]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/security.h
[MLSXFRM]: Auto-labeling of child sockets
[mirror_ubuntu-bionic-kernel.git] / include / linux / security.h
1 /*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * Due to this file being licensed under the GPL there is controversy over
16 * whether this permits you to write a module that #includes this file
17 * without placing your module under the GPL. Please consult a lawyer for
18 * advice before doing this.
19 *
20 */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 #include <linux/xfrm.h>
35 #include <net/flow.h>
36
37 struct ctl_table;
38
39 /*
40 * These functions are in security/capability.c and are used
41 * as the default capabilities functions
42 */
43 extern int cap_capable (struct task_struct *tsk, int cap);
44 extern int cap_settime (struct timespec *ts, struct timezone *tz);
45 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
46 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
48 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
49 extern int cap_bprm_set_security (struct linux_binprm *bprm);
50 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
51 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
52 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
53 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
54 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
55 extern void cap_task_reparent_to_init (struct task_struct *p);
56 extern int cap_syslog (int type);
57 extern int cap_vm_enough_memory (long pages);
58
59 struct msghdr;
60 struct sk_buff;
61 struct sock;
62 struct sockaddr;
63 struct socket;
64 struct flowi;
65 struct dst_entry;
66 struct xfrm_selector;
67 struct xfrm_policy;
68 struct xfrm_state;
69 struct xfrm_user_sec_ctx;
70
71 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
72 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
73
74 /*
75 * Values used in the task_security_ops calls
76 */
77 /* setuid or setgid, id0 == uid or gid */
78 #define LSM_SETID_ID 1
79
80 /* setreuid or setregid, id0 == real, id1 == eff */
81 #define LSM_SETID_RE 2
82
83 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
84 #define LSM_SETID_RES 4
85
86 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
87 #define LSM_SETID_FS 8
88
89 /* forward declares to avoid warnings */
90 struct nfsctl_arg;
91 struct sched_param;
92 struct swap_info_struct;
93 struct request_sock;
94
95 /* bprm_apply_creds unsafe reasons */
96 #define LSM_UNSAFE_SHARE 1
97 #define LSM_UNSAFE_PTRACE 2
98 #define LSM_UNSAFE_PTRACE_CAP 4
99
100 #ifdef CONFIG_SECURITY
101
102 /**
103 * struct security_operations - main security structure
104 *
105 * Security hooks for program execution operations.
106 *
107 * @bprm_alloc_security:
108 * Allocate and attach a security structure to the @bprm->security field.
109 * The security field is initialized to NULL when the bprm structure is
110 * allocated.
111 * @bprm contains the linux_binprm structure to be modified.
112 * Return 0 if operation was successful.
113 * @bprm_free_security:
114 * @bprm contains the linux_binprm structure to be modified.
115 * Deallocate and clear the @bprm->security field.
116 * @bprm_apply_creds:
117 * Compute and set the security attributes of a process being transformed
118 * by an execve operation based on the old attributes (current->security)
119 * and the information saved in @bprm->security by the set_security hook.
120 * Since this hook function (and its caller) are void, this hook can not
121 * return an error. However, it can leave the security attributes of the
122 * process unchanged if an access failure occurs at this point.
123 * bprm_apply_creds is called under task_lock. @unsafe indicates various
124 * reasons why it may be unsafe to change security state.
125 * @bprm contains the linux_binprm structure.
126 * @bprm_post_apply_creds:
127 * Runs after bprm_apply_creds with the task_lock dropped, so that
128 * functions which cannot be called safely under the task_lock can
129 * be used. This hook is a good place to perform state changes on
130 * the process such as closing open file descriptors to which access
131 * is no longer granted if the attributes were changed.
132 * Note that a security module might need to save state between
133 * bprm_apply_creds and bprm_post_apply_creds to store the decision
134 * on whether the process may proceed.
135 * @bprm contains the linux_binprm structure.
136 * @bprm_set_security:
137 * Save security information in the bprm->security field, typically based
138 * on information about the bprm->file, for later use by the apply_creds
139 * hook. This hook may also optionally check permissions (e.g. for
140 * transitions between security domains).
141 * This hook may be called multiple times during a single execve, e.g. for
142 * interpreters. The hook can tell whether it has already been called by
143 * checking to see if @bprm->security is non-NULL. If so, then the hook
144 * may decide either to retain the security information saved earlier or
145 * to replace it.
146 * @bprm contains the linux_binprm structure.
147 * Return 0 if the hook is successful and permission is granted.
148 * @bprm_check_security:
149 * This hook mediates the point when a search for a binary handler will
150 * begin. It allows a check the @bprm->security value which is set in
151 * the preceding set_security call. The primary difference from
152 * set_security is that the argv list and envp list are reliably
153 * available in @bprm. This hook may be called multiple times
154 * during a single execve; and in each pass set_security is called
155 * first.
156 * @bprm contains the linux_binprm structure.
157 * Return 0 if the hook is successful and permission is granted.
158 * @bprm_secureexec:
159 * Return a boolean value (0 or 1) indicating whether a "secure exec"
160 * is required. The flag is passed in the auxiliary table
161 * on the initial stack to the ELF interpreter to indicate whether libc
162 * should enable secure mode.
163 * @bprm contains the linux_binprm structure.
164 *
165 * Security hooks for filesystem operations.
166 *
167 * @sb_alloc_security:
168 * Allocate and attach a security structure to the sb->s_security field.
169 * The s_security field is initialized to NULL when the structure is
170 * allocated.
171 * @sb contains the super_block structure to be modified.
172 * Return 0 if operation was successful.
173 * @sb_free_security:
174 * Deallocate and clear the sb->s_security field.
175 * @sb contains the super_block structure to be modified.
176 * @sb_statfs:
177 * Check permission before obtaining filesystem statistics for the @mnt
178 * mountpoint.
179 * @dentry is a handle on the superblock for the filesystem.
180 * Return 0 if permission is granted.
181 * @sb_mount:
182 * Check permission before an object specified by @dev_name is mounted on
183 * the mount point named by @nd. For an ordinary mount, @dev_name
184 * identifies a device if the file system type requires a device. For a
185 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
186 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
187 * pathname of the object being mounted.
188 * @dev_name contains the name for object being mounted.
189 * @nd contains the nameidata structure for mount point object.
190 * @type contains the filesystem type.
191 * @flags contains the mount flags.
192 * @data contains the filesystem-specific data.
193 * Return 0 if permission is granted.
194 * @sb_copy_data:
195 * Allow mount option data to be copied prior to parsing by the filesystem,
196 * so that the security module can extract security-specific mount
197 * options cleanly (a filesystem may modify the data e.g. with strsep()).
198 * This also allows the original mount data to be stripped of security-
199 * specific options to avoid having to make filesystems aware of them.
200 * @type the type of filesystem being mounted.
201 * @orig the original mount data copied from userspace.
202 * @copy copied data which will be passed to the security module.
203 * Returns 0 if the copy was successful.
204 * @sb_check_sb:
205 * Check permission before the device with superblock @mnt->sb is mounted
206 * on the mount point named by @nd.
207 * @mnt contains the vfsmount for device being mounted.
208 * @nd contains the nameidata object for the mount point.
209 * Return 0 if permission is granted.
210 * @sb_umount:
211 * Check permission before the @mnt file system is unmounted.
212 * @mnt contains the mounted file system.
213 * @flags contains the unmount flags, e.g. MNT_FORCE.
214 * Return 0 if permission is granted.
215 * @sb_umount_close:
216 * Close any files in the @mnt mounted filesystem that are held open by
217 * the security module. This hook is called during an umount operation
218 * prior to checking whether the filesystem is still busy.
219 * @mnt contains the mounted filesystem.
220 * @sb_umount_busy:
221 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
222 * any files that were closed by umount_close. This hook is called during
223 * an umount operation if the umount fails after a call to the
224 * umount_close hook.
225 * @mnt contains the mounted filesystem.
226 * @sb_post_remount:
227 * Update the security module's state when a filesystem is remounted.
228 * This hook is only called if the remount was successful.
229 * @mnt contains the mounted file system.
230 * @flags contains the new filesystem flags.
231 * @data contains the filesystem-specific data.
232 * @sb_post_mountroot:
233 * Update the security module's state when the root filesystem is mounted.
234 * This hook is only called if the mount was successful.
235 * @sb_post_addmount:
236 * Update the security module's state when a filesystem is mounted.
237 * This hook is called any time a mount is successfully grafetd to
238 * the tree.
239 * @mnt contains the mounted filesystem.
240 * @mountpoint_nd contains the nameidata structure for the mount point.
241 * @sb_pivotroot:
242 * Check permission before pivoting the root filesystem.
243 * @old_nd contains the nameidata structure for the new location of the current root (put_old).
244 * @new_nd contains the nameidata structure for the new root (new_root).
245 * Return 0 if permission is granted.
246 * @sb_post_pivotroot:
247 * Update module state after a successful pivot.
248 * @old_nd contains the nameidata structure for the old root.
249 * @new_nd contains the nameidata structure for the new root.
250 *
251 * Security hooks for inode operations.
252 *
253 * @inode_alloc_security:
254 * Allocate and attach a security structure to @inode->i_security. The
255 * i_security field is initialized to NULL when the inode structure is
256 * allocated.
257 * @inode contains the inode structure.
258 * Return 0 if operation was successful.
259 * @inode_free_security:
260 * @inode contains the inode structure.
261 * Deallocate the inode security structure and set @inode->i_security to
262 * NULL.
263 * @inode_init_security:
264 * Obtain the security attribute name suffix and value to set on a newly
265 * created inode and set up the incore security field for the new inode.
266 * This hook is called by the fs code as part of the inode creation
267 * transaction and provides for atomic labeling of the inode, unlike
268 * the post_create/mkdir/... hooks called by the VFS. The hook function
269 * is expected to allocate the name and value via kmalloc, with the caller
270 * being responsible for calling kfree after using them.
271 * If the security module does not use security attributes or does
272 * not wish to put a security attribute on this particular inode,
273 * then it should return -EOPNOTSUPP to skip this processing.
274 * @inode contains the inode structure of the newly created inode.
275 * @dir contains the inode structure of the parent directory.
276 * @name will be set to the allocated name suffix (e.g. selinux).
277 * @value will be set to the allocated attribute value.
278 * @len will be set to the length of the value.
279 * Returns 0 if @name and @value have been successfully set,
280 * -EOPNOTSUPP if no security attribute is needed, or
281 * -ENOMEM on memory allocation failure.
282 * @inode_create:
283 * Check permission to create a regular file.
284 * @dir contains inode structure of the parent of the new file.
285 * @dentry contains the dentry structure for the file to be created.
286 * @mode contains the file mode of the file to be created.
287 * Return 0 if permission is granted.
288 * @inode_link:
289 * Check permission before creating a new hard link to a file.
290 * @old_dentry contains the dentry structure for an existing link to the file.
291 * @dir contains the inode structure of the parent directory of the new link.
292 * @new_dentry contains the dentry structure for the new link.
293 * Return 0 if permission is granted.
294 * @inode_unlink:
295 * Check the permission to remove a hard link to a file.
296 * @dir contains the inode structure of parent directory of the file.
297 * @dentry contains the dentry structure for file to be unlinked.
298 * Return 0 if permission is granted.
299 * @inode_symlink:
300 * Check the permission to create a symbolic link to a file.
301 * @dir contains the inode structure of parent directory of the symbolic link.
302 * @dentry contains the dentry structure of the symbolic link.
303 * @old_name contains the pathname of file.
304 * Return 0 if permission is granted.
305 * @inode_mkdir:
306 * Check permissions to create a new directory in the existing directory
307 * associated with inode strcture @dir.
308 * @dir containst the inode structure of parent of the directory to be created.
309 * @dentry contains the dentry structure of new directory.
310 * @mode contains the mode of new directory.
311 * Return 0 if permission is granted.
312 * @inode_rmdir:
313 * Check the permission to remove a directory.
314 * @dir contains the inode structure of parent of the directory to be removed.
315 * @dentry contains the dentry structure of directory to be removed.
316 * Return 0 if permission is granted.
317 * @inode_mknod:
318 * Check permissions when creating a special file (or a socket or a fifo
319 * file created via the mknod system call). Note that if mknod operation
320 * is being done for a regular file, then the create hook will be called
321 * and not this hook.
322 * @dir contains the inode structure of parent of the new file.
323 * @dentry contains the dentry structure of the new file.
324 * @mode contains the mode of the new file.
325 * @dev contains the the device number.
326 * Return 0 if permission is granted.
327 * @inode_rename:
328 * Check for permission to rename a file or directory.
329 * @old_dir contains the inode structure for parent of the old link.
330 * @old_dentry contains the dentry structure of the old link.
331 * @new_dir contains the inode structure for parent of the new link.
332 * @new_dentry contains the dentry structure of the new link.
333 * Return 0 if permission is granted.
334 * @inode_readlink:
335 * Check the permission to read the symbolic link.
336 * @dentry contains the dentry structure for the file link.
337 * Return 0 if permission is granted.
338 * @inode_follow_link:
339 * Check permission to follow a symbolic link when looking up a pathname.
340 * @dentry contains the dentry structure for the link.
341 * @nd contains the nameidata structure for the parent directory.
342 * Return 0 if permission is granted.
343 * @inode_permission:
344 * Check permission before accessing an inode. This hook is called by the
345 * existing Linux permission function, so a security module can use it to
346 * provide additional checking for existing Linux permission checks.
347 * Notice that this hook is called when a file is opened (as well as many
348 * other operations), whereas the file_security_ops permission hook is
349 * called when the actual read/write operations are performed.
350 * @inode contains the inode structure to check.
351 * @mask contains the permission mask.
352 * @nd contains the nameidata (may be NULL).
353 * Return 0 if permission is granted.
354 * @inode_setattr:
355 * Check permission before setting file attributes. Note that the kernel
356 * call to notify_change is performed from several locations, whenever
357 * file attributes change (such as when a file is truncated, chown/chmod
358 * operations, transferring disk quotas, etc).
359 * @dentry contains the dentry structure for the file.
360 * @attr is the iattr structure containing the new file attributes.
361 * Return 0 if permission is granted.
362 * @inode_getattr:
363 * Check permission before obtaining file attributes.
364 * @mnt is the vfsmount where the dentry was looked up
365 * @dentry contains the dentry structure for the file.
366 * Return 0 if permission is granted.
367 * @inode_delete:
368 * @inode contains the inode structure for deleted inode.
369 * This hook is called when a deleted inode is released (i.e. an inode
370 * with no hard links has its use count drop to zero). A security module
371 * can use this hook to release any persistent label associated with the
372 * inode.
373 * @inode_setxattr:
374 * Check permission before setting the extended attributes
375 * @value identified by @name for @dentry.
376 * Return 0 if permission is granted.
377 * @inode_post_setxattr:
378 * Update inode security field after successful setxattr operation.
379 * @value identified by @name for @dentry.
380 * @inode_getxattr:
381 * Check permission before obtaining the extended attributes
382 * identified by @name for @dentry.
383 * Return 0 if permission is granted.
384 * @inode_listxattr:
385 * Check permission before obtaining the list of extended attribute
386 * names for @dentry.
387 * Return 0 if permission is granted.
388 * @inode_removexattr:
389 * Check permission before removing the extended attribute
390 * identified by @name for @dentry.
391 * Return 0 if permission is granted.
392 * @inode_getsecurity:
393 * Copy the extended attribute representation of the security label
394 * associated with @name for @inode into @buffer. @buffer may be
395 * NULL to request the size of the buffer required. @size indicates
396 * the size of @buffer in bytes. Note that @name is the remainder
397 * of the attribute name after the security. prefix has been removed.
398 * @err is the return value from the preceding fs getxattr call,
399 * and can be used by the security module to determine whether it
400 * should try and canonicalize the attribute value.
401 * Return number of bytes used/required on success.
402 * @inode_setsecurity:
403 * Set the security label associated with @name for @inode from the
404 * extended attribute value @value. @size indicates the size of the
405 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
406 * Note that @name is the remainder of the attribute name after the
407 * security. prefix has been removed.
408 * Return 0 on success.
409 * @inode_listsecurity:
410 * Copy the extended attribute names for the security labels
411 * associated with @inode into @buffer. The maximum size of @buffer
412 * is specified by @buffer_size. @buffer may be NULL to request
413 * the size of the buffer required.
414 * Returns number of bytes used/required on success.
415 *
416 * Security hooks for file operations
417 *
418 * @file_permission:
419 * Check file permissions before accessing an open file. This hook is
420 * called by various operations that read or write files. A security
421 * module can use this hook to perform additional checking on these
422 * operations, e.g. to revalidate permissions on use to support privilege
423 * bracketing or policy changes. Notice that this hook is used when the
424 * actual read/write operations are performed, whereas the
425 * inode_security_ops hook is called when a file is opened (as well as
426 * many other operations).
427 * Caveat: Although this hook can be used to revalidate permissions for
428 * various system call operations that read or write files, it does not
429 * address the revalidation of permissions for memory-mapped files.
430 * Security modules must handle this separately if they need such
431 * revalidation.
432 * @file contains the file structure being accessed.
433 * @mask contains the requested permissions.
434 * Return 0 if permission is granted.
435 * @file_alloc_security:
436 * Allocate and attach a security structure to the file->f_security field.
437 * The security field is initialized to NULL when the structure is first
438 * created.
439 * @file contains the file structure to secure.
440 * Return 0 if the hook is successful and permission is granted.
441 * @file_free_security:
442 * Deallocate and free any security structures stored in file->f_security.
443 * @file contains the file structure being modified.
444 * @file_ioctl:
445 * @file contains the file structure.
446 * @cmd contains the operation to perform.
447 * @arg contains the operational arguments.
448 * Check permission for an ioctl operation on @file. Note that @arg can
449 * sometimes represents a user space pointer; in other cases, it may be a
450 * simple integer value. When @arg represents a user space pointer, it
451 * should never be used by the security module.
452 * Return 0 if permission is granted.
453 * @file_mmap :
454 * Check permissions for a mmap operation. The @file may be NULL, e.g.
455 * if mapping anonymous memory.
456 * @file contains the file structure for file to map (may be NULL).
457 * @reqprot contains the protection requested by the application.
458 * @prot contains the protection that will be applied by the kernel.
459 * @flags contains the operational flags.
460 * Return 0 if permission is granted.
461 * @file_mprotect:
462 * Check permissions before changing memory access permissions.
463 * @vma contains the memory region to modify.
464 * @reqprot contains the protection requested by the application.
465 * @prot contains the protection that will be applied by the kernel.
466 * Return 0 if permission is granted.
467 * @file_lock:
468 * Check permission before performing file locking operations.
469 * Note: this hook mediates both flock and fcntl style locks.
470 * @file contains the file structure.
471 * @cmd contains the posix-translated lock operation to perform
472 * (e.g. F_RDLCK, F_WRLCK).
473 * Return 0 if permission is granted.
474 * @file_fcntl:
475 * Check permission before allowing the file operation specified by @cmd
476 * from being performed on the file @file. Note that @arg can sometimes
477 * represents a user space pointer; in other cases, it may be a simple
478 * integer value. When @arg represents a user space pointer, it should
479 * never be used by the security module.
480 * @file contains the file structure.
481 * @cmd contains the operation to be performed.
482 * @arg contains the operational arguments.
483 * Return 0 if permission is granted.
484 * @file_set_fowner:
485 * Save owner security information (typically from current->security) in
486 * file->f_security for later use by the send_sigiotask hook.
487 * @file contains the file structure to update.
488 * Return 0 on success.
489 * @file_send_sigiotask:
490 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
491 * process @tsk. Note that this hook is sometimes called from interrupt.
492 * Note that the fown_struct, @fown, is never outside the context of a
493 * struct file, so the file structure (and associated security information)
494 * can always be obtained:
495 * (struct file *)((long)fown - offsetof(struct file,f_owner));
496 * @tsk contains the structure of task receiving signal.
497 * @fown contains the file owner information.
498 * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
499 * Return 0 if permission is granted.
500 * @file_receive:
501 * This hook allows security modules to control the ability of a process
502 * to receive an open file descriptor via socket IPC.
503 * @file contains the file structure being received.
504 * Return 0 if permission is granted.
505 *
506 * Security hooks for task operations.
507 *
508 * @task_create:
509 * Check permission before creating a child process. See the clone(2)
510 * manual page for definitions of the @clone_flags.
511 * @clone_flags contains the flags indicating what should be shared.
512 * Return 0 if permission is granted.
513 * @task_alloc_security:
514 * @p contains the task_struct for child process.
515 * Allocate and attach a security structure to the p->security field. The
516 * security field is initialized to NULL when the task structure is
517 * allocated.
518 * Return 0 if operation was successful.
519 * @task_free_security:
520 * @p contains the task_struct for process.
521 * Deallocate and clear the p->security field.
522 * @task_setuid:
523 * Check permission before setting one or more of the user identity
524 * attributes of the current process. The @flags parameter indicates
525 * which of the set*uid system calls invoked this hook and how to
526 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
527 * definitions at the beginning of this file for the @flags values and
528 * their meanings.
529 * @id0 contains a uid.
530 * @id1 contains a uid.
531 * @id2 contains a uid.
532 * @flags contains one of the LSM_SETID_* values.
533 * Return 0 if permission is granted.
534 * @task_post_setuid:
535 * Update the module's state after setting one or more of the user
536 * identity attributes of the current process. The @flags parameter
537 * indicates which of the set*uid system calls invoked this hook. If
538 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
539 * parameters are not used.
540 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
541 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
542 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
543 * @flags contains one of the LSM_SETID_* values.
544 * Return 0 on success.
545 * @task_setgid:
546 * Check permission before setting one or more of the group identity
547 * attributes of the current process. The @flags parameter indicates
548 * which of the set*gid system calls invoked this hook and how to
549 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
550 * definitions at the beginning of this file for the @flags values and
551 * their meanings.
552 * @id0 contains a gid.
553 * @id1 contains a gid.
554 * @id2 contains a gid.
555 * @flags contains one of the LSM_SETID_* values.
556 * Return 0 if permission is granted.
557 * @task_setpgid:
558 * Check permission before setting the process group identifier of the
559 * process @p to @pgid.
560 * @p contains the task_struct for process being modified.
561 * @pgid contains the new pgid.
562 * Return 0 if permission is granted.
563 * @task_getpgid:
564 * Check permission before getting the process group identifier of the
565 * process @p.
566 * @p contains the task_struct for the process.
567 * Return 0 if permission is granted.
568 * @task_getsid:
569 * Check permission before getting the session identifier of the process
570 * @p.
571 * @p contains the task_struct for the process.
572 * Return 0 if permission is granted.
573 * @task_getsecid:
574 * Retrieve the security identifier of the process @p.
575 * @p contains the task_struct for the process and place is into @secid.
576 * @task_setgroups:
577 * Check permission before setting the supplementary group set of the
578 * current process.
579 * @group_info contains the new group information.
580 * Return 0 if permission is granted.
581 * @task_setnice:
582 * Check permission before setting the nice value of @p to @nice.
583 * @p contains the task_struct of process.
584 * @nice contains the new nice value.
585 * Return 0 if permission is granted.
586 * @task_setioprio
587 * Check permission before setting the ioprio value of @p to @ioprio.
588 * @p contains the task_struct of process.
589 * @ioprio contains the new ioprio value
590 * Return 0 if permission is granted.
591 * @task_getioprio
592 * Check permission before getting the ioprio value of @p.
593 * @p contains the task_struct of process.
594 * Return 0 if permission is granted.
595 * @task_setrlimit:
596 * Check permission before setting the resource limits of the current
597 * process for @resource to @new_rlim. The old resource limit values can
598 * be examined by dereferencing (current->signal->rlim + resource).
599 * @resource contains the resource whose limit is being set.
600 * @new_rlim contains the new limits for @resource.
601 * Return 0 if permission is granted.
602 * @task_setscheduler:
603 * Check permission before setting scheduling policy and/or parameters of
604 * process @p based on @policy and @lp.
605 * @p contains the task_struct for process.
606 * @policy contains the scheduling policy.
607 * @lp contains the scheduling parameters.
608 * Return 0 if permission is granted.
609 * @task_getscheduler:
610 * Check permission before obtaining scheduling information for process
611 * @p.
612 * @p contains the task_struct for process.
613 * Return 0 if permission is granted.
614 * @task_movememory
615 * Check permission before moving memory owned by process @p.
616 * @p contains the task_struct for process.
617 * Return 0 if permission is granted.
618 * @task_kill:
619 * Check permission before sending signal @sig to @p. @info can be NULL,
620 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
621 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
622 * from the kernel and should typically be permitted.
623 * SIGIO signals are handled separately by the send_sigiotask hook in
624 * file_security_ops.
625 * @p contains the task_struct for process.
626 * @info contains the signal information.
627 * @sig contains the signal value.
628 * @secid contains the sid of the process where the signal originated
629 * Return 0 if permission is granted.
630 * @task_wait:
631 * Check permission before allowing a process to reap a child process @p
632 * and collect its status information.
633 * @p contains the task_struct for process.
634 * Return 0 if permission is granted.
635 * @task_prctl:
636 * Check permission before performing a process control operation on the
637 * current process.
638 * @option contains the operation.
639 * @arg2 contains a argument.
640 * @arg3 contains a argument.
641 * @arg4 contains a argument.
642 * @arg5 contains a argument.
643 * Return 0 if permission is granted.
644 * @task_reparent_to_init:
645 * Set the security attributes in @p->security for a kernel thread that
646 * is being reparented to the init task.
647 * @p contains the task_struct for the kernel thread.
648 * @task_to_inode:
649 * Set the security attributes for an inode based on an associated task's
650 * security attributes, e.g. for /proc/pid inodes.
651 * @p contains the task_struct for the task.
652 * @inode contains the inode structure for the inode.
653 *
654 * Security hooks for Netlink messaging.
655 *
656 * @netlink_send:
657 * Save security information for a netlink message so that permission
658 * checking can be performed when the message is processed. The security
659 * information can be saved using the eff_cap field of the
660 * netlink_skb_parms structure. Also may be used to provide fine
661 * grained control over message transmission.
662 * @sk associated sock of task sending the message.,
663 * @skb contains the sk_buff structure for the netlink message.
664 * Return 0 if the information was successfully saved and message
665 * is allowed to be transmitted.
666 * @netlink_recv:
667 * Check permission before processing the received netlink message in
668 * @skb.
669 * @skb contains the sk_buff structure for the netlink message.
670 * @cap indicates the capability required
671 * Return 0 if permission is granted.
672 *
673 * Security hooks for Unix domain networking.
674 *
675 * @unix_stream_connect:
676 * Check permissions before establishing a Unix domain stream connection
677 * between @sock and @other.
678 * @sock contains the socket structure.
679 * @other contains the peer socket structure.
680 * Return 0 if permission is granted.
681 * @unix_may_send:
682 * Check permissions before connecting or sending datagrams from @sock to
683 * @other.
684 * @sock contains the socket structure.
685 * @sock contains the peer socket structure.
686 * Return 0 if permission is granted.
687 *
688 * The @unix_stream_connect and @unix_may_send hooks were necessary because
689 * Linux provides an alternative to the conventional file name space for Unix
690 * domain sockets. Whereas binding and connecting to sockets in the file name
691 * space is mediated by the typical file permissions (and caught by the mknod
692 * and permission hooks in inode_security_ops), binding and connecting to
693 * sockets in the abstract name space is completely unmediated. Sufficient
694 * control of Unix domain sockets in the abstract name space isn't possible
695 * using only the socket layer hooks, since we need to know the actual target
696 * socket, which is not looked up until we are inside the af_unix code.
697 *
698 * Security hooks for socket operations.
699 *
700 * @socket_create:
701 * Check permissions prior to creating a new socket.
702 * @family contains the requested protocol family.
703 * @type contains the requested communications type.
704 * @protocol contains the requested protocol.
705 * @kern set to 1 if a kernel socket.
706 * Return 0 if permission is granted.
707 * @socket_post_create:
708 * This hook allows a module to update or allocate a per-socket security
709 * structure. Note that the security field was not added directly to the
710 * socket structure, but rather, the socket security information is stored
711 * in the associated inode. Typically, the inode alloc_security hook will
712 * allocate and and attach security information to
713 * sock->inode->i_security. This hook may be used to update the
714 * sock->inode->i_security field with additional information that wasn't
715 * available when the inode was allocated.
716 * @sock contains the newly created socket structure.
717 * @family contains the requested protocol family.
718 * @type contains the requested communications type.
719 * @protocol contains the requested protocol.
720 * @kern set to 1 if a kernel socket.
721 * @socket_bind:
722 * Check permission before socket protocol layer bind operation is
723 * performed and the socket @sock is bound to the address specified in the
724 * @address parameter.
725 * @sock contains the socket structure.
726 * @address contains the address to bind to.
727 * @addrlen contains the length of address.
728 * Return 0 if permission is granted.
729 * @socket_connect:
730 * Check permission before socket protocol layer connect operation
731 * attempts to connect socket @sock to a remote address, @address.
732 * @sock contains the socket structure.
733 * @address contains the address of remote endpoint.
734 * @addrlen contains the length of address.
735 * Return 0 if permission is granted.
736 * @socket_listen:
737 * Check permission before socket protocol layer listen operation.
738 * @sock contains the socket structure.
739 * @backlog contains the maximum length for the pending connection queue.
740 * Return 0 if permission is granted.
741 * @socket_accept:
742 * Check permission before accepting a new connection. Note that the new
743 * socket, @newsock, has been created and some information copied to it,
744 * but the accept operation has not actually been performed.
745 * @sock contains the listening socket structure.
746 * @newsock contains the newly created server socket for connection.
747 * Return 0 if permission is granted.
748 * @socket_post_accept:
749 * This hook allows a security module to copy security
750 * information into the newly created socket's inode.
751 * @sock contains the listening socket structure.
752 * @newsock contains the newly created server socket for connection.
753 * @socket_sendmsg:
754 * Check permission before transmitting a message to another socket.
755 * @sock contains the socket structure.
756 * @msg contains the message to be transmitted.
757 * @size contains the size of message.
758 * Return 0 if permission is granted.
759 * @socket_recvmsg:
760 * Check permission before receiving a message from a socket.
761 * @sock contains the socket structure.
762 * @msg contains the message structure.
763 * @size contains the size of message structure.
764 * @flags contains the operational flags.
765 * Return 0 if permission is granted.
766 * @socket_getsockname:
767 * Check permission before the local address (name) of the socket object
768 * @sock is retrieved.
769 * @sock contains the socket structure.
770 * Return 0 if permission is granted.
771 * @socket_getpeername:
772 * Check permission before the remote address (name) of a socket object
773 * @sock is retrieved.
774 * @sock contains the socket structure.
775 * Return 0 if permission is granted.
776 * @socket_getsockopt:
777 * Check permissions before retrieving the options associated with socket
778 * @sock.
779 * @sock contains the socket structure.
780 * @level contains the protocol level to retrieve option from.
781 * @optname contains the name of option to retrieve.
782 * Return 0 if permission is granted.
783 * @socket_setsockopt:
784 * Check permissions before setting the options associated with socket
785 * @sock.
786 * @sock contains the socket structure.
787 * @level contains the protocol level to set options for.
788 * @optname contains the name of the option to set.
789 * Return 0 if permission is granted.
790 * @socket_shutdown:
791 * Checks permission before all or part of a connection on the socket
792 * @sock is shut down.
793 * @sock contains the socket structure.
794 * @how contains the flag indicating how future sends and receives are handled.
795 * Return 0 if permission is granted.
796 * @socket_sock_rcv_skb:
797 * Check permissions on incoming network packets. This hook is distinct
798 * from Netfilter's IP input hooks since it is the first time that the
799 * incoming sk_buff @skb has been associated with a particular socket, @sk.
800 * @sk contains the sock (not socket) associated with the incoming sk_buff.
801 * @skb contains the incoming network data.
802 * @socket_getpeersec:
803 * This hook allows the security module to provide peer socket security
804 * state to userspace via getsockopt SO_GETPEERSEC.
805 * @sock is the local socket.
806 * @optval userspace memory where the security state is to be copied.
807 * @optlen userspace int where the module should copy the actual length
808 * of the security state.
809 * @len as input is the maximum length to copy to userspace provided
810 * by the caller.
811 * Return 0 if all is well, otherwise, typical getsockopt return
812 * values.
813 * @sk_alloc_security:
814 * Allocate and attach a security structure to the sk->sk_security field,
815 * which is used to copy security attributes between local stream sockets.
816 * @sk_free_security:
817 * Deallocate security structure.
818 * @sk_clone_security:
819 * Clone/copy security structure.
820 * @sk_getsecid:
821 * Retrieve the LSM-specific secid for the sock to enable caching of network
822 * authorizations.
823 * @sock_graft:
824 * Sets the socket's isec sid to the sock's sid.
825 * @inet_conn_request:
826 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
827 * @inet_csk_clone:
828 * Sets the new child socket's sid to the openreq sid.
829 * @req_classify_flow:
830 * Sets the flow's sid to the openreq sid.
831 *
832 * Security hooks for XFRM operations.
833 *
834 * @xfrm_policy_alloc_security:
835 * @xp contains the xfrm_policy being added to Security Policy Database
836 * used by the XFRM system.
837 * @sec_ctx contains the security context information being provided by
838 * the user-level policy update program (e.g., setkey).
839 * @sk refers to the sock from which to derive the security context.
840 * Allocate a security structure to the xp->security field; the security
841 * field is initialized to NULL when the xfrm_policy is allocated. Only
842 * one of sec_ctx or sock can be specified.
843 * Return 0 if operation was successful (memory to allocate, legal context)
844 * @xfrm_policy_clone_security:
845 * @old contains an existing xfrm_policy in the SPD.
846 * @new contains a new xfrm_policy being cloned from old.
847 * Allocate a security structure to the new->security field
848 * that contains the information from the old->security field.
849 * Return 0 if operation was successful (memory to allocate).
850 * @xfrm_policy_free_security:
851 * @xp contains the xfrm_policy
852 * Deallocate xp->security.
853 * @xfrm_policy_delete_security:
854 * @xp contains the xfrm_policy.
855 * Authorize deletion of xp->security.
856 * @xfrm_state_alloc_security:
857 * @x contains the xfrm_state being added to the Security Association
858 * Database by the XFRM system.
859 * @sec_ctx contains the security context information being provided by
860 * the user-level SA generation program (e.g., setkey or racoon).
861 * @polsec contains the security context information associated with a xfrm
862 * policy rule from which to take the base context. polsec must be NULL
863 * when sec_ctx is specified.
864 * @secid contains the secid from which to take the mls portion of the context.
865 * Allocate a security structure to the x->security field; the security
866 * field is initialized to NULL when the xfrm_state is allocated. Set the
867 * context to correspond to either sec_ctx or polsec, with the mls portion
868 * taken from secid in the latter case.
869 * Return 0 if operation was successful (memory to allocate, legal context).
870 * @xfrm_state_free_security:
871 * @x contains the xfrm_state.
872 * Deallocate x->security.
873 * @xfrm_state_delete_security:
874 * @x contains the xfrm_state.
875 * Authorize deletion of x->security.
876 * @xfrm_policy_lookup:
877 * @xp contains the xfrm_policy for which the access control is being
878 * checked.
879 * @fl_secid contains the flow security label that is used to authorize
880 * access to the policy xp.
881 * @dir contains the direction of the flow (input or output).
882 * Check permission when a flow selects a xfrm_policy for processing
883 * XFRMs on a packet. The hook is called when selecting either a
884 * per-socket policy or a generic xfrm policy.
885 * Return 0 if permission is granted.
886 * @xfrm_state_pol_flow_match:
887 * @x contains the state to match.
888 * @xp contains the policy to check for a match.
889 * @fl contains the flow to check for a match.
890 * Return 1 if there is a match.
891 * @xfrm_flow_state_match:
892 * @fl contains the flow key to match.
893 * @xfrm points to the xfrm_state to match.
894 * Return 1 if there is a match.
895 * @xfrm_decode_session:
896 * @skb points to skb to decode.
897 * @secid points to the flow key secid to set.
898 * @ckall says if all xfrms used should be checked for same secid.
899 * Return 0 if ckall is zero or all xfrms used have the same secid.
900 *
901 * Security hooks affecting all Key Management operations
902 *
903 * @key_alloc:
904 * Permit allocation of a key and assign security data. Note that key does
905 * not have a serial number assigned at this point.
906 * @key points to the key.
907 * @flags is the allocation flags
908 * Return 0 if permission is granted, -ve error otherwise.
909 * @key_free:
910 * Notification of destruction; free security data.
911 * @key points to the key.
912 * No return value.
913 * @key_permission:
914 * See whether a specific operational right is granted to a process on a
915 * key.
916 * @key_ref refers to the key (key pointer + possession attribute bit).
917 * @context points to the process to provide the context against which to
918 * evaluate the security data on the key.
919 * @perm describes the combination of permissions required of this key.
920 * Return 1 if permission granted, 0 if permission denied and -ve it the
921 * normal permissions model should be effected.
922 *
923 * Security hooks affecting all System V IPC operations.
924 *
925 * @ipc_permission:
926 * Check permissions for access to IPC
927 * @ipcp contains the kernel IPC permission structure
928 * @flag contains the desired (requested) permission set
929 * Return 0 if permission is granted.
930 *
931 * Security hooks for individual messages held in System V IPC message queues
932 * @msg_msg_alloc_security:
933 * Allocate and attach a security structure to the msg->security field.
934 * The security field is initialized to NULL when the structure is first
935 * created.
936 * @msg contains the message structure to be modified.
937 * Return 0 if operation was successful and permission is granted.
938 * @msg_msg_free_security:
939 * Deallocate the security structure for this message.
940 * @msg contains the message structure to be modified.
941 *
942 * Security hooks for System V IPC Message Queues
943 *
944 * @msg_queue_alloc_security:
945 * Allocate and attach a security structure to the
946 * msq->q_perm.security field. The security field is initialized to
947 * NULL when the structure is first created.
948 * @msq contains the message queue structure to be modified.
949 * Return 0 if operation was successful and permission is granted.
950 * @msg_queue_free_security:
951 * Deallocate security structure for this message queue.
952 * @msq contains the message queue structure to be modified.
953 * @msg_queue_associate:
954 * Check permission when a message queue is requested through the
955 * msgget system call. This hook is only called when returning the
956 * message queue identifier for an existing message queue, not when a
957 * new message queue is created.
958 * @msq contains the message queue to act upon.
959 * @msqflg contains the operation control flags.
960 * Return 0 if permission is granted.
961 * @msg_queue_msgctl:
962 * Check permission when a message control operation specified by @cmd
963 * is to be performed on the message queue @msq.
964 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
965 * @msq contains the message queue to act upon. May be NULL.
966 * @cmd contains the operation to be performed.
967 * Return 0 if permission is granted.
968 * @msg_queue_msgsnd:
969 * Check permission before a message, @msg, is enqueued on the message
970 * queue, @msq.
971 * @msq contains the message queue to send message to.
972 * @msg contains the message to be enqueued.
973 * @msqflg contains operational flags.
974 * Return 0 if permission is granted.
975 * @msg_queue_msgrcv:
976 * Check permission before a message, @msg, is removed from the message
977 * queue, @msq. The @target task structure contains a pointer to the
978 * process that will be receiving the message (not equal to the current
979 * process when inline receives are being performed).
980 * @msq contains the message queue to retrieve message from.
981 * @msg contains the message destination.
982 * @target contains the task structure for recipient process.
983 * @type contains the type of message requested.
984 * @mode contains the operational flags.
985 * Return 0 if permission is granted.
986 *
987 * Security hooks for System V Shared Memory Segments
988 *
989 * @shm_alloc_security:
990 * Allocate and attach a security structure to the shp->shm_perm.security
991 * field. The security field is initialized to NULL when the structure is
992 * first created.
993 * @shp contains the shared memory structure to be modified.
994 * Return 0 if operation was successful and permission is granted.
995 * @shm_free_security:
996 * Deallocate the security struct for this memory segment.
997 * @shp contains the shared memory structure to be modified.
998 * @shm_associate:
999 * Check permission when a shared memory region is requested through the
1000 * shmget system call. This hook is only called when returning the shared
1001 * memory region identifier for an existing region, not when a new shared
1002 * memory region is created.
1003 * @shp contains the shared memory structure to be modified.
1004 * @shmflg contains the operation control flags.
1005 * Return 0 if permission is granted.
1006 * @shm_shmctl:
1007 * Check permission when a shared memory control operation specified by
1008 * @cmd is to be performed on the shared memory region @shp.
1009 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1010 * @shp contains shared memory structure to be modified.
1011 * @cmd contains the operation to be performed.
1012 * Return 0 if permission is granted.
1013 * @shm_shmat:
1014 * Check permissions prior to allowing the shmat system call to attach the
1015 * shared memory segment @shp to the data segment of the calling process.
1016 * The attaching address is specified by @shmaddr.
1017 * @shp contains the shared memory structure to be modified.
1018 * @shmaddr contains the address to attach memory region to.
1019 * @shmflg contains the operational flags.
1020 * Return 0 if permission is granted.
1021 *
1022 * Security hooks for System V Semaphores
1023 *
1024 * @sem_alloc_security:
1025 * Allocate and attach a security structure to the sma->sem_perm.security
1026 * field. The security field is initialized to NULL when the structure is
1027 * first created.
1028 * @sma contains the semaphore structure
1029 * Return 0 if operation was successful and permission is granted.
1030 * @sem_free_security:
1031 * deallocate security struct for this semaphore
1032 * @sma contains the semaphore structure.
1033 * @sem_associate:
1034 * Check permission when a semaphore is requested through the semget
1035 * system call. This hook is only called when returning the semaphore
1036 * identifier for an existing semaphore, not when a new one must be
1037 * created.
1038 * @sma contains the semaphore structure.
1039 * @semflg contains the operation control flags.
1040 * Return 0 if permission is granted.
1041 * @sem_semctl:
1042 * Check permission when a semaphore operation specified by @cmd is to be
1043 * performed on the semaphore @sma. The @sma may be NULL, e.g. for
1044 * IPC_INFO or SEM_INFO.
1045 * @sma contains the semaphore structure. May be NULL.
1046 * @cmd contains the operation to be performed.
1047 * Return 0 if permission is granted.
1048 * @sem_semop
1049 * Check permissions before performing operations on members of the
1050 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
1051 * may be modified.
1052 * @sma contains the semaphore structure.
1053 * @sops contains the operations to perform.
1054 * @nsops contains the number of operations to perform.
1055 * @alter contains the flag indicating whether changes are to be made.
1056 * Return 0 if permission is granted.
1057 *
1058 * @ptrace:
1059 * Check permission before allowing the @parent process to trace the
1060 * @child process.
1061 * Security modules may also want to perform a process tracing check
1062 * during an execve in the set_security or apply_creds hooks of
1063 * binprm_security_ops if the process is being traced and its security
1064 * attributes would be changed by the execve.
1065 * @parent contains the task_struct structure for parent process.
1066 * @child contains the task_struct structure for child process.
1067 * Return 0 if permission is granted.
1068 * @capget:
1069 * Get the @effective, @inheritable, and @permitted capability sets for
1070 * the @target process. The hook may also perform permission checking to
1071 * determine if the current process is allowed to see the capability sets
1072 * of the @target process.
1073 * @target contains the task_struct structure for target process.
1074 * @effective contains the effective capability set.
1075 * @inheritable contains the inheritable capability set.
1076 * @permitted contains the permitted capability set.
1077 * Return 0 if the capability sets were successfully obtained.
1078 * @capset_check:
1079 * Check permission before setting the @effective, @inheritable, and
1080 * @permitted capability sets for the @target process.
1081 * Caveat: @target is also set to current if a set of processes is
1082 * specified (i.e. all processes other than current and init or a
1083 * particular process group). Hence, the capset_set hook may need to
1084 * revalidate permission to the actual target process.
1085 * @target contains the task_struct structure for target process.
1086 * @effective contains the effective capability set.
1087 * @inheritable contains the inheritable capability set.
1088 * @permitted contains the permitted capability set.
1089 * Return 0 if permission is granted.
1090 * @capset_set:
1091 * Set the @effective, @inheritable, and @permitted capability sets for
1092 * the @target process. Since capset_check cannot always check permission
1093 * to the real @target process, this hook may also perform permission
1094 * checking to determine if the current process is allowed to set the
1095 * capability sets of the @target process. However, this hook has no way
1096 * of returning an error due to the structure of the sys_capset code.
1097 * @target contains the task_struct structure for target process.
1098 * @effective contains the effective capability set.
1099 * @inheritable contains the inheritable capability set.
1100 * @permitted contains the permitted capability set.
1101 * @capable:
1102 * Check whether the @tsk process has the @cap capability.
1103 * @tsk contains the task_struct for the process.
1104 * @cap contains the capability <include/linux/capability.h>.
1105 * Return 0 if the capability is granted for @tsk.
1106 * @acct:
1107 * Check permission before enabling or disabling process accounting. If
1108 * accounting is being enabled, then @file refers to the open file used to
1109 * store accounting records. If accounting is being disabled, then @file
1110 * is NULL.
1111 * @file contains the file structure for the accounting file (may be NULL).
1112 * Return 0 if permission is granted.
1113 * @sysctl:
1114 * Check permission before accessing the @table sysctl variable in the
1115 * manner specified by @op.
1116 * @table contains the ctl_table structure for the sysctl variable.
1117 * @op contains the operation (001 = search, 002 = write, 004 = read).
1118 * Return 0 if permission is granted.
1119 * @syslog:
1120 * Check permission before accessing the kernel message ring or changing
1121 * logging to the console.
1122 * See the syslog(2) manual page for an explanation of the @type values.
1123 * @type contains the type of action.
1124 * Return 0 if permission is granted.
1125 * @settime:
1126 * Check permission to change the system time.
1127 * struct timespec and timezone are defined in include/linux/time.h
1128 * @ts contains new time
1129 * @tz contains new timezone
1130 * Return 0 if permission is granted.
1131 * @vm_enough_memory:
1132 * Check permissions for allocating a new virtual mapping.
1133 * @pages contains the number of pages.
1134 * Return 0 if permission is granted.
1135 *
1136 * @register_security:
1137 * allow module stacking.
1138 * @name contains the name of the security module being stacked.
1139 * @ops contains a pointer to the struct security_operations of the module to stack.
1140 * @unregister_security:
1141 * remove a stacked module.
1142 * @name contains the name of the security module being unstacked.
1143 * @ops contains a pointer to the struct security_operations of the module to unstack.
1144 *
1145 * @secid_to_secctx:
1146 * Convert secid to security context.
1147 * @secid contains the security ID.
1148 * @secdata contains the pointer that stores the converted security context.
1149 *
1150 * @release_secctx:
1151 * Release the security context.
1152 * @secdata contains the security context.
1153 * @seclen contains the length of the security context.
1154 *
1155 * This is the main security structure.
1156 */
1157 struct security_operations {
1158 int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1159 int (*capget) (struct task_struct * target,
1160 kernel_cap_t * effective,
1161 kernel_cap_t * inheritable, kernel_cap_t * permitted);
1162 int (*capset_check) (struct task_struct * target,
1163 kernel_cap_t * effective,
1164 kernel_cap_t * inheritable,
1165 kernel_cap_t * permitted);
1166 void (*capset_set) (struct task_struct * target,
1167 kernel_cap_t * effective,
1168 kernel_cap_t * inheritable,
1169 kernel_cap_t * permitted);
1170 int (*capable) (struct task_struct * tsk, int cap);
1171 int (*acct) (struct file * file);
1172 int (*sysctl) (struct ctl_table * table, int op);
1173 int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1174 int (*quota_on) (struct dentry * dentry);
1175 int (*syslog) (int type);
1176 int (*settime) (struct timespec *ts, struct timezone *tz);
1177 int (*vm_enough_memory) (long pages);
1178
1179 int (*bprm_alloc_security) (struct linux_binprm * bprm);
1180 void (*bprm_free_security) (struct linux_binprm * bprm);
1181 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1182 void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1183 int (*bprm_set_security) (struct linux_binprm * bprm);
1184 int (*bprm_check_security) (struct linux_binprm * bprm);
1185 int (*bprm_secureexec) (struct linux_binprm * bprm);
1186
1187 int (*sb_alloc_security) (struct super_block * sb);
1188 void (*sb_free_security) (struct super_block * sb);
1189 int (*sb_copy_data)(struct file_system_type *type,
1190 void *orig, void *copy);
1191 int (*sb_kern_mount) (struct super_block *sb, void *data);
1192 int (*sb_statfs) (struct dentry *dentry);
1193 int (*sb_mount) (char *dev_name, struct nameidata * nd,
1194 char *type, unsigned long flags, void *data);
1195 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1196 int (*sb_umount) (struct vfsmount * mnt, int flags);
1197 void (*sb_umount_close) (struct vfsmount * mnt);
1198 void (*sb_umount_busy) (struct vfsmount * mnt);
1199 void (*sb_post_remount) (struct vfsmount * mnt,
1200 unsigned long flags, void *data);
1201 void (*sb_post_mountroot) (void);
1202 void (*sb_post_addmount) (struct vfsmount * mnt,
1203 struct nameidata * mountpoint_nd);
1204 int (*sb_pivotroot) (struct nameidata * old_nd,
1205 struct nameidata * new_nd);
1206 void (*sb_post_pivotroot) (struct nameidata * old_nd,
1207 struct nameidata * new_nd);
1208
1209 int (*inode_alloc_security) (struct inode *inode);
1210 void (*inode_free_security) (struct inode *inode);
1211 int (*inode_init_security) (struct inode *inode, struct inode *dir,
1212 char **name, void **value, size_t *len);
1213 int (*inode_create) (struct inode *dir,
1214 struct dentry *dentry, int mode);
1215 int (*inode_link) (struct dentry *old_dentry,
1216 struct inode *dir, struct dentry *new_dentry);
1217 int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1218 int (*inode_symlink) (struct inode *dir,
1219 struct dentry *dentry, const char *old_name);
1220 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1221 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1222 int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1223 int mode, dev_t dev);
1224 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1225 struct inode *new_dir, struct dentry *new_dentry);
1226 int (*inode_readlink) (struct dentry *dentry);
1227 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1228 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1229 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
1230 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1231 void (*inode_delete) (struct inode *inode);
1232 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1233 size_t size, int flags);
1234 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1235 size_t size, int flags);
1236 int (*inode_getxattr) (struct dentry *dentry, char *name);
1237 int (*inode_listxattr) (struct dentry *dentry);
1238 int (*inode_removexattr) (struct dentry *dentry, char *name);
1239 const char *(*inode_xattr_getsuffix) (void);
1240 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1241 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1242 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1243
1244 int (*file_permission) (struct file * file, int mask);
1245 int (*file_alloc_security) (struct file * file);
1246 void (*file_free_security) (struct file * file);
1247 int (*file_ioctl) (struct file * file, unsigned int cmd,
1248 unsigned long arg);
1249 int (*file_mmap) (struct file * file,
1250 unsigned long reqprot,
1251 unsigned long prot, unsigned long flags);
1252 int (*file_mprotect) (struct vm_area_struct * vma,
1253 unsigned long reqprot,
1254 unsigned long prot);
1255 int (*file_lock) (struct file * file, unsigned int cmd);
1256 int (*file_fcntl) (struct file * file, unsigned int cmd,
1257 unsigned long arg);
1258 int (*file_set_fowner) (struct file * file);
1259 int (*file_send_sigiotask) (struct task_struct * tsk,
1260 struct fown_struct * fown, int sig);
1261 int (*file_receive) (struct file * file);
1262
1263 int (*task_create) (unsigned long clone_flags);
1264 int (*task_alloc_security) (struct task_struct * p);
1265 void (*task_free_security) (struct task_struct * p);
1266 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1267 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1268 uid_t old_euid, uid_t old_suid, int flags);
1269 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1270 int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1271 int (*task_getpgid) (struct task_struct * p);
1272 int (*task_getsid) (struct task_struct * p);
1273 void (*task_getsecid) (struct task_struct * p, u32 * secid);
1274 int (*task_setgroups) (struct group_info *group_info);
1275 int (*task_setnice) (struct task_struct * p, int nice);
1276 int (*task_setioprio) (struct task_struct * p, int ioprio);
1277 int (*task_getioprio) (struct task_struct * p);
1278 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1279 int (*task_setscheduler) (struct task_struct * p, int policy,
1280 struct sched_param * lp);
1281 int (*task_getscheduler) (struct task_struct * p);
1282 int (*task_movememory) (struct task_struct * p);
1283 int (*task_kill) (struct task_struct * p,
1284 struct siginfo * info, int sig, u32 secid);
1285 int (*task_wait) (struct task_struct * p);
1286 int (*task_prctl) (int option, unsigned long arg2,
1287 unsigned long arg3, unsigned long arg4,
1288 unsigned long arg5);
1289 void (*task_reparent_to_init) (struct task_struct * p);
1290 void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1291
1292 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1293
1294 int (*msg_msg_alloc_security) (struct msg_msg * msg);
1295 void (*msg_msg_free_security) (struct msg_msg * msg);
1296
1297 int (*msg_queue_alloc_security) (struct msg_queue * msq);
1298 void (*msg_queue_free_security) (struct msg_queue * msq);
1299 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1300 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1301 int (*msg_queue_msgsnd) (struct msg_queue * msq,
1302 struct msg_msg * msg, int msqflg);
1303 int (*msg_queue_msgrcv) (struct msg_queue * msq,
1304 struct msg_msg * msg,
1305 struct task_struct * target,
1306 long type, int mode);
1307
1308 int (*shm_alloc_security) (struct shmid_kernel * shp);
1309 void (*shm_free_security) (struct shmid_kernel * shp);
1310 int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1311 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1312 int (*shm_shmat) (struct shmid_kernel * shp,
1313 char __user *shmaddr, int shmflg);
1314
1315 int (*sem_alloc_security) (struct sem_array * sma);
1316 void (*sem_free_security) (struct sem_array * sma);
1317 int (*sem_associate) (struct sem_array * sma, int semflg);
1318 int (*sem_semctl) (struct sem_array * sma, int cmd);
1319 int (*sem_semop) (struct sem_array * sma,
1320 struct sembuf * sops, unsigned nsops, int alter);
1321
1322 int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1323 int (*netlink_recv) (struct sk_buff * skb, int cap);
1324
1325 /* allow module stacking */
1326 int (*register_security) (const char *name,
1327 struct security_operations *ops);
1328 int (*unregister_security) (const char *name,
1329 struct security_operations *ops);
1330
1331 void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1332
1333 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1334 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1335 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
1336 void (*release_secctx)(char *secdata, u32 seclen);
1337
1338 #ifdef CONFIG_SECURITY_NETWORK
1339 int (*unix_stream_connect) (struct socket * sock,
1340 struct socket * other, struct sock * newsk);
1341 int (*unix_may_send) (struct socket * sock, struct socket * other);
1342
1343 int (*socket_create) (int family, int type, int protocol, int kern);
1344 void (*socket_post_create) (struct socket * sock, int family,
1345 int type, int protocol, int kern);
1346 int (*socket_bind) (struct socket * sock,
1347 struct sockaddr * address, int addrlen);
1348 int (*socket_connect) (struct socket * sock,
1349 struct sockaddr * address, int addrlen);
1350 int (*socket_listen) (struct socket * sock, int backlog);
1351 int (*socket_accept) (struct socket * sock, struct socket * newsock);
1352 void (*socket_post_accept) (struct socket * sock,
1353 struct socket * newsock);
1354 int (*socket_sendmsg) (struct socket * sock,
1355 struct msghdr * msg, int size);
1356 int (*socket_recvmsg) (struct socket * sock,
1357 struct msghdr * msg, int size, int flags);
1358 int (*socket_getsockname) (struct socket * sock);
1359 int (*socket_getpeername) (struct socket * sock);
1360 int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1361 int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1362 int (*socket_shutdown) (struct socket * sock, int how);
1363 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1364 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1365 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1366 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1367 void (*sk_free_security) (struct sock *sk);
1368 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1369 void (*sk_getsecid) (struct sock *sk, u32 *secid);
1370 void (*sock_graft)(struct sock* sk, struct socket *parent);
1371 int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb,
1372 struct request_sock *req);
1373 void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req);
1374 void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl);
1375 #endif /* CONFIG_SECURITY_NETWORK */
1376
1377 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1378 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp,
1379 struct xfrm_user_sec_ctx *sec_ctx, struct sock *sk);
1380 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1381 void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1382 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1383 int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1384 struct xfrm_user_sec_ctx *sec_ctx, struct xfrm_sec_ctx *polsec,
1385 u32 secid);
1386 void (*xfrm_state_free_security) (struct xfrm_state *x);
1387 int (*xfrm_state_delete_security) (struct xfrm_state *x);
1388 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir);
1389 int (*xfrm_state_pol_flow_match)(struct xfrm_state *x,
1390 struct xfrm_policy *xp, struct flowi *fl);
1391 int (*xfrm_flow_state_match)(struct flowi *fl, struct xfrm_state *xfrm);
1392 int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall);
1393 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1394
1395 /* key management security hooks */
1396 #ifdef CONFIG_KEYS
1397 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1398 void (*key_free)(struct key *key);
1399 int (*key_permission)(key_ref_t key_ref,
1400 struct task_struct *context,
1401 key_perm_t perm);
1402
1403 #endif /* CONFIG_KEYS */
1404
1405 };
1406
1407 /* global variables */
1408 extern struct security_operations *security_ops;
1409
1410 /* inline stuff */
1411 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1412 {
1413 return security_ops->ptrace (parent, child);
1414 }
1415
1416 static inline int security_capget (struct task_struct *target,
1417 kernel_cap_t *effective,
1418 kernel_cap_t *inheritable,
1419 kernel_cap_t *permitted)
1420 {
1421 return security_ops->capget (target, effective, inheritable, permitted);
1422 }
1423
1424 static inline int security_capset_check (struct task_struct *target,
1425 kernel_cap_t *effective,
1426 kernel_cap_t *inheritable,
1427 kernel_cap_t *permitted)
1428 {
1429 return security_ops->capset_check (target, effective, inheritable, permitted);
1430 }
1431
1432 static inline void security_capset_set (struct task_struct *target,
1433 kernel_cap_t *effective,
1434 kernel_cap_t *inheritable,
1435 kernel_cap_t *permitted)
1436 {
1437 security_ops->capset_set (target, effective, inheritable, permitted);
1438 }
1439
1440 static inline int security_capable(struct task_struct *tsk, int cap)
1441 {
1442 return security_ops->capable(tsk, cap);
1443 }
1444
1445 static inline int security_acct (struct file *file)
1446 {
1447 return security_ops->acct (file);
1448 }
1449
1450 static inline int security_sysctl(struct ctl_table *table, int op)
1451 {
1452 return security_ops->sysctl(table, op);
1453 }
1454
1455 static inline int security_quotactl (int cmds, int type, int id,
1456 struct super_block *sb)
1457 {
1458 return security_ops->quotactl (cmds, type, id, sb);
1459 }
1460
1461 static inline int security_quota_on (struct dentry * dentry)
1462 {
1463 return security_ops->quota_on (dentry);
1464 }
1465
1466 static inline int security_syslog(int type)
1467 {
1468 return security_ops->syslog(type);
1469 }
1470
1471 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1472 {
1473 return security_ops->settime(ts, tz);
1474 }
1475
1476
1477 static inline int security_vm_enough_memory(long pages)
1478 {
1479 return security_ops->vm_enough_memory(pages);
1480 }
1481
1482 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1483 {
1484 return security_ops->bprm_alloc_security (bprm);
1485 }
1486 static inline void security_bprm_free (struct linux_binprm *bprm)
1487 {
1488 security_ops->bprm_free_security (bprm);
1489 }
1490 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1491 {
1492 security_ops->bprm_apply_creds (bprm, unsafe);
1493 }
1494 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1495 {
1496 security_ops->bprm_post_apply_creds (bprm);
1497 }
1498 static inline int security_bprm_set (struct linux_binprm *bprm)
1499 {
1500 return security_ops->bprm_set_security (bprm);
1501 }
1502
1503 static inline int security_bprm_check (struct linux_binprm *bprm)
1504 {
1505 return security_ops->bprm_check_security (bprm);
1506 }
1507
1508 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1509 {
1510 return security_ops->bprm_secureexec (bprm);
1511 }
1512
1513 static inline int security_sb_alloc (struct super_block *sb)
1514 {
1515 return security_ops->sb_alloc_security (sb);
1516 }
1517
1518 static inline void security_sb_free (struct super_block *sb)
1519 {
1520 security_ops->sb_free_security (sb);
1521 }
1522
1523 static inline int security_sb_copy_data (struct file_system_type *type,
1524 void *orig, void *copy)
1525 {
1526 return security_ops->sb_copy_data (type, orig, copy);
1527 }
1528
1529 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1530 {
1531 return security_ops->sb_kern_mount (sb, data);
1532 }
1533
1534 static inline int security_sb_statfs (struct dentry *dentry)
1535 {
1536 return security_ops->sb_statfs (dentry);
1537 }
1538
1539 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1540 char *type, unsigned long flags,
1541 void *data)
1542 {
1543 return security_ops->sb_mount (dev_name, nd, type, flags, data);
1544 }
1545
1546 static inline int security_sb_check_sb (struct vfsmount *mnt,
1547 struct nameidata *nd)
1548 {
1549 return security_ops->sb_check_sb (mnt, nd);
1550 }
1551
1552 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1553 {
1554 return security_ops->sb_umount (mnt, flags);
1555 }
1556
1557 static inline void security_sb_umount_close (struct vfsmount *mnt)
1558 {
1559 security_ops->sb_umount_close (mnt);
1560 }
1561
1562 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1563 {
1564 security_ops->sb_umount_busy (mnt);
1565 }
1566
1567 static inline void security_sb_post_remount (struct vfsmount *mnt,
1568 unsigned long flags, void *data)
1569 {
1570 security_ops->sb_post_remount (mnt, flags, data);
1571 }
1572
1573 static inline void security_sb_post_mountroot (void)
1574 {
1575 security_ops->sb_post_mountroot ();
1576 }
1577
1578 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1579 struct nameidata *mountpoint_nd)
1580 {
1581 security_ops->sb_post_addmount (mnt, mountpoint_nd);
1582 }
1583
1584 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1585 struct nameidata *new_nd)
1586 {
1587 return security_ops->sb_pivotroot (old_nd, new_nd);
1588 }
1589
1590 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1591 struct nameidata *new_nd)
1592 {
1593 security_ops->sb_post_pivotroot (old_nd, new_nd);
1594 }
1595
1596 static inline int security_inode_alloc (struct inode *inode)
1597 {
1598 return security_ops->inode_alloc_security (inode);
1599 }
1600
1601 static inline void security_inode_free (struct inode *inode)
1602 {
1603 security_ops->inode_free_security (inode);
1604 }
1605
1606 static inline int security_inode_init_security (struct inode *inode,
1607 struct inode *dir,
1608 char **name,
1609 void **value,
1610 size_t *len)
1611 {
1612 if (unlikely (IS_PRIVATE (inode)))
1613 return -EOPNOTSUPP;
1614 return security_ops->inode_init_security (inode, dir, name, value, len);
1615 }
1616
1617 static inline int security_inode_create (struct inode *dir,
1618 struct dentry *dentry,
1619 int mode)
1620 {
1621 if (unlikely (IS_PRIVATE (dir)))
1622 return 0;
1623 return security_ops->inode_create (dir, dentry, mode);
1624 }
1625
1626 static inline int security_inode_link (struct dentry *old_dentry,
1627 struct inode *dir,
1628 struct dentry *new_dentry)
1629 {
1630 if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1631 return 0;
1632 return security_ops->inode_link (old_dentry, dir, new_dentry);
1633 }
1634
1635 static inline int security_inode_unlink (struct inode *dir,
1636 struct dentry *dentry)
1637 {
1638 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1639 return 0;
1640 return security_ops->inode_unlink (dir, dentry);
1641 }
1642
1643 static inline int security_inode_symlink (struct inode *dir,
1644 struct dentry *dentry,
1645 const char *old_name)
1646 {
1647 if (unlikely (IS_PRIVATE (dir)))
1648 return 0;
1649 return security_ops->inode_symlink (dir, dentry, old_name);
1650 }
1651
1652 static inline int security_inode_mkdir (struct inode *dir,
1653 struct dentry *dentry,
1654 int mode)
1655 {
1656 if (unlikely (IS_PRIVATE (dir)))
1657 return 0;
1658 return security_ops->inode_mkdir (dir, dentry, mode);
1659 }
1660
1661 static inline int security_inode_rmdir (struct inode *dir,
1662 struct dentry *dentry)
1663 {
1664 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1665 return 0;
1666 return security_ops->inode_rmdir (dir, dentry);
1667 }
1668
1669 static inline int security_inode_mknod (struct inode *dir,
1670 struct dentry *dentry,
1671 int mode, dev_t dev)
1672 {
1673 if (unlikely (IS_PRIVATE (dir)))
1674 return 0;
1675 return security_ops->inode_mknod (dir, dentry, mode, dev);
1676 }
1677
1678 static inline int security_inode_rename (struct inode *old_dir,
1679 struct dentry *old_dentry,
1680 struct inode *new_dir,
1681 struct dentry *new_dentry)
1682 {
1683 if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1684 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1685 return 0;
1686 return security_ops->inode_rename (old_dir, old_dentry,
1687 new_dir, new_dentry);
1688 }
1689
1690 static inline int security_inode_readlink (struct dentry *dentry)
1691 {
1692 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1693 return 0;
1694 return security_ops->inode_readlink (dentry);
1695 }
1696
1697 static inline int security_inode_follow_link (struct dentry *dentry,
1698 struct nameidata *nd)
1699 {
1700 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1701 return 0;
1702 return security_ops->inode_follow_link (dentry, nd);
1703 }
1704
1705 static inline int security_inode_permission (struct inode *inode, int mask,
1706 struct nameidata *nd)
1707 {
1708 if (unlikely (IS_PRIVATE (inode)))
1709 return 0;
1710 return security_ops->inode_permission (inode, mask, nd);
1711 }
1712
1713 static inline int security_inode_setattr (struct dentry *dentry,
1714 struct iattr *attr)
1715 {
1716 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1717 return 0;
1718 return security_ops->inode_setattr (dentry, attr);
1719 }
1720
1721 static inline int security_inode_getattr (struct vfsmount *mnt,
1722 struct dentry *dentry)
1723 {
1724 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1725 return 0;
1726 return security_ops->inode_getattr (mnt, dentry);
1727 }
1728
1729 static inline void security_inode_delete (struct inode *inode)
1730 {
1731 if (unlikely (IS_PRIVATE (inode)))
1732 return;
1733 security_ops->inode_delete (inode);
1734 }
1735
1736 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1737 void *value, size_t size, int flags)
1738 {
1739 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1740 return 0;
1741 return security_ops->inode_setxattr (dentry, name, value, size, flags);
1742 }
1743
1744 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1745 void *value, size_t size, int flags)
1746 {
1747 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1748 return;
1749 security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1750 }
1751
1752 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1753 {
1754 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1755 return 0;
1756 return security_ops->inode_getxattr (dentry, name);
1757 }
1758
1759 static inline int security_inode_listxattr (struct dentry *dentry)
1760 {
1761 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1762 return 0;
1763 return security_ops->inode_listxattr (dentry);
1764 }
1765
1766 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1767 {
1768 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1769 return 0;
1770 return security_ops->inode_removexattr (dentry, name);
1771 }
1772
1773 static inline const char *security_inode_xattr_getsuffix(void)
1774 {
1775 return security_ops->inode_xattr_getsuffix();
1776 }
1777
1778 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1779 {
1780 if (unlikely (IS_PRIVATE (inode)))
1781 return 0;
1782 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1783 }
1784
1785 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1786 {
1787 if (unlikely (IS_PRIVATE (inode)))
1788 return 0;
1789 return security_ops->inode_setsecurity(inode, name, value, size, flags);
1790 }
1791
1792 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1793 {
1794 if (unlikely (IS_PRIVATE (inode)))
1795 return 0;
1796 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1797 }
1798
1799 static inline int security_file_permission (struct file *file, int mask)
1800 {
1801 return security_ops->file_permission (file, mask);
1802 }
1803
1804 static inline int security_file_alloc (struct file *file)
1805 {
1806 return security_ops->file_alloc_security (file);
1807 }
1808
1809 static inline void security_file_free (struct file *file)
1810 {
1811 security_ops->file_free_security (file);
1812 }
1813
1814 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1815 unsigned long arg)
1816 {
1817 return security_ops->file_ioctl (file, cmd, arg);
1818 }
1819
1820 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1821 unsigned long prot,
1822 unsigned long flags)
1823 {
1824 return security_ops->file_mmap (file, reqprot, prot, flags);
1825 }
1826
1827 static inline int security_file_mprotect (struct vm_area_struct *vma,
1828 unsigned long reqprot,
1829 unsigned long prot)
1830 {
1831 return security_ops->file_mprotect (vma, reqprot, prot);
1832 }
1833
1834 static inline int security_file_lock (struct file *file, unsigned int cmd)
1835 {
1836 return security_ops->file_lock (file, cmd);
1837 }
1838
1839 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1840 unsigned long arg)
1841 {
1842 return security_ops->file_fcntl (file, cmd, arg);
1843 }
1844
1845 static inline int security_file_set_fowner (struct file *file)
1846 {
1847 return security_ops->file_set_fowner (file);
1848 }
1849
1850 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1851 struct fown_struct *fown,
1852 int sig)
1853 {
1854 return security_ops->file_send_sigiotask (tsk, fown, sig);
1855 }
1856
1857 static inline int security_file_receive (struct file *file)
1858 {
1859 return security_ops->file_receive (file);
1860 }
1861
1862 static inline int security_task_create (unsigned long clone_flags)
1863 {
1864 return security_ops->task_create (clone_flags);
1865 }
1866
1867 static inline int security_task_alloc (struct task_struct *p)
1868 {
1869 return security_ops->task_alloc_security (p);
1870 }
1871
1872 static inline void security_task_free (struct task_struct *p)
1873 {
1874 security_ops->task_free_security (p);
1875 }
1876
1877 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1878 int flags)
1879 {
1880 return security_ops->task_setuid (id0, id1, id2, flags);
1881 }
1882
1883 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1884 uid_t old_suid, int flags)
1885 {
1886 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1887 }
1888
1889 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1890 int flags)
1891 {
1892 return security_ops->task_setgid (id0, id1, id2, flags);
1893 }
1894
1895 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1896 {
1897 return security_ops->task_setpgid (p, pgid);
1898 }
1899
1900 static inline int security_task_getpgid (struct task_struct *p)
1901 {
1902 return security_ops->task_getpgid (p);
1903 }
1904
1905 static inline int security_task_getsid (struct task_struct *p)
1906 {
1907 return security_ops->task_getsid (p);
1908 }
1909
1910 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1911 {
1912 security_ops->task_getsecid (p, secid);
1913 }
1914
1915 static inline int security_task_setgroups (struct group_info *group_info)
1916 {
1917 return security_ops->task_setgroups (group_info);
1918 }
1919
1920 static inline int security_task_setnice (struct task_struct *p, int nice)
1921 {
1922 return security_ops->task_setnice (p, nice);
1923 }
1924
1925 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1926 {
1927 return security_ops->task_setioprio (p, ioprio);
1928 }
1929
1930 static inline int security_task_getioprio (struct task_struct *p)
1931 {
1932 return security_ops->task_getioprio (p);
1933 }
1934
1935 static inline int security_task_setrlimit (unsigned int resource,
1936 struct rlimit *new_rlim)
1937 {
1938 return security_ops->task_setrlimit (resource, new_rlim);
1939 }
1940
1941 static inline int security_task_setscheduler (struct task_struct *p,
1942 int policy,
1943 struct sched_param *lp)
1944 {
1945 return security_ops->task_setscheduler (p, policy, lp);
1946 }
1947
1948 static inline int security_task_getscheduler (struct task_struct *p)
1949 {
1950 return security_ops->task_getscheduler (p);
1951 }
1952
1953 static inline int security_task_movememory (struct task_struct *p)
1954 {
1955 return security_ops->task_movememory (p);
1956 }
1957
1958 static inline int security_task_kill (struct task_struct *p,
1959 struct siginfo *info, int sig,
1960 u32 secid)
1961 {
1962 return security_ops->task_kill (p, info, sig, secid);
1963 }
1964
1965 static inline int security_task_wait (struct task_struct *p)
1966 {
1967 return security_ops->task_wait (p);
1968 }
1969
1970 static inline int security_task_prctl (int option, unsigned long arg2,
1971 unsigned long arg3,
1972 unsigned long arg4,
1973 unsigned long arg5)
1974 {
1975 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1976 }
1977
1978 static inline void security_task_reparent_to_init (struct task_struct *p)
1979 {
1980 security_ops->task_reparent_to_init (p);
1981 }
1982
1983 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1984 {
1985 security_ops->task_to_inode(p, inode);
1986 }
1987
1988 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1989 short flag)
1990 {
1991 return security_ops->ipc_permission (ipcp, flag);
1992 }
1993
1994 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1995 {
1996 return security_ops->msg_msg_alloc_security (msg);
1997 }
1998
1999 static inline void security_msg_msg_free (struct msg_msg * msg)
2000 {
2001 security_ops->msg_msg_free_security(msg);
2002 }
2003
2004 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2005 {
2006 return security_ops->msg_queue_alloc_security (msq);
2007 }
2008
2009 static inline void security_msg_queue_free (struct msg_queue *msq)
2010 {
2011 security_ops->msg_queue_free_security (msq);
2012 }
2013
2014 static inline int security_msg_queue_associate (struct msg_queue * msq,
2015 int msqflg)
2016 {
2017 return security_ops->msg_queue_associate (msq, msqflg);
2018 }
2019
2020 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2021 {
2022 return security_ops->msg_queue_msgctl (msq, cmd);
2023 }
2024
2025 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2026 struct msg_msg * msg, int msqflg)
2027 {
2028 return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
2029 }
2030
2031 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2032 struct msg_msg * msg,
2033 struct task_struct * target,
2034 long type, int mode)
2035 {
2036 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
2037 }
2038
2039 static inline int security_shm_alloc (struct shmid_kernel *shp)
2040 {
2041 return security_ops->shm_alloc_security (shp);
2042 }
2043
2044 static inline void security_shm_free (struct shmid_kernel *shp)
2045 {
2046 security_ops->shm_free_security (shp);
2047 }
2048
2049 static inline int security_shm_associate (struct shmid_kernel * shp,
2050 int shmflg)
2051 {
2052 return security_ops->shm_associate(shp, shmflg);
2053 }
2054
2055 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2056 {
2057 return security_ops->shm_shmctl (shp, cmd);
2058 }
2059
2060 static inline int security_shm_shmat (struct shmid_kernel * shp,
2061 char __user *shmaddr, int shmflg)
2062 {
2063 return security_ops->shm_shmat(shp, shmaddr, shmflg);
2064 }
2065
2066 static inline int security_sem_alloc (struct sem_array *sma)
2067 {
2068 return security_ops->sem_alloc_security (sma);
2069 }
2070
2071 static inline void security_sem_free (struct sem_array *sma)
2072 {
2073 security_ops->sem_free_security (sma);
2074 }
2075
2076 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2077 {
2078 return security_ops->sem_associate (sma, semflg);
2079 }
2080
2081 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2082 {
2083 return security_ops->sem_semctl(sma, cmd);
2084 }
2085
2086 static inline int security_sem_semop (struct sem_array * sma,
2087 struct sembuf * sops, unsigned nsops,
2088 int alter)
2089 {
2090 return security_ops->sem_semop(sma, sops, nsops, alter);
2091 }
2092
2093 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2094 {
2095 if (unlikely (inode && IS_PRIVATE (inode)))
2096 return;
2097 security_ops->d_instantiate (dentry, inode);
2098 }
2099
2100 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2101 {
2102 return security_ops->getprocattr(p, name, value, size);
2103 }
2104
2105 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2106 {
2107 return security_ops->setprocattr(p, name, value, size);
2108 }
2109
2110 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2111 {
2112 return security_ops->netlink_send(sk, skb);
2113 }
2114
2115 static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2116 {
2117 return security_ops->netlink_recv(skb, cap);
2118 }
2119
2120 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2121 {
2122 return security_ops->secid_to_secctx(secid, secdata, seclen);
2123 }
2124
2125 static inline void security_release_secctx(char *secdata, u32 seclen)
2126 {
2127 return security_ops->release_secctx(secdata, seclen);
2128 }
2129
2130 /* prototypes */
2131 extern int security_init (void);
2132 extern int register_security (struct security_operations *ops);
2133 extern int unregister_security (struct security_operations *ops);
2134 extern int mod_reg_security (const char *name, struct security_operations *ops);
2135 extern int mod_unreg_security (const char *name, struct security_operations *ops);
2136 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2137 struct dentry *parent, void *data,
2138 struct file_operations *fops);
2139 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2140 extern void securityfs_remove(struct dentry *dentry);
2141
2142
2143 #else /* CONFIG_SECURITY */
2144
2145 /*
2146 * This is the default capabilities functionality. Most of these functions
2147 * are just stubbed out, but a few must call the proper capable code.
2148 */
2149
2150 static inline int security_init(void)
2151 {
2152 return 0;
2153 }
2154
2155 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2156 {
2157 return cap_ptrace (parent, child);
2158 }
2159
2160 static inline int security_capget (struct task_struct *target,
2161 kernel_cap_t *effective,
2162 kernel_cap_t *inheritable,
2163 kernel_cap_t *permitted)
2164 {
2165 return cap_capget (target, effective, inheritable, permitted);
2166 }
2167
2168 static inline int security_capset_check (struct task_struct *target,
2169 kernel_cap_t *effective,
2170 kernel_cap_t *inheritable,
2171 kernel_cap_t *permitted)
2172 {
2173 return cap_capset_check (target, effective, inheritable, permitted);
2174 }
2175
2176 static inline void security_capset_set (struct task_struct *target,
2177 kernel_cap_t *effective,
2178 kernel_cap_t *inheritable,
2179 kernel_cap_t *permitted)
2180 {
2181 cap_capset_set (target, effective, inheritable, permitted);
2182 }
2183
2184 static inline int security_capable(struct task_struct *tsk, int cap)
2185 {
2186 return cap_capable(tsk, cap);
2187 }
2188
2189 static inline int security_acct (struct file *file)
2190 {
2191 return 0;
2192 }
2193
2194 static inline int security_sysctl(struct ctl_table *table, int op)
2195 {
2196 return 0;
2197 }
2198
2199 static inline int security_quotactl (int cmds, int type, int id,
2200 struct super_block * sb)
2201 {
2202 return 0;
2203 }
2204
2205 static inline int security_quota_on (struct dentry * dentry)
2206 {
2207 return 0;
2208 }
2209
2210 static inline int security_syslog(int type)
2211 {
2212 return cap_syslog(type);
2213 }
2214
2215 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2216 {
2217 return cap_settime(ts, tz);
2218 }
2219
2220 static inline int security_vm_enough_memory(long pages)
2221 {
2222 return cap_vm_enough_memory(pages);
2223 }
2224
2225 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2226 {
2227 return 0;
2228 }
2229
2230 static inline void security_bprm_free (struct linux_binprm *bprm)
2231 { }
2232
2233 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2234 {
2235 cap_bprm_apply_creds (bprm, unsafe);
2236 }
2237
2238 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2239 {
2240 return;
2241 }
2242
2243 static inline int security_bprm_set (struct linux_binprm *bprm)
2244 {
2245 return cap_bprm_set_security (bprm);
2246 }
2247
2248 static inline int security_bprm_check (struct linux_binprm *bprm)
2249 {
2250 return 0;
2251 }
2252
2253 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2254 {
2255 return cap_bprm_secureexec(bprm);
2256 }
2257
2258 static inline int security_sb_alloc (struct super_block *sb)
2259 {
2260 return 0;
2261 }
2262
2263 static inline void security_sb_free (struct super_block *sb)
2264 { }
2265
2266 static inline int security_sb_copy_data (struct file_system_type *type,
2267 void *orig, void *copy)
2268 {
2269 return 0;
2270 }
2271
2272 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2273 {
2274 return 0;
2275 }
2276
2277 static inline int security_sb_statfs (struct dentry *dentry)
2278 {
2279 return 0;
2280 }
2281
2282 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2283 char *type, unsigned long flags,
2284 void *data)
2285 {
2286 return 0;
2287 }
2288
2289 static inline int security_sb_check_sb (struct vfsmount *mnt,
2290 struct nameidata *nd)
2291 {
2292 return 0;
2293 }
2294
2295 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2296 {
2297 return 0;
2298 }
2299
2300 static inline void security_sb_umount_close (struct vfsmount *mnt)
2301 { }
2302
2303 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2304 { }
2305
2306 static inline void security_sb_post_remount (struct vfsmount *mnt,
2307 unsigned long flags, void *data)
2308 { }
2309
2310 static inline void security_sb_post_mountroot (void)
2311 { }
2312
2313 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2314 struct nameidata *mountpoint_nd)
2315 { }
2316
2317 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2318 struct nameidata *new_nd)
2319 {
2320 return 0;
2321 }
2322
2323 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2324 struct nameidata *new_nd)
2325 { }
2326
2327 static inline int security_inode_alloc (struct inode *inode)
2328 {
2329 return 0;
2330 }
2331
2332 static inline void security_inode_free (struct inode *inode)
2333 { }
2334
2335 static inline int security_inode_init_security (struct inode *inode,
2336 struct inode *dir,
2337 char **name,
2338 void **value,
2339 size_t *len)
2340 {
2341 return -EOPNOTSUPP;
2342 }
2343
2344 static inline int security_inode_create (struct inode *dir,
2345 struct dentry *dentry,
2346 int mode)
2347 {
2348 return 0;
2349 }
2350
2351 static inline int security_inode_link (struct dentry *old_dentry,
2352 struct inode *dir,
2353 struct dentry *new_dentry)
2354 {
2355 return 0;
2356 }
2357
2358 static inline int security_inode_unlink (struct inode *dir,
2359 struct dentry *dentry)
2360 {
2361 return 0;
2362 }
2363
2364 static inline int security_inode_symlink (struct inode *dir,
2365 struct dentry *dentry,
2366 const char *old_name)
2367 {
2368 return 0;
2369 }
2370
2371 static inline int security_inode_mkdir (struct inode *dir,
2372 struct dentry *dentry,
2373 int mode)
2374 {
2375 return 0;
2376 }
2377
2378 static inline int security_inode_rmdir (struct inode *dir,
2379 struct dentry *dentry)
2380 {
2381 return 0;
2382 }
2383
2384 static inline int security_inode_mknod (struct inode *dir,
2385 struct dentry *dentry,
2386 int mode, dev_t dev)
2387 {
2388 return 0;
2389 }
2390
2391 static inline int security_inode_rename (struct inode *old_dir,
2392 struct dentry *old_dentry,
2393 struct inode *new_dir,
2394 struct dentry *new_dentry)
2395 {
2396 return 0;
2397 }
2398
2399 static inline int security_inode_readlink (struct dentry *dentry)
2400 {
2401 return 0;
2402 }
2403
2404 static inline int security_inode_follow_link (struct dentry *dentry,
2405 struct nameidata *nd)
2406 {
2407 return 0;
2408 }
2409
2410 static inline int security_inode_permission (struct inode *inode, int mask,
2411 struct nameidata *nd)
2412 {
2413 return 0;
2414 }
2415
2416 static inline int security_inode_setattr (struct dentry *dentry,
2417 struct iattr *attr)
2418 {
2419 return 0;
2420 }
2421
2422 static inline int security_inode_getattr (struct vfsmount *mnt,
2423 struct dentry *dentry)
2424 {
2425 return 0;
2426 }
2427
2428 static inline void security_inode_delete (struct inode *inode)
2429 { }
2430
2431 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2432 void *value, size_t size, int flags)
2433 {
2434 return cap_inode_setxattr(dentry, name, value, size, flags);
2435 }
2436
2437 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2438 void *value, size_t size, int flags)
2439 { }
2440
2441 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2442 {
2443 return 0;
2444 }
2445
2446 static inline int security_inode_listxattr (struct dentry *dentry)
2447 {
2448 return 0;
2449 }
2450
2451 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2452 {
2453 return cap_inode_removexattr(dentry, name);
2454 }
2455
2456 static inline const char *security_inode_xattr_getsuffix (void)
2457 {
2458 return NULL ;
2459 }
2460
2461 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2462 {
2463 return -EOPNOTSUPP;
2464 }
2465
2466 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2467 {
2468 return -EOPNOTSUPP;
2469 }
2470
2471 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2472 {
2473 return 0;
2474 }
2475
2476 static inline int security_file_permission (struct file *file, int mask)
2477 {
2478 return 0;
2479 }
2480
2481 static inline int security_file_alloc (struct file *file)
2482 {
2483 return 0;
2484 }
2485
2486 static inline void security_file_free (struct file *file)
2487 { }
2488
2489 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2490 unsigned long arg)
2491 {
2492 return 0;
2493 }
2494
2495 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2496 unsigned long prot,
2497 unsigned long flags)
2498 {
2499 return 0;
2500 }
2501
2502 static inline int security_file_mprotect (struct vm_area_struct *vma,
2503 unsigned long reqprot,
2504 unsigned long prot)
2505 {
2506 return 0;
2507 }
2508
2509 static inline int security_file_lock (struct file *file, unsigned int cmd)
2510 {
2511 return 0;
2512 }
2513
2514 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2515 unsigned long arg)
2516 {
2517 return 0;
2518 }
2519
2520 static inline int security_file_set_fowner (struct file *file)
2521 {
2522 return 0;
2523 }
2524
2525 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2526 struct fown_struct *fown,
2527 int sig)
2528 {
2529 return 0;
2530 }
2531
2532 static inline int security_file_receive (struct file *file)
2533 {
2534 return 0;
2535 }
2536
2537 static inline int security_task_create (unsigned long clone_flags)
2538 {
2539 return 0;
2540 }
2541
2542 static inline int security_task_alloc (struct task_struct *p)
2543 {
2544 return 0;
2545 }
2546
2547 static inline void security_task_free (struct task_struct *p)
2548 { }
2549
2550 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2551 int flags)
2552 {
2553 return 0;
2554 }
2555
2556 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2557 uid_t old_suid, int flags)
2558 {
2559 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2560 }
2561
2562 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2563 int flags)
2564 {
2565 return 0;
2566 }
2567
2568 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2569 {
2570 return 0;
2571 }
2572
2573 static inline int security_task_getpgid (struct task_struct *p)
2574 {
2575 return 0;
2576 }
2577
2578 static inline int security_task_getsid (struct task_struct *p)
2579 {
2580 return 0;
2581 }
2582
2583 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2584 { }
2585
2586 static inline int security_task_setgroups (struct group_info *group_info)
2587 {
2588 return 0;
2589 }
2590
2591 static inline int security_task_setnice (struct task_struct *p, int nice)
2592 {
2593 return 0;
2594 }
2595
2596 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2597 {
2598 return 0;
2599 }
2600
2601 static inline int security_task_getioprio (struct task_struct *p)
2602 {
2603 return 0;
2604 }
2605
2606 static inline int security_task_setrlimit (unsigned int resource,
2607 struct rlimit *new_rlim)
2608 {
2609 return 0;
2610 }
2611
2612 static inline int security_task_setscheduler (struct task_struct *p,
2613 int policy,
2614 struct sched_param *lp)
2615 {
2616 return 0;
2617 }
2618
2619 static inline int security_task_getscheduler (struct task_struct *p)
2620 {
2621 return 0;
2622 }
2623
2624 static inline int security_task_movememory (struct task_struct *p)
2625 {
2626 return 0;
2627 }
2628
2629 static inline int security_task_kill (struct task_struct *p,
2630 struct siginfo *info, int sig,
2631 u32 secid)
2632 {
2633 return 0;
2634 }
2635
2636 static inline int security_task_wait (struct task_struct *p)
2637 {
2638 return 0;
2639 }
2640
2641 static inline int security_task_prctl (int option, unsigned long arg2,
2642 unsigned long arg3,
2643 unsigned long arg4,
2644 unsigned long arg5)
2645 {
2646 return 0;
2647 }
2648
2649 static inline void security_task_reparent_to_init (struct task_struct *p)
2650 {
2651 cap_task_reparent_to_init (p);
2652 }
2653
2654 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2655 { }
2656
2657 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2658 short flag)
2659 {
2660 return 0;
2661 }
2662
2663 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2664 {
2665 return 0;
2666 }
2667
2668 static inline void security_msg_msg_free (struct msg_msg * msg)
2669 { }
2670
2671 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2672 {
2673 return 0;
2674 }
2675
2676 static inline void security_msg_queue_free (struct msg_queue *msq)
2677 { }
2678
2679 static inline int security_msg_queue_associate (struct msg_queue * msq,
2680 int msqflg)
2681 {
2682 return 0;
2683 }
2684
2685 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2686 {
2687 return 0;
2688 }
2689
2690 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2691 struct msg_msg * msg, int msqflg)
2692 {
2693 return 0;
2694 }
2695
2696 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2697 struct msg_msg * msg,
2698 struct task_struct * target,
2699 long type, int mode)
2700 {
2701 return 0;
2702 }
2703
2704 static inline int security_shm_alloc (struct shmid_kernel *shp)
2705 {
2706 return 0;
2707 }
2708
2709 static inline void security_shm_free (struct shmid_kernel *shp)
2710 { }
2711
2712 static inline int security_shm_associate (struct shmid_kernel * shp,
2713 int shmflg)
2714 {
2715 return 0;
2716 }
2717
2718 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2719 {
2720 return 0;
2721 }
2722
2723 static inline int security_shm_shmat (struct shmid_kernel * shp,
2724 char __user *shmaddr, int shmflg)
2725 {
2726 return 0;
2727 }
2728
2729 static inline int security_sem_alloc (struct sem_array *sma)
2730 {
2731 return 0;
2732 }
2733
2734 static inline void security_sem_free (struct sem_array *sma)
2735 { }
2736
2737 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2738 {
2739 return 0;
2740 }
2741
2742 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2743 {
2744 return 0;
2745 }
2746
2747 static inline int security_sem_semop (struct sem_array * sma,
2748 struct sembuf * sops, unsigned nsops,
2749 int alter)
2750 {
2751 return 0;
2752 }
2753
2754 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2755 { }
2756
2757 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2758 {
2759 return -EINVAL;
2760 }
2761
2762 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2763 {
2764 return -EINVAL;
2765 }
2766
2767 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2768 {
2769 return cap_netlink_send (sk, skb);
2770 }
2771
2772 static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2773 {
2774 return cap_netlink_recv (skb, cap);
2775 }
2776
2777 static inline struct dentry *securityfs_create_dir(const char *name,
2778 struct dentry *parent)
2779 {
2780 return ERR_PTR(-ENODEV);
2781 }
2782
2783 static inline struct dentry *securityfs_create_file(const char *name,
2784 mode_t mode,
2785 struct dentry *parent,
2786 void *data,
2787 struct file_operations *fops)
2788 {
2789 return ERR_PTR(-ENODEV);
2790 }
2791
2792 static inline void securityfs_remove(struct dentry *dentry)
2793 {
2794 }
2795
2796 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2797 {
2798 return -EOPNOTSUPP;
2799 }
2800
2801 static inline void security_release_secctx(char *secdata, u32 seclen)
2802 {
2803 }
2804 #endif /* CONFIG_SECURITY */
2805
2806 #ifdef CONFIG_SECURITY_NETWORK
2807 static inline int security_unix_stream_connect(struct socket * sock,
2808 struct socket * other,
2809 struct sock * newsk)
2810 {
2811 return security_ops->unix_stream_connect(sock, other, newsk);
2812 }
2813
2814
2815 static inline int security_unix_may_send(struct socket * sock,
2816 struct socket * other)
2817 {
2818 return security_ops->unix_may_send(sock, other);
2819 }
2820
2821 static inline int security_socket_create (int family, int type,
2822 int protocol, int kern)
2823 {
2824 return security_ops->socket_create(family, type, protocol, kern);
2825 }
2826
2827 static inline void security_socket_post_create(struct socket * sock,
2828 int family,
2829 int type,
2830 int protocol, int kern)
2831 {
2832 security_ops->socket_post_create(sock, family, type,
2833 protocol, kern);
2834 }
2835
2836 static inline int security_socket_bind(struct socket * sock,
2837 struct sockaddr * address,
2838 int addrlen)
2839 {
2840 return security_ops->socket_bind(sock, address, addrlen);
2841 }
2842
2843 static inline int security_socket_connect(struct socket * sock,
2844 struct sockaddr * address,
2845 int addrlen)
2846 {
2847 return security_ops->socket_connect(sock, address, addrlen);
2848 }
2849
2850 static inline int security_socket_listen(struct socket * sock, int backlog)
2851 {
2852 return security_ops->socket_listen(sock, backlog);
2853 }
2854
2855 static inline int security_socket_accept(struct socket * sock,
2856 struct socket * newsock)
2857 {
2858 return security_ops->socket_accept(sock, newsock);
2859 }
2860
2861 static inline void security_socket_post_accept(struct socket * sock,
2862 struct socket * newsock)
2863 {
2864 security_ops->socket_post_accept(sock, newsock);
2865 }
2866
2867 static inline int security_socket_sendmsg(struct socket * sock,
2868 struct msghdr * msg, int size)
2869 {
2870 return security_ops->socket_sendmsg(sock, msg, size);
2871 }
2872
2873 static inline int security_socket_recvmsg(struct socket * sock,
2874 struct msghdr * msg, int size,
2875 int flags)
2876 {
2877 return security_ops->socket_recvmsg(sock, msg, size, flags);
2878 }
2879
2880 static inline int security_socket_getsockname(struct socket * sock)
2881 {
2882 return security_ops->socket_getsockname(sock);
2883 }
2884
2885 static inline int security_socket_getpeername(struct socket * sock)
2886 {
2887 return security_ops->socket_getpeername(sock);
2888 }
2889
2890 static inline int security_socket_getsockopt(struct socket * sock,
2891 int level, int optname)
2892 {
2893 return security_ops->socket_getsockopt(sock, level, optname);
2894 }
2895
2896 static inline int security_socket_setsockopt(struct socket * sock,
2897 int level, int optname)
2898 {
2899 return security_ops->socket_setsockopt(sock, level, optname);
2900 }
2901
2902 static inline int security_socket_shutdown(struct socket * sock, int how)
2903 {
2904 return security_ops->socket_shutdown(sock, how);
2905 }
2906
2907 static inline int security_sock_rcv_skb (struct sock * sk,
2908 struct sk_buff * skb)
2909 {
2910 return security_ops->socket_sock_rcv_skb (sk, skb);
2911 }
2912
2913 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2914 int __user *optlen, unsigned len)
2915 {
2916 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2917 }
2918
2919 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2920 {
2921 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
2922 }
2923
2924 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2925 {
2926 return security_ops->sk_alloc_security(sk, family, priority);
2927 }
2928
2929 static inline void security_sk_free(struct sock *sk)
2930 {
2931 return security_ops->sk_free_security(sk);
2932 }
2933
2934 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2935 {
2936 return security_ops->sk_clone_security(sk, newsk);
2937 }
2938
2939 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2940 {
2941 security_ops->sk_getsecid(sk, &fl->secid);
2942 }
2943
2944 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2945 {
2946 security_ops->req_classify_flow(req, fl);
2947 }
2948
2949 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
2950 {
2951 security_ops->sock_graft(sk, parent);
2952 }
2953
2954 static inline int security_inet_conn_request(struct sock *sk,
2955 struct sk_buff *skb, struct request_sock *req)
2956 {
2957 return security_ops->inet_conn_request(sk, skb, req);
2958 }
2959
2960 static inline void security_inet_csk_clone(struct sock *newsk,
2961 const struct request_sock *req)
2962 {
2963 security_ops->inet_csk_clone(newsk, req);
2964 }
2965 #else /* CONFIG_SECURITY_NETWORK */
2966 static inline int security_unix_stream_connect(struct socket * sock,
2967 struct socket * other,
2968 struct sock * newsk)
2969 {
2970 return 0;
2971 }
2972
2973 static inline int security_unix_may_send(struct socket * sock,
2974 struct socket * other)
2975 {
2976 return 0;
2977 }
2978
2979 static inline int security_socket_create (int family, int type,
2980 int protocol, int kern)
2981 {
2982 return 0;
2983 }
2984
2985 static inline void security_socket_post_create(struct socket * sock,
2986 int family,
2987 int type,
2988 int protocol, int kern)
2989 {
2990 }
2991
2992 static inline int security_socket_bind(struct socket * sock,
2993 struct sockaddr * address,
2994 int addrlen)
2995 {
2996 return 0;
2997 }
2998
2999 static inline int security_socket_connect(struct socket * sock,
3000 struct sockaddr * address,
3001 int addrlen)
3002 {
3003 return 0;
3004 }
3005
3006 static inline int security_socket_listen(struct socket * sock, int backlog)
3007 {
3008 return 0;
3009 }
3010
3011 static inline int security_socket_accept(struct socket * sock,
3012 struct socket * newsock)
3013 {
3014 return 0;
3015 }
3016
3017 static inline void security_socket_post_accept(struct socket * sock,
3018 struct socket * newsock)
3019 {
3020 }
3021
3022 static inline int security_socket_sendmsg(struct socket * sock,
3023 struct msghdr * msg, int size)
3024 {
3025 return 0;
3026 }
3027
3028 static inline int security_socket_recvmsg(struct socket * sock,
3029 struct msghdr * msg, int size,
3030 int flags)
3031 {
3032 return 0;
3033 }
3034
3035 static inline int security_socket_getsockname(struct socket * sock)
3036 {
3037 return 0;
3038 }
3039
3040 static inline int security_socket_getpeername(struct socket * sock)
3041 {
3042 return 0;
3043 }
3044
3045 static inline int security_socket_getsockopt(struct socket * sock,
3046 int level, int optname)
3047 {
3048 return 0;
3049 }
3050
3051 static inline int security_socket_setsockopt(struct socket * sock,
3052 int level, int optname)
3053 {
3054 return 0;
3055 }
3056
3057 static inline int security_socket_shutdown(struct socket * sock, int how)
3058 {
3059 return 0;
3060 }
3061 static inline int security_sock_rcv_skb (struct sock * sk,
3062 struct sk_buff * skb)
3063 {
3064 return 0;
3065 }
3066
3067 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3068 int __user *optlen, unsigned len)
3069 {
3070 return -ENOPROTOOPT;
3071 }
3072
3073 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3074 {
3075 return -ENOPROTOOPT;
3076 }
3077
3078 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
3079 {
3080 return 0;
3081 }
3082
3083 static inline void security_sk_free(struct sock *sk)
3084 {
3085 }
3086
3087 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
3088 {
3089 }
3090
3091 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
3092 {
3093 }
3094
3095 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
3096 {
3097 }
3098
3099 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
3100 {
3101 }
3102
3103 static inline int security_inet_conn_request(struct sock *sk,
3104 struct sk_buff *skb, struct request_sock *req)
3105 {
3106 return 0;
3107 }
3108
3109 static inline void security_inet_csk_clone(struct sock *newsk,
3110 const struct request_sock *req)
3111 {
3112 }
3113 #endif /* CONFIG_SECURITY_NETWORK */
3114
3115 #ifdef CONFIG_SECURITY_NETWORK_XFRM
3116 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3117 {
3118 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx, NULL);
3119 }
3120
3121 static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk)
3122 {
3123 return security_ops->xfrm_policy_alloc_security(xp, NULL, sk);
3124 }
3125
3126 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3127 {
3128 return security_ops->xfrm_policy_clone_security(old, new);
3129 }
3130
3131 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3132 {
3133 security_ops->xfrm_policy_free_security(xp);
3134 }
3135
3136 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3137 {
3138 return security_ops->xfrm_policy_delete_security(xp);
3139 }
3140
3141 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3142 struct xfrm_user_sec_ctx *sec_ctx)
3143 {
3144 return security_ops->xfrm_state_alloc_security(x, sec_ctx, NULL, 0);
3145 }
3146
3147 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3148 struct xfrm_sec_ctx *polsec, u32 secid)
3149 {
3150 if (!polsec)
3151 return 0;
3152 return security_ops->xfrm_state_alloc_security(x, NULL, polsec, secid);
3153 }
3154
3155 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3156 {
3157 return security_ops->xfrm_state_delete_security(x);
3158 }
3159
3160 static inline void security_xfrm_state_free(struct xfrm_state *x)
3161 {
3162 security_ops->xfrm_state_free_security(x);
3163 }
3164
3165 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3166 {
3167 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
3168 }
3169
3170 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3171 struct xfrm_policy *xp, struct flowi *fl)
3172 {
3173 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
3174 }
3175
3176 static inline int security_xfrm_flow_state_match(struct flowi *fl, struct xfrm_state *xfrm)
3177 {
3178 return security_ops->xfrm_flow_state_match(fl, xfrm);
3179 }
3180
3181 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3182 {
3183 return security_ops->xfrm_decode_session(skb, secid, 1);
3184 }
3185
3186 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3187 {
3188 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
3189
3190 BUG_ON(rc);
3191 }
3192 #else /* CONFIG_SECURITY_NETWORK_XFRM */
3193 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3194 {
3195 return 0;
3196 }
3197
3198 static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk)
3199 {
3200 return 0;
3201 }
3202
3203 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3204 {
3205 return 0;
3206 }
3207
3208 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3209 {
3210 }
3211
3212 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3213 {
3214 return 0;
3215 }
3216
3217 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3218 struct xfrm_user_sec_ctx *sec_ctx)
3219 {
3220 return 0;
3221 }
3222
3223 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3224 struct xfrm_sec_ctx *polsec, u32 secid)
3225 {
3226 return 0;
3227 }
3228
3229 static inline void security_xfrm_state_free(struct xfrm_state *x)
3230 {
3231 }
3232
3233 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3234 {
3235 return 0;
3236 }
3237
3238 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3239 {
3240 return 0;
3241 }
3242
3243 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3244 struct xfrm_policy *xp, struct flowi *fl)
3245 {
3246 return 1;
3247 }
3248
3249 static inline int security_xfrm_flow_state_match(struct flowi *fl,
3250 struct xfrm_state *xfrm)
3251 {
3252 return 1;
3253 }
3254
3255 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3256 {
3257 return 0;
3258 }
3259
3260 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3261 {
3262 }
3263
3264 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
3265
3266 #ifdef CONFIG_KEYS
3267 #ifdef CONFIG_SECURITY
3268 static inline int security_key_alloc(struct key *key,
3269 struct task_struct *tsk,
3270 unsigned long flags)
3271 {
3272 return security_ops->key_alloc(key, tsk, flags);
3273 }
3274
3275 static inline void security_key_free(struct key *key)
3276 {
3277 security_ops->key_free(key);
3278 }
3279
3280 static inline int security_key_permission(key_ref_t key_ref,
3281 struct task_struct *context,
3282 key_perm_t perm)
3283 {
3284 return security_ops->key_permission(key_ref, context, perm);
3285 }
3286
3287 #else
3288
3289 static inline int security_key_alloc(struct key *key,
3290 struct task_struct *tsk,
3291 unsigned long flags)
3292 {
3293 return 0;
3294 }
3295
3296 static inline void security_key_free(struct key *key)
3297 {
3298 }
3299
3300 static inline int security_key_permission(key_ref_t key_ref,
3301 struct task_struct *context,
3302 key_perm_t perm)
3303 {
3304 return 0;
3305 }
3306
3307 #endif
3308 #endif /* CONFIG_KEYS */
3309
3310 #endif /* ! __LINUX_SECURITY_H */
3311