The parent process will still have to undergo the ptrace_access_check
1246 * checks before it is allowed to trace this one.
1247 * @parent contains the task_struct structure for debugger process.
1248 * Return 0 if permission is granted.
1249 * @capget:
1250 * Get the @effective, @inheritable, and @permitted capability sets for
1251 * the @target process. The hook may also perform permission checking to
1252 * determine if the current process is allowed to see the capability sets
1253 * of the @target process.
1254 * @target contains the task_struct structure for target process.
1255 * @effective contains the effective capability set.
1256 * @inheritable contains the inheritable capability set.
1257 * @permitted contains the permitted capability set.
1258 * Return 0 if the capability sets were successfully obtained.
1259 * @capset:
1260 * Set the @effective, @inheritable, and @permitted capability sets for
1261 * the current process.
1262 * @new contains the new credentials structure for target process.
1263 * @old contains the current credentials structure for target process.
1264 * @effective contains the effective capability set.
1265 * @inheritable contains the inheritable capability set.
1266 * @permitted contains the permitted capability set.
1267 * Return 0 and update @new if permission is granted.
1268 * @capable:
1269 * Check whether the @tsk process has the @cap capability in the indicated
1270 * credentials.
1271 * @tsk contains the task_struct for the process.
1272 * @cred contains the credentials to use.
1273 * @ns contains the user namespace we want the capability in
1274 * @cap contains the capability <include/linux/capability.h>.
1275 * @audit: Whether to write an audit message or not
1276 * Return 0 if the capability is granted for @tsk.
1277 * @syslog:
1278 * Check permission before accessing the kernel message ring or changing
1279 * logging to the console.
1280 * See the syslog(2) manual page for an explanation of the @type values.
1281 * @type contains the type of action.
1282 * @from_file indicates the context of action (if it came from /proc).
1283 * Return 0 if permission is granted.
1284 * @settime:
1285 * Check permission to change the system time.
1286 * struct timespec and timezone are defined in include/linux/time.h
1287 * @ts contains new time
1288 * @tz contains new timezone
1289 * Return 0 if permission is granted.
1290 * @vm_enough_memory:
1291 * Check permissions for allocating a new virtual mapping.
1292 * @mm contains the mm struct it is being added to.
1293 * @pages contains the number of pages.
1294 * Return 0 if permission is granted.
1295 *
1296 * @secid_to_secctx:
1297 * Convert secid to security context. If secdata is NULL the length of
1298 * the result will be returned in seclen, but no secdata will be returned.
1299 * This does mean that the length could change between calls to check the
1300 * length and the next call which actually allocates and returns the secdata.
1301 * @secid contains the security ID.
1302 * @secdata contains the pointer that stores the converted security context.
1303 * @seclen pointer which contains the length of the data
1304 * @secctx_to_secid:
1305 * Convert security context to secid.
1306 * @secid contains the pointer to the generated security ID.
1307 * @secdata contains the security context.
1308 *
1309 * @release_secctx:
1310 * Release the security context.
1311 * @secdata contains the security context.
1312 * @seclen contains the length of the security context.
1313 *
1314 * Security hooks for Audit
1315 *
1316 * @audit_rule_init:
1317 * Allocate and initialize an LSM audit rule structure.
1318 * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h
1319 * @op contains the operator the rule uses.
1320 * @rulestr contains the context where the rule will be applied to.
1321 * @lsmrule contains a pointer to receive the result.
1322 * Return 0 if @lsmrule has been successfully set,
1323 * -EINVAL in case of an invalid rule.
1324 *
1325 * @audit_rule_known:
1326 * Specifies whether given @rule contains any fields related to current LSM.
1327 * @rule contains the audit rule of interest.
1328 * Return 1 in case of relation found, 0 otherwise.
1329 *
1330 * @audit_rule_match:
1331 * Determine if given @secid matches a rule previously approved
1332 * by @audit_rule_known.
1333 * @secid contains the security id in question.
1334 * @field contains the field which relates to current LSM.
1335 * @op contains the operator that will be used for matching.
1336 * @rule points to the audit rule that will be checked against.
1337 * @actx points to the audit context associated with the check.
1338 * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
1339 *
1340 * @audit_rule_free:
1341 * Deallocate the LSM audit rule structure previously allocated by
1342 * audit_rule_init.
1343 * @rule contains the allocated rule
1344 *
1345 * @inode_notifysecctx:
1346 * Notify the security module of what the security context of an inode
1347 * should be. Initializes the incore security context managed by the
1348 * security module for this inode. Example usage: NFS client invokes
1349 * this hook to initialize the security context in its incore inode to the
1350 * value provided by the server for the file when the server returned the
1351 * file's attributes to the client.
1352 *
1353 * Must be called with inode->i_mutex locked.
1354 *
1355 * @inode we wish to set the security context of.
1356 * @ctx contains the string which we wish to set in the inode.
1357 * @ctxlen contains the length of @ctx.
1358 *
1359 * @inode_setsecctx:
1360 * Change the security context of an inode. Updates the
1361 * incore security context managed by the security module and invokes the
1362 * fs code as needed (via __vfs_setxattr_noperm) to update any backing
1363 * xattrs that represent the context. Example usage: NFS server invokes
1364 * this hook to change the security context in its incore inode and on the
1365 * backing filesystem to a value provided by the client on a SETATTR
1366 * operation.
1367 *
1368 * Must be called with inode->i_mutex locked.
1369 *
1370 * @dentry contains the inode we wish to set the security context of.
1371 * @ctx contains the string which we wish to set in the inode.
1372 * @ctxlen contains the length of @ctx.
1373 *
1374 * @inode_getsecctx:
1375 * Returns a string containing all relevant security context information
1376 *
1377 * @inode we wish to get the security context of.
1378 * @ctx is a pointer in which to place the allocated security context.
1379 * @ctxlen points to the place to put the length of @ctx.
1380 * This is the main security structure.
1381 */
1382 struct security_operations {
1383 char name[SECURITY_NAME_MAX + 1];
1384
1385 int (*ptrace_access_check) (struct task_struct *child, unsigned int mode);
1386 int (*ptrace_traceme) (struct task_struct *parent);
1387 int (*capget) (struct task_struct *target,
1388 kernel_cap_t *effective,
1389 kernel_cap_t *inheritable, kernel_cap_t *permitted);
1390 int (*capset) (struct cred *new,
1391 const struct cred *old,
1392 const kernel_cap_t *effective,
1393 const kernel_cap_t *inheritable,
1394 const kernel_cap_t *permitted);
1395 int (*capable) (struct task_struct *tsk, const struct cred *cred,
1396 struct user_namespace *ns, int cap, int audit);
1397 int (*quotactl) (int cmds, int type, int id, struct super_block *sb);
1398 int (*quota_on) (struct dentry *dentry);
1399 int (*syslog) (int type);
1400 int (*settime) (const struct timespec *ts, const struct timezone *tz);
1401 int (*vm_enough_memory) (struct mm_struct *mm, long pages);
1402
1403 int (*bprm_set_creds) (struct linux_binprm *bprm);
1404 int (*bprm_check_security) (struct linux_binprm *bprm);
1405 int (*bprm_secureexec) (struct linux_binprm *bprm);
1406 void (*bprm_committing_creds) (struct linux_binprm *bprm);
1407 void (*bprm_committed_creds) (struct linux_binprm *bprm);
1408
1409 int (*sb_alloc_security) (struct super_block *sb);
1410 void (*sb_free_security) (struct super_block *sb);
1411 int (*sb_copy_data) (char *orig, char *copy);
1412 int (*sb_remount) (struct super_block *sb, void *data);
1413 int (*sb_kern_mount) (struct super_block *sb, int flags, void *data);
1414 int (*sb_show_options) (struct seq_file *m, struct super_block *sb);
1415 int (*sb_statfs) (struct dentry *dentry);
1416 int (*sb_mount) (char *dev_name, struct path *path,
1417 char *type, unsigned long flags, void *data);
1418 int (*sb_umount) (struct vfsmount *mnt, int flags);
1419 int (*sb_pivotroot) (struct path *old_path,
1420 struct path *new_path);
1421 int (*sb_set_mnt_opts) (struct super_block *sb,
1422 struct security_mnt_opts *opts);
1423 void (*sb_clone_mnt_opts) (const struct super_block *oldsb,
1424 struct super_block *newsb);
1425 int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts);
1426
1427 #ifdef CONFIG_SECURITY_PATH
1428 int (*path_unlink) (struct path *dir, struct dentry *dentry);
1429 int (*path_mkdir) (struct path *dir, struct dentry *dentry, umode_t mode);
1430 int (*path_rmdir) (struct path *dir, struct dentry *dentry);
1431 int (*path_mknod) (struct path *dir, struct dentry *dentry, umode_t mode,
1432 unsigned int dev);
1433 int (*path_truncate) (struct path *path);
1434 int (*path_symlink) (struct path *dir, struct dentry *dentry,
1435 const char *old_name);
1436 int (*path_link) (struct dentry *old_dentry, struct path *new_dir,
1437 struct dentry *new_dentry);
1438 int (*path_rename) (struct path *old_dir, struct dentry *old_dentry,
1439 struct path *new_dir, struct dentry *new_dentry);
1440 int (*path_chmod) (struct path *path, umode_t mode);
1441 int (*path_chown) (struct path *path, uid_t uid, gid_t gid);
1442 int (*path_chroot) (struct path *path);
1443 #endif
1444
1445 int (*inode_alloc_security) (struct inode *inode);
1446 void (*inode_free_security) (struct inode *inode);
1447 int (*inode_init_security) (struct inode *inode, struct inode *dir,
1448 const struct qstr *qstr, char **name,
1449 void **value, size_t *len);
1450 int (*inode_create) (struct inode *dir,
1451 struct dentry *dentry, umode_t mode);
1452 int (*inode_link) (struct dentry *old_dentry,
1453 struct inode *dir, struct dentry *new_dentry);
1454 int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1455 int (*inode_symlink) (struct inode *dir,
1456 struct dentry *dentry, const char *old_name);
1457 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, umode_t mode);
1458 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1459 int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1460 umode_t mode, dev_t dev);
1461 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1462 struct inode *new_dir, struct dentry *new_dentry);
1463 int (*inode_readlink) (struct dentry *dentry);
1464 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1465 int (*inode_permission) (struct inode *inode, int mask);
1466 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
1467 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1468 int (*inode_setxattr) (struct dentry *dentry, const char *name,
1469 const void *value, size_t size, int flags);
1470 void (*inode_post_setxattr) (struct dentry *dentry, const char *name,
1471 const void *value, size_t size, int flags);
1472 int (*inode_getxattr) (struct dentry *dentry, const char *name);
1473 int (*inode_listxattr) (struct dentry *dentry);
1474 int (*inode_removexattr) (struct dentry *dentry, const char *name);
1475 int (*inode_need_killpriv) (struct dentry *dentry);
1476 int (*inode_killpriv) (struct dentry *dentry);
1477 int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc);
1478 int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags);
1479 int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size);
1480 void (*inode_getsecid) (const struct inode *inode, u32 *secid);
1481
1482 int (*file_permission) (struct file *file, int mask);
1483 int (*file_alloc_security) (struct file *file);
1484 void (*file_free_security) (struct file *file);
1485 int (*file_ioctl) (struct file *file, unsigned int cmd,
1486 unsigned long arg);
1487 int (*file_mmap) (struct file *file,
1488 unsigned long reqprot, unsigned long prot,
1489 unsigned long flags, unsigned long addr,
1490 unsigned long addr_only);
1491 int (*file_mprotect) (struct vm_area_struct *vma,
1492 unsigned long reqprot,
1493 unsigned long prot);
1494 int (*file_lock) (struct file *file, unsigned int cmd);
1495 int (*file_fcntl) (struct file *file, unsigned int cmd,
1496 unsigned long arg);
1497 int (*file_set_fowner) (struct file *file);
1498 int (*file_send_sigiotask) (struct task_struct *tsk,
1499 struct fown_struct *fown, int sig);
1500 int (*file_receive) (struct file *file);
1501 int (*dentry_open) (struct file *file, const struct cred *cred);
1502
1503 int (*task_create) (unsigned long clone_flags);
1504 int (*cred_alloc_blank) (struct cred *cred, gfp_t gfp);
1505 void (*cred_free) (struct cred *cred);
1506 int (*cred_prepare)(struct cred *new, const struct cred *old,
1507 gfp_t gfp);
1508 void (*cred_transfer)(struct cred *new, const struct cred *old);
1509 int (*kernel_act_as)(struct cred *new, u32 secid);
1510 int (*kernel_create_files_as)(struct cred *new, struct inode *inode);
1511 int (*kernel_module_request)(char *kmod_name);
1512 int (*task_fix_setuid) (struct cred *new, const struct cred *old,
1513 int flags);
1514 int (*task_setpgid) (struct task_struct *p, pid_t pgid);
1515 int (*task_getpgid) (struct task_struct *p);
1516 int (*task_getsid) (struct task_struct *p);
1517 void (*task_getsecid) (struct task_struct *p, u32 *secid);
1518 int (*task_setnice) (struct task_struct *p, int nice);
1519 int (*task_setioprio) (struct task_struct *p, int ioprio);
1520 int (*task_getioprio) (struct task_struct *p);
1521 int (*task_setrlimit) (struct task_struct *p, unsigned int resource,
1522 struct rlimit *new_rlim);
1523 int (*task_setscheduler) (struct task_struct *p);
1524 int (*task_getscheduler) (struct task_struct *p);
1525 int (*task_movememory) (struct task_struct *p);
1526 int (*task_kill) (struct task_struct *p,
1527 struct siginfo *info, int sig, u32 secid);
1528 int (*task_wait) (struct task_struct *p);
1529 int (*task_prctl) (int option, unsigned long arg2,
1530 unsigned long arg3, unsigned long arg4,
1531 unsigned long arg5);
1532 void (*task_to_inode) (struct task_struct *p, struct inode *inode);
1533
1534 int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag);
1535 void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid);
1536
1537 int (*msg_msg_alloc_security) (struct msg_msg *msg);
1538 void (*msg_msg_free_security) (struct msg_msg *msg);
1539
1540 int (*msg_queue_alloc_security) (struct msg_queue *msq);
1541 void (*msg_queue_free_security) (struct msg_queue *msq);
1542 int (*msg_queue_associate) (struct msg_queue *msq, int msqflg);
1543 int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd);
1544 int (*msg_queue_msgsnd) (struct msg_queue *msq,
1545 struct msg_msg *msg, int msqflg);
1546 int (*msg_queue_msgrcv) (struct msg_queue *msq,
1547 struct msg_msg *msg,
1548 struct task_struct *target,
1549 long type, int mode);
1550
1551 int (*shm_alloc_security) (struct shmid_kernel *shp);
1552 void (*shm_free_security) (struct shmid_kernel *shp);
1553 int (*shm_associate) (struct shmid_kernel *shp, int shmflg);
1554 int (*shm_shmctl) (struct shmid_kernel *shp, int cmd);
1555 int (*shm_shmat) (struct shmid_kernel *shp,
1556 char __user *shmaddr, int shmflg);
1557
1558 int (*sem_alloc_security) (struct sem_array *sma);
1559 void (*sem_free_security) (struct sem_array *sma);
1560 int (*sem_associate) (struct sem_array *sma, int semflg);
1561 int (*sem_semctl) (struct sem_array *sma, int cmd);
1562 int (*sem_semop) (struct sem_array *sma,
1563 struct sembuf *sops, unsigned nsops, int alter);
1564
1565 int (*netlink_send) (struct sock *sk, struct sk_buff *skb);
1566 int (*netlink_recv) (struct sk_buff *skb, int cap);
1567
1568 void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1569
1570 int (*getprocattr) (struct task_struct *p, char *name, char **value);
1571 int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size);
1572 int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen);
1573 int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid);
1574 void (*release_secctx) (char *secdata, u32 seclen);
1575
1576 int (*inode_notifysecctx)(struct inode *inode, void *ctx, u32 ctxlen);
1577 int (*inode_setsecctx)(struct dentry *dentry, void *ctx, u32 ctxlen);
1578 int (*inode_getsecctx)(struct inode *inode, void **ctx, u32 *ctxlen);
1579
1580 #ifdef CONFIG_SECURITY_NETWORK
1581 int (*unix_stream_connect) (struct sock *sock, struct sock *other, struct sock *newsk);
1582 int (*unix_may_send) (struct socket *sock, struct socket *other);
1583
1584 int (*socket_create) (int family, int type, int protocol, int kern);
1585 int (*socket_post_create) (struct socket *sock, int family,
1586 int type, int protocol, int kern);
1587 int (*socket_bind) (struct socket *sock,
1588 struct sockaddr *address, int addrlen);
1589 int (*socket_connect) (struct socket *sock,
1590 struct sockaddr *address, int addrlen);
1591 int (*socket_listen) (struct socket *sock, int backlog);
1592 int (*socket_accept) (struct socket *sock, struct socket *newsock);
1593 int (*socket_sendmsg) (struct socket *sock,
1594 struct msghdr *msg, int size);
1595 int (*socket_recvmsg) (struct socket *sock,
1596 struct msghdr *msg, int size, int flags);
1597 int (*socket_getsockname) (struct socket *sock);
1598 int (*socket_getpeername) (struct socket *sock);
1599 int (*socket_getsockopt) (struct socket *sock, int level, int optname);
1600 int (*socket_setsockopt) (struct socket *sock, int level, int optname);
1601 int (*socket_shutdown) (struct socket *sock, int how);
1602 int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb);
1603 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1604 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1605 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1606 void (*sk_free_security) (struct sock *sk);
1607 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1608 void (*sk_getsecid) (struct sock *sk, u32 *secid);
1609 void (*sock_graft) (struct sock *sk, struct socket *parent);
1610 int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb,
1611 struct request_sock *req);
1612 void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req);
1613 void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb);
1614 int (*secmark_relabel_packet) (u32 secid);
1615 void (*secmark_refcount_inc) (void);
1616 void (*secmark_refcount_dec) (void);
1617 void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl);
1618 int (*tun_dev_create)(void);
1619 void (*tun_dev_post_create)(struct sock *sk);
1620 int (*tun_dev_attach)(struct sock *sk);
1621 #endif /* CONFIG_SECURITY_NETWORK */
1622
1623 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1624 int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp,
1625 struct xfrm_user_sec_ctx *sec_ctx);
1626 int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx);
1627 void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx);
1628 int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx);
1629 int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1630 struct xfrm_user_sec_ctx *sec_ctx,
1631 u32 secid);
1632 void (*xfrm_state_free_security) (struct xfrm_state *x);
1633 int (*xfrm_state_delete_security) (struct xfrm_state *x);
1634 int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
1635 int (*xfrm_state_pol_flow_match) (struct xfrm_state *x,
1636 struct xfrm_policy *xp,
1637 const struct flowi *fl);
1638 int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall);
1639 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1640
1641 /* key management security hooks */
1642 #ifdef CONFIG_KEYS
1643 int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags);
1644 void (*key_free) (struct key *key);
1645 int (*key_permission) (key_ref_t key_ref,
1646 const struct cred *cred,
1647 key_perm_t perm);
1648 int (*key_getsecurity)(struct key *key, char **_buffer);
1649 #endif /* CONFIG_KEYS */
1650
1651 #ifdef CONFIG_AUDIT
1652 int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule);
1653 int (*audit_rule_known) (struct audit_krule *krule);
1654 int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule,
1655 struct audit_context *actx);
1656 void (*audit_rule_free) (void *lsmrule);
1657 #endif /* CONFIG_AUDIT */
1658 };
1659
1660 /* prototypes */
1661 extern int security_init(void);
1662 extern int security_module_enable(struct security_operations *ops);
1663 extern int register_security(struct security_operations *ops);
1664 extern void __init security_fixup_ops(struct security_operations *ops);
1665
1666
1667 /* Security operations */
1668 int security_ptrace_access_check(struct task_struct *child, unsigned int mode);
1669 int security_ptrace_traceme(struct task_struct *parent);
1670 int security_capget(struct task_struct *target,
1671 kernel_cap_t *effective,
1672 kernel_cap_t *inheritable,
1673 kernel_cap_t *permitted);
1674 int security_capset(struct cred *new, const struct cred *old,
1675 const kernel_cap_t *effective,
1676 const kernel_cap_t *inheritable,
1677 const kernel_cap_t *permitted);
1678 int security_capable(struct user_namespace *ns, const struct cred *cred,
1679 int cap);
1680 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
1681 int cap);
1682 int security_real_capable_noaudit(struct task_struct *tsk,
1683 struct user_namespace *ns, int cap);
1684 int security_quotactl(int cmds, int type, int id, struct super_block *sb);
1685 int security_quota_on(struct dentry *dentry);
1686 int security_syslog(int type);
1687 int security_settime(const struct timespec *ts, const struct timezone *tz);
1688 int security_vm_enough_memory(long pages);
1689 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);
1690 int security_vm_enough_memory_kern(long pages);
1691 int security_bprm_set_creds(struct linux_binprm *bprm);
1692 int security_bprm_check(struct linux_binprm *bprm);
1693 void security_bprm_committing_creds(struct linux_binprm *bprm);
1694 void security_bprm_committed_creds(struct linux_binprm *bprm);
1695 int security_bprm_secureexec(struct linux_binprm *bprm);
1696 int security_sb_alloc(struct super_block *sb);
1697 void security_sb_free(struct super_block *sb);
1698 int security_sb_copy_data(char *orig, char *copy);
1699 int security_sb_remount(struct super_block *sb, void *data);
1700 int security_sb_kern_mount(struct super_block *sb, int flags, void *data);
1701 int security_sb_show_options(struct seq_file *m, struct super_block *sb);
1702 int security_sb_statfs(struct dentry *dentry);
1703 int security_sb_mount(char *dev_name, struct path *path,
1704 char *type, unsigned long flags, void *data);
1705 int security_sb_umount(struct vfsmount *mnt, int flags);
1706 int security_sb_pivotroot(struct path *old_path, struct path *new_path);
1707 int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts);
1708 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
1709 struct super_block *newsb);
1710 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts);
1711
1712 int security_inode_alloc(struct inode *inode);
1713 void security_inode_free(struct inode *inode);
1714 int security_inode_init_security(struct inode *inode, struct inode *dir,
1715 const struct qstr *qstr,
1716 initxattrs initxattrs, void *fs_data);
1717 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1718 const struct qstr *qstr, char **name,
1719 void **value, size_t *len);
1720 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode);
1721 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1722 struct dentry *new_dentry);
1723 int security_inode_unlink(struct inode *dir, struct dentry *dentry);
1724 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1725 const char *old_name);
1726 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
1727 int security_inode_rmdir(struct inode *dir, struct dentry *dentry);
1728 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev);
1729 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1730 struct inode *new_dir, struct dentry *new_dentry);
1731 int security_inode_readlink(struct dentry *dentry);
1732 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd);
1733 int security_inode_permission(struct inode *inode, int mask);
1734 int security_inode_setattr(struct dentry *dentry, struct iattr *attr);
1735 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry);
1736 int security_inode_setxattr(struct dentry *dentry, const char *name,
1737 const void *value, size_t size, int flags);
1738 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1739 const void *value, size_t size, int flags);
1740 int security_inode_getxattr(struct dentry *dentry, const char *name);
1741 int security_inode_listxattr(struct dentry *dentry);
1742 int security_inode_removexattr(struct dentry *dentry, const char *name);
1743 int security_inode_need_killpriv(struct dentry *dentry);
1744 int security_inode_killpriv(struct dentry *dentry);
1745 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc);
1746 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1747 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size);
1748 void security_inode_getsecid(const struct inode *inode, u32 *secid);
1749 int security_file_permission(struct file *file, int mask);
1750 int security_file_alloc(struct file *file);
1751 void security_file_free(struct file *file);
1752 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1753 int security_file_mmap(struct file *file, unsigned long reqprot,
1754 unsigned long prot, unsigned long flags,
1755 unsigned long addr, unsigned long addr_only);
1756 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1757 unsigned long prot);
1758 int security_file_lock(struct file *file, unsigned int cmd);
1759 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg);
1760 int security_file_set_fowner(struct file *file);
1761 int security_file_send_sigiotask(struct task_struct *tsk,
1762 struct fown_struct *fown, int sig);
1763 int security_file_receive(struct file *file);
1764 int security_dentry_open(struct file *file, const struct cred *cred);
1765 int security_task_create(unsigned long clone_flags);
1766 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp);
1767 void security_cred_free(struct cred *cred);
1768 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp);
1769 void security_transfer_creds(struct cred *new, const struct cred *old);
1770 int security_kernel_act_as(struct cred *new, u32 secid);
1771 int security_kernel_create_files_as(struct cred *new, struct inode *inode);
1772 int security_kernel_module_request(char *kmod_name);
1773 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1774 int flags);
1775 int security_task_setpgid(struct task_struct *p, pid_t pgid);
1776 int security_task_getpgid(struct task_struct *p);
1777 int security_task_getsid(struct task_struct *p);
1778 void security_task_getsecid(struct task_struct *p, u32 *secid);
1779 int security_task_setnice(struct task_struct *p, int nice);
1780 int security_task_setioprio(struct task_struct *p, int ioprio);
1781 int security_task_getioprio(struct task_struct *p);
1782 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1783 struct rlimit *new_rlim);
1784 int security_task_setscheduler(struct task_struct *p);
1785 int security_task_getscheduler(struct task_struct *p);
1786 int security_task_movememory(struct task_struct *p);
1787 int security_task_kill(struct task_struct *p, struct siginfo *info,
1788 int sig, u32 secid);
1789 int security_task_wait(struct task_struct *p);
1790 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1791 unsigned long arg4, unsigned long arg5);
1792 void security_task_to_inode(struct task_struct *p, struct inode *inode);
1793 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag);
1794 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid);
1795 int security_msg_msg_alloc(struct msg_msg *msg);
1796 void security_msg_msg_free(struct msg_msg *msg);
1797 int security_msg_queue_alloc(struct msg_queue *msq);
1798 void security_msg_queue_free(struct msg_queue *msq);
1799 int security_msg_queue_associate(struct msg_queue *msq, int msqflg);
1800 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd);
1801 int security_msg_queue_msgsnd(struct msg_queue *msq,
1802 struct msg_msg *msg, int msqflg);
1803 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1804 struct task_struct *target, long type, int mode);
1805 int security_shm_alloc(struct shmid_kernel *shp);
1806 void security_shm_free(struct shmid_kernel *shp);
1807 int security_shm_associate(struct shmid_kernel *shp, int shmflg);
1808 int security_shm_shmctl(struct shmid_kernel *shp, int cmd);
1809 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg);
1810 int security_sem_alloc(struct sem_array *sma);
1811 void security_sem_free(struct sem_array *sma);
1812 int security_sem_associate(struct sem_array *sma, int semflg);
1813 int security_sem_semctl(struct sem_array *sma, int cmd);
1814 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1815 unsigned nsops, int alter);
1816 void security_d_instantiate(struct dentry *dentry, struct inode *inode);
1817 int security_getprocattr(struct task_struct *p, char *name, char **value);
1818 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size);
1819 int security_netlink_send(struct sock *sk, struct sk_buff *skb);
1820 int security_netlink_recv(struct sk_buff *skb, int cap);
1821 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen);
1822 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid);
1823 void security_release_secctx(char *secdata, u32 seclen);
1824
1825 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen);
1826 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen);
1827 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen);
1828 #else /* CONFIG_SECURITY */
1829 struct security_mnt_opts {
1830 };
1831
1832 static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
1833 {
1834 }
1835
1836 static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
1837 {
1838 }
1839
1840 /*
1841 * This is the default capabilities functionality. Most of these functions
1842 * are just stubbed out, but a few must call the proper capable code.
1843 */
1844
1845 static inline int security_init(void)
1846 {
1847 return 0;
1848 }
1849
1850 static inline int security_ptrace_access_check(struct task_struct *child,
1851 unsigned int mode)
1852 {
1853 return cap_ptrace_access_check(child, mode);
1854 }
1855
1856 static inline int security_ptrace_traceme(struct task_struct *parent)
1857 {
1858 return cap_ptrace_traceme(parent);
1859 }
1860
1861 static inline int security_capget(struct task_struct *target,
1862 kernel_cap_t *effective,
1863 kernel_cap_t *inheritable,
1864 kernel_cap_t *permitted)
1865 {
1866 return cap_capget(target, effective, inheritable, permitted);
1867 }
1868
1869 static inline int security_capset(struct cred *new,
1870 const struct cred *old,
1871 const kernel_cap_t *effective,
1872 const kernel_cap_t *inheritable,
1873 const kernel_cap_t *permitted)
1874 {
1875 return cap_capset(new, old, effective, inheritable, permitted);
1876 }
1877
1878 static inline int security_capable(struct user_namespace *ns,
1879 const struct cred *cred, int cap)
1880 {
1881 return cap_capable(current, cred, ns, cap, SECURITY_CAP_AUDIT);
1882 }
1883
1884 static inline int security_real_capable(struct task_struct *tsk, struct user_namespace *ns, int cap)
1885 {
1886 int ret;
1887
1888 rcu_read_lock();
1889 ret = cap_capable(tsk, __task_cred(tsk), ns, cap, SECURITY_CAP_AUDIT);
1890 rcu_read_unlock();
1891 return ret;
1892 }
1893
1894 static inline
1895 int security_real_capable_noaudit(struct task_struct *tsk, struct user_namespace *ns, int cap)
1896 {
1897 int ret;
1898
1899 rcu_read_lock();
1900 ret = cap_capable(tsk, __task_cred(tsk), ns, cap,
1901 SECURITY_CAP_NOAUDIT);
1902 rcu_read_unlock();
1903 return ret;
1904 }
1905
1906 static inline int security_quotactl(int cmds, int type, int id,
1907 struct super_block *sb)
1908 {
1909 return 0;
1910 }
1911
1912 static inline int security_quota_on(struct dentry *dentry)
1913 {
1914 return 0;
1915 }
1916
1917 static inline int security_syslog(int type)
1918 {
1919 return 0;
1920 }
1921
1922 static inline int security_settime(const struct timespec *ts,
1923 const struct timezone *tz)
1924 {
1925 return cap_settime(ts, tz);
1926 }
1927
1928 static inline int security_vm_enough_memory(long pages)
1929 {
1930 WARN_ON(current->mm == NULL);
1931 return cap_vm_enough_memory(current->mm, pages);
1932 }
1933
1934 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1935 {
1936 WARN_ON(mm == NULL);
1937 return cap_vm_enough_memory(mm, pages);
1938 }
1939
1940 static inline int security_vm_enough_memory_kern(long pages)
1941 {
1942 /* If current->mm is a kernel thread then we will pass NULL,
1943 for this specific case that is fine */
1944 return cap_vm_enough_memory(current->mm, pages);
1945 }
1946
1947 static inline int security_bprm_set_creds(struct linux_binprm *bprm)
1948 {
1949 return cap_bprm_set_creds(bprm);
1950 }
1951
1952 static inline int security_bprm_check(struct linux_binprm *bprm)
1953 {
1954 return 0;
1955 }
1956
1957 static inline void security_bprm_committing_creds(struct linux_binprm *bprm)
1958 {
1959 }
1960
1961 static inline void security_bprm_committed_creds(struct linux_binprm *bprm)
1962 {
1963 }
1964
1965 static inline int security_bprm_secureexec(struct linux_binprm *bprm)
1966 {
1967 return cap_bprm_secureexec(bprm);
1968 }
1969
1970 static inline int security_sb_alloc(struct super_block *sb)
1971 {
1972 return 0;
1973 }
1974
1975 static inline void security_sb_free(struct super_block *sb)
1976 { }
1977
1978 static inline int security_sb_copy_data(char *orig, char *copy)
1979 {
1980 return 0;
1981 }
1982
1983 static inline int security_sb_remount(struct super_block *sb, void *data)
1984 {
1985 return 0;
1986 }
1987
1988 static inline int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
1989 {
1990 return 0;
1991 }
1992
1993 static inline int security_sb_show_options(struct seq_file *m,
1994 struct super_block *sb)
1995 {
1996 return 0;
1997 }
1998
1999 static inline int security_sb_statfs(struct dentry *dentry)
2000 {
2001 return 0;
2002 }
2003
2004 static inline int security_sb_mount(char *dev_name, struct path *path,
2005 char *type, unsigned long flags,
2006 void *data)
2007 {
2008 return 0;
2009 }
2010
2011 static inline int security_sb_umount(struct vfsmount *mnt, int flags)
2012 {
2013 return 0;
2014 }
2015
2016 static inline int security_sb_pivotroot(struct path *old_path,
2017 struct path *new_path)
2018 {
2019 return 0;
2020 }
2021
2022 static inline int security_sb_set_mnt_opts(struct super_block *sb,
2023 struct security_mnt_opts *opts)
2024 {
2025 return 0;
2026 }
2027
2028 static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb,
2029 struct super_block *newsb)
2030 { }
2031
2032 static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
2033 {
2034 return 0;
2035 }
2036
2037 static inline int security_inode_alloc(struct inode *inode)
2038 {
2039 return 0;
2040 }
2041
2042 static inline void security_inode_free(struct inode *inode)
2043 { }
2044
2045 static inline int security_inode_init_security(struct inode *inode,
2046 struct inode *dir,
2047 const struct qstr *qstr,
2048 const initxattrs initxattrs,
2049 void *fs_data)
2050 {
2051 return 0;
2052 }
2053
2054 static inline int security_old_inode_init_security(struct inode *inode,
2055 struct inode *dir,
2056 const struct qstr *qstr,
2057 char **name, void **value,
2058 size_t *len)
2059 {
2060 return -EOPNOTSUPP;
2061 }
2062
2063 static inline int security_inode_create(struct inode *dir,
2064 struct dentry *dentry,
2065 umode_t mode)
2066 {
2067 return 0;
2068 }
2069
2070 static inline int security_inode_link(struct dentry *old_dentry,
2071 struct inode *dir,
2072 struct dentry *new_dentry)
2073 {
2074 return 0;
2075 }
2076
2077 static inline int security_inode_unlink(struct inode *dir,
2078 struct dentry *dentry)
2079 {
2080 return 0;
2081 }
2082
2083 static inline int security_inode_symlink(struct inode *dir,
2084 struct dentry *dentry,
2085 const char *old_name)
2086 {
2087 return 0;
2088 }
2089
2090 static inline int security_inode_mkdir(struct inode *dir,
2091 struct dentry *dentry,
2092 int mode)
2093 {
2094 return 0;
2095 }
2096
2097 static inline int security_inode_rmdir(struct inode *dir,
2098 struct dentry *dentry)
2099 {
2100 return 0;
2101 }
2102
2103 static inline int security_inode_mknod(struct inode *dir,
2104 struct dentry *dentry,
2105 int mode, dev_t dev)
2106 {
2107 return 0;
2108 }
2109
2110 static inline int security_inode_rename(struct inode *old_dir,
2111 struct dentry *old_dentry,
2112 struct inode *new_dir,
2113 struct dentry *new_dentry)
2114 {
2115 return 0;
2116 }
2117
2118 static inline int security_inode_readlink(struct dentry *dentry)
2119 {
2120 return 0;
2121 }
2122
2123 static inline int security_inode_follow_link(struct dentry *dentry,
2124 struct nameidata *nd)
2125 {
2126 return 0;
2127 }
2128
2129 static inline int security_inode_permission(struct inode *inode, int mask)
2130 {
2131 return 0;
2132 }
2133
2134 static inline int security_inode_setattr(struct dentry *dentry,
2135 struct iattr *attr)
2136 {
2137 return 0;
2138 }
2139
2140 static inline int security_inode_getattr(struct vfsmount *mnt,
2141 struct dentry *dentry)
2142 {
2143 return 0;
2144 }
2145
2146 static inline int security_inode_setxattr(struct dentry *dentry,
2147 const char *name, const void *value, size_t size, int flags)
2148 {
2149 return cap_inode_setxattr(dentry, name, value, size, flags);
2150 }
2151
2152 static inline void security_inode_post_setxattr(struct dentry *dentry,
2153 const char *name, const void *value, size_t size, int flags)
2154 { }
2155
2156 static inline int security_inode_getxattr(struct dentry *dentry,
2157 const char *name)
2158 {
2159 return 0;
2160 }
2161
2162 static inline int security_inode_listxattr(struct dentry *dentry)
2163 {
2164 return 0;
2165 }
2166
2167 static inline int security_inode_removexattr(struct dentry *dentry,
2168 const char *name)
2169 {
2170 return cap_inode_removexattr(dentry, name);
2171 }
2172
2173 static inline int security_inode_need_killpriv(struct dentry *dentry)
2174 {
2175 return cap_inode_need_killpriv(dentry);
2176 }
2177
2178 static inline int security_inode_killpriv(struct dentry *dentry)
2179 {
2180 return cap_inode_killpriv(dentry);
2181 }
2182
2183 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2184 {
2185 return -EOPNOTSUPP;
2186 }
2187
2188 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2189 {
2190 return -EOPNOTSUPP;
2191 }
2192
2193 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2194 {
2195 return 0;
2196 }
2197
2198 static inline void security_inode_getsecid(const struct inode *inode, u32 *secid)
2199 {
2200 *secid = 0;
2201 }
2202
2203 static inline int security_file_permission(struct file *file, int mask)
2204 {
2205 return 0;
2206 }
2207
2208 static inline int security_file_alloc(struct file *file)
2209 {
2210 return 0;
2211 }
2212
2213 static inline void security_file_free(struct file *file)
2214 { }
2215
2216 static inline int security_file_ioctl(struct file *file, unsigned int cmd,
2217 unsigned long arg)
2218 {
2219 return 0;
2220 }
2221
2222 static inline int security_file_mmap(struct file *file, unsigned long reqprot,
2223 unsigned long prot,
2224 unsigned long flags,
2225 unsigned long addr,
2226 unsigned long addr_only)
2227 {
2228 return cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
2229 }
2230
2231 static inline int security_file_mprotect(struct vm_area_struct *vma,
2232 unsigned long reqprot,
2233 unsigned long prot)
2234 {
2235 return 0;
2236 }
2237
2238 static inline int security_file_lock(struct file *file, unsigned int cmd)
2239 {
2240 return 0;
2241 }
2242
2243 static inline int security_file_fcntl(struct file *file, unsigned int cmd,
2244 unsigned long arg)
2245 {
2246 return 0;
2247 }
2248
2249 static inline int security_file_set_fowner(struct file *file)
2250 {
2251 return 0;
2252 }
2253
2254 static inline int security_file_send_sigiotask(struct task_struct *tsk,
2255 struct fown_struct *fown,
2256 int sig)
2257 {
2258 return 0;
2259 }
2260
2261 static inline int security_file_receive(struct file *file)
2262 {
2263 return 0;
2264 }
2265
2266 static inline int security_dentry_open(struct file *file,
2267 const struct cred *cred)
2268 {
2269 return 0;
2270 }
2271
2272 static inline int security_task_create(unsigned long clone_flags)
2273 {
2274 return 0;
2275 }
2276
2277 static inline int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
2278 {
2279 return 0;
2280 }
2281
2282 static inline void security_cred_free(struct cred *cred)
2283 { }
2284
2285 static inline int security_prepare_creds(struct cred *new,
2286 const struct cred *old,
2287 gfp_t gfp)
2288 {
2289 return 0;
2290 }
2291
2292 static inline void security_transfer_creds(struct cred *new,
2293 const struct cred *old)
2294 {
2295 }
2296
2297 static inline int security_kernel_act_as(struct cred *cred, u32 secid)
2298 {
2299 return 0;
2300 }
2301
2302 static inline int security_kernel_create_files_as(struct cred *cred,
2303 struct inode *inode)
2304 {
2305 return 0;
2306 }
2307
2308 static inline int security_kernel_module_request(char *kmod_name)
2309 {
2310 return 0;
2311 }
2312
2313 static inline int security_task_fix_setuid(struct cred *new,
2314 const struct cred *old,
2315 int flags)
2316 {
2317 return cap_task_fix_setuid(new, old, flags);
2318 }
2319
2320 static inline int security_task_setpgid(struct task_struct *p, pid_t pgid)
2321 {
2322 return 0;
2323 }
2324
2325 static inline int security_task_getpgid(struct task_struct *p)
2326 {
2327 return 0;
2328 }
2329
2330 static inline int security_task_getsid(struct task_struct *p)
2331 {
2332 return 0;
2333 }
2334
2335 static inline void security_task_getsecid(struct task_struct *p, u32 *secid)
2336 {
2337 *secid = 0;
2338 }
2339
2340 static inline int security_task_setnice(struct task_struct *p, int nice)
2341 {
2342 return cap_task_setnice(p, nice);
2343 }
2344
2345 static inline int security_task_setioprio(struct task_struct *p, int ioprio)
2346 {
2347 return cap_task_setioprio(p, ioprio);
2348 }
2349
2350 static inline int security_task_getioprio(struct task_struct *p)
2351 {
2352 return 0;
2353 }
2354
2355 static inline int security_task_setrlimit(struct task_struct *p,
2356 unsigned int resource,
2357 struct rlimit *new_rlim)
2358 {
2359 return 0;
2360 }
2361
2362 static inline int security_task_setscheduler(struct task_struct *p)
2363 {
2364 return cap_task_setscheduler(p);
2365 }
2366
2367 static inline int security_task_getscheduler(struct task_struct *p)
2368 {
2369 return 0;
2370 }
2371
2372 static inline int security_task_movememory(struct task_struct *p)
2373 {
2374 return 0;
2375 }
2376
2377 static inline int security_task_kill(struct task_struct *p,
2378 struct siginfo *info, int sig,
2379 u32 secid)
2380 {
2381 return 0;
2382 }
2383
2384 static inline int security_task_wait(struct task_struct *p)
2385 {
2386 return 0;
2387 }
2388
2389 static inline int security_task_prctl(int option, unsigned long arg2,
2390 unsigned long arg3,
2391 unsigned long arg4,
2392 unsigned long arg5)
2393 {
2394 return cap_task_prctl(option, arg2, arg3, arg3, arg5);
2395 }
2396
2397 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2398 { }
2399
2400 static inline int security_ipc_permission(struct kern_ipc_perm *ipcp,
2401 short flag)
2402 {
2403 return 0;
2404 }
2405
2406 static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2407 {
2408 *secid = 0;
2409 }
2410
2411 static inline int security_msg_msg_alloc(struct msg_msg *msg)
2412 {
2413 return 0;
2414 }
2415
2416 static inline void security_msg_msg_free(struct msg_msg *msg)
2417 { }
2418
2419 static inline int security_msg_queue_alloc(struct msg_queue *msq)
2420 {
2421 return 0;
2422 }
2423
2424 static inline void security_msg_queue_free(struct msg_queue *msq)
2425 { }
2426
2427 static inline int security_msg_queue_associate(struct msg_queue *msq,
2428 int msqflg)
2429 {
2430 return 0;
2431 }
2432
2433 static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
2434 {
2435 return 0;
2436 }
2437
2438 static inline int security_msg_queue_msgsnd(struct msg_queue *msq,
2439 struct msg_msg *msg, int msqflg)
2440 {
2441 return 0;
2442 }
2443
2444 static inline int security_msg_queue_msgrcv(struct msg_queue *msq,
2445 struct msg_msg *msg,
2446 struct task_struct *target,
2447 long type, int mode)
2448 {
2449 return 0;
2450 }
2451
2452 static inline int security_shm_alloc(struct shmid_kernel *shp)
2453 {
2454 return 0;
2455 }
2456
2457 static inline void security_shm_free(struct shmid_kernel *shp)
2458 { }
2459
2460 static inline int security_shm_associate(struct shmid_kernel *shp,
2461 int shmflg)
2462 {
2463 return 0;
2464 }
2465
2466 static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
2467 {
2468 return 0;
2469 }
2470
2471 static inline int security_shm_shmat(struct shmid_kernel *shp,
2472 char __user *shmaddr, int shmflg)
2473 {
2474 return 0;
2475 }
2476
2477 static inline int security_sem_alloc(struct sem_array *sma)
2478 {
2479 return 0;
2480 }
2481
2482 static inline void security_sem_free(struct sem_array *sma)
2483 { }
2484
2485 static inline int security_sem_associate(struct sem_array *sma, int semflg)
2486 {
2487 return 0;
2488 }
2489
2490 static inline int security_sem_semctl(struct sem_array *sma, int cmd)
2491 {
2492 return 0;
2493 }
2494
2495 static inline int security_sem_semop(struct sem_array *sma,
2496 struct sembuf *sops, unsigned nsops,
2497 int alter)
2498 {
2499 return 0;
2500 }
2501
2502 static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2503 { }
2504
2505 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2506 {
2507 return -EINVAL;
2508 }
2509
2510 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2511 {
2512 return -EINVAL;
2513 }
2514
2515 static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2516 {
2517 return cap_netlink_send(sk, skb);
2518 }
2519
2520 static inline int security_netlink_recv(struct sk_buff *skb, int cap)
2521 {
2522 return cap_netlink_recv(skb, cap);
2523 }
2524
2525 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2526 {
2527 return -EOPNOTSUPP;
2528 }
2529
2530 static inline int security_secctx_to_secid(const char *secdata,
2531 u32 seclen,
2532 u32 *secid)
2533 {
2534 return -EOPNOTSUPP;
2535 }
2536
2537 static inline void security_release_secctx(char *secdata, u32 seclen)
2538 {
2539 }
2540
2541 static inline int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2542 {
2543 return -EOPNOTSUPP;
2544 }
2545 static inline int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2546 {
2547 return -EOPNOTSUPP;
2548 }
2549 static inline int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2550 {
2551 return -EOPNOTSUPP;
2552 }
2553 #endif /* CONFIG_SECURITY */
2554
2555 #ifdef CONFIG_SECURITY_NETWORK
2556
2557 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk);
2558 int security_unix_may_send(struct socket *sock, struct socket *other);
2559 int security_socket_create(int family, int type, int protocol, int kern);
2560 int security_socket_post_create(struct socket *sock, int family,
2561 int type, int protocol, int kern);
2562 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen);
2563 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen);
2564 int security_socket_listen(struct socket *sock, int backlog);
2565 int security_socket_accept(struct socket *sock, struct socket *newsock);
2566 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size);
2567 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2568 int size, int flags);
2569 int security_socket_getsockname(struct socket *sock);
2570 int security_socket_getpeername(struct socket *sock);
2571 int security_socket_getsockopt(struct socket *sock, int level, int optname);
2572 int security_socket_setsockopt(struct socket *sock, int level, int optname);
2573 int security_socket_shutdown(struct socket *sock, int how);
2574 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb);
2575 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2576 int __user *optlen, unsigned len);
2577 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid);
2578 int security_sk_alloc(struct sock *sk, int family, gfp_t priority);
2579 void security_sk_free(struct sock *sk);
2580 void security_sk_clone(const struct sock *sk, struct sock *newsk);
2581 void security_sk_classify_flow(struct sock *sk, struct flowi *fl);
2582 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl);
2583 void security_sock_graft(struct sock*sk, struct socket *parent);
2584 int security_inet_conn_request(struct sock *sk,
2585 struct sk_buff *skb, struct request_sock *req);
2586 void security_inet_csk_clone(struct sock *newsk,
2587 const struct request_sock *req);
2588 void security_inet_conn_established(struct sock *sk,
2589 struct sk_buff *skb);
2590 int security_secmark_relabel_packet(u32 secid);
2591 void security_secmark_refcount_inc(void);
2592 void security_secmark_refcount_dec(void);
2593 int security_tun_dev_create(void);
2594 void security_tun_dev_post_create(struct sock *sk);
2595 int security_tun_dev_attach(struct sock *sk);
2596
2597 #else /* CONFIG_SECURITY_NETWORK */
2598 static inline int security_unix_stream_connect(struct sock *sock,
2599 struct sock *other,
2600 struct sock *newsk)
2601 {
2602 return 0;
2603 }
2604
2605 static inline int security_unix_may_send(struct socket *sock,
2606 struct socket *other)
2607 {
2608 return 0;
2609 }
2610
2611 static inline int security_socket_create(int family, int type,
2612 int protocol, int kern)
2613 {
2614 return 0;
2615 }
2616
2617 static inline int security_socket_post_create(struct socket *sock,
2618 int family,
2619 int type,
2620 int protocol, int kern)
2621 {
2622 return 0;
2623 }
2624
2625 static inline int security_socket_bind(struct socket *sock,
2626 struct sockaddr *address,
2627 int addrlen)
2628 {
2629 return 0;
2630 }
2631
2632 static inline int security_socket_connect(struct socket *sock,
2633 struct sockaddr *address,
2634 int addrlen)
2635 {
2636 return 0;
2637 }
2638
2639 static inline int security_socket_listen(struct socket *sock, int backlog)
2640 {
2641 return 0;
2642 }
2643
2644 static inline int security_socket_accept(struct socket *sock,
2645 struct socket *newsock)
2646 {
2647 return 0;
2648 }
2649
2650 static inline int security_socket_sendmsg(struct socket *sock,
2651 struct msghdr *msg, int size)
2652 {
2653 return 0;
2654 }
2655
2656 static inline int security_socket_recvmsg(struct socket *sock,
2657 struct msghdr *msg, int size,
2658 int flags)
2659 {
2660 return 0;
2661 }
2662
2663 static inline int security_socket_getsockname(struct socket *sock)
2664 {
2665 return 0;
2666 }
2667
2668 static inline int security_socket_getpeername(struct socket *sock)
2669 {
2670 return 0;
2671 }
2672
2673 static inline int security_socket_getsockopt(struct socket *sock,
2674 int level, int optname)
2675 {
2676 return 0;
2677 }
2678
2679 static inline int security_socket_setsockopt(struct socket *sock,
2680 int level, int optname)
2681 {
2682 return 0;
2683 }
2684
2685 static inline int security_socket_shutdown(struct socket *sock, int how)
2686 {
2687 return 0;
2688 }
2689 static inline int security_sock_rcv_skb(struct sock *sk,
2690 struct sk_buff *skb)
2691 {
2692 return 0;
2693 }
2694
2695 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2696 int __user *optlen, unsigned len)
2697 {
2698 return -ENOPROTOOPT;
2699 }
2700
2701 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2702 {
2703 return -ENOPROTOOPT;
2704 }
2705
2706 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2707 {
2708 return 0;
2709 }
2710
2711 static inline void security_sk_free(struct sock *sk)
2712 {
2713 }
2714
2715 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2716 {
2717 }
2718
2719 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2720 {
2721 }
2722
2723 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2724 {
2725 }
2726
2727 static inline void security_sock_graft(struct sock *sk, struct socket *parent)
2728 {
2729 }
2730
2731 static inline int security_inet_conn_request(struct sock *sk,
2732 struct sk_buff *skb, struct request_sock *req)
2733 {
2734 return 0;
2735 }
2736
2737 static inline void security_inet_csk_clone(struct sock *newsk,
2738 const struct request_sock *req)
2739 {
2740 }
2741
2742 static inline void security_inet_conn_established(struct sock *sk,
2743 struct sk_buff *skb)
2744 {
2745 }
2746
2747 static inline int security_secmark_relabel_packet(u32 secid)
2748 {
2749 return 0;
2750 }
2751
2752 static inline void security_secmark_refcount_inc(void)
2753 {
2754 }
2755
2756 static inline void security_secmark_refcount_dec(void)
2757 {
2758 }
2759
2760 static inline int security_tun_dev_create(void)
2761 {
2762 return 0;
2763 }
2764
2765 static inline void security_tun_dev_post_create(struct sock *sk)
2766 {
2767 }
2768
2769 static inline int security_tun_dev_attach(struct sock *sk)
2770 {
2771 return 0;
2772 }
2773 #endif /* CONFIG_SECURITY_NETWORK */
2774
2775 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2776
2777 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx);
2778 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp);
2779 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
2780 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
2781 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
2782 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2783 struct xfrm_sec_ctx *polsec, u32 secid);
2784 int security_xfrm_state_delete(struct xfrm_state *x);
2785 void security_xfrm_state_free(struct xfrm_state *x);
2786 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
2787 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2788 struct xfrm_policy *xp,
2789 const struct flowi *fl);
2790 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid);
2791 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl);
2792
2793 #else /* CONFIG_SECURITY_NETWORK_XFRM */
2794
2795 static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
2796 {
2797 return 0;
2798 }
2799
2800 static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp)
2801 {
2802 return 0;
2803 }
2804
2805 static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2806 {
2807 }
2808
2809 static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2810 {
2811 return 0;
2812 }
2813
2814 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
2815 struct xfrm_user_sec_ctx *sec_ctx)
2816 {
2817 return 0;
2818 }
2819
2820 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2821 struct xfrm_sec_ctx *polsec, u32 secid)
2822 {
2823 return 0;
2824 }
2825
2826 static inline void security_xfrm_state_free(struct xfrm_state *x)
2827 {
2828 }
2829
2830 static inline int security_xfrm_state_delete(struct xfrm_state *x)
2831 {
2832 return 0;
2833 }
2834
2835 static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2836 {
2837 return 0;
2838 }
2839
2840 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2841 struct xfrm_policy *xp, const struct flowi *fl)
2842 {
2843 return 1;
2844 }
2845
2846 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2847 {
2848 return 0;
2849 }
2850
2851 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2852 {
2853 }
2854
2855 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2856
2857 #ifdef CONFIG_SECURITY_PATH
2858 int security_path_unlink(struct path *dir, struct dentry *dentry);
2859 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode);
2860 int security_path_rmdir(struct path *dir, struct dentry *dentry);
2861 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
2862 unsigned int dev);
2863 int security_path_truncate(struct path *path);
2864 int security_path_symlink(struct path *dir, struct dentry *dentry,
2865 const char *old_name);
2866 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
2867 struct dentry *new_dentry);
2868 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
2869 struct path *new_dir, struct dentry *new_dentry);
2870 int security_path_chmod(struct path *path, umode_t mode);
2871 int security_path_chown(struct path *path, uid_t uid, gid_t gid);
2872 int security_path_chroot(struct path *path);
2873 #else /* CONFIG_SECURITY_PATH */
2874 static inline int security_path_unlink(struct path *dir, struct dentry *dentry)
2875 {
2876 return 0;
2877 }
2878
2879 static inline int security_path_mkdir(struct path *dir, struct dentry *dentry,
2880 umode_t mode)
2881 {
2882 return 0;
2883 }
2884
2885 static inline int security_path_rmdir(struct path *dir, struct dentry *dentry)
2886 {
2887 return 0;
2888 }
2889
2890 static inline int security_path_mknod(struct path *dir, struct dentry *dentry,
2891 umode_t mode, unsigned int dev)
2892 {
2893 return 0;
2894 }
2895
2896 static inline int security_path_truncate(struct path *path)
2897 {
2898 return 0;
2899 }
2900
2901 static inline int security_path_symlink(struct path *dir, struct dentry *dentry,
2902 const char *old_name)
2903 {
2904 return 0;
2905 }
2906
2907 static inline int security_path_link(struct dentry *old_dentry,
2908 struct path *new_dir,
2909 struct dentry *new_dentry)
2910 {
2911 return 0;
2912 }
2913
2914 static inline int security_path_rename(struct path *old_dir,
2915 struct dentry *old_dentry,
2916 struct path *new_dir,
2917 struct dentry *new_dentry)
2918 {
2919 return 0;
2920 }
2921
2922 static inline int security_path_chmod(struct path *path, umode_t mode)
2923 {
2924 return 0;
2925 }
2926
2927 static inline int security_path_chown(struct path *path, uid_t uid, gid_t gid)
2928 {
2929 return 0;
2930 }
2931
2932 static inline int security_path_chroot(struct path *path)
2933 {
2934 return 0;
2935 }
2936 #endif /* CONFIG_SECURITY_PATH */
2937
2938 #ifdef CONFIG_KEYS
2939 #ifdef CONFIG_SECURITY
2940
2941 int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags);
2942 void security_key_free(struct key *key);
2943 int security_key_permission(key_ref_t key_ref,
2944 const struct cred *cred, key_perm_t perm);
2945 int security_key_getsecurity(struct key *key, char **_buffer);
2946
2947 #else
2948
2949 static inline int security_key_alloc(struct key *key,
2950 const struct cred *cred,
2951 unsigned long flags)
2952 {
2953 return 0;
2954 }
2955
2956 static inline void security_key_free(struct key *key)
2957 {
2958 }
2959
2960 static inline int security_key_permission(key_ref_t key_ref,
2961 const struct cred *cred,
2962 key_perm_t perm)
2963 {
2964 return 0;
2965 }
2966
2967 static inline int security_key_getsecurity(struct key *key, char **_buffer)
2968 {
2969 *_buffer = NULL;
2970 return 0;
2971 }
2972
2973 #endif
2974 #endif /* CONFIG_KEYS */
2975
2976 #ifdef CONFIG_AUDIT
2977 #ifdef CONFIG_SECURITY
2978 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule);
2979 int security_audit_rule_known(struct audit_krule *krule);
2980 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
2981 struct audit_context *actx);
2982 void security_audit_rule_free(void *lsmrule);
2983
2984 #else
2985
2986 static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr,
2987 void **lsmrule)
2988 {
2989 return 0;
2990 }
2991
2992 static inline int security_audit_rule_known(struct audit_krule *krule)
2993 {
2994 return 0;
2995 }
2996
2997 static inline int security_audit_rule_match(u32 secid, u32 field, u32 op,
2998 void *lsmrule, struct audit_context *actx)
2999 {
3000 return 0;
3001 }
3002
3003 static inline void security_audit_rule_free(void *lsmrule)
3004 { }
3005
3006 #endif /* CONFIG_SECURITY */
3007 #endif /* CONFIG_AUDIT */
3008
3009 #ifdef CONFIG_SECURITYFS
3010
3011 extern struct dentry *securityfs_create_file(const char *name, umode_t mode,
3012 struct dentry *parent, void *data,
3013 const struct file_operations *fops);
3014 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
3015 extern void securityfs_remove(struct dentry *dentry);
3016
3017 #else /* CONFIG_SECURITYFS */
3018
3019 static inline struct dentry *securityfs_create_dir(const char *name,
3020 struct dentry *parent)
3021 {
3022 return ERR_PTR(-ENODEV);
3023 }
3024
3025 static inline struct dentry *securityfs_create_file(const char *name,
3026 umode_t mode,
3027 struct dentry *parent,
3028 void *data,
3029 const struct file_operations *fops)
3030 {
3031 return ERR_PTR(-ENODEV);
3032 }
3033
3034 static inline void securityfs_remove(struct dentry *dentry)
3035 {}
3036
3037 #endif
3038
3039 #ifdef CONFIG_SECURITY
3040
3041 static inline char *alloc_secdata(void)
3042 {
3043 return (char *)get_zeroed_page(GFP_KERNEL);
3044 }
3045
3046 static inline void free_secdata(void *secdata)
3047 {
3048 free_page((unsigned long)secdata);
3049 }
3050
3051 #else
3052
3053 static inline char *alloc_secdata(void)
3054 {
3055 return (char *)1;
3056 }
3057
3058 static inline void free_secdata(void *secdata)
3059 { }
3060 #endif /* CONFIG_SECURITY */
3061
3062 #endif /* ! __LINUX_SECURITY_H */
3063