]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/skbuff.h
skb: add helpers to allocate ext independently from sk_buff
[mirror_ubuntu-hirsute-kernel.git] / include / linux / skbuff.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 enum {
253 BRNF_PROTO_UNCHANGED,
254 BRNF_PROTO_8021Q,
255 BRNF_PROTO_PPPOE
256 } orig_proto:8;
257 u8 pkt_otherhost:1;
258 u8 in_prerouting:1;
259 u8 bridged_dnat:1;
260 __u16 frag_max_size;
261 struct net_device *physindev;
262
263 /* always valid & non-NULL from FORWARD on, for physdev match */
264 struct net_device *physoutdev;
265 union {
266 /* prerouting: detect dnat in orig/reply direction */
267 __be32 ipv4_daddr;
268 struct in6_addr ipv6_daddr;
269
270 /* after prerouting + nat detected: store original source
271 * mac since neigh resolution overwrites it, only used while
272 * skb is out in neigh layer.
273 */
274 char neigh_header[8];
275 };
276 };
277 #endif
278
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281 * ovs recirc_id. It will be set to the current chain by tc
282 * and read by ovs to recirc_id.
283 */
284 struct tc_skb_ext {
285 __u32 chain;
286 };
287 #endif
288
289 struct sk_buff_head {
290 /* These two members must be first. */
291 struct sk_buff *next;
292 struct sk_buff *prev;
293
294 __u32 qlen;
295 spinlock_t lock;
296 };
297
298 struct sk_buff;
299
300 /* To allow 64K frame to be packed as single skb without frag_list we
301 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302 * buffers which do not start on a page boundary.
303 *
304 * Since GRO uses frags we allocate at least 16 regardless of page
305 * size.
306 */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315 * segment using its current segmentation instead.
316 */
317 #define GSO_BY_FRAGS 0xFFFF
318
319 typedef struct bio_vec skb_frag_t;
320
321 /**
322 * skb_frag_size() - Returns the size of a skb fragment
323 * @frag: skb fragment
324 */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 return frag->bv_len;
328 }
329
330 /**
331 * skb_frag_size_set() - Sets the size of a skb fragment
332 * @frag: skb fragment
333 * @size: size of fragment
334 */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 frag->bv_len = size;
338 }
339
340 /**
341 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342 * @frag: skb fragment
343 * @delta: value to add
344 */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 frag->bv_len += delta;
348 }
349
350 /**
351 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352 * @frag: skb fragment
353 * @delta: value to subtract
354 */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 frag->bv_len -= delta;
358 }
359
360 /**
361 * skb_frag_must_loop - Test if %p is a high memory page
362 * @p: fragment's page
363 */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 if (PageHighMem(p))
368 return true;
369 #endif
370 return false;
371 }
372
373 /**
374 * skb_frag_foreach_page - loop over pages in a fragment
375 *
376 * @f: skb frag to operate on
377 * @f_off: offset from start of f->bv_page
378 * @f_len: length from f_off to loop over
379 * @p: (temp var) current page
380 * @p_off: (temp var) offset from start of current page,
381 * non-zero only on first page.
382 * @p_len: (temp var) length in current page,
383 * < PAGE_SIZE only on first and last page.
384 * @copied: (temp var) length so far, excluding current p_len.
385 *
386 * A fragment can hold a compound page, in which case per-page
387 * operations, notably kmap_atomic, must be called for each
388 * regular page.
389 */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
391 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
392 p_off = (f_off) & (PAGE_SIZE - 1), \
393 p_len = skb_frag_must_loop(p) ? \
394 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
395 copied = 0; \
396 copied < f_len; \
397 copied += p_len, p++, p_off = 0, \
398 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
399
400 #define HAVE_HW_TIME_STAMP
401
402 /**
403 * struct skb_shared_hwtstamps - hardware time stamps
404 * @hwtstamp: hardware time stamp transformed into duration
405 * since arbitrary point in time
406 *
407 * Software time stamps generated by ktime_get_real() are stored in
408 * skb->tstamp.
409 *
410 * hwtstamps can only be compared against other hwtstamps from
411 * the same device.
412 *
413 * This structure is attached to packets as part of the
414 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415 */
416 struct skb_shared_hwtstamps {
417 ktime_t hwtstamp;
418 };
419
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 /* generate hardware time stamp */
423 SKBTX_HW_TSTAMP = 1 << 0,
424
425 /* generate software time stamp when queueing packet to NIC */
426 SKBTX_SW_TSTAMP = 1 << 1,
427
428 /* device driver is going to provide hardware time stamp */
429 SKBTX_IN_PROGRESS = 1 << 2,
430
431 /* device driver supports TX zero-copy buffers */
432 SKBTX_DEV_ZEROCOPY = 1 << 3,
433
434 /* generate wifi status information (where possible) */
435 SKBTX_WIFI_STATUS = 1 << 4,
436
437 /* This indicates at least one fragment might be overwritten
438 * (as in vmsplice(), sendfile() ...)
439 * If we need to compute a TX checksum, we'll need to copy
440 * all frags to avoid possible bad checksum
441 */
442 SKBTX_SHARED_FRAG = 1 << 5,
443
444 /* generate software time stamp when entering packet scheduling */
445 SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447
448 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
450 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452
453 /*
454 * The callback notifies userspace to release buffers when skb DMA is done in
455 * lower device, the skb last reference should be 0 when calling this.
456 * The zerocopy_success argument is true if zero copy transmit occurred,
457 * false on data copy or out of memory error caused by data copy attempt.
458 * The ctx field is used to track device context.
459 * The desc field is used to track userspace buffer index.
460 */
461 struct ubuf_info {
462 void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 union {
464 struct {
465 unsigned long desc;
466 void *ctx;
467 };
468 struct {
469 u32 id;
470 u16 len;
471 u16 zerocopy:1;
472 u32 bytelen;
473 };
474 };
475 refcount_t refcnt;
476
477 struct mmpin {
478 struct user_struct *user;
479 unsigned int num_pg;
480 } mmp;
481 };
482
483 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 struct ubuf_info *uarg);
491
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 refcount_inc(&uarg->refcnt);
495 }
496
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 struct msghdr *msg, int len,
505 struct ubuf_info *uarg);
506
507 /* This data is invariant across clones and lives at
508 * the end of the header data, ie. at skb->end.
509 */
510 struct skb_shared_info {
511 __u8 __unused;
512 __u8 meta_len;
513 __u8 nr_frags;
514 __u8 tx_flags;
515 unsigned short gso_size;
516 /* Warning: this field is not always filled in (UFO)! */
517 unsigned short gso_segs;
518 struct sk_buff *frag_list;
519 struct skb_shared_hwtstamps hwtstamps;
520 unsigned int gso_type;
521 u32 tskey;
522
523 /*
524 * Warning : all fields before dataref are cleared in __alloc_skb()
525 */
526 atomic_t dataref;
527
528 /* Intermediate layers must ensure that destructor_arg
529 * remains valid until skb destructor */
530 void * destructor_arg;
531
532 /* must be last field, see pskb_expand_head() */
533 skb_frag_t frags[MAX_SKB_FRAGS];
534 };
535
536 /* We divide dataref into two halves. The higher 16 bits hold references
537 * to the payload part of skb->data. The lower 16 bits hold references to
538 * the entire skb->data. A clone of a headerless skb holds the length of
539 * the header in skb->hdr_len.
540 *
541 * All users must obey the rule that the skb->data reference count must be
542 * greater than or equal to the payload reference count.
543 *
544 * Holding a reference to the payload part means that the user does not
545 * care about modifications to the header part of skb->data.
546 */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549
550
551 enum {
552 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
553 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
554 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
555 };
556
557 enum {
558 SKB_GSO_TCPV4 = 1 << 0,
559
560 /* This indicates the skb is from an untrusted source. */
561 SKB_GSO_DODGY = 1 << 1,
562
563 /* This indicates the tcp segment has CWR set. */
564 SKB_GSO_TCP_ECN = 1 << 2,
565
566 SKB_GSO_TCP_FIXEDID = 1 << 3,
567
568 SKB_GSO_TCPV6 = 1 << 4,
569
570 SKB_GSO_FCOE = 1 << 5,
571
572 SKB_GSO_GRE = 1 << 6,
573
574 SKB_GSO_GRE_CSUM = 1 << 7,
575
576 SKB_GSO_IPXIP4 = 1 << 8,
577
578 SKB_GSO_IPXIP6 = 1 << 9,
579
580 SKB_GSO_UDP_TUNNEL = 1 << 10,
581
582 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583
584 SKB_GSO_PARTIAL = 1 << 12,
585
586 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587
588 SKB_GSO_SCTP = 1 << 14,
589
590 SKB_GSO_ESP = 1 << 15,
591
592 SKB_GSO_UDP = 1 << 16,
593
594 SKB_GSO_UDP_L4 = 1 << 17,
595 };
596
597 #if BITS_PER_LONG > 32
598 #define NET_SKBUFF_DATA_USES_OFFSET 1
599 #endif
600
601 #ifdef NET_SKBUFF_DATA_USES_OFFSET
602 typedef unsigned int sk_buff_data_t;
603 #else
604 typedef unsigned char *sk_buff_data_t;
605 #endif
606
607 /**
608 * struct sk_buff - socket buffer
609 * @next: Next buffer in list
610 * @prev: Previous buffer in list
611 * @tstamp: Time we arrived/left
612 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
613 * @sk: Socket we are owned by
614 * @dev: Device we arrived on/are leaving by
615 * @cb: Control buffer. Free for use by every layer. Put private vars here
616 * @_skb_refdst: destination entry (with norefcount bit)
617 * @sp: the security path, used for xfrm
618 * @len: Length of actual data
619 * @data_len: Data length
620 * @mac_len: Length of link layer header
621 * @hdr_len: writable header length of cloned skb
622 * @csum: Checksum (must include start/offset pair)
623 * @csum_start: Offset from skb->head where checksumming should start
624 * @csum_offset: Offset from csum_start where checksum should be stored
625 * @priority: Packet queueing priority
626 * @ignore_df: allow local fragmentation
627 * @cloned: Head may be cloned (check refcnt to be sure)
628 * @ip_summed: Driver fed us an IP checksum
629 * @nohdr: Payload reference only, must not modify header
630 * @pkt_type: Packet class
631 * @fclone: skbuff clone status
632 * @ipvs_property: skbuff is owned by ipvs
633 * @offload_fwd_mark: Packet was L2-forwarded in hardware
634 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
635 * @tc_skip_classify: do not classify packet. set by IFB device
636 * @tc_at_ingress: used within tc_classify to distinguish in/egress
637 * @tc_redirected: packet was redirected by a tc action
638 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
639 * @peeked: this packet has been seen already, so stats have been
640 * done for it, don't do them again
641 * @nf_trace: netfilter packet trace flag
642 * @protocol: Packet protocol from driver
643 * @destructor: Destruct function
644 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
645 * @_nfct: Associated connection, if any (with nfctinfo bits)
646 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
647 * @skb_iif: ifindex of device we arrived on
648 * @tc_index: Traffic control index
649 * @hash: the packet hash
650 * @queue_mapping: Queue mapping for multiqueue devices
651 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
652 * @active_extensions: active extensions (skb_ext_id types)
653 * @ndisc_nodetype: router type (from link layer)
654 * @ooo_okay: allow the mapping of a socket to a queue to be changed
655 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
656 * ports.
657 * @sw_hash: indicates hash was computed in software stack
658 * @wifi_acked_valid: wifi_acked was set
659 * @wifi_acked: whether frame was acked on wifi or not
660 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
661 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
662 * @dst_pending_confirm: need to confirm neighbour
663 * @decrypted: Decrypted SKB
664 * @napi_id: id of the NAPI struct this skb came from
665 * @secmark: security marking
666 * @mark: Generic packet mark
667 * @vlan_proto: vlan encapsulation protocol
668 * @vlan_tci: vlan tag control information
669 * @inner_protocol: Protocol (encapsulation)
670 * @inner_transport_header: Inner transport layer header (encapsulation)
671 * @inner_network_header: Network layer header (encapsulation)
672 * @inner_mac_header: Link layer header (encapsulation)
673 * @transport_header: Transport layer header
674 * @network_header: Network layer header
675 * @mac_header: Link layer header
676 * @tail: Tail pointer
677 * @end: End pointer
678 * @head: Head of buffer
679 * @data: Data head pointer
680 * @truesize: Buffer size
681 * @users: User count - see {datagram,tcp}.c
682 * @extensions: allocated extensions, valid if active_extensions is nonzero
683 */
684
685 struct sk_buff {
686 union {
687 struct {
688 /* These two members must be first. */
689 struct sk_buff *next;
690 struct sk_buff *prev;
691
692 union {
693 struct net_device *dev;
694 /* Some protocols might use this space to store information,
695 * while device pointer would be NULL.
696 * UDP receive path is one user.
697 */
698 unsigned long dev_scratch;
699 };
700 };
701 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
702 struct list_head list;
703 };
704
705 union {
706 struct sock *sk;
707 int ip_defrag_offset;
708 };
709
710 union {
711 ktime_t tstamp;
712 u64 skb_mstamp_ns; /* earliest departure time */
713 };
714 /*
715 * This is the control buffer. It is free to use for every
716 * layer. Please put your private variables there. If you
717 * want to keep them across layers you have to do a skb_clone()
718 * first. This is owned by whoever has the skb queued ATM.
719 */
720 char cb[48] __aligned(8);
721
722 union {
723 struct {
724 unsigned long _skb_refdst;
725 void (*destructor)(struct sk_buff *skb);
726 };
727 struct list_head tcp_tsorted_anchor;
728 };
729
730 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
731 unsigned long _nfct;
732 #endif
733 unsigned int len,
734 data_len;
735 __u16 mac_len,
736 hdr_len;
737
738 /* Following fields are _not_ copied in __copy_skb_header()
739 * Note that queue_mapping is here mostly to fill a hole.
740 */
741 __u16 queue_mapping;
742
743 /* if you move cloned around you also must adapt those constants */
744 #ifdef __BIG_ENDIAN_BITFIELD
745 #define CLONED_MASK (1 << 7)
746 #else
747 #define CLONED_MASK 1
748 #endif
749 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
750
751 __u8 __cloned_offset[0];
752 __u8 cloned:1,
753 nohdr:1,
754 fclone:2,
755 peeked:1,
756 head_frag:1,
757 pfmemalloc:1;
758 #ifdef CONFIG_SKB_EXTENSIONS
759 __u8 active_extensions;
760 #endif
761 /* fields enclosed in headers_start/headers_end are copied
762 * using a single memcpy() in __copy_skb_header()
763 */
764 /* private: */
765 __u32 headers_start[0];
766 /* public: */
767
768 /* if you move pkt_type around you also must adapt those constants */
769 #ifdef __BIG_ENDIAN_BITFIELD
770 #define PKT_TYPE_MAX (7 << 5)
771 #else
772 #define PKT_TYPE_MAX 7
773 #endif
774 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
775
776 __u8 __pkt_type_offset[0];
777 __u8 pkt_type:3;
778 __u8 ignore_df:1;
779 __u8 nf_trace:1;
780 __u8 ip_summed:2;
781 __u8 ooo_okay:1;
782
783 __u8 l4_hash:1;
784 __u8 sw_hash:1;
785 __u8 wifi_acked_valid:1;
786 __u8 wifi_acked:1;
787 __u8 no_fcs:1;
788 /* Indicates the inner headers are valid in the skbuff. */
789 __u8 encapsulation:1;
790 __u8 encap_hdr_csum:1;
791 __u8 csum_valid:1;
792
793 #ifdef __BIG_ENDIAN_BITFIELD
794 #define PKT_VLAN_PRESENT_BIT 7
795 #else
796 #define PKT_VLAN_PRESENT_BIT 0
797 #endif
798 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
799 __u8 __pkt_vlan_present_offset[0];
800 __u8 vlan_present:1;
801 __u8 csum_complete_sw:1;
802 __u8 csum_level:2;
803 __u8 csum_not_inet:1;
804 __u8 dst_pending_confirm:1;
805 #ifdef CONFIG_IPV6_NDISC_NODETYPE
806 __u8 ndisc_nodetype:2;
807 #endif
808
809 __u8 ipvs_property:1;
810 __u8 inner_protocol_type:1;
811 __u8 remcsum_offload:1;
812 #ifdef CONFIG_NET_SWITCHDEV
813 __u8 offload_fwd_mark:1;
814 __u8 offload_l3_fwd_mark:1;
815 #endif
816 #ifdef CONFIG_NET_CLS_ACT
817 __u8 tc_skip_classify:1;
818 __u8 tc_at_ingress:1;
819 __u8 tc_redirected:1;
820 __u8 tc_from_ingress:1;
821 #endif
822 #ifdef CONFIG_TLS_DEVICE
823 __u8 decrypted:1;
824 #endif
825
826 #ifdef CONFIG_NET_SCHED
827 __u16 tc_index; /* traffic control index */
828 #endif
829
830 union {
831 __wsum csum;
832 struct {
833 __u16 csum_start;
834 __u16 csum_offset;
835 };
836 };
837 __u32 priority;
838 int skb_iif;
839 __u32 hash;
840 __be16 vlan_proto;
841 __u16 vlan_tci;
842 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
843 union {
844 unsigned int napi_id;
845 unsigned int sender_cpu;
846 };
847 #endif
848 #ifdef CONFIG_NETWORK_SECMARK
849 __u32 secmark;
850 #endif
851
852 union {
853 __u32 mark;
854 __u32 reserved_tailroom;
855 };
856
857 union {
858 __be16 inner_protocol;
859 __u8 inner_ipproto;
860 };
861
862 __u16 inner_transport_header;
863 __u16 inner_network_header;
864 __u16 inner_mac_header;
865
866 __be16 protocol;
867 __u16 transport_header;
868 __u16 network_header;
869 __u16 mac_header;
870
871 /* private: */
872 __u32 headers_end[0];
873 /* public: */
874
875 /* These elements must be at the end, see alloc_skb() for details. */
876 sk_buff_data_t tail;
877 sk_buff_data_t end;
878 unsigned char *head,
879 *data;
880 unsigned int truesize;
881 refcount_t users;
882
883 #ifdef CONFIG_SKB_EXTENSIONS
884 /* only useable after checking ->active_extensions != 0 */
885 struct skb_ext *extensions;
886 #endif
887 };
888
889 #ifdef __KERNEL__
890 /*
891 * Handling routines are only of interest to the kernel
892 */
893
894 #define SKB_ALLOC_FCLONE 0x01
895 #define SKB_ALLOC_RX 0x02
896 #define SKB_ALLOC_NAPI 0x04
897
898 /**
899 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
900 * @skb: buffer
901 */
902 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
903 {
904 return unlikely(skb->pfmemalloc);
905 }
906
907 /*
908 * skb might have a dst pointer attached, refcounted or not.
909 * _skb_refdst low order bit is set if refcount was _not_ taken
910 */
911 #define SKB_DST_NOREF 1UL
912 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
913
914 /**
915 * skb_dst - returns skb dst_entry
916 * @skb: buffer
917 *
918 * Returns skb dst_entry, regardless of reference taken or not.
919 */
920 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
921 {
922 /* If refdst was not refcounted, check we still are in a
923 * rcu_read_lock section
924 */
925 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
926 !rcu_read_lock_held() &&
927 !rcu_read_lock_bh_held());
928 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
929 }
930
931 /**
932 * skb_dst_set - sets skb dst
933 * @skb: buffer
934 * @dst: dst entry
935 *
936 * Sets skb dst, assuming a reference was taken on dst and should
937 * be released by skb_dst_drop()
938 */
939 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
940 {
941 skb->_skb_refdst = (unsigned long)dst;
942 }
943
944 /**
945 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
946 * @skb: buffer
947 * @dst: dst entry
948 *
949 * Sets skb dst, assuming a reference was not taken on dst.
950 * If dst entry is cached, we do not take reference and dst_release
951 * will be avoided by refdst_drop. If dst entry is not cached, we take
952 * reference, so that last dst_release can destroy the dst immediately.
953 */
954 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
955 {
956 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
957 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
958 }
959
960 /**
961 * skb_dst_is_noref - Test if skb dst isn't refcounted
962 * @skb: buffer
963 */
964 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
965 {
966 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
967 }
968
969 /**
970 * skb_rtable - Returns the skb &rtable
971 * @skb: buffer
972 */
973 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
974 {
975 return (struct rtable *)skb_dst(skb);
976 }
977
978 /* For mangling skb->pkt_type from user space side from applications
979 * such as nft, tc, etc, we only allow a conservative subset of
980 * possible pkt_types to be set.
981 */
982 static inline bool skb_pkt_type_ok(u32 ptype)
983 {
984 return ptype <= PACKET_OTHERHOST;
985 }
986
987 /**
988 * skb_napi_id - Returns the skb's NAPI id
989 * @skb: buffer
990 */
991 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
992 {
993 #ifdef CONFIG_NET_RX_BUSY_POLL
994 return skb->napi_id;
995 #else
996 return 0;
997 #endif
998 }
999
1000 /**
1001 * skb_unref - decrement the skb's reference count
1002 * @skb: buffer
1003 *
1004 * Returns true if we can free the skb.
1005 */
1006 static inline bool skb_unref(struct sk_buff *skb)
1007 {
1008 if (unlikely(!skb))
1009 return false;
1010 if (likely(refcount_read(&skb->users) == 1))
1011 smp_rmb();
1012 else if (likely(!refcount_dec_and_test(&skb->users)))
1013 return false;
1014
1015 return true;
1016 }
1017
1018 void skb_release_head_state(struct sk_buff *skb);
1019 void kfree_skb(struct sk_buff *skb);
1020 void kfree_skb_list(struct sk_buff *segs);
1021 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1022 void skb_tx_error(struct sk_buff *skb);
1023 void consume_skb(struct sk_buff *skb);
1024 void __consume_stateless_skb(struct sk_buff *skb);
1025 void __kfree_skb(struct sk_buff *skb);
1026 extern struct kmem_cache *skbuff_head_cache;
1027
1028 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1029 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1030 bool *fragstolen, int *delta_truesize);
1031
1032 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1033 int node);
1034 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1035 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1036 struct sk_buff *build_skb_around(struct sk_buff *skb,
1037 void *data, unsigned int frag_size);
1038
1039 /**
1040 * alloc_skb - allocate a network buffer
1041 * @size: size to allocate
1042 * @priority: allocation mask
1043 *
1044 * This function is a convenient wrapper around __alloc_skb().
1045 */
1046 static inline struct sk_buff *alloc_skb(unsigned int size,
1047 gfp_t priority)
1048 {
1049 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1050 }
1051
1052 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1053 unsigned long data_len,
1054 int max_page_order,
1055 int *errcode,
1056 gfp_t gfp_mask);
1057 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1058
1059 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1060 struct sk_buff_fclones {
1061 struct sk_buff skb1;
1062
1063 struct sk_buff skb2;
1064
1065 refcount_t fclone_ref;
1066 };
1067
1068 /**
1069 * skb_fclone_busy - check if fclone is busy
1070 * @sk: socket
1071 * @skb: buffer
1072 *
1073 * Returns true if skb is a fast clone, and its clone is not freed.
1074 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1075 * so we also check that this didnt happen.
1076 */
1077 static inline bool skb_fclone_busy(const struct sock *sk,
1078 const struct sk_buff *skb)
1079 {
1080 const struct sk_buff_fclones *fclones;
1081
1082 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1083
1084 return skb->fclone == SKB_FCLONE_ORIG &&
1085 refcount_read(&fclones->fclone_ref) > 1 &&
1086 fclones->skb2.sk == sk;
1087 }
1088
1089 /**
1090 * alloc_skb_fclone - allocate a network buffer from fclone cache
1091 * @size: size to allocate
1092 * @priority: allocation mask
1093 *
1094 * This function is a convenient wrapper around __alloc_skb().
1095 */
1096 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1097 gfp_t priority)
1098 {
1099 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1100 }
1101
1102 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1103 void skb_headers_offset_update(struct sk_buff *skb, int off);
1104 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1105 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1106 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1107 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1108 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1109 gfp_t gfp_mask, bool fclone);
1110 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1111 gfp_t gfp_mask)
1112 {
1113 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1114 }
1115
1116 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1118 unsigned int headroom);
1119 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1120 int newtailroom, gfp_t priority);
1121 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1122 int offset, int len);
1123 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1124 int offset, int len);
1125 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1126 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1127
1128 /**
1129 * skb_pad - zero pad the tail of an skb
1130 * @skb: buffer to pad
1131 * @pad: space to pad
1132 *
1133 * Ensure that a buffer is followed by a padding area that is zero
1134 * filled. Used by network drivers which may DMA or transfer data
1135 * beyond the buffer end onto the wire.
1136 *
1137 * May return error in out of memory cases. The skb is freed on error.
1138 */
1139 static inline int skb_pad(struct sk_buff *skb, int pad)
1140 {
1141 return __skb_pad(skb, pad, true);
1142 }
1143 #define dev_kfree_skb(a) consume_skb(a)
1144
1145 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1146 int offset, size_t size);
1147
1148 struct skb_seq_state {
1149 __u32 lower_offset;
1150 __u32 upper_offset;
1151 __u32 frag_idx;
1152 __u32 stepped_offset;
1153 struct sk_buff *root_skb;
1154 struct sk_buff *cur_skb;
1155 __u8 *frag_data;
1156 };
1157
1158 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1159 unsigned int to, struct skb_seq_state *st);
1160 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1161 struct skb_seq_state *st);
1162 void skb_abort_seq_read(struct skb_seq_state *st);
1163
1164 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1165 unsigned int to, struct ts_config *config);
1166
1167 /*
1168 * Packet hash types specify the type of hash in skb_set_hash.
1169 *
1170 * Hash types refer to the protocol layer addresses which are used to
1171 * construct a packet's hash. The hashes are used to differentiate or identify
1172 * flows of the protocol layer for the hash type. Hash types are either
1173 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1174 *
1175 * Properties of hashes:
1176 *
1177 * 1) Two packets in different flows have different hash values
1178 * 2) Two packets in the same flow should have the same hash value
1179 *
1180 * A hash at a higher layer is considered to be more specific. A driver should
1181 * set the most specific hash possible.
1182 *
1183 * A driver cannot indicate a more specific hash than the layer at which a hash
1184 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1185 *
1186 * A driver may indicate a hash level which is less specific than the
1187 * actual layer the hash was computed on. For instance, a hash computed
1188 * at L4 may be considered an L3 hash. This should only be done if the
1189 * driver can't unambiguously determine that the HW computed the hash at
1190 * the higher layer. Note that the "should" in the second property above
1191 * permits this.
1192 */
1193 enum pkt_hash_types {
1194 PKT_HASH_TYPE_NONE, /* Undefined type */
1195 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1196 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1197 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1198 };
1199
1200 static inline void skb_clear_hash(struct sk_buff *skb)
1201 {
1202 skb->hash = 0;
1203 skb->sw_hash = 0;
1204 skb->l4_hash = 0;
1205 }
1206
1207 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1208 {
1209 if (!skb->l4_hash)
1210 skb_clear_hash(skb);
1211 }
1212
1213 static inline void
1214 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1215 {
1216 skb->l4_hash = is_l4;
1217 skb->sw_hash = is_sw;
1218 skb->hash = hash;
1219 }
1220
1221 static inline void
1222 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1223 {
1224 /* Used by drivers to set hash from HW */
1225 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1226 }
1227
1228 static inline void
1229 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1230 {
1231 __skb_set_hash(skb, hash, true, is_l4);
1232 }
1233
1234 void __skb_get_hash(struct sk_buff *skb);
1235 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1236 u32 skb_get_poff(const struct sk_buff *skb);
1237 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1238 const struct flow_keys_basic *keys, int hlen);
1239 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1240 void *data, int hlen_proto);
1241
1242 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1243 int thoff, u8 ip_proto)
1244 {
1245 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1246 }
1247
1248 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1249 const struct flow_dissector_key *key,
1250 unsigned int key_count);
1251
1252 #ifdef CONFIG_NET
1253 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1254 union bpf_attr __user *uattr);
1255 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1256 struct bpf_prog *prog);
1257
1258 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1259 #else
1260 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1261 union bpf_attr __user *uattr)
1262 {
1263 return -EOPNOTSUPP;
1264 }
1265
1266 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1267 struct bpf_prog *prog)
1268 {
1269 return -EOPNOTSUPP;
1270 }
1271
1272 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1273 {
1274 return -EOPNOTSUPP;
1275 }
1276 #endif
1277
1278 struct bpf_flow_dissector;
1279 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1280 __be16 proto, int nhoff, int hlen, unsigned int flags);
1281
1282 bool __skb_flow_dissect(const struct net *net,
1283 const struct sk_buff *skb,
1284 struct flow_dissector *flow_dissector,
1285 void *target_container,
1286 void *data, __be16 proto, int nhoff, int hlen,
1287 unsigned int flags);
1288
1289 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1290 struct flow_dissector *flow_dissector,
1291 void *target_container, unsigned int flags)
1292 {
1293 return __skb_flow_dissect(NULL, skb, flow_dissector,
1294 target_container, NULL, 0, 0, 0, flags);
1295 }
1296
1297 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1298 struct flow_keys *flow,
1299 unsigned int flags)
1300 {
1301 memset(flow, 0, sizeof(*flow));
1302 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1303 flow, NULL, 0, 0, 0, flags);
1304 }
1305
1306 static inline bool
1307 skb_flow_dissect_flow_keys_basic(const struct net *net,
1308 const struct sk_buff *skb,
1309 struct flow_keys_basic *flow, void *data,
1310 __be16 proto, int nhoff, int hlen,
1311 unsigned int flags)
1312 {
1313 memset(flow, 0, sizeof(*flow));
1314 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1315 data, proto, nhoff, hlen, flags);
1316 }
1317
1318 void skb_flow_dissect_meta(const struct sk_buff *skb,
1319 struct flow_dissector *flow_dissector,
1320 void *target_container);
1321
1322 /* Gets a skb connection tracking info, ctinfo map should be a
1323 * a map of mapsize to translate enum ip_conntrack_info states
1324 * to user states.
1325 */
1326 void
1327 skb_flow_dissect_ct(const struct sk_buff *skb,
1328 struct flow_dissector *flow_dissector,
1329 void *target_container,
1330 u16 *ctinfo_map,
1331 size_t mapsize);
1332 void
1333 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1334 struct flow_dissector *flow_dissector,
1335 void *target_container);
1336
1337 static inline __u32 skb_get_hash(struct sk_buff *skb)
1338 {
1339 if (!skb->l4_hash && !skb->sw_hash)
1340 __skb_get_hash(skb);
1341
1342 return skb->hash;
1343 }
1344
1345 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1346 {
1347 if (!skb->l4_hash && !skb->sw_hash) {
1348 struct flow_keys keys;
1349 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1350
1351 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1352 }
1353
1354 return skb->hash;
1355 }
1356
1357 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1358 const siphash_key_t *perturb);
1359
1360 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1361 {
1362 return skb->hash;
1363 }
1364
1365 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1366 {
1367 to->hash = from->hash;
1368 to->sw_hash = from->sw_hash;
1369 to->l4_hash = from->l4_hash;
1370 };
1371
1372 static inline void skb_copy_decrypted(struct sk_buff *to,
1373 const struct sk_buff *from)
1374 {
1375 #ifdef CONFIG_TLS_DEVICE
1376 to->decrypted = from->decrypted;
1377 #endif
1378 }
1379
1380 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1381 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1382 {
1383 return skb->head + skb->end;
1384 }
1385
1386 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1387 {
1388 return skb->end;
1389 }
1390 #else
1391 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1392 {
1393 return skb->end;
1394 }
1395
1396 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1397 {
1398 return skb->end - skb->head;
1399 }
1400 #endif
1401
1402 /* Internal */
1403 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1404
1405 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1406 {
1407 return &skb_shinfo(skb)->hwtstamps;
1408 }
1409
1410 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1411 {
1412 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1413
1414 return is_zcopy ? skb_uarg(skb) : NULL;
1415 }
1416
1417 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1418 bool *have_ref)
1419 {
1420 if (skb && uarg && !skb_zcopy(skb)) {
1421 if (unlikely(have_ref && *have_ref))
1422 *have_ref = false;
1423 else
1424 sock_zerocopy_get(uarg);
1425 skb_shinfo(skb)->destructor_arg = uarg;
1426 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1427 }
1428 }
1429
1430 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1431 {
1432 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1433 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1434 }
1435
1436 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1437 {
1438 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1439 }
1440
1441 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1442 {
1443 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1444 }
1445
1446 /* Release a reference on a zerocopy structure */
1447 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1448 {
1449 struct ubuf_info *uarg = skb_zcopy(skb);
1450
1451 if (uarg) {
1452 if (skb_zcopy_is_nouarg(skb)) {
1453 /* no notification callback */
1454 } else if (uarg->callback == sock_zerocopy_callback) {
1455 uarg->zerocopy = uarg->zerocopy && zerocopy;
1456 sock_zerocopy_put(uarg);
1457 } else {
1458 uarg->callback(uarg, zerocopy);
1459 }
1460
1461 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1462 }
1463 }
1464
1465 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1466 static inline void skb_zcopy_abort(struct sk_buff *skb)
1467 {
1468 struct ubuf_info *uarg = skb_zcopy(skb);
1469
1470 if (uarg) {
1471 sock_zerocopy_put_abort(uarg, false);
1472 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1473 }
1474 }
1475
1476 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1477 {
1478 skb->next = NULL;
1479 }
1480
1481 /* Iterate through singly-linked GSO fragments of an skb. */
1482 #define skb_list_walk_safe(first, skb, next) \
1483 for ((skb) = (first), (next) = (skb) ? (skb)->next : NULL; (skb); \
1484 (skb) = (next), (next) = (skb) ? (skb)->next : NULL)
1485
1486 static inline void skb_list_del_init(struct sk_buff *skb)
1487 {
1488 __list_del_entry(&skb->list);
1489 skb_mark_not_on_list(skb);
1490 }
1491
1492 /**
1493 * skb_queue_empty - check if a queue is empty
1494 * @list: queue head
1495 *
1496 * Returns true if the queue is empty, false otherwise.
1497 */
1498 static inline int skb_queue_empty(const struct sk_buff_head *list)
1499 {
1500 return list->next == (const struct sk_buff *) list;
1501 }
1502
1503 /**
1504 * skb_queue_empty_lockless - check if a queue is empty
1505 * @list: queue head
1506 *
1507 * Returns true if the queue is empty, false otherwise.
1508 * This variant can be used in lockless contexts.
1509 */
1510 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1511 {
1512 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1513 }
1514
1515
1516 /**
1517 * skb_queue_is_last - check if skb is the last entry in the queue
1518 * @list: queue head
1519 * @skb: buffer
1520 *
1521 * Returns true if @skb is the last buffer on the list.
1522 */
1523 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1524 const struct sk_buff *skb)
1525 {
1526 return skb->next == (const struct sk_buff *) list;
1527 }
1528
1529 /**
1530 * skb_queue_is_first - check if skb is the first entry in the queue
1531 * @list: queue head
1532 * @skb: buffer
1533 *
1534 * Returns true if @skb is the first buffer on the list.
1535 */
1536 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1537 const struct sk_buff *skb)
1538 {
1539 return skb->prev == (const struct sk_buff *) list;
1540 }
1541
1542 /**
1543 * skb_queue_next - return the next packet in the queue
1544 * @list: queue head
1545 * @skb: current buffer
1546 *
1547 * Return the next packet in @list after @skb. It is only valid to
1548 * call this if skb_queue_is_last() evaluates to false.
1549 */
1550 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1551 const struct sk_buff *skb)
1552 {
1553 /* This BUG_ON may seem severe, but if we just return then we
1554 * are going to dereference garbage.
1555 */
1556 BUG_ON(skb_queue_is_last(list, skb));
1557 return skb->next;
1558 }
1559
1560 /**
1561 * skb_queue_prev - return the prev packet in the queue
1562 * @list: queue head
1563 * @skb: current buffer
1564 *
1565 * Return the prev packet in @list before @skb. It is only valid to
1566 * call this if skb_queue_is_first() evaluates to false.
1567 */
1568 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1569 const struct sk_buff *skb)
1570 {
1571 /* This BUG_ON may seem severe, but if we just return then we
1572 * are going to dereference garbage.
1573 */
1574 BUG_ON(skb_queue_is_first(list, skb));
1575 return skb->prev;
1576 }
1577
1578 /**
1579 * skb_get - reference buffer
1580 * @skb: buffer to reference
1581 *
1582 * Makes another reference to a socket buffer and returns a pointer
1583 * to the buffer.
1584 */
1585 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1586 {
1587 refcount_inc(&skb->users);
1588 return skb;
1589 }
1590
1591 /*
1592 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1593 */
1594
1595 /**
1596 * skb_cloned - is the buffer a clone
1597 * @skb: buffer to check
1598 *
1599 * Returns true if the buffer was generated with skb_clone() and is
1600 * one of multiple shared copies of the buffer. Cloned buffers are
1601 * shared data so must not be written to under normal circumstances.
1602 */
1603 static inline int skb_cloned(const struct sk_buff *skb)
1604 {
1605 return skb->cloned &&
1606 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1607 }
1608
1609 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1610 {
1611 might_sleep_if(gfpflags_allow_blocking(pri));
1612
1613 if (skb_cloned(skb))
1614 return pskb_expand_head(skb, 0, 0, pri);
1615
1616 return 0;
1617 }
1618
1619 /**
1620 * skb_header_cloned - is the header a clone
1621 * @skb: buffer to check
1622 *
1623 * Returns true if modifying the header part of the buffer requires
1624 * the data to be copied.
1625 */
1626 static inline int skb_header_cloned(const struct sk_buff *skb)
1627 {
1628 int dataref;
1629
1630 if (!skb->cloned)
1631 return 0;
1632
1633 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1634 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1635 return dataref != 1;
1636 }
1637
1638 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1639 {
1640 might_sleep_if(gfpflags_allow_blocking(pri));
1641
1642 if (skb_header_cloned(skb))
1643 return pskb_expand_head(skb, 0, 0, pri);
1644
1645 return 0;
1646 }
1647
1648 /**
1649 * __skb_header_release - release reference to header
1650 * @skb: buffer to operate on
1651 */
1652 static inline void __skb_header_release(struct sk_buff *skb)
1653 {
1654 skb->nohdr = 1;
1655 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1656 }
1657
1658
1659 /**
1660 * skb_shared - is the buffer shared
1661 * @skb: buffer to check
1662 *
1663 * Returns true if more than one person has a reference to this
1664 * buffer.
1665 */
1666 static inline int skb_shared(const struct sk_buff *skb)
1667 {
1668 return refcount_read(&skb->users) != 1;
1669 }
1670
1671 /**
1672 * skb_share_check - check if buffer is shared and if so clone it
1673 * @skb: buffer to check
1674 * @pri: priority for memory allocation
1675 *
1676 * If the buffer is shared the buffer is cloned and the old copy
1677 * drops a reference. A new clone with a single reference is returned.
1678 * If the buffer is not shared the original buffer is returned. When
1679 * being called from interrupt status or with spinlocks held pri must
1680 * be GFP_ATOMIC.
1681 *
1682 * NULL is returned on a memory allocation failure.
1683 */
1684 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1685 {
1686 might_sleep_if(gfpflags_allow_blocking(pri));
1687 if (skb_shared(skb)) {
1688 struct sk_buff *nskb = skb_clone(skb, pri);
1689
1690 if (likely(nskb))
1691 consume_skb(skb);
1692 else
1693 kfree_skb(skb);
1694 skb = nskb;
1695 }
1696 return skb;
1697 }
1698
1699 /*
1700 * Copy shared buffers into a new sk_buff. We effectively do COW on
1701 * packets to handle cases where we have a local reader and forward
1702 * and a couple of other messy ones. The normal one is tcpdumping
1703 * a packet thats being forwarded.
1704 */
1705
1706 /**
1707 * skb_unshare - make a copy of a shared buffer
1708 * @skb: buffer to check
1709 * @pri: priority for memory allocation
1710 *
1711 * If the socket buffer is a clone then this function creates a new
1712 * copy of the data, drops a reference count on the old copy and returns
1713 * the new copy with the reference count at 1. If the buffer is not a clone
1714 * the original buffer is returned. When called with a spinlock held or
1715 * from interrupt state @pri must be %GFP_ATOMIC
1716 *
1717 * %NULL is returned on a memory allocation failure.
1718 */
1719 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1720 gfp_t pri)
1721 {
1722 might_sleep_if(gfpflags_allow_blocking(pri));
1723 if (skb_cloned(skb)) {
1724 struct sk_buff *nskb = skb_copy(skb, pri);
1725
1726 /* Free our shared copy */
1727 if (likely(nskb))
1728 consume_skb(skb);
1729 else
1730 kfree_skb(skb);
1731 skb = nskb;
1732 }
1733 return skb;
1734 }
1735
1736 /**
1737 * skb_peek - peek at the head of an &sk_buff_head
1738 * @list_: list to peek at
1739 *
1740 * Peek an &sk_buff. Unlike most other operations you _MUST_
1741 * be careful with this one. A peek leaves the buffer on the
1742 * list and someone else may run off with it. You must hold
1743 * the appropriate locks or have a private queue to do this.
1744 *
1745 * Returns %NULL for an empty list or a pointer to the head element.
1746 * The reference count is not incremented and the reference is therefore
1747 * volatile. Use with caution.
1748 */
1749 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1750 {
1751 struct sk_buff *skb = list_->next;
1752
1753 if (skb == (struct sk_buff *)list_)
1754 skb = NULL;
1755 return skb;
1756 }
1757
1758 /**
1759 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1760 * @list_: list to peek at
1761 *
1762 * Like skb_peek(), but the caller knows that the list is not empty.
1763 */
1764 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1765 {
1766 return list_->next;
1767 }
1768
1769 /**
1770 * skb_peek_next - peek skb following the given one from a queue
1771 * @skb: skb to start from
1772 * @list_: list to peek at
1773 *
1774 * Returns %NULL when the end of the list is met or a pointer to the
1775 * next element. The reference count is not incremented and the
1776 * reference is therefore volatile. Use with caution.
1777 */
1778 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1779 const struct sk_buff_head *list_)
1780 {
1781 struct sk_buff *next = skb->next;
1782
1783 if (next == (struct sk_buff *)list_)
1784 next = NULL;
1785 return next;
1786 }
1787
1788 /**
1789 * skb_peek_tail - peek at the tail of an &sk_buff_head
1790 * @list_: list to peek at
1791 *
1792 * Peek an &sk_buff. Unlike most other operations you _MUST_
1793 * be careful with this one. A peek leaves the buffer on the
1794 * list and someone else may run off with it. You must hold
1795 * the appropriate locks or have a private queue to do this.
1796 *
1797 * Returns %NULL for an empty list or a pointer to the tail element.
1798 * The reference count is not incremented and the reference is therefore
1799 * volatile. Use with caution.
1800 */
1801 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1802 {
1803 struct sk_buff *skb = READ_ONCE(list_->prev);
1804
1805 if (skb == (struct sk_buff *)list_)
1806 skb = NULL;
1807 return skb;
1808
1809 }
1810
1811 /**
1812 * skb_queue_len - get queue length
1813 * @list_: list to measure
1814 *
1815 * Return the length of an &sk_buff queue.
1816 */
1817 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1818 {
1819 return list_->qlen;
1820 }
1821
1822 /**
1823 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1824 * @list: queue to initialize
1825 *
1826 * This initializes only the list and queue length aspects of
1827 * an sk_buff_head object. This allows to initialize the list
1828 * aspects of an sk_buff_head without reinitializing things like
1829 * the spinlock. It can also be used for on-stack sk_buff_head
1830 * objects where the spinlock is known to not be used.
1831 */
1832 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1833 {
1834 list->prev = list->next = (struct sk_buff *)list;
1835 list->qlen = 0;
1836 }
1837
1838 /*
1839 * This function creates a split out lock class for each invocation;
1840 * this is needed for now since a whole lot of users of the skb-queue
1841 * infrastructure in drivers have different locking usage (in hardirq)
1842 * than the networking core (in softirq only). In the long run either the
1843 * network layer or drivers should need annotation to consolidate the
1844 * main types of usage into 3 classes.
1845 */
1846 static inline void skb_queue_head_init(struct sk_buff_head *list)
1847 {
1848 spin_lock_init(&list->lock);
1849 __skb_queue_head_init(list);
1850 }
1851
1852 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1853 struct lock_class_key *class)
1854 {
1855 skb_queue_head_init(list);
1856 lockdep_set_class(&list->lock, class);
1857 }
1858
1859 /*
1860 * Insert an sk_buff on a list.
1861 *
1862 * The "__skb_xxxx()" functions are the non-atomic ones that
1863 * can only be called with interrupts disabled.
1864 */
1865 static inline void __skb_insert(struct sk_buff *newsk,
1866 struct sk_buff *prev, struct sk_buff *next,
1867 struct sk_buff_head *list)
1868 {
1869 /* See skb_queue_empty_lockless() and skb_peek_tail()
1870 * for the opposite READ_ONCE()
1871 */
1872 WRITE_ONCE(newsk->next, next);
1873 WRITE_ONCE(newsk->prev, prev);
1874 WRITE_ONCE(next->prev, newsk);
1875 WRITE_ONCE(prev->next, newsk);
1876 list->qlen++;
1877 }
1878
1879 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1880 struct sk_buff *prev,
1881 struct sk_buff *next)
1882 {
1883 struct sk_buff *first = list->next;
1884 struct sk_buff *last = list->prev;
1885
1886 WRITE_ONCE(first->prev, prev);
1887 WRITE_ONCE(prev->next, first);
1888
1889 WRITE_ONCE(last->next, next);
1890 WRITE_ONCE(next->prev, last);
1891 }
1892
1893 /**
1894 * skb_queue_splice - join two skb lists, this is designed for stacks
1895 * @list: the new list to add
1896 * @head: the place to add it in the first list
1897 */
1898 static inline void skb_queue_splice(const struct sk_buff_head *list,
1899 struct sk_buff_head *head)
1900 {
1901 if (!skb_queue_empty(list)) {
1902 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1903 head->qlen += list->qlen;
1904 }
1905 }
1906
1907 /**
1908 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1909 * @list: the new list to add
1910 * @head: the place to add it in the first list
1911 *
1912 * The list at @list is reinitialised
1913 */
1914 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1915 struct sk_buff_head *head)
1916 {
1917 if (!skb_queue_empty(list)) {
1918 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1919 head->qlen += list->qlen;
1920 __skb_queue_head_init(list);
1921 }
1922 }
1923
1924 /**
1925 * skb_queue_splice_tail - join two skb lists, each list being a queue
1926 * @list: the new list to add
1927 * @head: the place to add it in the first list
1928 */
1929 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1930 struct sk_buff_head *head)
1931 {
1932 if (!skb_queue_empty(list)) {
1933 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1934 head->qlen += list->qlen;
1935 }
1936 }
1937
1938 /**
1939 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1940 * @list: the new list to add
1941 * @head: the place to add it in the first list
1942 *
1943 * Each of the lists is a queue.
1944 * The list at @list is reinitialised
1945 */
1946 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1947 struct sk_buff_head *head)
1948 {
1949 if (!skb_queue_empty(list)) {
1950 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1951 head->qlen += list->qlen;
1952 __skb_queue_head_init(list);
1953 }
1954 }
1955
1956 /**
1957 * __skb_queue_after - queue a buffer at the list head
1958 * @list: list to use
1959 * @prev: place after this buffer
1960 * @newsk: buffer to queue
1961 *
1962 * Queue a buffer int the middle of a list. This function takes no locks
1963 * and you must therefore hold required locks before calling it.
1964 *
1965 * A buffer cannot be placed on two lists at the same time.
1966 */
1967 static inline void __skb_queue_after(struct sk_buff_head *list,
1968 struct sk_buff *prev,
1969 struct sk_buff *newsk)
1970 {
1971 __skb_insert(newsk, prev, prev->next, list);
1972 }
1973
1974 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1975 struct sk_buff_head *list);
1976
1977 static inline void __skb_queue_before(struct sk_buff_head *list,
1978 struct sk_buff *next,
1979 struct sk_buff *newsk)
1980 {
1981 __skb_insert(newsk, next->prev, next, list);
1982 }
1983
1984 /**
1985 * __skb_queue_head - queue a buffer at the list head
1986 * @list: list to use
1987 * @newsk: buffer to queue
1988 *
1989 * Queue a buffer at the start of a list. This function takes no locks
1990 * and you must therefore hold required locks before calling it.
1991 *
1992 * A buffer cannot be placed on two lists at the same time.
1993 */
1994 static inline void __skb_queue_head(struct sk_buff_head *list,
1995 struct sk_buff *newsk)
1996 {
1997 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1998 }
1999 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2000
2001 /**
2002 * __skb_queue_tail - queue a buffer at the list tail
2003 * @list: list to use
2004 * @newsk: buffer to queue
2005 *
2006 * Queue a buffer at the end of a list. This function takes no locks
2007 * and you must therefore hold required locks before calling it.
2008 *
2009 * A buffer cannot be placed on two lists at the same time.
2010 */
2011 static inline void __skb_queue_tail(struct sk_buff_head *list,
2012 struct sk_buff *newsk)
2013 {
2014 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2015 }
2016 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2017
2018 /*
2019 * remove sk_buff from list. _Must_ be called atomically, and with
2020 * the list known..
2021 */
2022 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2023 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2024 {
2025 struct sk_buff *next, *prev;
2026
2027 list->qlen--;
2028 next = skb->next;
2029 prev = skb->prev;
2030 skb->next = skb->prev = NULL;
2031 WRITE_ONCE(next->prev, prev);
2032 WRITE_ONCE(prev->next, next);
2033 }
2034
2035 /**
2036 * __skb_dequeue - remove from the head of the queue
2037 * @list: list to dequeue from
2038 *
2039 * Remove the head of the list. This function does not take any locks
2040 * so must be used with appropriate locks held only. The head item is
2041 * returned or %NULL if the list is empty.
2042 */
2043 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2044 {
2045 struct sk_buff *skb = skb_peek(list);
2046 if (skb)
2047 __skb_unlink(skb, list);
2048 return skb;
2049 }
2050 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2051
2052 /**
2053 * __skb_dequeue_tail - remove from the tail of the queue
2054 * @list: list to dequeue from
2055 *
2056 * Remove the tail of the list. This function does not take any locks
2057 * so must be used with appropriate locks held only. The tail item is
2058 * returned or %NULL if the list is empty.
2059 */
2060 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2061 {
2062 struct sk_buff *skb = skb_peek_tail(list);
2063 if (skb)
2064 __skb_unlink(skb, list);
2065 return skb;
2066 }
2067 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2068
2069
2070 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2071 {
2072 return skb->data_len;
2073 }
2074
2075 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2076 {
2077 return skb->len - skb->data_len;
2078 }
2079
2080 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2081 {
2082 unsigned int i, len = 0;
2083
2084 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2085 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2086 return len;
2087 }
2088
2089 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2090 {
2091 return skb_headlen(skb) + __skb_pagelen(skb);
2092 }
2093
2094 /**
2095 * __skb_fill_page_desc - initialise a paged fragment in an skb
2096 * @skb: buffer containing fragment to be initialised
2097 * @i: paged fragment index to initialise
2098 * @page: the page to use for this fragment
2099 * @off: the offset to the data with @page
2100 * @size: the length of the data
2101 *
2102 * Initialises the @i'th fragment of @skb to point to &size bytes at
2103 * offset @off within @page.
2104 *
2105 * Does not take any additional reference on the fragment.
2106 */
2107 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2108 struct page *page, int off, int size)
2109 {
2110 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2111
2112 /*
2113 * Propagate page pfmemalloc to the skb if we can. The problem is
2114 * that not all callers have unique ownership of the page but rely
2115 * on page_is_pfmemalloc doing the right thing(tm).
2116 */
2117 frag->bv_page = page;
2118 frag->bv_offset = off;
2119 skb_frag_size_set(frag, size);
2120
2121 page = compound_head(page);
2122 if (page_is_pfmemalloc(page))
2123 skb->pfmemalloc = true;
2124 }
2125
2126 /**
2127 * skb_fill_page_desc - initialise a paged fragment in an skb
2128 * @skb: buffer containing fragment to be initialised
2129 * @i: paged fragment index to initialise
2130 * @page: the page to use for this fragment
2131 * @off: the offset to the data with @page
2132 * @size: the length of the data
2133 *
2134 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2135 * @skb to point to @size bytes at offset @off within @page. In
2136 * addition updates @skb such that @i is the last fragment.
2137 *
2138 * Does not take any additional reference on the fragment.
2139 */
2140 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2141 struct page *page, int off, int size)
2142 {
2143 __skb_fill_page_desc(skb, i, page, off, size);
2144 skb_shinfo(skb)->nr_frags = i + 1;
2145 }
2146
2147 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2148 int size, unsigned int truesize);
2149
2150 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2151 unsigned int truesize);
2152
2153 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2154
2155 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2156 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2157 {
2158 return skb->head + skb->tail;
2159 }
2160
2161 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2162 {
2163 skb->tail = skb->data - skb->head;
2164 }
2165
2166 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2167 {
2168 skb_reset_tail_pointer(skb);
2169 skb->tail += offset;
2170 }
2171
2172 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2173 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2174 {
2175 return skb->tail;
2176 }
2177
2178 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2179 {
2180 skb->tail = skb->data;
2181 }
2182
2183 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2184 {
2185 skb->tail = skb->data + offset;
2186 }
2187
2188 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2189
2190 /*
2191 * Add data to an sk_buff
2192 */
2193 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2194 void *skb_put(struct sk_buff *skb, unsigned int len);
2195 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2196 {
2197 void *tmp = skb_tail_pointer(skb);
2198 SKB_LINEAR_ASSERT(skb);
2199 skb->tail += len;
2200 skb->len += len;
2201 return tmp;
2202 }
2203
2204 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2205 {
2206 void *tmp = __skb_put(skb, len);
2207
2208 memset(tmp, 0, len);
2209 return tmp;
2210 }
2211
2212 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2213 unsigned int len)
2214 {
2215 void *tmp = __skb_put(skb, len);
2216
2217 memcpy(tmp, data, len);
2218 return tmp;
2219 }
2220
2221 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2222 {
2223 *(u8 *)__skb_put(skb, 1) = val;
2224 }
2225
2226 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2227 {
2228 void *tmp = skb_put(skb, len);
2229
2230 memset(tmp, 0, len);
2231
2232 return tmp;
2233 }
2234
2235 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2236 unsigned int len)
2237 {
2238 void *tmp = skb_put(skb, len);
2239
2240 memcpy(tmp, data, len);
2241
2242 return tmp;
2243 }
2244
2245 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2246 {
2247 *(u8 *)skb_put(skb, 1) = val;
2248 }
2249
2250 void *skb_push(struct sk_buff *skb, unsigned int len);
2251 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2252 {
2253 skb->data -= len;
2254 skb->len += len;
2255 return skb->data;
2256 }
2257
2258 void *skb_pull(struct sk_buff *skb, unsigned int len);
2259 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2260 {
2261 skb->len -= len;
2262 BUG_ON(skb->len < skb->data_len);
2263 return skb->data += len;
2264 }
2265
2266 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2267 {
2268 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2269 }
2270
2271 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2272
2273 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2274 {
2275 if (len > skb_headlen(skb) &&
2276 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2277 return NULL;
2278 skb->len -= len;
2279 return skb->data += len;
2280 }
2281
2282 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2283 {
2284 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2285 }
2286
2287 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2288 {
2289 if (likely(len <= skb_headlen(skb)))
2290 return true;
2291 if (unlikely(len > skb->len))
2292 return false;
2293 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2294 }
2295
2296 void skb_condense(struct sk_buff *skb);
2297
2298 /**
2299 * skb_headroom - bytes at buffer head
2300 * @skb: buffer to check
2301 *
2302 * Return the number of bytes of free space at the head of an &sk_buff.
2303 */
2304 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2305 {
2306 return skb->data - skb->head;
2307 }
2308
2309 /**
2310 * skb_tailroom - bytes at buffer end
2311 * @skb: buffer to check
2312 *
2313 * Return the number of bytes of free space at the tail of an sk_buff
2314 */
2315 static inline int skb_tailroom(const struct sk_buff *skb)
2316 {
2317 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2318 }
2319
2320 /**
2321 * skb_availroom - bytes at buffer end
2322 * @skb: buffer to check
2323 *
2324 * Return the number of bytes of free space at the tail of an sk_buff
2325 * allocated by sk_stream_alloc()
2326 */
2327 static inline int skb_availroom(const struct sk_buff *skb)
2328 {
2329 if (skb_is_nonlinear(skb))
2330 return 0;
2331
2332 return skb->end - skb->tail - skb->reserved_tailroom;
2333 }
2334
2335 /**
2336 * skb_reserve - adjust headroom
2337 * @skb: buffer to alter
2338 * @len: bytes to move
2339 *
2340 * Increase the headroom of an empty &sk_buff by reducing the tail
2341 * room. This is only allowed for an empty buffer.
2342 */
2343 static inline void skb_reserve(struct sk_buff *skb, int len)
2344 {
2345 skb->data += len;
2346 skb->tail += len;
2347 }
2348
2349 /**
2350 * skb_tailroom_reserve - adjust reserved_tailroom
2351 * @skb: buffer to alter
2352 * @mtu: maximum amount of headlen permitted
2353 * @needed_tailroom: minimum amount of reserved_tailroom
2354 *
2355 * Set reserved_tailroom so that headlen can be as large as possible but
2356 * not larger than mtu and tailroom cannot be smaller than
2357 * needed_tailroom.
2358 * The required headroom should already have been reserved before using
2359 * this function.
2360 */
2361 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2362 unsigned int needed_tailroom)
2363 {
2364 SKB_LINEAR_ASSERT(skb);
2365 if (mtu < skb_tailroom(skb) - needed_tailroom)
2366 /* use at most mtu */
2367 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2368 else
2369 /* use up to all available space */
2370 skb->reserved_tailroom = needed_tailroom;
2371 }
2372
2373 #define ENCAP_TYPE_ETHER 0
2374 #define ENCAP_TYPE_IPPROTO 1
2375
2376 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2377 __be16 protocol)
2378 {
2379 skb->inner_protocol = protocol;
2380 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2381 }
2382
2383 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2384 __u8 ipproto)
2385 {
2386 skb->inner_ipproto = ipproto;
2387 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2388 }
2389
2390 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2391 {
2392 skb->inner_mac_header = skb->mac_header;
2393 skb->inner_network_header = skb->network_header;
2394 skb->inner_transport_header = skb->transport_header;
2395 }
2396
2397 static inline void skb_reset_mac_len(struct sk_buff *skb)
2398 {
2399 skb->mac_len = skb->network_header - skb->mac_header;
2400 }
2401
2402 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2403 *skb)
2404 {
2405 return skb->head + skb->inner_transport_header;
2406 }
2407
2408 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2409 {
2410 return skb_inner_transport_header(skb) - skb->data;
2411 }
2412
2413 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2414 {
2415 skb->inner_transport_header = skb->data - skb->head;
2416 }
2417
2418 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2419 const int offset)
2420 {
2421 skb_reset_inner_transport_header(skb);
2422 skb->inner_transport_header += offset;
2423 }
2424
2425 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2426 {
2427 return skb->head + skb->inner_network_header;
2428 }
2429
2430 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2431 {
2432 skb->inner_network_header = skb->data - skb->head;
2433 }
2434
2435 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2436 const int offset)
2437 {
2438 skb_reset_inner_network_header(skb);
2439 skb->inner_network_header += offset;
2440 }
2441
2442 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2443 {
2444 return skb->head + skb->inner_mac_header;
2445 }
2446
2447 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2448 {
2449 skb->inner_mac_header = skb->data - skb->head;
2450 }
2451
2452 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2453 const int offset)
2454 {
2455 skb_reset_inner_mac_header(skb);
2456 skb->inner_mac_header += offset;
2457 }
2458 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2459 {
2460 return skb->transport_header != (typeof(skb->transport_header))~0U;
2461 }
2462
2463 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2464 {
2465 return skb->head + skb->transport_header;
2466 }
2467
2468 static inline void skb_reset_transport_header(struct sk_buff *skb)
2469 {
2470 skb->transport_header = skb->data - skb->head;
2471 }
2472
2473 static inline void skb_set_transport_header(struct sk_buff *skb,
2474 const int offset)
2475 {
2476 skb_reset_transport_header(skb);
2477 skb->transport_header += offset;
2478 }
2479
2480 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2481 {
2482 return skb->head + skb->network_header;
2483 }
2484
2485 static inline void skb_reset_network_header(struct sk_buff *skb)
2486 {
2487 skb->network_header = skb->data - skb->head;
2488 }
2489
2490 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2491 {
2492 skb_reset_network_header(skb);
2493 skb->network_header += offset;
2494 }
2495
2496 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2497 {
2498 return skb->head + skb->mac_header;
2499 }
2500
2501 static inline int skb_mac_offset(const struct sk_buff *skb)
2502 {
2503 return skb_mac_header(skb) - skb->data;
2504 }
2505
2506 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2507 {
2508 return skb->network_header - skb->mac_header;
2509 }
2510
2511 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2512 {
2513 return skb->mac_header != (typeof(skb->mac_header))~0U;
2514 }
2515
2516 static inline void skb_reset_mac_header(struct sk_buff *skb)
2517 {
2518 skb->mac_header = skb->data - skb->head;
2519 }
2520
2521 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2522 {
2523 skb_reset_mac_header(skb);
2524 skb->mac_header += offset;
2525 }
2526
2527 static inline void skb_pop_mac_header(struct sk_buff *skb)
2528 {
2529 skb->mac_header = skb->network_header;
2530 }
2531
2532 static inline void skb_probe_transport_header(struct sk_buff *skb)
2533 {
2534 struct flow_keys_basic keys;
2535
2536 if (skb_transport_header_was_set(skb))
2537 return;
2538
2539 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2540 NULL, 0, 0, 0, 0))
2541 skb_set_transport_header(skb, keys.control.thoff);
2542 }
2543
2544 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2545 {
2546 if (skb_mac_header_was_set(skb)) {
2547 const unsigned char *old_mac = skb_mac_header(skb);
2548
2549 skb_set_mac_header(skb, -skb->mac_len);
2550 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2551 }
2552 }
2553
2554 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2555 {
2556 return skb->csum_start - skb_headroom(skb);
2557 }
2558
2559 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2560 {
2561 return skb->head + skb->csum_start;
2562 }
2563
2564 static inline int skb_transport_offset(const struct sk_buff *skb)
2565 {
2566 return skb_transport_header(skb) - skb->data;
2567 }
2568
2569 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2570 {
2571 return skb->transport_header - skb->network_header;
2572 }
2573
2574 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2575 {
2576 return skb->inner_transport_header - skb->inner_network_header;
2577 }
2578
2579 static inline int skb_network_offset(const struct sk_buff *skb)
2580 {
2581 return skb_network_header(skb) - skb->data;
2582 }
2583
2584 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2585 {
2586 return skb_inner_network_header(skb) - skb->data;
2587 }
2588
2589 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2590 {
2591 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2592 }
2593
2594 /*
2595 * CPUs often take a performance hit when accessing unaligned memory
2596 * locations. The actual performance hit varies, it can be small if the
2597 * hardware handles it or large if we have to take an exception and fix it
2598 * in software.
2599 *
2600 * Since an ethernet header is 14 bytes network drivers often end up with
2601 * the IP header at an unaligned offset. The IP header can be aligned by
2602 * shifting the start of the packet by 2 bytes. Drivers should do this
2603 * with:
2604 *
2605 * skb_reserve(skb, NET_IP_ALIGN);
2606 *
2607 * The downside to this alignment of the IP header is that the DMA is now
2608 * unaligned. On some architectures the cost of an unaligned DMA is high
2609 * and this cost outweighs the gains made by aligning the IP header.
2610 *
2611 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2612 * to be overridden.
2613 */
2614 #ifndef NET_IP_ALIGN
2615 #define NET_IP_ALIGN 2
2616 #endif
2617
2618 /*
2619 * The networking layer reserves some headroom in skb data (via
2620 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2621 * the header has to grow. In the default case, if the header has to grow
2622 * 32 bytes or less we avoid the reallocation.
2623 *
2624 * Unfortunately this headroom changes the DMA alignment of the resulting
2625 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2626 * on some architectures. An architecture can override this value,
2627 * perhaps setting it to a cacheline in size (since that will maintain
2628 * cacheline alignment of the DMA). It must be a power of 2.
2629 *
2630 * Various parts of the networking layer expect at least 32 bytes of
2631 * headroom, you should not reduce this.
2632 *
2633 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2634 * to reduce average number of cache lines per packet.
2635 * get_rps_cpus() for example only access one 64 bytes aligned block :
2636 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2637 */
2638 #ifndef NET_SKB_PAD
2639 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2640 #endif
2641
2642 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2643
2644 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2645 {
2646 if (WARN_ON(skb_is_nonlinear(skb)))
2647 return;
2648 skb->len = len;
2649 skb_set_tail_pointer(skb, len);
2650 }
2651
2652 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2653 {
2654 __skb_set_length(skb, len);
2655 }
2656
2657 void skb_trim(struct sk_buff *skb, unsigned int len);
2658
2659 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2660 {
2661 if (skb->data_len)
2662 return ___pskb_trim(skb, len);
2663 __skb_trim(skb, len);
2664 return 0;
2665 }
2666
2667 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2668 {
2669 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2670 }
2671
2672 /**
2673 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2674 * @skb: buffer to alter
2675 * @len: new length
2676 *
2677 * This is identical to pskb_trim except that the caller knows that
2678 * the skb is not cloned so we should never get an error due to out-
2679 * of-memory.
2680 */
2681 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2682 {
2683 int err = pskb_trim(skb, len);
2684 BUG_ON(err);
2685 }
2686
2687 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2688 {
2689 unsigned int diff = len - skb->len;
2690
2691 if (skb_tailroom(skb) < diff) {
2692 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2693 GFP_ATOMIC);
2694 if (ret)
2695 return ret;
2696 }
2697 __skb_set_length(skb, len);
2698 return 0;
2699 }
2700
2701 /**
2702 * skb_orphan - orphan a buffer
2703 * @skb: buffer to orphan
2704 *
2705 * If a buffer currently has an owner then we call the owner's
2706 * destructor function and make the @skb unowned. The buffer continues
2707 * to exist but is no longer charged to its former owner.
2708 */
2709 static inline void skb_orphan(struct sk_buff *skb)
2710 {
2711 if (skb->destructor) {
2712 skb->destructor(skb);
2713 skb->destructor = NULL;
2714 skb->sk = NULL;
2715 } else {
2716 BUG_ON(skb->sk);
2717 }
2718 }
2719
2720 /**
2721 * skb_orphan_frags - orphan the frags contained in a buffer
2722 * @skb: buffer to orphan frags from
2723 * @gfp_mask: allocation mask for replacement pages
2724 *
2725 * For each frag in the SKB which needs a destructor (i.e. has an
2726 * owner) create a copy of that frag and release the original
2727 * page by calling the destructor.
2728 */
2729 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2730 {
2731 if (likely(!skb_zcopy(skb)))
2732 return 0;
2733 if (!skb_zcopy_is_nouarg(skb) &&
2734 skb_uarg(skb)->callback == sock_zerocopy_callback)
2735 return 0;
2736 return skb_copy_ubufs(skb, gfp_mask);
2737 }
2738
2739 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2740 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2741 {
2742 if (likely(!skb_zcopy(skb)))
2743 return 0;
2744 return skb_copy_ubufs(skb, gfp_mask);
2745 }
2746
2747 /**
2748 * __skb_queue_purge - empty a list
2749 * @list: list to empty
2750 *
2751 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2752 * the list and one reference dropped. This function does not take the
2753 * list lock and the caller must hold the relevant locks to use it.
2754 */
2755 static inline void __skb_queue_purge(struct sk_buff_head *list)
2756 {
2757 struct sk_buff *skb;
2758 while ((skb = __skb_dequeue(list)) != NULL)
2759 kfree_skb(skb);
2760 }
2761 void skb_queue_purge(struct sk_buff_head *list);
2762
2763 unsigned int skb_rbtree_purge(struct rb_root *root);
2764
2765 void *netdev_alloc_frag(unsigned int fragsz);
2766
2767 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2768 gfp_t gfp_mask);
2769
2770 /**
2771 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2772 * @dev: network device to receive on
2773 * @length: length to allocate
2774 *
2775 * Allocate a new &sk_buff and assign it a usage count of one. The
2776 * buffer has unspecified headroom built in. Users should allocate
2777 * the headroom they think they need without accounting for the
2778 * built in space. The built in space is used for optimisations.
2779 *
2780 * %NULL is returned if there is no free memory. Although this function
2781 * allocates memory it can be called from an interrupt.
2782 */
2783 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2784 unsigned int length)
2785 {
2786 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2787 }
2788
2789 /* legacy helper around __netdev_alloc_skb() */
2790 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2791 gfp_t gfp_mask)
2792 {
2793 return __netdev_alloc_skb(NULL, length, gfp_mask);
2794 }
2795
2796 /* legacy helper around netdev_alloc_skb() */
2797 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2798 {
2799 return netdev_alloc_skb(NULL, length);
2800 }
2801
2802
2803 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2804 unsigned int length, gfp_t gfp)
2805 {
2806 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2807
2808 if (NET_IP_ALIGN && skb)
2809 skb_reserve(skb, NET_IP_ALIGN);
2810 return skb;
2811 }
2812
2813 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2814 unsigned int length)
2815 {
2816 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2817 }
2818
2819 static inline void skb_free_frag(void *addr)
2820 {
2821 page_frag_free(addr);
2822 }
2823
2824 void *napi_alloc_frag(unsigned int fragsz);
2825 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2826 unsigned int length, gfp_t gfp_mask);
2827 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2828 unsigned int length)
2829 {
2830 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2831 }
2832 void napi_consume_skb(struct sk_buff *skb, int budget);
2833
2834 void __kfree_skb_flush(void);
2835 void __kfree_skb_defer(struct sk_buff *skb);
2836
2837 /**
2838 * __dev_alloc_pages - allocate page for network Rx
2839 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2840 * @order: size of the allocation
2841 *
2842 * Allocate a new page.
2843 *
2844 * %NULL is returned if there is no free memory.
2845 */
2846 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2847 unsigned int order)
2848 {
2849 /* This piece of code contains several assumptions.
2850 * 1. This is for device Rx, therefor a cold page is preferred.
2851 * 2. The expectation is the user wants a compound page.
2852 * 3. If requesting a order 0 page it will not be compound
2853 * due to the check to see if order has a value in prep_new_page
2854 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2855 * code in gfp_to_alloc_flags that should be enforcing this.
2856 */
2857 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2858
2859 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2860 }
2861
2862 static inline struct page *dev_alloc_pages(unsigned int order)
2863 {
2864 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2865 }
2866
2867 /**
2868 * __dev_alloc_page - allocate a page for network Rx
2869 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2870 *
2871 * Allocate a new page.
2872 *
2873 * %NULL is returned if there is no free memory.
2874 */
2875 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2876 {
2877 return __dev_alloc_pages(gfp_mask, 0);
2878 }
2879
2880 static inline struct page *dev_alloc_page(void)
2881 {
2882 return dev_alloc_pages(0);
2883 }
2884
2885 /**
2886 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2887 * @page: The page that was allocated from skb_alloc_page
2888 * @skb: The skb that may need pfmemalloc set
2889 */
2890 static inline void skb_propagate_pfmemalloc(struct page *page,
2891 struct sk_buff *skb)
2892 {
2893 if (page_is_pfmemalloc(page))
2894 skb->pfmemalloc = true;
2895 }
2896
2897 /**
2898 * skb_frag_off() - Returns the offset of a skb fragment
2899 * @frag: the paged fragment
2900 */
2901 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2902 {
2903 return frag->bv_offset;
2904 }
2905
2906 /**
2907 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2908 * @frag: skb fragment
2909 * @delta: value to add
2910 */
2911 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2912 {
2913 frag->bv_offset += delta;
2914 }
2915
2916 /**
2917 * skb_frag_off_set() - Sets the offset of a skb fragment
2918 * @frag: skb fragment
2919 * @offset: offset of fragment
2920 */
2921 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2922 {
2923 frag->bv_offset = offset;
2924 }
2925
2926 /**
2927 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2928 * @fragto: skb fragment where offset is set
2929 * @fragfrom: skb fragment offset is copied from
2930 */
2931 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2932 const skb_frag_t *fragfrom)
2933 {
2934 fragto->bv_offset = fragfrom->bv_offset;
2935 }
2936
2937 /**
2938 * skb_frag_page - retrieve the page referred to by a paged fragment
2939 * @frag: the paged fragment
2940 *
2941 * Returns the &struct page associated with @frag.
2942 */
2943 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2944 {
2945 return frag->bv_page;
2946 }
2947
2948 /**
2949 * __skb_frag_ref - take an addition reference on a paged fragment.
2950 * @frag: the paged fragment
2951 *
2952 * Takes an additional reference on the paged fragment @frag.
2953 */
2954 static inline void __skb_frag_ref(skb_frag_t *frag)
2955 {
2956 get_page(skb_frag_page(frag));
2957 }
2958
2959 /**
2960 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2961 * @skb: the buffer
2962 * @f: the fragment offset.
2963 *
2964 * Takes an additional reference on the @f'th paged fragment of @skb.
2965 */
2966 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2967 {
2968 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2969 }
2970
2971 /**
2972 * __skb_frag_unref - release a reference on a paged fragment.
2973 * @frag: the paged fragment
2974 *
2975 * Releases a reference on the paged fragment @frag.
2976 */
2977 static inline void __skb_frag_unref(skb_frag_t *frag)
2978 {
2979 put_page(skb_frag_page(frag));
2980 }
2981
2982 /**
2983 * skb_frag_unref - release a reference on a paged fragment of an skb.
2984 * @skb: the buffer
2985 * @f: the fragment offset
2986 *
2987 * Releases a reference on the @f'th paged fragment of @skb.
2988 */
2989 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2990 {
2991 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2992 }
2993
2994 /**
2995 * skb_frag_address - gets the address of the data contained in a paged fragment
2996 * @frag: the paged fragment buffer
2997 *
2998 * Returns the address of the data within @frag. The page must already
2999 * be mapped.
3000 */
3001 static inline void *skb_frag_address(const skb_frag_t *frag)
3002 {
3003 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3004 }
3005
3006 /**
3007 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3008 * @frag: the paged fragment buffer
3009 *
3010 * Returns the address of the data within @frag. Checks that the page
3011 * is mapped and returns %NULL otherwise.
3012 */
3013 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3014 {
3015 void *ptr = page_address(skb_frag_page(frag));
3016 if (unlikely(!ptr))
3017 return NULL;
3018
3019 return ptr + skb_frag_off(frag);
3020 }
3021
3022 /**
3023 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3024 * @fragto: skb fragment where page is set
3025 * @fragfrom: skb fragment page is copied from
3026 */
3027 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3028 const skb_frag_t *fragfrom)
3029 {
3030 fragto->bv_page = fragfrom->bv_page;
3031 }
3032
3033 /**
3034 * __skb_frag_set_page - sets the page contained in a paged fragment
3035 * @frag: the paged fragment
3036 * @page: the page to set
3037 *
3038 * Sets the fragment @frag to contain @page.
3039 */
3040 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3041 {
3042 frag->bv_page = page;
3043 }
3044
3045 /**
3046 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3047 * @skb: the buffer
3048 * @f: the fragment offset
3049 * @page: the page to set
3050 *
3051 * Sets the @f'th fragment of @skb to contain @page.
3052 */
3053 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3054 struct page *page)
3055 {
3056 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3057 }
3058
3059 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3060
3061 /**
3062 * skb_frag_dma_map - maps a paged fragment via the DMA API
3063 * @dev: the device to map the fragment to
3064 * @frag: the paged fragment to map
3065 * @offset: the offset within the fragment (starting at the
3066 * fragment's own offset)
3067 * @size: the number of bytes to map
3068 * @dir: the direction of the mapping (``PCI_DMA_*``)
3069 *
3070 * Maps the page associated with @frag to @device.
3071 */
3072 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3073 const skb_frag_t *frag,
3074 size_t offset, size_t size,
3075 enum dma_data_direction dir)
3076 {
3077 return dma_map_page(dev, skb_frag_page(frag),
3078 skb_frag_off(frag) + offset, size, dir);
3079 }
3080
3081 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3082 gfp_t gfp_mask)
3083 {
3084 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3085 }
3086
3087
3088 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3089 gfp_t gfp_mask)
3090 {
3091 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3092 }
3093
3094
3095 /**
3096 * skb_clone_writable - is the header of a clone writable
3097 * @skb: buffer to check
3098 * @len: length up to which to write
3099 *
3100 * Returns true if modifying the header part of the cloned buffer
3101 * does not requires the data to be copied.
3102 */
3103 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3104 {
3105 return !skb_header_cloned(skb) &&
3106 skb_headroom(skb) + len <= skb->hdr_len;
3107 }
3108
3109 static inline int skb_try_make_writable(struct sk_buff *skb,
3110 unsigned int write_len)
3111 {
3112 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3113 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3114 }
3115
3116 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3117 int cloned)
3118 {
3119 int delta = 0;
3120
3121 if (headroom > skb_headroom(skb))
3122 delta = headroom - skb_headroom(skb);
3123
3124 if (delta || cloned)
3125 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3126 GFP_ATOMIC);
3127 return 0;
3128 }
3129
3130 /**
3131 * skb_cow - copy header of skb when it is required
3132 * @skb: buffer to cow
3133 * @headroom: needed headroom
3134 *
3135 * If the skb passed lacks sufficient headroom or its data part
3136 * is shared, data is reallocated. If reallocation fails, an error
3137 * is returned and original skb is not changed.
3138 *
3139 * The result is skb with writable area skb->head...skb->tail
3140 * and at least @headroom of space at head.
3141 */
3142 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3143 {
3144 return __skb_cow(skb, headroom, skb_cloned(skb));
3145 }
3146
3147 /**
3148 * skb_cow_head - skb_cow but only making the head writable
3149 * @skb: buffer to cow
3150 * @headroom: needed headroom
3151 *
3152 * This function is identical to skb_cow except that we replace the
3153 * skb_cloned check by skb_header_cloned. It should be used when
3154 * you only need to push on some header and do not need to modify
3155 * the data.
3156 */
3157 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3158 {
3159 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3160 }
3161
3162 /**
3163 * skb_padto - pad an skbuff up to a minimal size
3164 * @skb: buffer to pad
3165 * @len: minimal length
3166 *
3167 * Pads up a buffer to ensure the trailing bytes exist and are
3168 * blanked. If the buffer already contains sufficient data it
3169 * is untouched. Otherwise it is extended. Returns zero on
3170 * success. The skb is freed on error.
3171 */
3172 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3173 {
3174 unsigned int size = skb->len;
3175 if (likely(size >= len))
3176 return 0;
3177 return skb_pad(skb, len - size);
3178 }
3179
3180 /**
3181 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3182 * @skb: buffer to pad
3183 * @len: minimal length
3184 * @free_on_error: free buffer on error
3185 *
3186 * Pads up a buffer to ensure the trailing bytes exist and are
3187 * blanked. If the buffer already contains sufficient data it
3188 * is untouched. Otherwise it is extended. Returns zero on
3189 * success. The skb is freed on error if @free_on_error is true.
3190 */
3191 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3192 bool free_on_error)
3193 {
3194 unsigned int size = skb->len;
3195
3196 if (unlikely(size < len)) {
3197 len -= size;
3198 if (__skb_pad(skb, len, free_on_error))
3199 return -ENOMEM;
3200 __skb_put(skb, len);
3201 }
3202 return 0;
3203 }
3204
3205 /**
3206 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3207 * @skb: buffer to pad
3208 * @len: minimal length
3209 *
3210 * Pads up a buffer to ensure the trailing bytes exist and are
3211 * blanked. If the buffer already contains sufficient data it
3212 * is untouched. Otherwise it is extended. Returns zero on
3213 * success. The skb is freed on error.
3214 */
3215 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3216 {
3217 return __skb_put_padto(skb, len, true);
3218 }
3219
3220 static inline int skb_add_data(struct sk_buff *skb,
3221 struct iov_iter *from, int copy)
3222 {
3223 const int off = skb->len;
3224
3225 if (skb->ip_summed == CHECKSUM_NONE) {
3226 __wsum csum = 0;
3227 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3228 &csum, from)) {
3229 skb->csum = csum_block_add(skb->csum, csum, off);
3230 return 0;
3231 }
3232 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3233 return 0;
3234
3235 __skb_trim(skb, off);
3236 return -EFAULT;
3237 }
3238
3239 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3240 const struct page *page, int off)
3241 {
3242 if (skb_zcopy(skb))
3243 return false;
3244 if (i) {
3245 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3246
3247 return page == skb_frag_page(frag) &&
3248 off == skb_frag_off(frag) + skb_frag_size(frag);
3249 }
3250 return false;
3251 }
3252
3253 static inline int __skb_linearize(struct sk_buff *skb)
3254 {
3255 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3256 }
3257
3258 /**
3259 * skb_linearize - convert paged skb to linear one
3260 * @skb: buffer to linarize
3261 *
3262 * If there is no free memory -ENOMEM is returned, otherwise zero
3263 * is returned and the old skb data released.
3264 */
3265 static inline int skb_linearize(struct sk_buff *skb)
3266 {
3267 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3268 }
3269
3270 /**
3271 * skb_has_shared_frag - can any frag be overwritten
3272 * @skb: buffer to test
3273 *
3274 * Return true if the skb has at least one frag that might be modified
3275 * by an external entity (as in vmsplice()/sendfile())
3276 */
3277 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3278 {
3279 return skb_is_nonlinear(skb) &&
3280 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3281 }
3282
3283 /**
3284 * skb_linearize_cow - make sure skb is linear and writable
3285 * @skb: buffer to process
3286 *
3287 * If there is no free memory -ENOMEM is returned, otherwise zero
3288 * is returned and the old skb data released.
3289 */
3290 static inline int skb_linearize_cow(struct sk_buff *skb)
3291 {
3292 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3293 __skb_linearize(skb) : 0;
3294 }
3295
3296 static __always_inline void
3297 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3298 unsigned int off)
3299 {
3300 if (skb->ip_summed == CHECKSUM_COMPLETE)
3301 skb->csum = csum_block_sub(skb->csum,
3302 csum_partial(start, len, 0), off);
3303 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3304 skb_checksum_start_offset(skb) < 0)
3305 skb->ip_summed = CHECKSUM_NONE;
3306 }
3307
3308 /**
3309 * skb_postpull_rcsum - update checksum for received skb after pull
3310 * @skb: buffer to update
3311 * @start: start of data before pull
3312 * @len: length of data pulled
3313 *
3314 * After doing a pull on a received packet, you need to call this to
3315 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3316 * CHECKSUM_NONE so that it can be recomputed from scratch.
3317 */
3318 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3319 const void *start, unsigned int len)
3320 {
3321 __skb_postpull_rcsum(skb, start, len, 0);
3322 }
3323
3324 static __always_inline void
3325 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3326 unsigned int off)
3327 {
3328 if (skb->ip_summed == CHECKSUM_COMPLETE)
3329 skb->csum = csum_block_add(skb->csum,
3330 csum_partial(start, len, 0), off);
3331 }
3332
3333 /**
3334 * skb_postpush_rcsum - update checksum for received skb after push
3335 * @skb: buffer to update
3336 * @start: start of data after push
3337 * @len: length of data pushed
3338 *
3339 * After doing a push on a received packet, you need to call this to
3340 * update the CHECKSUM_COMPLETE checksum.
3341 */
3342 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3343 const void *start, unsigned int len)
3344 {
3345 __skb_postpush_rcsum(skb, start, len, 0);
3346 }
3347
3348 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3349
3350 /**
3351 * skb_push_rcsum - push skb and update receive checksum
3352 * @skb: buffer to update
3353 * @len: length of data pulled
3354 *
3355 * This function performs an skb_push on the packet and updates
3356 * the CHECKSUM_COMPLETE checksum. It should be used on
3357 * receive path processing instead of skb_push unless you know
3358 * that the checksum difference is zero (e.g., a valid IP header)
3359 * or you are setting ip_summed to CHECKSUM_NONE.
3360 */
3361 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3362 {
3363 skb_push(skb, len);
3364 skb_postpush_rcsum(skb, skb->data, len);
3365 return skb->data;
3366 }
3367
3368 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3369 /**
3370 * pskb_trim_rcsum - trim received skb and update checksum
3371 * @skb: buffer to trim
3372 * @len: new length
3373 *
3374 * This is exactly the same as pskb_trim except that it ensures the
3375 * checksum of received packets are still valid after the operation.
3376 * It can change skb pointers.
3377 */
3378
3379 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3380 {
3381 if (likely(len >= skb->len))
3382 return 0;
3383 return pskb_trim_rcsum_slow(skb, len);
3384 }
3385
3386 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3387 {
3388 if (skb->ip_summed == CHECKSUM_COMPLETE)
3389 skb->ip_summed = CHECKSUM_NONE;
3390 __skb_trim(skb, len);
3391 return 0;
3392 }
3393
3394 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3395 {
3396 if (skb->ip_summed == CHECKSUM_COMPLETE)
3397 skb->ip_summed = CHECKSUM_NONE;
3398 return __skb_grow(skb, len);
3399 }
3400
3401 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3402 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3403 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3404 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3405 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3406
3407 #define skb_queue_walk(queue, skb) \
3408 for (skb = (queue)->next; \
3409 skb != (struct sk_buff *)(queue); \
3410 skb = skb->next)
3411
3412 #define skb_queue_walk_safe(queue, skb, tmp) \
3413 for (skb = (queue)->next, tmp = skb->next; \
3414 skb != (struct sk_buff *)(queue); \
3415 skb = tmp, tmp = skb->next)
3416
3417 #define skb_queue_walk_from(queue, skb) \
3418 for (; skb != (struct sk_buff *)(queue); \
3419 skb = skb->next)
3420
3421 #define skb_rbtree_walk(skb, root) \
3422 for (skb = skb_rb_first(root); skb != NULL; \
3423 skb = skb_rb_next(skb))
3424
3425 #define skb_rbtree_walk_from(skb) \
3426 for (; skb != NULL; \
3427 skb = skb_rb_next(skb))
3428
3429 #define skb_rbtree_walk_from_safe(skb, tmp) \
3430 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3431 skb = tmp)
3432
3433 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3434 for (tmp = skb->next; \
3435 skb != (struct sk_buff *)(queue); \
3436 skb = tmp, tmp = skb->next)
3437
3438 #define skb_queue_reverse_walk(queue, skb) \
3439 for (skb = (queue)->prev; \
3440 skb != (struct sk_buff *)(queue); \
3441 skb = skb->prev)
3442
3443 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3444 for (skb = (queue)->prev, tmp = skb->prev; \
3445 skb != (struct sk_buff *)(queue); \
3446 skb = tmp, tmp = skb->prev)
3447
3448 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3449 for (tmp = skb->prev; \
3450 skb != (struct sk_buff *)(queue); \
3451 skb = tmp, tmp = skb->prev)
3452
3453 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3454 {
3455 return skb_shinfo(skb)->frag_list != NULL;
3456 }
3457
3458 static inline void skb_frag_list_init(struct sk_buff *skb)
3459 {
3460 skb_shinfo(skb)->frag_list = NULL;
3461 }
3462
3463 #define skb_walk_frags(skb, iter) \
3464 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3465
3466
3467 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3468 const struct sk_buff *skb);
3469 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3470 struct sk_buff_head *queue,
3471 unsigned int flags,
3472 void (*destructor)(struct sock *sk,
3473 struct sk_buff *skb),
3474 int *off, int *err,
3475 struct sk_buff **last);
3476 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3477 void (*destructor)(struct sock *sk,
3478 struct sk_buff *skb),
3479 int *off, int *err,
3480 struct sk_buff **last);
3481 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3482 void (*destructor)(struct sock *sk,
3483 struct sk_buff *skb),
3484 int *off, int *err);
3485 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3486 int *err);
3487 __poll_t datagram_poll(struct file *file, struct socket *sock,
3488 struct poll_table_struct *wait);
3489 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3490 struct iov_iter *to, int size);
3491 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3492 struct msghdr *msg, int size)
3493 {
3494 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3495 }
3496 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3497 struct msghdr *msg);
3498 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3499 struct iov_iter *to, int len,
3500 struct ahash_request *hash);
3501 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3502 struct iov_iter *from, int len);
3503 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3504 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3505 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3506 static inline void skb_free_datagram_locked(struct sock *sk,
3507 struct sk_buff *skb)
3508 {
3509 __skb_free_datagram_locked(sk, skb, 0);
3510 }
3511 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3512 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3513 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3514 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3515 int len, __wsum csum);
3516 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3517 struct pipe_inode_info *pipe, unsigned int len,
3518 unsigned int flags);
3519 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3520 int len);
3521 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3522 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3523 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3524 int len, int hlen);
3525 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3526 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3527 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3528 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3529 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3530 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3531 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3532 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3533 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3534 int skb_vlan_pop(struct sk_buff *skb);
3535 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3536 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3537 int mac_len, bool ethernet);
3538 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3539 bool ethernet);
3540 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3541 int skb_mpls_dec_ttl(struct sk_buff *skb);
3542 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3543 gfp_t gfp);
3544
3545 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3546 {
3547 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3548 }
3549
3550 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3551 {
3552 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3553 }
3554
3555 struct skb_checksum_ops {
3556 __wsum (*update)(const void *mem, int len, __wsum wsum);
3557 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3558 };
3559
3560 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3561
3562 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3563 __wsum csum, const struct skb_checksum_ops *ops);
3564 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3565 __wsum csum);
3566
3567 static inline void * __must_check
3568 __skb_header_pointer(const struct sk_buff *skb, int offset,
3569 int len, void *data, int hlen, void *buffer)
3570 {
3571 if (hlen - offset >= len)
3572 return data + offset;
3573
3574 if (!skb ||
3575 skb_copy_bits(skb, offset, buffer, len) < 0)
3576 return NULL;
3577
3578 return buffer;
3579 }
3580
3581 static inline void * __must_check
3582 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3583 {
3584 return __skb_header_pointer(skb, offset, len, skb->data,
3585 skb_headlen(skb), buffer);
3586 }
3587
3588 /**
3589 * skb_needs_linearize - check if we need to linearize a given skb
3590 * depending on the given device features.
3591 * @skb: socket buffer to check
3592 * @features: net device features
3593 *
3594 * Returns true if either:
3595 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3596 * 2. skb is fragmented and the device does not support SG.
3597 */
3598 static inline bool skb_needs_linearize(struct sk_buff *skb,
3599 netdev_features_t features)
3600 {
3601 return skb_is_nonlinear(skb) &&
3602 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3603 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3604 }
3605
3606 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3607 void *to,
3608 const unsigned int len)
3609 {
3610 memcpy(to, skb->data, len);
3611 }
3612
3613 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3614 const int offset, void *to,
3615 const unsigned int len)
3616 {
3617 memcpy(to, skb->data + offset, len);
3618 }
3619
3620 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3621 const void *from,
3622 const unsigned int len)
3623 {
3624 memcpy(skb->data, from, len);
3625 }
3626
3627 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3628 const int offset,
3629 const void *from,
3630 const unsigned int len)
3631 {
3632 memcpy(skb->data + offset, from, len);
3633 }
3634
3635 void skb_init(void);
3636
3637 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3638 {
3639 return skb->tstamp;
3640 }
3641
3642 /**
3643 * skb_get_timestamp - get timestamp from a skb
3644 * @skb: skb to get stamp from
3645 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3646 *
3647 * Timestamps are stored in the skb as offsets to a base timestamp.
3648 * This function converts the offset back to a struct timeval and stores
3649 * it in stamp.
3650 */
3651 static inline void skb_get_timestamp(const struct sk_buff *skb,
3652 struct __kernel_old_timeval *stamp)
3653 {
3654 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3655 }
3656
3657 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3658 struct __kernel_sock_timeval *stamp)
3659 {
3660 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3661
3662 stamp->tv_sec = ts.tv_sec;
3663 stamp->tv_usec = ts.tv_nsec / 1000;
3664 }
3665
3666 static inline void skb_get_timestampns(const struct sk_buff *skb,
3667 struct __kernel_old_timespec *stamp)
3668 {
3669 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3670
3671 stamp->tv_sec = ts.tv_sec;
3672 stamp->tv_nsec = ts.tv_nsec;
3673 }
3674
3675 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3676 struct __kernel_timespec *stamp)
3677 {
3678 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3679
3680 stamp->tv_sec = ts.tv_sec;
3681 stamp->tv_nsec = ts.tv_nsec;
3682 }
3683
3684 static inline void __net_timestamp(struct sk_buff *skb)
3685 {
3686 skb->tstamp = ktime_get_real();
3687 }
3688
3689 static inline ktime_t net_timedelta(ktime_t t)
3690 {
3691 return ktime_sub(ktime_get_real(), t);
3692 }
3693
3694 static inline ktime_t net_invalid_timestamp(void)
3695 {
3696 return 0;
3697 }
3698
3699 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3700 {
3701 return skb_shinfo(skb)->meta_len;
3702 }
3703
3704 static inline void *skb_metadata_end(const struct sk_buff *skb)
3705 {
3706 return skb_mac_header(skb);
3707 }
3708
3709 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3710 const struct sk_buff *skb_b,
3711 u8 meta_len)
3712 {
3713 const void *a = skb_metadata_end(skb_a);
3714 const void *b = skb_metadata_end(skb_b);
3715 /* Using more efficient varaiant than plain call to memcmp(). */
3716 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3717 u64 diffs = 0;
3718
3719 switch (meta_len) {
3720 #define __it(x, op) (x -= sizeof(u##op))
3721 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3722 case 32: diffs |= __it_diff(a, b, 64);
3723 /* fall through */
3724 case 24: diffs |= __it_diff(a, b, 64);
3725 /* fall through */
3726 case 16: diffs |= __it_diff(a, b, 64);
3727 /* fall through */
3728 case 8: diffs |= __it_diff(a, b, 64);
3729 break;
3730 case 28: diffs |= __it_diff(a, b, 64);
3731 /* fall through */
3732 case 20: diffs |= __it_diff(a, b, 64);
3733 /* fall through */
3734 case 12: diffs |= __it_diff(a, b, 64);
3735 /* fall through */
3736 case 4: diffs |= __it_diff(a, b, 32);
3737 break;
3738 }
3739 return diffs;
3740 #else
3741 return memcmp(a - meta_len, b - meta_len, meta_len);
3742 #endif
3743 }
3744
3745 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3746 const struct sk_buff *skb_b)
3747 {
3748 u8 len_a = skb_metadata_len(skb_a);
3749 u8 len_b = skb_metadata_len(skb_b);
3750
3751 if (!(len_a | len_b))
3752 return false;
3753
3754 return len_a != len_b ?
3755 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3756 }
3757
3758 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3759 {
3760 skb_shinfo(skb)->meta_len = meta_len;
3761 }
3762
3763 static inline void skb_metadata_clear(struct sk_buff *skb)
3764 {
3765 skb_metadata_set(skb, 0);
3766 }
3767
3768 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3769
3770 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3771
3772 void skb_clone_tx_timestamp(struct sk_buff *skb);
3773 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3774
3775 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3776
3777 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3778 {
3779 }
3780
3781 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3782 {
3783 return false;
3784 }
3785
3786 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3787
3788 /**
3789 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3790 *
3791 * PHY drivers may accept clones of transmitted packets for
3792 * timestamping via their phy_driver.txtstamp method. These drivers
3793 * must call this function to return the skb back to the stack with a
3794 * timestamp.
3795 *
3796 * @skb: clone of the the original outgoing packet
3797 * @hwtstamps: hardware time stamps
3798 *
3799 */
3800 void skb_complete_tx_timestamp(struct sk_buff *skb,
3801 struct skb_shared_hwtstamps *hwtstamps);
3802
3803 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3804 struct skb_shared_hwtstamps *hwtstamps,
3805 struct sock *sk, int tstype);
3806
3807 /**
3808 * skb_tstamp_tx - queue clone of skb with send time stamps
3809 * @orig_skb: the original outgoing packet
3810 * @hwtstamps: hardware time stamps, may be NULL if not available
3811 *
3812 * If the skb has a socket associated, then this function clones the
3813 * skb (thus sharing the actual data and optional structures), stores
3814 * the optional hardware time stamping information (if non NULL) or
3815 * generates a software time stamp (otherwise), then queues the clone
3816 * to the error queue of the socket. Errors are silently ignored.
3817 */
3818 void skb_tstamp_tx(struct sk_buff *orig_skb,
3819 struct skb_shared_hwtstamps *hwtstamps);
3820
3821 /**
3822 * skb_tx_timestamp() - Driver hook for transmit timestamping
3823 *
3824 * Ethernet MAC Drivers should call this function in their hard_xmit()
3825 * function immediately before giving the sk_buff to the MAC hardware.
3826 *
3827 * Specifically, one should make absolutely sure that this function is
3828 * called before TX completion of this packet can trigger. Otherwise
3829 * the packet could potentially already be freed.
3830 *
3831 * @skb: A socket buffer.
3832 */
3833 static inline void skb_tx_timestamp(struct sk_buff *skb)
3834 {
3835 skb_clone_tx_timestamp(skb);
3836 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3837 skb_tstamp_tx(skb, NULL);
3838 }
3839
3840 /**
3841 * skb_complete_wifi_ack - deliver skb with wifi status
3842 *
3843 * @skb: the original outgoing packet
3844 * @acked: ack status
3845 *
3846 */
3847 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3848
3849 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3850 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3851
3852 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3853 {
3854 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3855 skb->csum_valid ||
3856 (skb->ip_summed == CHECKSUM_PARTIAL &&
3857 skb_checksum_start_offset(skb) >= 0));
3858 }
3859
3860 /**
3861 * skb_checksum_complete - Calculate checksum of an entire packet
3862 * @skb: packet to process
3863 *
3864 * This function calculates the checksum over the entire packet plus
3865 * the value of skb->csum. The latter can be used to supply the
3866 * checksum of a pseudo header as used by TCP/UDP. It returns the
3867 * checksum.
3868 *
3869 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3870 * this function can be used to verify that checksum on received
3871 * packets. In that case the function should return zero if the
3872 * checksum is correct. In particular, this function will return zero
3873 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3874 * hardware has already verified the correctness of the checksum.
3875 */
3876 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3877 {
3878 return skb_csum_unnecessary(skb) ?
3879 0 : __skb_checksum_complete(skb);
3880 }
3881
3882 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3883 {
3884 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3885 if (skb->csum_level == 0)
3886 skb->ip_summed = CHECKSUM_NONE;
3887 else
3888 skb->csum_level--;
3889 }
3890 }
3891
3892 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3893 {
3894 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3895 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3896 skb->csum_level++;
3897 } else if (skb->ip_summed == CHECKSUM_NONE) {
3898 skb->ip_summed = CHECKSUM_UNNECESSARY;
3899 skb->csum_level = 0;
3900 }
3901 }
3902
3903 /* Check if we need to perform checksum complete validation.
3904 *
3905 * Returns true if checksum complete is needed, false otherwise
3906 * (either checksum is unnecessary or zero checksum is allowed).
3907 */
3908 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3909 bool zero_okay,
3910 __sum16 check)
3911 {
3912 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3913 skb->csum_valid = 1;
3914 __skb_decr_checksum_unnecessary(skb);
3915 return false;
3916 }
3917
3918 return true;
3919 }
3920
3921 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3922 * in checksum_init.
3923 */
3924 #define CHECKSUM_BREAK 76
3925
3926 /* Unset checksum-complete
3927 *
3928 * Unset checksum complete can be done when packet is being modified
3929 * (uncompressed for instance) and checksum-complete value is
3930 * invalidated.
3931 */
3932 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3933 {
3934 if (skb->ip_summed == CHECKSUM_COMPLETE)
3935 skb->ip_summed = CHECKSUM_NONE;
3936 }
3937
3938 /* Validate (init) checksum based on checksum complete.
3939 *
3940 * Return values:
3941 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3942 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3943 * checksum is stored in skb->csum for use in __skb_checksum_complete
3944 * non-zero: value of invalid checksum
3945 *
3946 */
3947 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3948 bool complete,
3949 __wsum psum)
3950 {
3951 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3952 if (!csum_fold(csum_add(psum, skb->csum))) {
3953 skb->csum_valid = 1;
3954 return 0;
3955 }
3956 }
3957
3958 skb->csum = psum;
3959
3960 if (complete || skb->len <= CHECKSUM_BREAK) {
3961 __sum16 csum;
3962
3963 csum = __skb_checksum_complete(skb);
3964 skb->csum_valid = !csum;
3965 return csum;
3966 }
3967
3968 return 0;
3969 }
3970
3971 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3972 {
3973 return 0;
3974 }
3975
3976 /* Perform checksum validate (init). Note that this is a macro since we only
3977 * want to calculate the pseudo header which is an input function if necessary.
3978 * First we try to validate without any computation (checksum unnecessary) and
3979 * then calculate based on checksum complete calling the function to compute
3980 * pseudo header.
3981 *
3982 * Return values:
3983 * 0: checksum is validated or try to in skb_checksum_complete
3984 * non-zero: value of invalid checksum
3985 */
3986 #define __skb_checksum_validate(skb, proto, complete, \
3987 zero_okay, check, compute_pseudo) \
3988 ({ \
3989 __sum16 __ret = 0; \
3990 skb->csum_valid = 0; \
3991 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3992 __ret = __skb_checksum_validate_complete(skb, \
3993 complete, compute_pseudo(skb, proto)); \
3994 __ret; \
3995 })
3996
3997 #define skb_checksum_init(skb, proto, compute_pseudo) \
3998 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3999
4000 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4001 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4002
4003 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4004 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4005
4006 #define skb_checksum_validate_zero_check(skb, proto, check, \
4007 compute_pseudo) \
4008 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4009
4010 #define skb_checksum_simple_validate(skb) \
4011 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4012
4013 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4014 {
4015 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4016 }
4017
4018 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4019 {
4020 skb->csum = ~pseudo;
4021 skb->ip_summed = CHECKSUM_COMPLETE;
4022 }
4023
4024 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4025 do { \
4026 if (__skb_checksum_convert_check(skb)) \
4027 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4028 } while (0)
4029
4030 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4031 u16 start, u16 offset)
4032 {
4033 skb->ip_summed = CHECKSUM_PARTIAL;
4034 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4035 skb->csum_offset = offset - start;
4036 }
4037
4038 /* Update skbuf and packet to reflect the remote checksum offload operation.
4039 * When called, ptr indicates the starting point for skb->csum when
4040 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4041 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4042 */
4043 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4044 int start, int offset, bool nopartial)
4045 {
4046 __wsum delta;
4047
4048 if (!nopartial) {
4049 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4050 return;
4051 }
4052
4053 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4054 __skb_checksum_complete(skb);
4055 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4056 }
4057
4058 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4059
4060 /* Adjust skb->csum since we changed the packet */
4061 skb->csum = csum_add(skb->csum, delta);
4062 }
4063
4064 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4065 {
4066 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4067 return (void *)(skb->_nfct & NFCT_PTRMASK);
4068 #else
4069 return NULL;
4070 #endif
4071 }
4072
4073 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4074 {
4075 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4076 return skb->_nfct;
4077 #else
4078 return 0UL;
4079 #endif
4080 }
4081
4082 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4083 {
4084 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4085 skb->_nfct = nfct;
4086 #endif
4087 }
4088
4089 #ifdef CONFIG_SKB_EXTENSIONS
4090 enum skb_ext_id {
4091 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4092 SKB_EXT_BRIDGE_NF,
4093 #endif
4094 #ifdef CONFIG_XFRM
4095 SKB_EXT_SEC_PATH,
4096 #endif
4097 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4098 TC_SKB_EXT,
4099 #endif
4100 #if IS_ENABLED(CONFIG_MPTCP)
4101 SKB_EXT_MPTCP,
4102 #endif
4103 SKB_EXT_NUM, /* must be last */
4104 };
4105
4106 /**
4107 * struct skb_ext - sk_buff extensions
4108 * @refcnt: 1 on allocation, deallocated on 0
4109 * @offset: offset to add to @data to obtain extension address
4110 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4111 * @data: start of extension data, variable sized
4112 *
4113 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4114 * to use 'u8' types while allowing up to 2kb worth of extension data.
4115 */
4116 struct skb_ext {
4117 refcount_t refcnt;
4118 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4119 u8 chunks; /* same */
4120 char data[0] __aligned(8);
4121 };
4122
4123 struct skb_ext *__skb_ext_alloc(void);
4124 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4125 struct skb_ext *ext);
4126 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4127 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4128 void __skb_ext_put(struct skb_ext *ext);
4129
4130 static inline void skb_ext_put(struct sk_buff *skb)
4131 {
4132 if (skb->active_extensions)
4133 __skb_ext_put(skb->extensions);
4134 }
4135
4136 static inline void __skb_ext_copy(struct sk_buff *dst,
4137 const struct sk_buff *src)
4138 {
4139 dst->active_extensions = src->active_extensions;
4140
4141 if (src->active_extensions) {
4142 struct skb_ext *ext = src->extensions;
4143
4144 refcount_inc(&ext->refcnt);
4145 dst->extensions = ext;
4146 }
4147 }
4148
4149 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4150 {
4151 skb_ext_put(dst);
4152 __skb_ext_copy(dst, src);
4153 }
4154
4155 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4156 {
4157 return !!ext->offset[i];
4158 }
4159
4160 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4161 {
4162 return skb->active_extensions & (1 << id);
4163 }
4164
4165 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4166 {
4167 if (skb_ext_exist(skb, id))
4168 __skb_ext_del(skb, id);
4169 }
4170
4171 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4172 {
4173 if (skb_ext_exist(skb, id)) {
4174 struct skb_ext *ext = skb->extensions;
4175
4176 return (void *)ext + (ext->offset[id] << 3);
4177 }
4178
4179 return NULL;
4180 }
4181
4182 static inline void skb_ext_reset(struct sk_buff *skb)
4183 {
4184 if (unlikely(skb->active_extensions)) {
4185 __skb_ext_put(skb->extensions);
4186 skb->active_extensions = 0;
4187 }
4188 }
4189
4190 static inline bool skb_has_extensions(struct sk_buff *skb)
4191 {
4192 return unlikely(skb->active_extensions);
4193 }
4194 #else
4195 static inline void skb_ext_put(struct sk_buff *skb) {}
4196 static inline void skb_ext_reset(struct sk_buff *skb) {}
4197 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4198 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4199 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4200 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4201 #endif /* CONFIG_SKB_EXTENSIONS */
4202
4203 static inline void nf_reset_ct(struct sk_buff *skb)
4204 {
4205 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4206 nf_conntrack_put(skb_nfct(skb));
4207 skb->_nfct = 0;
4208 #endif
4209 }
4210
4211 static inline void nf_reset_trace(struct sk_buff *skb)
4212 {
4213 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4214 skb->nf_trace = 0;
4215 #endif
4216 }
4217
4218 static inline void ipvs_reset(struct sk_buff *skb)
4219 {
4220 #if IS_ENABLED(CONFIG_IP_VS)
4221 skb->ipvs_property = 0;
4222 #endif
4223 }
4224
4225 /* Note: This doesn't put any conntrack info in dst. */
4226 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4227 bool copy)
4228 {
4229 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4230 dst->_nfct = src->_nfct;
4231 nf_conntrack_get(skb_nfct(src));
4232 #endif
4233 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4234 if (copy)
4235 dst->nf_trace = src->nf_trace;
4236 #endif
4237 }
4238
4239 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4240 {
4241 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4242 nf_conntrack_put(skb_nfct(dst));
4243 #endif
4244 __nf_copy(dst, src, true);
4245 }
4246
4247 #ifdef CONFIG_NETWORK_SECMARK
4248 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4249 {
4250 to->secmark = from->secmark;
4251 }
4252
4253 static inline void skb_init_secmark(struct sk_buff *skb)
4254 {
4255 skb->secmark = 0;
4256 }
4257 #else
4258 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4259 { }
4260
4261 static inline void skb_init_secmark(struct sk_buff *skb)
4262 { }
4263 #endif
4264
4265 static inline int secpath_exists(const struct sk_buff *skb)
4266 {
4267 #ifdef CONFIG_XFRM
4268 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4269 #else
4270 return 0;
4271 #endif
4272 }
4273
4274 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4275 {
4276 return !skb->destructor &&
4277 !secpath_exists(skb) &&
4278 !skb_nfct(skb) &&
4279 !skb->_skb_refdst &&
4280 !skb_has_frag_list(skb);
4281 }
4282
4283 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4284 {
4285 skb->queue_mapping = queue_mapping;
4286 }
4287
4288 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4289 {
4290 return skb->queue_mapping;
4291 }
4292
4293 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4294 {
4295 to->queue_mapping = from->queue_mapping;
4296 }
4297
4298 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4299 {
4300 skb->queue_mapping = rx_queue + 1;
4301 }
4302
4303 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4304 {
4305 return skb->queue_mapping - 1;
4306 }
4307
4308 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4309 {
4310 return skb->queue_mapping != 0;
4311 }
4312
4313 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4314 {
4315 skb->dst_pending_confirm = val;
4316 }
4317
4318 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4319 {
4320 return skb->dst_pending_confirm != 0;
4321 }
4322
4323 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4324 {
4325 #ifdef CONFIG_XFRM
4326 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4327 #else
4328 return NULL;
4329 #endif
4330 }
4331
4332 /* Keeps track of mac header offset relative to skb->head.
4333 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4334 * For non-tunnel skb it points to skb_mac_header() and for
4335 * tunnel skb it points to outer mac header.
4336 * Keeps track of level of encapsulation of network headers.
4337 */
4338 struct skb_gso_cb {
4339 union {
4340 int mac_offset;
4341 int data_offset;
4342 };
4343 int encap_level;
4344 __wsum csum;
4345 __u16 csum_start;
4346 };
4347 #define SKB_SGO_CB_OFFSET 32
4348 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4349
4350 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4351 {
4352 return (skb_mac_header(inner_skb) - inner_skb->head) -
4353 SKB_GSO_CB(inner_skb)->mac_offset;
4354 }
4355
4356 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4357 {
4358 int new_headroom, headroom;
4359 int ret;
4360
4361 headroom = skb_headroom(skb);
4362 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4363 if (ret)
4364 return ret;
4365
4366 new_headroom = skb_headroom(skb);
4367 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4368 return 0;
4369 }
4370
4371 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4372 {
4373 /* Do not update partial checksums if remote checksum is enabled. */
4374 if (skb->remcsum_offload)
4375 return;
4376
4377 SKB_GSO_CB(skb)->csum = res;
4378 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4379 }
4380
4381 /* Compute the checksum for a gso segment. First compute the checksum value
4382 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4383 * then add in skb->csum (checksum from csum_start to end of packet).
4384 * skb->csum and csum_start are then updated to reflect the checksum of the
4385 * resultant packet starting from the transport header-- the resultant checksum
4386 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4387 * header.
4388 */
4389 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4390 {
4391 unsigned char *csum_start = skb_transport_header(skb);
4392 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4393 __wsum partial = SKB_GSO_CB(skb)->csum;
4394
4395 SKB_GSO_CB(skb)->csum = res;
4396 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4397
4398 return csum_fold(csum_partial(csum_start, plen, partial));
4399 }
4400
4401 static inline bool skb_is_gso(const struct sk_buff *skb)
4402 {
4403 return skb_shinfo(skb)->gso_size;
4404 }
4405
4406 /* Note: Should be called only if skb_is_gso(skb) is true */
4407 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4408 {
4409 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4410 }
4411
4412 /* Note: Should be called only if skb_is_gso(skb) is true */
4413 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4414 {
4415 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4416 }
4417
4418 /* Note: Should be called only if skb_is_gso(skb) is true */
4419 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4420 {
4421 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4422 }
4423
4424 static inline void skb_gso_reset(struct sk_buff *skb)
4425 {
4426 skb_shinfo(skb)->gso_size = 0;
4427 skb_shinfo(skb)->gso_segs = 0;
4428 skb_shinfo(skb)->gso_type = 0;
4429 }
4430
4431 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4432 u16 increment)
4433 {
4434 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4435 return;
4436 shinfo->gso_size += increment;
4437 }
4438
4439 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4440 u16 decrement)
4441 {
4442 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4443 return;
4444 shinfo->gso_size -= decrement;
4445 }
4446
4447 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4448
4449 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4450 {
4451 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4452 * wanted then gso_type will be set. */
4453 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4454
4455 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4456 unlikely(shinfo->gso_type == 0)) {
4457 __skb_warn_lro_forwarding(skb);
4458 return true;
4459 }
4460 return false;
4461 }
4462
4463 static inline void skb_forward_csum(struct sk_buff *skb)
4464 {
4465 /* Unfortunately we don't support this one. Any brave souls? */
4466 if (skb->ip_summed == CHECKSUM_COMPLETE)
4467 skb->ip_summed = CHECKSUM_NONE;
4468 }
4469
4470 /**
4471 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4472 * @skb: skb to check
4473 *
4474 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4475 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4476 * use this helper, to document places where we make this assertion.
4477 */
4478 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4479 {
4480 #ifdef DEBUG
4481 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4482 #endif
4483 }
4484
4485 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4486
4487 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4488 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4489 unsigned int transport_len,
4490 __sum16(*skb_chkf)(struct sk_buff *skb));
4491
4492 /**
4493 * skb_head_is_locked - Determine if the skb->head is locked down
4494 * @skb: skb to check
4495 *
4496 * The head on skbs build around a head frag can be removed if they are
4497 * not cloned. This function returns true if the skb head is locked down
4498 * due to either being allocated via kmalloc, or by being a clone with
4499 * multiple references to the head.
4500 */
4501 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4502 {
4503 return !skb->head_frag || skb_cloned(skb);
4504 }
4505
4506 /* Local Checksum Offload.
4507 * Compute outer checksum based on the assumption that the
4508 * inner checksum will be offloaded later.
4509 * See Documentation/networking/checksum-offloads.rst for
4510 * explanation of how this works.
4511 * Fill in outer checksum adjustment (e.g. with sum of outer
4512 * pseudo-header) before calling.
4513 * Also ensure that inner checksum is in linear data area.
4514 */
4515 static inline __wsum lco_csum(struct sk_buff *skb)
4516 {
4517 unsigned char *csum_start = skb_checksum_start(skb);
4518 unsigned char *l4_hdr = skb_transport_header(skb);
4519 __wsum partial;
4520
4521 /* Start with complement of inner checksum adjustment */
4522 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4523 skb->csum_offset));
4524
4525 /* Add in checksum of our headers (incl. outer checksum
4526 * adjustment filled in by caller) and return result.
4527 */
4528 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4529 }
4530
4531 #endif /* __KERNEL__ */
4532 #endif /* _LINUX_SKBUFF_H */