]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/skbuff.h
1b7b599d817f9e1bd1090479905ab94f6d83c926
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 atomic_t use;
250 };
251 #endif
252
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 refcount_t use;
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
260 } orig_proto:8;
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
264 __u16 frag_max_size;
265 struct net_device *physindev;
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
269 union {
270 /* prerouting: detect dnat in orig/reply direction */
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
279 };
280 };
281 #endif
282
283 struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290 };
291
292 struct sk_buff;
293
294 /* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
300 */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311 #define GSO_BY_FRAGS 0xFFFF
312
313 typedef struct skb_frag_struct skb_frag_t;
314
315 struct skb_frag_struct {
316 struct {
317 struct page *p;
318 } page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 __u32 page_offset;
321 __u32 size;
322 #else
323 __u16 page_offset;
324 __u16 size;
325 #endif
326 };
327
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 return frag->size;
331 }
332
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 frag->size = size;
336 }
337
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 frag->size += delta;
341 }
342
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 frag->size -= delta;
346 }
347
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353 #endif
354 return false;
355 }
356
357 /**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
384 #define HAVE_HW_TIME_STAMP
385
386 /**
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
392 * skb->tstamp.
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400 struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
402 };
403
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY = 1 << 3,
417
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS = 1 << 4,
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431
432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
434 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
437 /*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
444 */
445 struct ubuf_info {
446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
459 refcount_t refcnt;
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
465 };
466
467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 struct ubuf_info *uarg);
472
473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 refcount_inc(&uarg->refcnt);
476 }
477
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 struct msghdr *msg, int len,
485 struct ubuf_info *uarg);
486
487 /* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
489 */
490 struct skb_shared_info {
491 __u8 __unused;
492 __u8 meta_len;
493 __u8 nr_frags;
494 __u8 tx_flags;
495 unsigned short gso_size;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs;
498 struct sk_buff *frag_list;
499 struct skb_shared_hwtstamps hwtstamps;
500 unsigned int gso_type;
501 u32 tskey;
502
503 /*
504 * Warning : all fields before dataref are cleared in __alloc_skb()
505 */
506 atomic_t dataref;
507
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg;
511
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags[MAX_SKB_FRAGS];
514 };
515
516 /* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
520 *
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
523 *
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
526 */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529
530
531 enum {
532 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
535 };
536
537 enum {
538 SKB_GSO_TCPV4 = 1 << 0,
539
540 /* This indicates the skb is from an untrusted source. */
541 SKB_GSO_DODGY = 1 << 1,
542
543 /* This indicates the tcp segment has CWR set. */
544 SKB_GSO_TCP_ECN = 1 << 2,
545
546 SKB_GSO_TCP_FIXEDID = 1 << 3,
547
548 SKB_GSO_TCPV6 = 1 << 4,
549
550 SKB_GSO_FCOE = 1 << 5,
551
552 SKB_GSO_GRE = 1 << 6,
553
554 SKB_GSO_GRE_CSUM = 1 << 7,
555
556 SKB_GSO_IPXIP4 = 1 << 8,
557
558 SKB_GSO_IPXIP6 = 1 << 9,
559
560 SKB_GSO_UDP_TUNNEL = 1 << 10,
561
562 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563
564 SKB_GSO_PARTIAL = 1 << 12,
565
566 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567
568 SKB_GSO_SCTP = 1 << 14,
569
570 SKB_GSO_ESP = 1 << 15,
571
572 SKB_GSO_UDP = 1 << 16,
573 };
574
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
577 #endif
578
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t;
581 #else
582 typedef unsigned char *sk_buff_data_t;
583 #endif
584
585 /**
586 * struct sk_buff - socket buffer
587 * @next: Next buffer in list
588 * @prev: Previous buffer in list
589 * @tstamp: Time we arrived/left
590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
591 * @sk: Socket we are owned by
592 * @dev: Device we arrived on/are leaving by
593 * @cb: Control buffer. Free for use by every layer. Put private vars here
594 * @_skb_refdst: destination entry (with norefcount bit)
595 * @sp: the security path, used for xfrm
596 * @len: Length of actual data
597 * @data_len: Data length
598 * @mac_len: Length of link layer header
599 * @hdr_len: writable header length of cloned skb
600 * @csum: Checksum (must include start/offset pair)
601 * @csum_start: Offset from skb->head where checksumming should start
602 * @csum_offset: Offset from csum_start where checksum should be stored
603 * @priority: Packet queueing priority
604 * @ignore_df: allow local fragmentation
605 * @cloned: Head may be cloned (check refcnt to be sure)
606 * @ip_summed: Driver fed us an IP checksum
607 * @nohdr: Payload reference only, must not modify header
608 * @pkt_type: Packet class
609 * @fclone: skbuff clone status
610 * @ipvs_property: skbuff is owned by ipvs
611 * @tc_skip_classify: do not classify packet. set by IFB device
612 * @tc_at_ingress: used within tc_classify to distinguish in/egress
613 * @tc_redirected: packet was redirected by a tc action
614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615 * @peeked: this packet has been seen already, so stats have been
616 * done for it, don't do them again
617 * @nf_trace: netfilter packet trace flag
618 * @protocol: Packet protocol from driver
619 * @destructor: Destruct function
620 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
621 * @_nfct: Associated connection, if any (with nfctinfo bits)
622 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
623 * @skb_iif: ifindex of device we arrived on
624 * @tc_index: Traffic control index
625 * @hash: the packet hash
626 * @queue_mapping: Queue mapping for multiqueue devices
627 * @xmit_more: More SKBs are pending for this queue
628 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
629 * @ndisc_nodetype: router type (from link layer)
630 * @ooo_okay: allow the mapping of a socket to a queue to be changed
631 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
632 * ports.
633 * @sw_hash: indicates hash was computed in software stack
634 * @wifi_acked_valid: wifi_acked was set
635 * @wifi_acked: whether frame was acked on wifi or not
636 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
637 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
638 * @dst_pending_confirm: need to confirm neighbour
639 * @napi_id: id of the NAPI struct this skb came from
640 * @secmark: security marking
641 * @mark: Generic packet mark
642 * @vlan_proto: vlan encapsulation protocol
643 * @vlan_tci: vlan tag control information
644 * @inner_protocol: Protocol (encapsulation)
645 * @inner_transport_header: Inner transport layer header (encapsulation)
646 * @inner_network_header: Network layer header (encapsulation)
647 * @inner_mac_header: Link layer header (encapsulation)
648 * @transport_header: Transport layer header
649 * @network_header: Network layer header
650 * @mac_header: Link layer header
651 * @tail: Tail pointer
652 * @end: End pointer
653 * @head: Head of buffer
654 * @data: Data head pointer
655 * @truesize: Buffer size
656 * @users: User count - see {datagram,tcp}.c
657 */
658
659 struct sk_buff {
660 union {
661 struct {
662 /* These two members must be first. */
663 struct sk_buff *next;
664 struct sk_buff *prev;
665
666 union {
667 struct net_device *dev;
668 /* Some protocols might use this space to store information,
669 * while device pointer would be NULL.
670 * UDP receive path is one user.
671 */
672 unsigned long dev_scratch;
673 };
674 };
675 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
676 struct list_head list;
677 };
678
679 union {
680 struct sock *sk;
681 int ip_defrag_offset;
682 };
683
684 union {
685 ktime_t tstamp;
686 u64 skb_mstamp;
687 };
688 /*
689 * This is the control buffer. It is free to use for every
690 * layer. Please put your private variables there. If you
691 * want to keep them across layers you have to do a skb_clone()
692 * first. This is owned by whoever has the skb queued ATM.
693 */
694 char cb[48] __aligned(8);
695
696 union {
697 struct {
698 unsigned long _skb_refdst;
699 void (*destructor)(struct sk_buff *skb);
700 };
701 struct list_head tcp_tsorted_anchor;
702 };
703
704 #ifdef CONFIG_XFRM
705 struct sec_path *sp;
706 #endif
707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
708 unsigned long _nfct;
709 #endif
710 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
711 struct nf_bridge_info *nf_bridge;
712 #endif
713 unsigned int len,
714 data_len;
715 __u16 mac_len,
716 hdr_len;
717
718 /* Following fields are _not_ copied in __copy_skb_header()
719 * Note that queue_mapping is here mostly to fill a hole.
720 */
721 __u16 queue_mapping;
722
723 /* if you move cloned around you also must adapt those constants */
724 #ifdef __BIG_ENDIAN_BITFIELD
725 #define CLONED_MASK (1 << 7)
726 #else
727 #define CLONED_MASK 1
728 #endif
729 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
730
731 __u8 __cloned_offset[0];
732 __u8 cloned:1,
733 nohdr:1,
734 fclone:2,
735 peeked:1,
736 head_frag:1,
737 xmit_more:1,
738 pfmemalloc:1;
739
740 /* fields enclosed in headers_start/headers_end are copied
741 * using a single memcpy() in __copy_skb_header()
742 */
743 /* private: */
744 __u32 headers_start[0];
745 /* public: */
746
747 /* if you move pkt_type around you also must adapt those constants */
748 #ifdef __BIG_ENDIAN_BITFIELD
749 #define PKT_TYPE_MAX (7 << 5)
750 #else
751 #define PKT_TYPE_MAX 7
752 #endif
753 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
754
755 __u8 __pkt_type_offset[0];
756 __u8 pkt_type:3;
757 __u8 ignore_df:1;
758 __u8 nf_trace:1;
759 __u8 ip_summed:2;
760 __u8 ooo_okay:1;
761
762 __u8 l4_hash:1;
763 __u8 sw_hash:1;
764 __u8 wifi_acked_valid:1;
765 __u8 wifi_acked:1;
766 __u8 no_fcs:1;
767 /* Indicates the inner headers are valid in the skbuff. */
768 __u8 encapsulation:1;
769 __u8 encap_hdr_csum:1;
770 __u8 csum_valid:1;
771
772 __u8 csum_complete_sw:1;
773 __u8 csum_level:2;
774 __u8 csum_not_inet:1;
775 __u8 dst_pending_confirm:1;
776 #ifdef CONFIG_IPV6_NDISC_NODETYPE
777 __u8 ndisc_nodetype:2;
778 #endif
779 __u8 ipvs_property:1;
780
781 __u8 inner_protocol_type:1;
782 __u8 remcsum_offload:1;
783 #ifdef CONFIG_NET_SWITCHDEV
784 __u8 offload_fwd_mark:1;
785 __u8 offload_mr_fwd_mark:1;
786 #endif
787 #ifdef CONFIG_NET_CLS_ACT
788 __u8 tc_skip_classify:1;
789 __u8 tc_at_ingress:1;
790 __u8 tc_redirected:1;
791 __u8 tc_from_ingress:1;
792 #endif
793
794 #ifdef CONFIG_NET_SCHED
795 __u16 tc_index; /* traffic control index */
796 #endif
797
798 union {
799 __wsum csum;
800 struct {
801 __u16 csum_start;
802 __u16 csum_offset;
803 };
804 };
805 __u32 priority;
806 int skb_iif;
807 __u32 hash;
808 __be16 vlan_proto;
809 __u16 vlan_tci;
810 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
811 union {
812 unsigned int napi_id;
813 unsigned int sender_cpu;
814 };
815 #endif
816 #ifdef CONFIG_NETWORK_SECMARK
817 __u32 secmark;
818 #endif
819
820 union {
821 __u32 mark;
822 __u32 reserved_tailroom;
823 };
824
825 union {
826 __be16 inner_protocol;
827 __u8 inner_ipproto;
828 };
829
830 __u16 inner_transport_header;
831 __u16 inner_network_header;
832 __u16 inner_mac_header;
833
834 __be16 protocol;
835 __u16 transport_header;
836 __u16 network_header;
837 __u16 mac_header;
838
839 /* private: */
840 __u32 headers_end[0];
841 /* public: */
842
843 /* These elements must be at the end, see alloc_skb() for details. */
844 sk_buff_data_t tail;
845 sk_buff_data_t end;
846 unsigned char *head,
847 *data;
848 unsigned int truesize;
849 refcount_t users;
850 };
851
852 #ifdef __KERNEL__
853 /*
854 * Handling routines are only of interest to the kernel
855 */
856 #include <linux/slab.h>
857
858
859 #define SKB_ALLOC_FCLONE 0x01
860 #define SKB_ALLOC_RX 0x02
861 #define SKB_ALLOC_NAPI 0x04
862
863 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
864 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
865 {
866 return unlikely(skb->pfmemalloc);
867 }
868
869 /*
870 * skb might have a dst pointer attached, refcounted or not.
871 * _skb_refdst low order bit is set if refcount was _not_ taken
872 */
873 #define SKB_DST_NOREF 1UL
874 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
875
876 #define SKB_NFCT_PTRMASK ~(7UL)
877 /**
878 * skb_dst - returns skb dst_entry
879 * @skb: buffer
880 *
881 * Returns skb dst_entry, regardless of reference taken or not.
882 */
883 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
884 {
885 /* If refdst was not refcounted, check we still are in a
886 * rcu_read_lock section
887 */
888 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
889 !rcu_read_lock_held() &&
890 !rcu_read_lock_bh_held());
891 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
892 }
893
894 /**
895 * skb_dst_set - sets skb dst
896 * @skb: buffer
897 * @dst: dst entry
898 *
899 * Sets skb dst, assuming a reference was taken on dst and should
900 * be released by skb_dst_drop()
901 */
902 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
903 {
904 skb->_skb_refdst = (unsigned long)dst;
905 }
906
907 /**
908 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
909 * @skb: buffer
910 * @dst: dst entry
911 *
912 * Sets skb dst, assuming a reference was not taken on dst.
913 * If dst entry is cached, we do not take reference and dst_release
914 * will be avoided by refdst_drop. If dst entry is not cached, we take
915 * reference, so that last dst_release can destroy the dst immediately.
916 */
917 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
918 {
919 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
920 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
921 }
922
923 /**
924 * skb_dst_is_noref - Test if skb dst isn't refcounted
925 * @skb: buffer
926 */
927 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
928 {
929 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
930 }
931
932 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
933 {
934 return (struct rtable *)skb_dst(skb);
935 }
936
937 /* For mangling skb->pkt_type from user space side from applications
938 * such as nft, tc, etc, we only allow a conservative subset of
939 * possible pkt_types to be set.
940 */
941 static inline bool skb_pkt_type_ok(u32 ptype)
942 {
943 return ptype <= PACKET_OTHERHOST;
944 }
945
946 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
947 {
948 #ifdef CONFIG_NET_RX_BUSY_POLL
949 return skb->napi_id;
950 #else
951 return 0;
952 #endif
953 }
954
955 /* decrement the reference count and return true if we can free the skb */
956 static inline bool skb_unref(struct sk_buff *skb)
957 {
958 if (unlikely(!skb))
959 return false;
960 if (likely(refcount_read(&skb->users) == 1))
961 smp_rmb();
962 else if (likely(!refcount_dec_and_test(&skb->users)))
963 return false;
964
965 return true;
966 }
967
968 void skb_release_head_state(struct sk_buff *skb);
969 void kfree_skb(struct sk_buff *skb);
970 void kfree_skb_list(struct sk_buff *segs);
971 void skb_tx_error(struct sk_buff *skb);
972 void consume_skb(struct sk_buff *skb);
973 void __consume_stateless_skb(struct sk_buff *skb);
974 void __kfree_skb(struct sk_buff *skb);
975 extern struct kmem_cache *skbuff_head_cache;
976
977 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
978 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
979 bool *fragstolen, int *delta_truesize);
980
981 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
982 int node);
983 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
984 struct sk_buff *build_skb(void *data, unsigned int frag_size);
985 static inline struct sk_buff *alloc_skb(unsigned int size,
986 gfp_t priority)
987 {
988 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
989 }
990
991 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
992 unsigned long data_len,
993 int max_page_order,
994 int *errcode,
995 gfp_t gfp_mask);
996
997 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
998 struct sk_buff_fclones {
999 struct sk_buff skb1;
1000
1001 struct sk_buff skb2;
1002
1003 refcount_t fclone_ref;
1004 };
1005
1006 /**
1007 * skb_fclone_busy - check if fclone is busy
1008 * @sk: socket
1009 * @skb: buffer
1010 *
1011 * Returns true if skb is a fast clone, and its clone is not freed.
1012 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1013 * so we also check that this didnt happen.
1014 */
1015 static inline bool skb_fclone_busy(const struct sock *sk,
1016 const struct sk_buff *skb)
1017 {
1018 const struct sk_buff_fclones *fclones;
1019
1020 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021
1022 return skb->fclone == SKB_FCLONE_ORIG &&
1023 refcount_read(&fclones->fclone_ref) > 1 &&
1024 fclones->skb2.sk == sk;
1025 }
1026
1027 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1028 gfp_t priority)
1029 {
1030 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1031 }
1032
1033 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1034 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1035 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1036 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1037 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1038 gfp_t gfp_mask, bool fclone);
1039 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1040 gfp_t gfp_mask)
1041 {
1042 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1043 }
1044
1045 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1046 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1047 unsigned int headroom);
1048 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1049 int newtailroom, gfp_t priority);
1050 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1051 int offset, int len);
1052 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1053 int offset, int len);
1054 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1055 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1056
1057 /**
1058 * skb_pad - zero pad the tail of an skb
1059 * @skb: buffer to pad
1060 * @pad: space to pad
1061 *
1062 * Ensure that a buffer is followed by a padding area that is zero
1063 * filled. Used by network drivers which may DMA or transfer data
1064 * beyond the buffer end onto the wire.
1065 *
1066 * May return error in out of memory cases. The skb is freed on error.
1067 */
1068 static inline int skb_pad(struct sk_buff *skb, int pad)
1069 {
1070 return __skb_pad(skb, pad, true);
1071 }
1072 #define dev_kfree_skb(a) consume_skb(a)
1073
1074 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1075 int getfrag(void *from, char *to, int offset,
1076 int len, int odd, struct sk_buff *skb),
1077 void *from, int length);
1078
1079 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1080 int offset, size_t size);
1081
1082 struct skb_seq_state {
1083 __u32 lower_offset;
1084 __u32 upper_offset;
1085 __u32 frag_idx;
1086 __u32 stepped_offset;
1087 struct sk_buff *root_skb;
1088 struct sk_buff *cur_skb;
1089 __u8 *frag_data;
1090 };
1091
1092 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1093 unsigned int to, struct skb_seq_state *st);
1094 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1095 struct skb_seq_state *st);
1096 void skb_abort_seq_read(struct skb_seq_state *st);
1097
1098 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1099 unsigned int to, struct ts_config *config);
1100
1101 /*
1102 * Packet hash types specify the type of hash in skb_set_hash.
1103 *
1104 * Hash types refer to the protocol layer addresses which are used to
1105 * construct a packet's hash. The hashes are used to differentiate or identify
1106 * flows of the protocol layer for the hash type. Hash types are either
1107 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1108 *
1109 * Properties of hashes:
1110 *
1111 * 1) Two packets in different flows have different hash values
1112 * 2) Two packets in the same flow should have the same hash value
1113 *
1114 * A hash at a higher layer is considered to be more specific. A driver should
1115 * set the most specific hash possible.
1116 *
1117 * A driver cannot indicate a more specific hash than the layer at which a hash
1118 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1119 *
1120 * A driver may indicate a hash level which is less specific than the
1121 * actual layer the hash was computed on. For instance, a hash computed
1122 * at L4 may be considered an L3 hash. This should only be done if the
1123 * driver can't unambiguously determine that the HW computed the hash at
1124 * the higher layer. Note that the "should" in the second property above
1125 * permits this.
1126 */
1127 enum pkt_hash_types {
1128 PKT_HASH_TYPE_NONE, /* Undefined type */
1129 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1130 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1131 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1132 };
1133
1134 static inline void skb_clear_hash(struct sk_buff *skb)
1135 {
1136 skb->hash = 0;
1137 skb->sw_hash = 0;
1138 skb->l4_hash = 0;
1139 }
1140
1141 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1142 {
1143 if (!skb->l4_hash)
1144 skb_clear_hash(skb);
1145 }
1146
1147 static inline void
1148 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1149 {
1150 skb->l4_hash = is_l4;
1151 skb->sw_hash = is_sw;
1152 skb->hash = hash;
1153 }
1154
1155 static inline void
1156 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1157 {
1158 /* Used by drivers to set hash from HW */
1159 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1160 }
1161
1162 static inline void
1163 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1164 {
1165 __skb_set_hash(skb, hash, true, is_l4);
1166 }
1167
1168 void __skb_get_hash(struct sk_buff *skb);
1169 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1170 u32 skb_get_poff(const struct sk_buff *skb);
1171 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1172 const struct flow_keys *keys, int hlen);
1173 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1174 void *data, int hlen_proto);
1175
1176 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1177 int thoff, u8 ip_proto)
1178 {
1179 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1180 }
1181
1182 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1183 const struct flow_dissector_key *key,
1184 unsigned int key_count);
1185
1186 bool __skb_flow_dissect(const struct sk_buff *skb,
1187 struct flow_dissector *flow_dissector,
1188 void *target_container,
1189 void *data, __be16 proto, int nhoff, int hlen,
1190 unsigned int flags);
1191
1192 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1193 struct flow_dissector *flow_dissector,
1194 void *target_container, unsigned int flags)
1195 {
1196 return __skb_flow_dissect(skb, flow_dissector, target_container,
1197 NULL, 0, 0, 0, flags);
1198 }
1199
1200 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1201 struct flow_keys *flow,
1202 unsigned int flags)
1203 {
1204 memset(flow, 0, sizeof(*flow));
1205 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1206 NULL, 0, 0, 0, flags);
1207 }
1208
1209 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1210 void *data, __be16 proto,
1211 int nhoff, int hlen,
1212 unsigned int flags)
1213 {
1214 memset(flow, 0, sizeof(*flow));
1215 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1216 data, proto, nhoff, hlen, flags);
1217 }
1218
1219 static inline __u32 skb_get_hash(struct sk_buff *skb)
1220 {
1221 if (!skb->l4_hash && !skb->sw_hash)
1222 __skb_get_hash(skb);
1223
1224 return skb->hash;
1225 }
1226
1227 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1228 {
1229 if (!skb->l4_hash && !skb->sw_hash) {
1230 struct flow_keys keys;
1231 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1232
1233 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1234 }
1235
1236 return skb->hash;
1237 }
1238
1239 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1240
1241 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1242 {
1243 return skb->hash;
1244 }
1245
1246 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1247 {
1248 to->hash = from->hash;
1249 to->sw_hash = from->sw_hash;
1250 to->l4_hash = from->l4_hash;
1251 };
1252
1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1254 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1255 {
1256 return skb->head + skb->end;
1257 }
1258
1259 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1260 {
1261 return skb->end;
1262 }
1263 #else
1264 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1265 {
1266 return skb->end;
1267 }
1268
1269 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1270 {
1271 return skb->end - skb->head;
1272 }
1273 #endif
1274
1275 /* Internal */
1276 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1277
1278 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1279 {
1280 return &skb_shinfo(skb)->hwtstamps;
1281 }
1282
1283 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1284 {
1285 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1286
1287 return is_zcopy ? skb_uarg(skb) : NULL;
1288 }
1289
1290 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1291 {
1292 if (skb && uarg && !skb_zcopy(skb)) {
1293 sock_zerocopy_get(uarg);
1294 skb_shinfo(skb)->destructor_arg = uarg;
1295 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1296 }
1297 }
1298
1299 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1300 {
1301 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1302 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1303 }
1304
1305 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1306 {
1307 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1308 }
1309
1310 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1311 {
1312 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1313 }
1314
1315 /* Release a reference on a zerocopy structure */
1316 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1317 {
1318 struct ubuf_info *uarg = skb_zcopy(skb);
1319
1320 if (uarg) {
1321 if (skb_zcopy_is_nouarg(skb)) {
1322 /* no notification callback */
1323 } else if (uarg->callback == sock_zerocopy_callback) {
1324 uarg->zerocopy = uarg->zerocopy && zerocopy;
1325 sock_zerocopy_put(uarg);
1326 } else {
1327 uarg->callback(uarg, zerocopy);
1328 }
1329
1330 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1331 }
1332 }
1333
1334 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1335 static inline void skb_zcopy_abort(struct sk_buff *skb)
1336 {
1337 struct ubuf_info *uarg = skb_zcopy(skb);
1338
1339 if (uarg) {
1340 sock_zerocopy_put_abort(uarg);
1341 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1342 }
1343 }
1344
1345 /**
1346 * skb_queue_empty - check if a queue is empty
1347 * @list: queue head
1348 *
1349 * Returns true if the queue is empty, false otherwise.
1350 */
1351 static inline int skb_queue_empty(const struct sk_buff_head *list)
1352 {
1353 return list->next == (const struct sk_buff *) list;
1354 }
1355
1356 /**
1357 * skb_queue_empty_lockless - check if a queue is empty
1358 * @list: queue head
1359 *
1360 * Returns true if the queue is empty, false otherwise.
1361 * This variant can be used in lockless contexts.
1362 */
1363 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1364 {
1365 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1366 }
1367
1368
1369 /**
1370 * skb_queue_is_last - check if skb is the last entry in the queue
1371 * @list: queue head
1372 * @skb: buffer
1373 *
1374 * Returns true if @skb is the last buffer on the list.
1375 */
1376 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1377 const struct sk_buff *skb)
1378 {
1379 return skb->next == (const struct sk_buff *) list;
1380 }
1381
1382 /**
1383 * skb_queue_is_first - check if skb is the first entry in the queue
1384 * @list: queue head
1385 * @skb: buffer
1386 *
1387 * Returns true if @skb is the first buffer on the list.
1388 */
1389 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1390 const struct sk_buff *skb)
1391 {
1392 return skb->prev == (const struct sk_buff *) list;
1393 }
1394
1395 /**
1396 * skb_queue_next - return the next packet in the queue
1397 * @list: queue head
1398 * @skb: current buffer
1399 *
1400 * Return the next packet in @list after @skb. It is only valid to
1401 * call this if skb_queue_is_last() evaluates to false.
1402 */
1403 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1404 const struct sk_buff *skb)
1405 {
1406 /* This BUG_ON may seem severe, but if we just return then we
1407 * are going to dereference garbage.
1408 */
1409 BUG_ON(skb_queue_is_last(list, skb));
1410 return skb->next;
1411 }
1412
1413 /**
1414 * skb_queue_prev - return the prev packet in the queue
1415 * @list: queue head
1416 * @skb: current buffer
1417 *
1418 * Return the prev packet in @list before @skb. It is only valid to
1419 * call this if skb_queue_is_first() evaluates to false.
1420 */
1421 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1422 const struct sk_buff *skb)
1423 {
1424 /* This BUG_ON may seem severe, but if we just return then we
1425 * are going to dereference garbage.
1426 */
1427 BUG_ON(skb_queue_is_first(list, skb));
1428 return skb->prev;
1429 }
1430
1431 /**
1432 * skb_get - reference buffer
1433 * @skb: buffer to reference
1434 *
1435 * Makes another reference to a socket buffer and returns a pointer
1436 * to the buffer.
1437 */
1438 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1439 {
1440 refcount_inc(&skb->users);
1441 return skb;
1442 }
1443
1444 /*
1445 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1446 */
1447
1448 /**
1449 * skb_cloned - is the buffer a clone
1450 * @skb: buffer to check
1451 *
1452 * Returns true if the buffer was generated with skb_clone() and is
1453 * one of multiple shared copies of the buffer. Cloned buffers are
1454 * shared data so must not be written to under normal circumstances.
1455 */
1456 static inline int skb_cloned(const struct sk_buff *skb)
1457 {
1458 return skb->cloned &&
1459 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1460 }
1461
1462 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1463 {
1464 might_sleep_if(gfpflags_allow_blocking(pri));
1465
1466 if (skb_cloned(skb))
1467 return pskb_expand_head(skb, 0, 0, pri);
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * skb_header_cloned - is the header a clone
1474 * @skb: buffer to check
1475 *
1476 * Returns true if modifying the header part of the buffer requires
1477 * the data to be copied.
1478 */
1479 static inline int skb_header_cloned(const struct sk_buff *skb)
1480 {
1481 int dataref;
1482
1483 if (!skb->cloned)
1484 return 0;
1485
1486 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1487 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1488 return dataref != 1;
1489 }
1490
1491 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1492 {
1493 might_sleep_if(gfpflags_allow_blocking(pri));
1494
1495 if (skb_header_cloned(skb))
1496 return pskb_expand_head(skb, 0, 0, pri);
1497
1498 return 0;
1499 }
1500
1501 /**
1502 * __skb_header_release - release reference to header
1503 * @skb: buffer to operate on
1504 */
1505 static inline void __skb_header_release(struct sk_buff *skb)
1506 {
1507 skb->nohdr = 1;
1508 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1509 }
1510
1511
1512 /**
1513 * skb_shared - is the buffer shared
1514 * @skb: buffer to check
1515 *
1516 * Returns true if more than one person has a reference to this
1517 * buffer.
1518 */
1519 static inline int skb_shared(const struct sk_buff *skb)
1520 {
1521 return refcount_read(&skb->users) != 1;
1522 }
1523
1524 /**
1525 * skb_share_check - check if buffer is shared and if so clone it
1526 * @skb: buffer to check
1527 * @pri: priority for memory allocation
1528 *
1529 * If the buffer is shared the buffer is cloned and the old copy
1530 * drops a reference. A new clone with a single reference is returned.
1531 * If the buffer is not shared the original buffer is returned. When
1532 * being called from interrupt status or with spinlocks held pri must
1533 * be GFP_ATOMIC.
1534 *
1535 * NULL is returned on a memory allocation failure.
1536 */
1537 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1538 {
1539 might_sleep_if(gfpflags_allow_blocking(pri));
1540 if (skb_shared(skb)) {
1541 struct sk_buff *nskb = skb_clone(skb, pri);
1542
1543 if (likely(nskb))
1544 consume_skb(skb);
1545 else
1546 kfree_skb(skb);
1547 skb = nskb;
1548 }
1549 return skb;
1550 }
1551
1552 /*
1553 * Copy shared buffers into a new sk_buff. We effectively do COW on
1554 * packets to handle cases where we have a local reader and forward
1555 * and a couple of other messy ones. The normal one is tcpdumping
1556 * a packet thats being forwarded.
1557 */
1558
1559 /**
1560 * skb_unshare - make a copy of a shared buffer
1561 * @skb: buffer to check
1562 * @pri: priority for memory allocation
1563 *
1564 * If the socket buffer is a clone then this function creates a new
1565 * copy of the data, drops a reference count on the old copy and returns
1566 * the new copy with the reference count at 1. If the buffer is not a clone
1567 * the original buffer is returned. When called with a spinlock held or
1568 * from interrupt state @pri must be %GFP_ATOMIC
1569 *
1570 * %NULL is returned on a memory allocation failure.
1571 */
1572 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1573 gfp_t pri)
1574 {
1575 might_sleep_if(gfpflags_allow_blocking(pri));
1576 if (skb_cloned(skb)) {
1577 struct sk_buff *nskb = skb_copy(skb, pri);
1578
1579 /* Free our shared copy */
1580 if (likely(nskb))
1581 consume_skb(skb);
1582 else
1583 kfree_skb(skb);
1584 skb = nskb;
1585 }
1586 return skb;
1587 }
1588
1589 /**
1590 * skb_peek - peek at the head of an &sk_buff_head
1591 * @list_: list to peek at
1592 *
1593 * Peek an &sk_buff. Unlike most other operations you _MUST_
1594 * be careful with this one. A peek leaves the buffer on the
1595 * list and someone else may run off with it. You must hold
1596 * the appropriate locks or have a private queue to do this.
1597 *
1598 * Returns %NULL for an empty list or a pointer to the head element.
1599 * The reference count is not incremented and the reference is therefore
1600 * volatile. Use with caution.
1601 */
1602 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1603 {
1604 struct sk_buff *skb = list_->next;
1605
1606 if (skb == (struct sk_buff *)list_)
1607 skb = NULL;
1608 return skb;
1609 }
1610
1611 /**
1612 * skb_peek_next - peek skb following the given one from a queue
1613 * @skb: skb to start from
1614 * @list_: list to peek at
1615 *
1616 * Returns %NULL when the end of the list is met or a pointer to the
1617 * next element. The reference count is not incremented and the
1618 * reference is therefore volatile. Use with caution.
1619 */
1620 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1621 const struct sk_buff_head *list_)
1622 {
1623 struct sk_buff *next = skb->next;
1624
1625 if (next == (struct sk_buff *)list_)
1626 next = NULL;
1627 return next;
1628 }
1629
1630 /**
1631 * skb_peek_tail - peek at the tail of an &sk_buff_head
1632 * @list_: list to peek at
1633 *
1634 * Peek an &sk_buff. Unlike most other operations you _MUST_
1635 * be careful with this one. A peek leaves the buffer on the
1636 * list and someone else may run off with it. You must hold
1637 * the appropriate locks or have a private queue to do this.
1638 *
1639 * Returns %NULL for an empty list or a pointer to the tail element.
1640 * The reference count is not incremented and the reference is therefore
1641 * volatile. Use with caution.
1642 */
1643 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1644 {
1645 struct sk_buff *skb = list_->prev;
1646
1647 if (skb == (struct sk_buff *)list_)
1648 skb = NULL;
1649 return skb;
1650
1651 }
1652
1653 /**
1654 * skb_queue_len - get queue length
1655 * @list_: list to measure
1656 *
1657 * Return the length of an &sk_buff queue.
1658 */
1659 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1660 {
1661 return list_->qlen;
1662 }
1663
1664 /**
1665 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1666 * @list: queue to initialize
1667 *
1668 * This initializes only the list and queue length aspects of
1669 * an sk_buff_head object. This allows to initialize the list
1670 * aspects of an sk_buff_head without reinitializing things like
1671 * the spinlock. It can also be used for on-stack sk_buff_head
1672 * objects where the spinlock is known to not be used.
1673 */
1674 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1675 {
1676 list->prev = list->next = (struct sk_buff *)list;
1677 list->qlen = 0;
1678 }
1679
1680 /*
1681 * This function creates a split out lock class for each invocation;
1682 * this is needed for now since a whole lot of users of the skb-queue
1683 * infrastructure in drivers have different locking usage (in hardirq)
1684 * than the networking core (in softirq only). In the long run either the
1685 * network layer or drivers should need annotation to consolidate the
1686 * main types of usage into 3 classes.
1687 */
1688 static inline void skb_queue_head_init(struct sk_buff_head *list)
1689 {
1690 spin_lock_init(&list->lock);
1691 __skb_queue_head_init(list);
1692 }
1693
1694 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1695 struct lock_class_key *class)
1696 {
1697 skb_queue_head_init(list);
1698 lockdep_set_class(&list->lock, class);
1699 }
1700
1701 /*
1702 * Insert an sk_buff on a list.
1703 *
1704 * The "__skb_xxxx()" functions are the non-atomic ones that
1705 * can only be called with interrupts disabled.
1706 */
1707 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1708 struct sk_buff_head *list);
1709 static inline void __skb_insert(struct sk_buff *newsk,
1710 struct sk_buff *prev, struct sk_buff *next,
1711 struct sk_buff_head *list)
1712 {
1713 /* see skb_queue_empty_lockless() for the opposite READ_ONCE() */
1714 WRITE_ONCE(newsk->next, next);
1715 WRITE_ONCE(newsk->prev, prev);
1716 WRITE_ONCE(next->prev, newsk);
1717 WRITE_ONCE(prev->next, newsk);
1718 list->qlen++;
1719 }
1720
1721 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1722 struct sk_buff *prev,
1723 struct sk_buff *next)
1724 {
1725 struct sk_buff *first = list->next;
1726 struct sk_buff *last = list->prev;
1727
1728 WRITE_ONCE(first->prev, prev);
1729 WRITE_ONCE(prev->next, first);
1730
1731 WRITE_ONCE(last->next, next);
1732 WRITE_ONCE(next->prev, last);
1733 }
1734
1735 /**
1736 * skb_queue_splice - join two skb lists, this is designed for stacks
1737 * @list: the new list to add
1738 * @head: the place to add it in the first list
1739 */
1740 static inline void skb_queue_splice(const struct sk_buff_head *list,
1741 struct sk_buff_head *head)
1742 {
1743 if (!skb_queue_empty(list)) {
1744 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1745 head->qlen += list->qlen;
1746 }
1747 }
1748
1749 /**
1750 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1751 * @list: the new list to add
1752 * @head: the place to add it in the first list
1753 *
1754 * The list at @list is reinitialised
1755 */
1756 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1757 struct sk_buff_head *head)
1758 {
1759 if (!skb_queue_empty(list)) {
1760 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1761 head->qlen += list->qlen;
1762 __skb_queue_head_init(list);
1763 }
1764 }
1765
1766 /**
1767 * skb_queue_splice_tail - join two skb lists, each list being a queue
1768 * @list: the new list to add
1769 * @head: the place to add it in the first list
1770 */
1771 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1772 struct sk_buff_head *head)
1773 {
1774 if (!skb_queue_empty(list)) {
1775 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1776 head->qlen += list->qlen;
1777 }
1778 }
1779
1780 /**
1781 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1782 * @list: the new list to add
1783 * @head: the place to add it in the first list
1784 *
1785 * Each of the lists is a queue.
1786 * The list at @list is reinitialised
1787 */
1788 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1789 struct sk_buff_head *head)
1790 {
1791 if (!skb_queue_empty(list)) {
1792 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1793 head->qlen += list->qlen;
1794 __skb_queue_head_init(list);
1795 }
1796 }
1797
1798 /**
1799 * __skb_queue_after - queue a buffer at the list head
1800 * @list: list to use
1801 * @prev: place after this buffer
1802 * @newsk: buffer to queue
1803 *
1804 * Queue a buffer int the middle of a list. This function takes no locks
1805 * and you must therefore hold required locks before calling it.
1806 *
1807 * A buffer cannot be placed on two lists at the same time.
1808 */
1809 static inline void __skb_queue_after(struct sk_buff_head *list,
1810 struct sk_buff *prev,
1811 struct sk_buff *newsk)
1812 {
1813 __skb_insert(newsk, prev, prev->next, list);
1814 }
1815
1816 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1817 struct sk_buff_head *list);
1818
1819 static inline void __skb_queue_before(struct sk_buff_head *list,
1820 struct sk_buff *next,
1821 struct sk_buff *newsk)
1822 {
1823 __skb_insert(newsk, next->prev, next, list);
1824 }
1825
1826 /**
1827 * __skb_queue_head - queue a buffer at the list head
1828 * @list: list to use
1829 * @newsk: buffer to queue
1830 *
1831 * Queue a buffer at the start of a list. This function takes no locks
1832 * and you must therefore hold required locks before calling it.
1833 *
1834 * A buffer cannot be placed on two lists at the same time.
1835 */
1836 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1837 static inline void __skb_queue_head(struct sk_buff_head *list,
1838 struct sk_buff *newsk)
1839 {
1840 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1841 }
1842
1843 /**
1844 * __skb_queue_tail - queue a buffer at the list tail
1845 * @list: list to use
1846 * @newsk: buffer to queue
1847 *
1848 * Queue a buffer at the end of a list. This function takes no locks
1849 * and you must therefore hold required locks before calling it.
1850 *
1851 * A buffer cannot be placed on two lists at the same time.
1852 */
1853 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1854 static inline void __skb_queue_tail(struct sk_buff_head *list,
1855 struct sk_buff *newsk)
1856 {
1857 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1858 }
1859
1860 /*
1861 * remove sk_buff from list. _Must_ be called atomically, and with
1862 * the list known..
1863 */
1864 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1865 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1866 {
1867 struct sk_buff *next, *prev;
1868
1869 list->qlen--;
1870 next = skb->next;
1871 prev = skb->prev;
1872 skb->next = skb->prev = NULL;
1873 WRITE_ONCE(next->prev, prev);
1874 WRITE_ONCE(prev->next, next);
1875 }
1876
1877 /**
1878 * __skb_dequeue - remove from the head of the queue
1879 * @list: list to dequeue from
1880 *
1881 * Remove the head of the list. This function does not take any locks
1882 * so must be used with appropriate locks held only. The head item is
1883 * returned or %NULL if the list is empty.
1884 */
1885 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1886 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1887 {
1888 struct sk_buff *skb = skb_peek(list);
1889 if (skb)
1890 __skb_unlink(skb, list);
1891 return skb;
1892 }
1893
1894 /**
1895 * __skb_dequeue_tail - remove from the tail of the queue
1896 * @list: list to dequeue from
1897 *
1898 * Remove the tail of the list. This function does not take any locks
1899 * so must be used with appropriate locks held only. The tail item is
1900 * returned or %NULL if the list is empty.
1901 */
1902 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1903 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1904 {
1905 struct sk_buff *skb = skb_peek_tail(list);
1906 if (skb)
1907 __skb_unlink(skb, list);
1908 return skb;
1909 }
1910
1911
1912 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1913 {
1914 return skb->data_len;
1915 }
1916
1917 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1918 {
1919 return skb->len - skb->data_len;
1920 }
1921
1922 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1923 {
1924 unsigned int i, len = 0;
1925
1926 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1927 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1928 return len;
1929 }
1930
1931 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1932 {
1933 return skb_headlen(skb) + __skb_pagelen(skb);
1934 }
1935
1936 /**
1937 * __skb_fill_page_desc - initialise a paged fragment in an skb
1938 * @skb: buffer containing fragment to be initialised
1939 * @i: paged fragment index to initialise
1940 * @page: the page to use for this fragment
1941 * @off: the offset to the data with @page
1942 * @size: the length of the data
1943 *
1944 * Initialises the @i'th fragment of @skb to point to &size bytes at
1945 * offset @off within @page.
1946 *
1947 * Does not take any additional reference on the fragment.
1948 */
1949 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1950 struct page *page, int off, int size)
1951 {
1952 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1953
1954 /*
1955 * Propagate page pfmemalloc to the skb if we can. The problem is
1956 * that not all callers have unique ownership of the page but rely
1957 * on page_is_pfmemalloc doing the right thing(tm).
1958 */
1959 frag->page.p = page;
1960 frag->page_offset = off;
1961 skb_frag_size_set(frag, size);
1962
1963 page = compound_head(page);
1964 if (page_is_pfmemalloc(page))
1965 skb->pfmemalloc = true;
1966 }
1967
1968 /**
1969 * skb_fill_page_desc - initialise a paged fragment in an skb
1970 * @skb: buffer containing fragment to be initialised
1971 * @i: paged fragment index to initialise
1972 * @page: the page to use for this fragment
1973 * @off: the offset to the data with @page
1974 * @size: the length of the data
1975 *
1976 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1977 * @skb to point to @size bytes at offset @off within @page. In
1978 * addition updates @skb such that @i is the last fragment.
1979 *
1980 * Does not take any additional reference on the fragment.
1981 */
1982 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1983 struct page *page, int off, int size)
1984 {
1985 __skb_fill_page_desc(skb, i, page, off, size);
1986 skb_shinfo(skb)->nr_frags = i + 1;
1987 }
1988
1989 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1990 int size, unsigned int truesize);
1991
1992 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1993 unsigned int truesize);
1994
1995 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1996 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1997 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1998
1999 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2000 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2001 {
2002 return skb->head + skb->tail;
2003 }
2004
2005 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2006 {
2007 skb->tail = skb->data - skb->head;
2008 }
2009
2010 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2011 {
2012 skb_reset_tail_pointer(skb);
2013 skb->tail += offset;
2014 }
2015
2016 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2017 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2018 {
2019 return skb->tail;
2020 }
2021
2022 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2023 {
2024 skb->tail = skb->data;
2025 }
2026
2027 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2028 {
2029 skb->tail = skb->data + offset;
2030 }
2031
2032 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2033
2034 /*
2035 * Add data to an sk_buff
2036 */
2037 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2038 void *skb_put(struct sk_buff *skb, unsigned int len);
2039 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2040 {
2041 void *tmp = skb_tail_pointer(skb);
2042 SKB_LINEAR_ASSERT(skb);
2043 skb->tail += len;
2044 skb->len += len;
2045 return tmp;
2046 }
2047
2048 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2049 {
2050 void *tmp = __skb_put(skb, len);
2051
2052 memset(tmp, 0, len);
2053 return tmp;
2054 }
2055
2056 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2057 unsigned int len)
2058 {
2059 void *tmp = __skb_put(skb, len);
2060
2061 memcpy(tmp, data, len);
2062 return tmp;
2063 }
2064
2065 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2066 {
2067 *(u8 *)__skb_put(skb, 1) = val;
2068 }
2069
2070 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2071 {
2072 void *tmp = skb_put(skb, len);
2073
2074 memset(tmp, 0, len);
2075
2076 return tmp;
2077 }
2078
2079 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2080 unsigned int len)
2081 {
2082 void *tmp = skb_put(skb, len);
2083
2084 memcpy(tmp, data, len);
2085
2086 return tmp;
2087 }
2088
2089 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2090 {
2091 *(u8 *)skb_put(skb, 1) = val;
2092 }
2093
2094 void *skb_push(struct sk_buff *skb, unsigned int len);
2095 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2096 {
2097 skb->data -= len;
2098 skb->len += len;
2099 return skb->data;
2100 }
2101
2102 void *skb_pull(struct sk_buff *skb, unsigned int len);
2103 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2104 {
2105 skb->len -= len;
2106 BUG_ON(skb->len < skb->data_len);
2107 return skb->data += len;
2108 }
2109
2110 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2111 {
2112 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2113 }
2114
2115 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2116
2117 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2118 {
2119 if (len > skb_headlen(skb) &&
2120 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2121 return NULL;
2122 skb->len -= len;
2123 return skb->data += len;
2124 }
2125
2126 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2127 {
2128 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2129 }
2130
2131 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2132 {
2133 if (likely(len <= skb_headlen(skb)))
2134 return 1;
2135 if (unlikely(len > skb->len))
2136 return 0;
2137 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2138 }
2139
2140 void skb_condense(struct sk_buff *skb);
2141
2142 /**
2143 * skb_headroom - bytes at buffer head
2144 * @skb: buffer to check
2145 *
2146 * Return the number of bytes of free space at the head of an &sk_buff.
2147 */
2148 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2149 {
2150 return skb->data - skb->head;
2151 }
2152
2153 /**
2154 * skb_tailroom - bytes at buffer end
2155 * @skb: buffer to check
2156 *
2157 * Return the number of bytes of free space at the tail of an sk_buff
2158 */
2159 static inline int skb_tailroom(const struct sk_buff *skb)
2160 {
2161 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2162 }
2163
2164 /**
2165 * skb_availroom - bytes at buffer end
2166 * @skb: buffer to check
2167 *
2168 * Return the number of bytes of free space at the tail of an sk_buff
2169 * allocated by sk_stream_alloc()
2170 */
2171 static inline int skb_availroom(const struct sk_buff *skb)
2172 {
2173 if (skb_is_nonlinear(skb))
2174 return 0;
2175
2176 return skb->end - skb->tail - skb->reserved_tailroom;
2177 }
2178
2179 /**
2180 * skb_reserve - adjust headroom
2181 * @skb: buffer to alter
2182 * @len: bytes to move
2183 *
2184 * Increase the headroom of an empty &sk_buff by reducing the tail
2185 * room. This is only allowed for an empty buffer.
2186 */
2187 static inline void skb_reserve(struct sk_buff *skb, int len)
2188 {
2189 skb->data += len;
2190 skb->tail += len;
2191 }
2192
2193 /**
2194 * skb_tailroom_reserve - adjust reserved_tailroom
2195 * @skb: buffer to alter
2196 * @mtu: maximum amount of headlen permitted
2197 * @needed_tailroom: minimum amount of reserved_tailroom
2198 *
2199 * Set reserved_tailroom so that headlen can be as large as possible but
2200 * not larger than mtu and tailroom cannot be smaller than
2201 * needed_tailroom.
2202 * The required headroom should already have been reserved before using
2203 * this function.
2204 */
2205 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2206 unsigned int needed_tailroom)
2207 {
2208 SKB_LINEAR_ASSERT(skb);
2209 if (mtu < skb_tailroom(skb) - needed_tailroom)
2210 /* use at most mtu */
2211 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2212 else
2213 /* use up to all available space */
2214 skb->reserved_tailroom = needed_tailroom;
2215 }
2216
2217 #define ENCAP_TYPE_ETHER 0
2218 #define ENCAP_TYPE_IPPROTO 1
2219
2220 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2221 __be16 protocol)
2222 {
2223 skb->inner_protocol = protocol;
2224 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2225 }
2226
2227 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2228 __u8 ipproto)
2229 {
2230 skb->inner_ipproto = ipproto;
2231 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2232 }
2233
2234 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2235 {
2236 skb->inner_mac_header = skb->mac_header;
2237 skb->inner_network_header = skb->network_header;
2238 skb->inner_transport_header = skb->transport_header;
2239 }
2240
2241 static inline void skb_reset_mac_len(struct sk_buff *skb)
2242 {
2243 skb->mac_len = skb->network_header - skb->mac_header;
2244 }
2245
2246 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2247 *skb)
2248 {
2249 return skb->head + skb->inner_transport_header;
2250 }
2251
2252 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2253 {
2254 return skb_inner_transport_header(skb) - skb->data;
2255 }
2256
2257 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2258 {
2259 skb->inner_transport_header = skb->data - skb->head;
2260 }
2261
2262 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2263 const int offset)
2264 {
2265 skb_reset_inner_transport_header(skb);
2266 skb->inner_transport_header += offset;
2267 }
2268
2269 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2270 {
2271 return skb->head + skb->inner_network_header;
2272 }
2273
2274 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2275 {
2276 skb->inner_network_header = skb->data - skb->head;
2277 }
2278
2279 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2280 const int offset)
2281 {
2282 skb_reset_inner_network_header(skb);
2283 skb->inner_network_header += offset;
2284 }
2285
2286 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2287 {
2288 return skb->head + skb->inner_mac_header;
2289 }
2290
2291 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2292 {
2293 skb->inner_mac_header = skb->data - skb->head;
2294 }
2295
2296 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2297 const int offset)
2298 {
2299 skb_reset_inner_mac_header(skb);
2300 skb->inner_mac_header += offset;
2301 }
2302 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2303 {
2304 return skb->transport_header != (typeof(skb->transport_header))~0U;
2305 }
2306
2307 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2308 {
2309 return skb->head + skb->transport_header;
2310 }
2311
2312 static inline void skb_reset_transport_header(struct sk_buff *skb)
2313 {
2314 skb->transport_header = skb->data - skb->head;
2315 }
2316
2317 static inline void skb_set_transport_header(struct sk_buff *skb,
2318 const int offset)
2319 {
2320 skb_reset_transport_header(skb);
2321 skb->transport_header += offset;
2322 }
2323
2324 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2325 {
2326 return skb->head + skb->network_header;
2327 }
2328
2329 static inline void skb_reset_network_header(struct sk_buff *skb)
2330 {
2331 skb->network_header = skb->data - skb->head;
2332 }
2333
2334 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2335 {
2336 skb_reset_network_header(skb);
2337 skb->network_header += offset;
2338 }
2339
2340 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2341 {
2342 return skb->head + skb->mac_header;
2343 }
2344
2345 static inline int skb_mac_offset(const struct sk_buff *skb)
2346 {
2347 return skb_mac_header(skb) - skb->data;
2348 }
2349
2350 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2351 {
2352 return skb->network_header - skb->mac_header;
2353 }
2354
2355 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2356 {
2357 return skb->mac_header != (typeof(skb->mac_header))~0U;
2358 }
2359
2360 static inline void skb_reset_mac_header(struct sk_buff *skb)
2361 {
2362 skb->mac_header = skb->data - skb->head;
2363 }
2364
2365 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2366 {
2367 skb_reset_mac_header(skb);
2368 skb->mac_header += offset;
2369 }
2370
2371 static inline void skb_pop_mac_header(struct sk_buff *skb)
2372 {
2373 skb->mac_header = skb->network_header;
2374 }
2375
2376 static inline void skb_probe_transport_header(struct sk_buff *skb,
2377 const int offset_hint)
2378 {
2379 struct flow_keys keys;
2380
2381 if (skb_transport_header_was_set(skb))
2382 return;
2383 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2384 skb_set_transport_header(skb, keys.control.thoff);
2385 else if (offset_hint >= 0)
2386 skb_set_transport_header(skb, offset_hint);
2387 }
2388
2389 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2390 {
2391 if (skb_mac_header_was_set(skb)) {
2392 const unsigned char *old_mac = skb_mac_header(skb);
2393
2394 skb_set_mac_header(skb, -skb->mac_len);
2395 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2396 }
2397 }
2398
2399 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2400 {
2401 return skb->csum_start - skb_headroom(skb);
2402 }
2403
2404 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2405 {
2406 return skb->head + skb->csum_start;
2407 }
2408
2409 static inline int skb_transport_offset(const struct sk_buff *skb)
2410 {
2411 return skb_transport_header(skb) - skb->data;
2412 }
2413
2414 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2415 {
2416 return skb->transport_header - skb->network_header;
2417 }
2418
2419 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2420 {
2421 return skb->inner_transport_header - skb->inner_network_header;
2422 }
2423
2424 static inline int skb_network_offset(const struct sk_buff *skb)
2425 {
2426 return skb_network_header(skb) - skb->data;
2427 }
2428
2429 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2430 {
2431 return skb_inner_network_header(skb) - skb->data;
2432 }
2433
2434 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2435 {
2436 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2437 }
2438
2439 /*
2440 * CPUs often take a performance hit when accessing unaligned memory
2441 * locations. The actual performance hit varies, it can be small if the
2442 * hardware handles it or large if we have to take an exception and fix it
2443 * in software.
2444 *
2445 * Since an ethernet header is 14 bytes network drivers often end up with
2446 * the IP header at an unaligned offset. The IP header can be aligned by
2447 * shifting the start of the packet by 2 bytes. Drivers should do this
2448 * with:
2449 *
2450 * skb_reserve(skb, NET_IP_ALIGN);
2451 *
2452 * The downside to this alignment of the IP header is that the DMA is now
2453 * unaligned. On some architectures the cost of an unaligned DMA is high
2454 * and this cost outweighs the gains made by aligning the IP header.
2455 *
2456 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2457 * to be overridden.
2458 */
2459 #ifndef NET_IP_ALIGN
2460 #define NET_IP_ALIGN 2
2461 #endif
2462
2463 /*
2464 * The networking layer reserves some headroom in skb data (via
2465 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2466 * the header has to grow. In the default case, if the header has to grow
2467 * 32 bytes or less we avoid the reallocation.
2468 *
2469 * Unfortunately this headroom changes the DMA alignment of the resulting
2470 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2471 * on some architectures. An architecture can override this value,
2472 * perhaps setting it to a cacheline in size (since that will maintain
2473 * cacheline alignment of the DMA). It must be a power of 2.
2474 *
2475 * Various parts of the networking layer expect at least 32 bytes of
2476 * headroom, you should not reduce this.
2477 *
2478 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2479 * to reduce average number of cache lines per packet.
2480 * get_rps_cpus() for example only access one 64 bytes aligned block :
2481 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2482 */
2483 #ifndef NET_SKB_PAD
2484 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2485 #endif
2486
2487 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2488
2489 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2490 {
2491 if (unlikely(skb_is_nonlinear(skb))) {
2492 WARN_ON(1);
2493 return;
2494 }
2495 skb->len = len;
2496 skb_set_tail_pointer(skb, len);
2497 }
2498
2499 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2500 {
2501 __skb_set_length(skb, len);
2502 }
2503
2504 void skb_trim(struct sk_buff *skb, unsigned int len);
2505
2506 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2507 {
2508 if (skb->data_len)
2509 return ___pskb_trim(skb, len);
2510 __skb_trim(skb, len);
2511 return 0;
2512 }
2513
2514 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2515 {
2516 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2517 }
2518
2519 /**
2520 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2521 * @skb: buffer to alter
2522 * @len: new length
2523 *
2524 * This is identical to pskb_trim except that the caller knows that
2525 * the skb is not cloned so we should never get an error due to out-
2526 * of-memory.
2527 */
2528 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2529 {
2530 int err = pskb_trim(skb, len);
2531 BUG_ON(err);
2532 }
2533
2534 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2535 {
2536 unsigned int diff = len - skb->len;
2537
2538 if (skb_tailroom(skb) < diff) {
2539 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2540 GFP_ATOMIC);
2541 if (ret)
2542 return ret;
2543 }
2544 __skb_set_length(skb, len);
2545 return 0;
2546 }
2547
2548 /**
2549 * skb_orphan - orphan a buffer
2550 * @skb: buffer to orphan
2551 *
2552 * If a buffer currently has an owner then we call the owner's
2553 * destructor function and make the @skb unowned. The buffer continues
2554 * to exist but is no longer charged to its former owner.
2555 */
2556 static inline void skb_orphan(struct sk_buff *skb)
2557 {
2558 if (skb->destructor) {
2559 skb->destructor(skb);
2560 skb->destructor = NULL;
2561 skb->sk = NULL;
2562 } else {
2563 BUG_ON(skb->sk);
2564 }
2565 }
2566
2567 /**
2568 * skb_orphan_frags - orphan the frags contained in a buffer
2569 * @skb: buffer to orphan frags from
2570 * @gfp_mask: allocation mask for replacement pages
2571 *
2572 * For each frag in the SKB which needs a destructor (i.e. has an
2573 * owner) create a copy of that frag and release the original
2574 * page by calling the destructor.
2575 */
2576 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2577 {
2578 if (likely(!skb_zcopy(skb)))
2579 return 0;
2580 if (!skb_zcopy_is_nouarg(skb) &&
2581 skb_uarg(skb)->callback == sock_zerocopy_callback)
2582 return 0;
2583 return skb_copy_ubufs(skb, gfp_mask);
2584 }
2585
2586 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2587 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2588 {
2589 if (likely(!skb_zcopy(skb)))
2590 return 0;
2591 return skb_copy_ubufs(skb, gfp_mask);
2592 }
2593
2594 /**
2595 * __skb_queue_purge - empty a list
2596 * @list: list to empty
2597 *
2598 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2599 * the list and one reference dropped. This function does not take the
2600 * list lock and the caller must hold the relevant locks to use it.
2601 */
2602 void skb_queue_purge(struct sk_buff_head *list);
2603 static inline void __skb_queue_purge(struct sk_buff_head *list)
2604 {
2605 struct sk_buff *skb;
2606 while ((skb = __skb_dequeue(list)) != NULL)
2607 kfree_skb(skb);
2608 }
2609
2610 unsigned int skb_rbtree_purge(struct rb_root *root);
2611
2612 void *netdev_alloc_frag(unsigned int fragsz);
2613
2614 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2615 gfp_t gfp_mask);
2616
2617 /**
2618 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2619 * @dev: network device to receive on
2620 * @length: length to allocate
2621 *
2622 * Allocate a new &sk_buff and assign it a usage count of one. The
2623 * buffer has unspecified headroom built in. Users should allocate
2624 * the headroom they think they need without accounting for the
2625 * built in space. The built in space is used for optimisations.
2626 *
2627 * %NULL is returned if there is no free memory. Although this function
2628 * allocates memory it can be called from an interrupt.
2629 */
2630 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2631 unsigned int length)
2632 {
2633 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2634 }
2635
2636 /* legacy helper around __netdev_alloc_skb() */
2637 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2638 gfp_t gfp_mask)
2639 {
2640 return __netdev_alloc_skb(NULL, length, gfp_mask);
2641 }
2642
2643 /* legacy helper around netdev_alloc_skb() */
2644 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2645 {
2646 return netdev_alloc_skb(NULL, length);
2647 }
2648
2649
2650 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2651 unsigned int length, gfp_t gfp)
2652 {
2653 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2654
2655 if (NET_IP_ALIGN && skb)
2656 skb_reserve(skb, NET_IP_ALIGN);
2657 return skb;
2658 }
2659
2660 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2661 unsigned int length)
2662 {
2663 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2664 }
2665
2666 static inline void skb_free_frag(void *addr)
2667 {
2668 page_frag_free(addr);
2669 }
2670
2671 void *napi_alloc_frag(unsigned int fragsz);
2672 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2673 unsigned int length, gfp_t gfp_mask);
2674 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2675 unsigned int length)
2676 {
2677 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2678 }
2679 void napi_consume_skb(struct sk_buff *skb, int budget);
2680
2681 void __kfree_skb_flush(void);
2682 void __kfree_skb_defer(struct sk_buff *skb);
2683
2684 /**
2685 * __dev_alloc_pages - allocate page for network Rx
2686 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2687 * @order: size of the allocation
2688 *
2689 * Allocate a new page.
2690 *
2691 * %NULL is returned if there is no free memory.
2692 */
2693 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2694 unsigned int order)
2695 {
2696 /* This piece of code contains several assumptions.
2697 * 1. This is for device Rx, therefor a cold page is preferred.
2698 * 2. The expectation is the user wants a compound page.
2699 * 3. If requesting a order 0 page it will not be compound
2700 * due to the check to see if order has a value in prep_new_page
2701 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2702 * code in gfp_to_alloc_flags that should be enforcing this.
2703 */
2704 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2705
2706 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2707 }
2708
2709 static inline struct page *dev_alloc_pages(unsigned int order)
2710 {
2711 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2712 }
2713
2714 /**
2715 * __dev_alloc_page - allocate a page for network Rx
2716 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2717 *
2718 * Allocate a new page.
2719 *
2720 * %NULL is returned if there is no free memory.
2721 */
2722 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2723 {
2724 return __dev_alloc_pages(gfp_mask, 0);
2725 }
2726
2727 static inline struct page *dev_alloc_page(void)
2728 {
2729 return dev_alloc_pages(0);
2730 }
2731
2732 /**
2733 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2734 * @page: The page that was allocated from skb_alloc_page
2735 * @skb: The skb that may need pfmemalloc set
2736 */
2737 static inline void skb_propagate_pfmemalloc(struct page *page,
2738 struct sk_buff *skb)
2739 {
2740 if (page_is_pfmemalloc(page))
2741 skb->pfmemalloc = true;
2742 }
2743
2744 /**
2745 * skb_frag_page - retrieve the page referred to by a paged fragment
2746 * @frag: the paged fragment
2747 *
2748 * Returns the &struct page associated with @frag.
2749 */
2750 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2751 {
2752 return frag->page.p;
2753 }
2754
2755 /**
2756 * __skb_frag_ref - take an addition reference on a paged fragment.
2757 * @frag: the paged fragment
2758 *
2759 * Takes an additional reference on the paged fragment @frag.
2760 */
2761 static inline void __skb_frag_ref(skb_frag_t *frag)
2762 {
2763 get_page(skb_frag_page(frag));
2764 }
2765
2766 /**
2767 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2768 * @skb: the buffer
2769 * @f: the fragment offset.
2770 *
2771 * Takes an additional reference on the @f'th paged fragment of @skb.
2772 */
2773 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2774 {
2775 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2776 }
2777
2778 /**
2779 * __skb_frag_unref - release a reference on a paged fragment.
2780 * @frag: the paged fragment
2781 *
2782 * Releases a reference on the paged fragment @frag.
2783 */
2784 static inline void __skb_frag_unref(skb_frag_t *frag)
2785 {
2786 put_page(skb_frag_page(frag));
2787 }
2788
2789 /**
2790 * skb_frag_unref - release a reference on a paged fragment of an skb.
2791 * @skb: the buffer
2792 * @f: the fragment offset
2793 *
2794 * Releases a reference on the @f'th paged fragment of @skb.
2795 */
2796 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2797 {
2798 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2799 }
2800
2801 /**
2802 * skb_frag_address - gets the address of the data contained in a paged fragment
2803 * @frag: the paged fragment buffer
2804 *
2805 * Returns the address of the data within @frag. The page must already
2806 * be mapped.
2807 */
2808 static inline void *skb_frag_address(const skb_frag_t *frag)
2809 {
2810 return page_address(skb_frag_page(frag)) + frag->page_offset;
2811 }
2812
2813 /**
2814 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2815 * @frag: the paged fragment buffer
2816 *
2817 * Returns the address of the data within @frag. Checks that the page
2818 * is mapped and returns %NULL otherwise.
2819 */
2820 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2821 {
2822 void *ptr = page_address(skb_frag_page(frag));
2823 if (unlikely(!ptr))
2824 return NULL;
2825
2826 return ptr + frag->page_offset;
2827 }
2828
2829 /**
2830 * __skb_frag_set_page - sets the page contained in a paged fragment
2831 * @frag: the paged fragment
2832 * @page: the page to set
2833 *
2834 * Sets the fragment @frag to contain @page.
2835 */
2836 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2837 {
2838 frag->page.p = page;
2839 }
2840
2841 /**
2842 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2843 * @skb: the buffer
2844 * @f: the fragment offset
2845 * @page: the page to set
2846 *
2847 * Sets the @f'th fragment of @skb to contain @page.
2848 */
2849 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2850 struct page *page)
2851 {
2852 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2853 }
2854
2855 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2856
2857 /**
2858 * skb_frag_dma_map - maps a paged fragment via the DMA API
2859 * @dev: the device to map the fragment to
2860 * @frag: the paged fragment to map
2861 * @offset: the offset within the fragment (starting at the
2862 * fragment's own offset)
2863 * @size: the number of bytes to map
2864 * @dir: the direction of the mapping (``PCI_DMA_*``)
2865 *
2866 * Maps the page associated with @frag to @device.
2867 */
2868 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2869 const skb_frag_t *frag,
2870 size_t offset, size_t size,
2871 enum dma_data_direction dir)
2872 {
2873 return dma_map_page(dev, skb_frag_page(frag),
2874 frag->page_offset + offset, size, dir);
2875 }
2876
2877 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2878 gfp_t gfp_mask)
2879 {
2880 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2881 }
2882
2883
2884 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2885 gfp_t gfp_mask)
2886 {
2887 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2888 }
2889
2890
2891 /**
2892 * skb_clone_writable - is the header of a clone writable
2893 * @skb: buffer to check
2894 * @len: length up to which to write
2895 *
2896 * Returns true if modifying the header part of the cloned buffer
2897 * does not requires the data to be copied.
2898 */
2899 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2900 {
2901 return !skb_header_cloned(skb) &&
2902 skb_headroom(skb) + len <= skb->hdr_len;
2903 }
2904
2905 static inline int skb_try_make_writable(struct sk_buff *skb,
2906 unsigned int write_len)
2907 {
2908 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2909 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2910 }
2911
2912 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2913 int cloned)
2914 {
2915 int delta = 0;
2916
2917 if (headroom > skb_headroom(skb))
2918 delta = headroom - skb_headroom(skb);
2919
2920 if (delta || cloned)
2921 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2922 GFP_ATOMIC);
2923 return 0;
2924 }
2925
2926 /**
2927 * skb_cow - copy header of skb when it is required
2928 * @skb: buffer to cow
2929 * @headroom: needed headroom
2930 *
2931 * If the skb passed lacks sufficient headroom or its data part
2932 * is shared, data is reallocated. If reallocation fails, an error
2933 * is returned and original skb is not changed.
2934 *
2935 * The result is skb with writable area skb->head...skb->tail
2936 * and at least @headroom of space at head.
2937 */
2938 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2939 {
2940 return __skb_cow(skb, headroom, skb_cloned(skb));
2941 }
2942
2943 /**
2944 * skb_cow_head - skb_cow but only making the head writable
2945 * @skb: buffer to cow
2946 * @headroom: needed headroom
2947 *
2948 * This function is identical to skb_cow except that we replace the
2949 * skb_cloned check by skb_header_cloned. It should be used when
2950 * you only need to push on some header and do not need to modify
2951 * the data.
2952 */
2953 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2954 {
2955 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2956 }
2957
2958 /**
2959 * skb_padto - pad an skbuff up to a minimal size
2960 * @skb: buffer to pad
2961 * @len: minimal length
2962 *
2963 * Pads up a buffer to ensure the trailing bytes exist and are
2964 * blanked. If the buffer already contains sufficient data it
2965 * is untouched. Otherwise it is extended. Returns zero on
2966 * success. The skb is freed on error.
2967 */
2968 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2969 {
2970 unsigned int size = skb->len;
2971 if (likely(size >= len))
2972 return 0;
2973 return skb_pad(skb, len - size);
2974 }
2975
2976 /**
2977 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2978 * @skb: buffer to pad
2979 * @len: minimal length
2980 * @free_on_error: free buffer on error
2981 *
2982 * Pads up a buffer to ensure the trailing bytes exist and are
2983 * blanked. If the buffer already contains sufficient data it
2984 * is untouched. Otherwise it is extended. Returns zero on
2985 * success. The skb is freed on error if @free_on_error is true.
2986 */
2987 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2988 bool free_on_error)
2989 {
2990 unsigned int size = skb->len;
2991
2992 if (unlikely(size < len)) {
2993 len -= size;
2994 if (__skb_pad(skb, len, free_on_error))
2995 return -ENOMEM;
2996 __skb_put(skb, len);
2997 }
2998 return 0;
2999 }
3000
3001 /**
3002 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3003 * @skb: buffer to pad
3004 * @len: minimal length
3005 *
3006 * Pads up a buffer to ensure the trailing bytes exist and are
3007 * blanked. If the buffer already contains sufficient data it
3008 * is untouched. Otherwise it is extended. Returns zero on
3009 * success. The skb is freed on error.
3010 */
3011 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3012 {
3013 return __skb_put_padto(skb, len, true);
3014 }
3015
3016 static inline int skb_add_data(struct sk_buff *skb,
3017 struct iov_iter *from, int copy)
3018 {
3019 const int off = skb->len;
3020
3021 if (skb->ip_summed == CHECKSUM_NONE) {
3022 __wsum csum = 0;
3023 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3024 &csum, from)) {
3025 skb->csum = csum_block_add(skb->csum, csum, off);
3026 return 0;
3027 }
3028 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3029 return 0;
3030
3031 __skb_trim(skb, off);
3032 return -EFAULT;
3033 }
3034
3035 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3036 const struct page *page, int off)
3037 {
3038 if (skb_zcopy(skb))
3039 return false;
3040 if (i) {
3041 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3042
3043 return page == skb_frag_page(frag) &&
3044 off == frag->page_offset + skb_frag_size(frag);
3045 }
3046 return false;
3047 }
3048
3049 static inline int __skb_linearize(struct sk_buff *skb)
3050 {
3051 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3052 }
3053
3054 /**
3055 * skb_linearize - convert paged skb to linear one
3056 * @skb: buffer to linarize
3057 *
3058 * If there is no free memory -ENOMEM is returned, otherwise zero
3059 * is returned and the old skb data released.
3060 */
3061 static inline int skb_linearize(struct sk_buff *skb)
3062 {
3063 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3064 }
3065
3066 /**
3067 * skb_has_shared_frag - can any frag be overwritten
3068 * @skb: buffer to test
3069 *
3070 * Return true if the skb has at least one frag that might be modified
3071 * by an external entity (as in vmsplice()/sendfile())
3072 */
3073 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3074 {
3075 return skb_is_nonlinear(skb) &&
3076 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3077 }
3078
3079 /**
3080 * skb_linearize_cow - make sure skb is linear and writable
3081 * @skb: buffer to process
3082 *
3083 * If there is no free memory -ENOMEM is returned, otherwise zero
3084 * is returned and the old skb data released.
3085 */
3086 static inline int skb_linearize_cow(struct sk_buff *skb)
3087 {
3088 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3089 __skb_linearize(skb) : 0;
3090 }
3091
3092 static __always_inline void
3093 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3094 unsigned int off)
3095 {
3096 if (skb->ip_summed == CHECKSUM_COMPLETE)
3097 skb->csum = csum_block_sub(skb->csum,
3098 csum_partial(start, len, 0), off);
3099 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3100 skb_checksum_start_offset(skb) < 0)
3101 skb->ip_summed = CHECKSUM_NONE;
3102 }
3103
3104 /**
3105 * skb_postpull_rcsum - update checksum for received skb after pull
3106 * @skb: buffer to update
3107 * @start: start of data before pull
3108 * @len: length of data pulled
3109 *
3110 * After doing a pull on a received packet, you need to call this to
3111 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3112 * CHECKSUM_NONE so that it can be recomputed from scratch.
3113 */
3114 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3115 const void *start, unsigned int len)
3116 {
3117 __skb_postpull_rcsum(skb, start, len, 0);
3118 }
3119
3120 static __always_inline void
3121 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3122 unsigned int off)
3123 {
3124 if (skb->ip_summed == CHECKSUM_COMPLETE)
3125 skb->csum = csum_block_add(skb->csum,
3126 csum_partial(start, len, 0), off);
3127 }
3128
3129 /**
3130 * skb_postpush_rcsum - update checksum for received skb after push
3131 * @skb: buffer to update
3132 * @start: start of data after push
3133 * @len: length of data pushed
3134 *
3135 * After doing a push on a received packet, you need to call this to
3136 * update the CHECKSUM_COMPLETE checksum.
3137 */
3138 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3139 const void *start, unsigned int len)
3140 {
3141 __skb_postpush_rcsum(skb, start, len, 0);
3142 }
3143
3144 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3145
3146 /**
3147 * skb_push_rcsum - push skb and update receive checksum
3148 * @skb: buffer to update
3149 * @len: length of data pulled
3150 *
3151 * This function performs an skb_push on the packet and updates
3152 * the CHECKSUM_COMPLETE checksum. It should be used on
3153 * receive path processing instead of skb_push unless you know
3154 * that the checksum difference is zero (e.g., a valid IP header)
3155 * or you are setting ip_summed to CHECKSUM_NONE.
3156 */
3157 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3158 {
3159 skb_push(skb, len);
3160 skb_postpush_rcsum(skb, skb->data, len);
3161 return skb->data;
3162 }
3163
3164 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3165 /**
3166 * pskb_trim_rcsum - trim received skb and update checksum
3167 * @skb: buffer to trim
3168 * @len: new length
3169 *
3170 * This is exactly the same as pskb_trim except that it ensures the
3171 * checksum of received packets are still valid after the operation.
3172 * It can change skb pointers.
3173 */
3174
3175 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3176 {
3177 if (likely(len >= skb->len))
3178 return 0;
3179 return pskb_trim_rcsum_slow(skb, len);
3180 }
3181
3182 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3183 {
3184 if (skb->ip_summed == CHECKSUM_COMPLETE)
3185 skb->ip_summed = CHECKSUM_NONE;
3186 __skb_trim(skb, len);
3187 return 0;
3188 }
3189
3190 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3191 {
3192 if (skb->ip_summed == CHECKSUM_COMPLETE)
3193 skb->ip_summed = CHECKSUM_NONE;
3194 return __skb_grow(skb, len);
3195 }
3196
3197 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3198 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3199 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3200 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3201 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3202
3203 #define skb_queue_walk(queue, skb) \
3204 for (skb = (queue)->next; \
3205 skb != (struct sk_buff *)(queue); \
3206 skb = skb->next)
3207
3208 #define skb_queue_walk_safe(queue, skb, tmp) \
3209 for (skb = (queue)->next, tmp = skb->next; \
3210 skb != (struct sk_buff *)(queue); \
3211 skb = tmp, tmp = skb->next)
3212
3213 #define skb_queue_walk_from(queue, skb) \
3214 for (; skb != (struct sk_buff *)(queue); \
3215 skb = skb->next)
3216
3217 #define skb_rbtree_walk(skb, root) \
3218 for (skb = skb_rb_first(root); skb != NULL; \
3219 skb = skb_rb_next(skb))
3220
3221 #define skb_rbtree_walk_from(skb) \
3222 for (; skb != NULL; \
3223 skb = skb_rb_next(skb))
3224
3225 #define skb_rbtree_walk_from_safe(skb, tmp) \
3226 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3227 skb = tmp)
3228
3229 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3230 for (tmp = skb->next; \
3231 skb != (struct sk_buff *)(queue); \
3232 skb = tmp, tmp = skb->next)
3233
3234 #define skb_queue_reverse_walk(queue, skb) \
3235 for (skb = (queue)->prev; \
3236 skb != (struct sk_buff *)(queue); \
3237 skb = skb->prev)
3238
3239 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3240 for (skb = (queue)->prev, tmp = skb->prev; \
3241 skb != (struct sk_buff *)(queue); \
3242 skb = tmp, tmp = skb->prev)
3243
3244 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3245 for (tmp = skb->prev; \
3246 skb != (struct sk_buff *)(queue); \
3247 skb = tmp, tmp = skb->prev)
3248
3249 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3250 {
3251 return skb_shinfo(skb)->frag_list != NULL;
3252 }
3253
3254 static inline void skb_frag_list_init(struct sk_buff *skb)
3255 {
3256 skb_shinfo(skb)->frag_list = NULL;
3257 }
3258
3259 #define skb_walk_frags(skb, iter) \
3260 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3261
3262
3263 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3264 const struct sk_buff *skb);
3265 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3266 struct sk_buff_head *queue,
3267 unsigned int flags,
3268 void (*destructor)(struct sock *sk,
3269 struct sk_buff *skb),
3270 int *peeked, int *off, int *err,
3271 struct sk_buff **last);
3272 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3273 void (*destructor)(struct sock *sk,
3274 struct sk_buff *skb),
3275 int *peeked, int *off, int *err,
3276 struct sk_buff **last);
3277 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3278 void (*destructor)(struct sock *sk,
3279 struct sk_buff *skb),
3280 int *peeked, int *off, int *err);
3281 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3282 int *err);
3283 unsigned int datagram_poll(struct file *file, struct socket *sock,
3284 struct poll_table_struct *wait);
3285 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3286 struct iov_iter *to, int size);
3287 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3288 struct msghdr *msg, int size)
3289 {
3290 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3291 }
3292 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3293 struct msghdr *msg);
3294 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3295 struct iov_iter *from, int len);
3296 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3297 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3298 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3299 static inline void skb_free_datagram_locked(struct sock *sk,
3300 struct sk_buff *skb)
3301 {
3302 __skb_free_datagram_locked(sk, skb, 0);
3303 }
3304 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3305 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3306 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3307 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3308 int len, __wsum csum);
3309 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3310 struct pipe_inode_info *pipe, unsigned int len,
3311 unsigned int flags);
3312 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3313 int len);
3314 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3315 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3316 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3317 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3318 int len, int hlen);
3319 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3320 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3321 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3322 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3323 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3324 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3325 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3326 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3327 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3328 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3329 int skb_vlan_pop(struct sk_buff *skb);
3330 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3331 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3332 gfp_t gfp);
3333
3334 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3335 {
3336 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3337 }
3338
3339 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3340 {
3341 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3342 }
3343
3344 struct skb_checksum_ops {
3345 __wsum (*update)(const void *mem, int len, __wsum wsum);
3346 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3347 };
3348
3349 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3350
3351 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3352 __wsum csum, const struct skb_checksum_ops *ops);
3353 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3354 __wsum csum);
3355
3356 static inline void * __must_check
3357 __skb_header_pointer(const struct sk_buff *skb, int offset,
3358 int len, void *data, int hlen, void *buffer)
3359 {
3360 if (hlen - offset >= len)
3361 return data + offset;
3362
3363 if (!skb ||
3364 skb_copy_bits(skb, offset, buffer, len) < 0)
3365 return NULL;
3366
3367 return buffer;
3368 }
3369
3370 static inline void * __must_check
3371 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3372 {
3373 return __skb_header_pointer(skb, offset, len, skb->data,
3374 skb_headlen(skb), buffer);
3375 }
3376
3377 /**
3378 * skb_needs_linearize - check if we need to linearize a given skb
3379 * depending on the given device features.
3380 * @skb: socket buffer to check
3381 * @features: net device features
3382 *
3383 * Returns true if either:
3384 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3385 * 2. skb is fragmented and the device does not support SG.
3386 */
3387 static inline bool skb_needs_linearize(struct sk_buff *skb,
3388 netdev_features_t features)
3389 {
3390 return skb_is_nonlinear(skb) &&
3391 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3392 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3393 }
3394
3395 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3396 void *to,
3397 const unsigned int len)
3398 {
3399 memcpy(to, skb->data, len);
3400 }
3401
3402 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3403 const int offset, void *to,
3404 const unsigned int len)
3405 {
3406 memcpy(to, skb->data + offset, len);
3407 }
3408
3409 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3410 const void *from,
3411 const unsigned int len)
3412 {
3413 memcpy(skb->data, from, len);
3414 }
3415
3416 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3417 const int offset,
3418 const void *from,
3419 const unsigned int len)
3420 {
3421 memcpy(skb->data + offset, from, len);
3422 }
3423
3424 void skb_init(void);
3425
3426 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3427 {
3428 return skb->tstamp;
3429 }
3430
3431 /**
3432 * skb_get_timestamp - get timestamp from a skb
3433 * @skb: skb to get stamp from
3434 * @stamp: pointer to struct timeval to store stamp in
3435 *
3436 * Timestamps are stored in the skb as offsets to a base timestamp.
3437 * This function converts the offset back to a struct timeval and stores
3438 * it in stamp.
3439 */
3440 static inline void skb_get_timestamp(const struct sk_buff *skb,
3441 struct timeval *stamp)
3442 {
3443 *stamp = ktime_to_timeval(skb->tstamp);
3444 }
3445
3446 static inline void skb_get_timestampns(const struct sk_buff *skb,
3447 struct timespec *stamp)
3448 {
3449 *stamp = ktime_to_timespec(skb->tstamp);
3450 }
3451
3452 static inline void __net_timestamp(struct sk_buff *skb)
3453 {
3454 skb->tstamp = ktime_get_real();
3455 }
3456
3457 static inline ktime_t net_timedelta(ktime_t t)
3458 {
3459 return ktime_sub(ktime_get_real(), t);
3460 }
3461
3462 static inline ktime_t net_invalid_timestamp(void)
3463 {
3464 return 0;
3465 }
3466
3467 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3468 {
3469 return skb_shinfo(skb)->meta_len;
3470 }
3471
3472 static inline void *skb_metadata_end(const struct sk_buff *skb)
3473 {
3474 return skb_mac_header(skb);
3475 }
3476
3477 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3478 const struct sk_buff *skb_b,
3479 u8 meta_len)
3480 {
3481 const void *a = skb_metadata_end(skb_a);
3482 const void *b = skb_metadata_end(skb_b);
3483 /* Using more efficient varaiant than plain call to memcmp(). */
3484 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3485 u64 diffs = 0;
3486
3487 switch (meta_len) {
3488 #define __it(x, op) (x -= sizeof(u##op))
3489 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3490 case 32: diffs |= __it_diff(a, b, 64);
3491 case 24: diffs |= __it_diff(a, b, 64);
3492 case 16: diffs |= __it_diff(a, b, 64);
3493 case 8: diffs |= __it_diff(a, b, 64);
3494 break;
3495 case 28: diffs |= __it_diff(a, b, 64);
3496 case 20: diffs |= __it_diff(a, b, 64);
3497 case 12: diffs |= __it_diff(a, b, 64);
3498 case 4: diffs |= __it_diff(a, b, 32);
3499 break;
3500 }
3501 return diffs;
3502 #else
3503 return memcmp(a - meta_len, b - meta_len, meta_len);
3504 #endif
3505 }
3506
3507 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3508 const struct sk_buff *skb_b)
3509 {
3510 u8 len_a = skb_metadata_len(skb_a);
3511 u8 len_b = skb_metadata_len(skb_b);
3512
3513 if (!(len_a | len_b))
3514 return false;
3515
3516 return len_a != len_b ?
3517 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3518 }
3519
3520 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3521 {
3522 skb_shinfo(skb)->meta_len = meta_len;
3523 }
3524
3525 static inline void skb_metadata_clear(struct sk_buff *skb)
3526 {
3527 skb_metadata_set(skb, 0);
3528 }
3529
3530 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3531
3532 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3533
3534 void skb_clone_tx_timestamp(struct sk_buff *skb);
3535 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3536
3537 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3538
3539 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3540 {
3541 }
3542
3543 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3544 {
3545 return false;
3546 }
3547
3548 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3549
3550 /**
3551 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3552 *
3553 * PHY drivers may accept clones of transmitted packets for
3554 * timestamping via their phy_driver.txtstamp method. These drivers
3555 * must call this function to return the skb back to the stack with a
3556 * timestamp.
3557 *
3558 * @skb: clone of the the original outgoing packet
3559 * @hwtstamps: hardware time stamps
3560 *
3561 */
3562 void skb_complete_tx_timestamp(struct sk_buff *skb,
3563 struct skb_shared_hwtstamps *hwtstamps);
3564
3565 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3566 struct skb_shared_hwtstamps *hwtstamps,
3567 struct sock *sk, int tstype);
3568
3569 /**
3570 * skb_tstamp_tx - queue clone of skb with send time stamps
3571 * @orig_skb: the original outgoing packet
3572 * @hwtstamps: hardware time stamps, may be NULL if not available
3573 *
3574 * If the skb has a socket associated, then this function clones the
3575 * skb (thus sharing the actual data and optional structures), stores
3576 * the optional hardware time stamping information (if non NULL) or
3577 * generates a software time stamp (otherwise), then queues the clone
3578 * to the error queue of the socket. Errors are silently ignored.
3579 */
3580 void skb_tstamp_tx(struct sk_buff *orig_skb,
3581 struct skb_shared_hwtstamps *hwtstamps);
3582
3583 /**
3584 * skb_tx_timestamp() - Driver hook for transmit timestamping
3585 *
3586 * Ethernet MAC Drivers should call this function in their hard_xmit()
3587 * function immediately before giving the sk_buff to the MAC hardware.
3588 *
3589 * Specifically, one should make absolutely sure that this function is
3590 * called before TX completion of this packet can trigger. Otherwise
3591 * the packet could potentially already be freed.
3592 *
3593 * @skb: A socket buffer.
3594 */
3595 static inline void skb_tx_timestamp(struct sk_buff *skb)
3596 {
3597 skb_clone_tx_timestamp(skb);
3598 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3599 skb_tstamp_tx(skb, NULL);
3600 }
3601
3602 /**
3603 * skb_complete_wifi_ack - deliver skb with wifi status
3604 *
3605 * @skb: the original outgoing packet
3606 * @acked: ack status
3607 *
3608 */
3609 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3610
3611 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3612 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3613
3614 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3615 {
3616 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3617 skb->csum_valid ||
3618 (skb->ip_summed == CHECKSUM_PARTIAL &&
3619 skb_checksum_start_offset(skb) >= 0));
3620 }
3621
3622 /**
3623 * skb_checksum_complete - Calculate checksum of an entire packet
3624 * @skb: packet to process
3625 *
3626 * This function calculates the checksum over the entire packet plus
3627 * the value of skb->csum. The latter can be used to supply the
3628 * checksum of a pseudo header as used by TCP/UDP. It returns the
3629 * checksum.
3630 *
3631 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3632 * this function can be used to verify that checksum on received
3633 * packets. In that case the function should return zero if the
3634 * checksum is correct. In particular, this function will return zero
3635 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3636 * hardware has already verified the correctness of the checksum.
3637 */
3638 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3639 {
3640 return skb_csum_unnecessary(skb) ?
3641 0 : __skb_checksum_complete(skb);
3642 }
3643
3644 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3645 {
3646 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3647 if (skb->csum_level == 0)
3648 skb->ip_summed = CHECKSUM_NONE;
3649 else
3650 skb->csum_level--;
3651 }
3652 }
3653
3654 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3655 {
3656 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3657 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3658 skb->csum_level++;
3659 } else if (skb->ip_summed == CHECKSUM_NONE) {
3660 skb->ip_summed = CHECKSUM_UNNECESSARY;
3661 skb->csum_level = 0;
3662 }
3663 }
3664
3665 /* Check if we need to perform checksum complete validation.
3666 *
3667 * Returns true if checksum complete is needed, false otherwise
3668 * (either checksum is unnecessary or zero checksum is allowed).
3669 */
3670 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3671 bool zero_okay,
3672 __sum16 check)
3673 {
3674 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3675 skb->csum_valid = 1;
3676 __skb_decr_checksum_unnecessary(skb);
3677 return false;
3678 }
3679
3680 return true;
3681 }
3682
3683 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3684 * in checksum_init.
3685 */
3686 #define CHECKSUM_BREAK 76
3687
3688 /* Unset checksum-complete
3689 *
3690 * Unset checksum complete can be done when packet is being modified
3691 * (uncompressed for instance) and checksum-complete value is
3692 * invalidated.
3693 */
3694 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3695 {
3696 if (skb->ip_summed == CHECKSUM_COMPLETE)
3697 skb->ip_summed = CHECKSUM_NONE;
3698 }
3699
3700 /* Validate (init) checksum based on checksum complete.
3701 *
3702 * Return values:
3703 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3704 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3705 * checksum is stored in skb->csum for use in __skb_checksum_complete
3706 * non-zero: value of invalid checksum
3707 *
3708 */
3709 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3710 bool complete,
3711 __wsum psum)
3712 {
3713 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3714 if (!csum_fold(csum_add(psum, skb->csum))) {
3715 skb->csum_valid = 1;
3716 return 0;
3717 }
3718 }
3719
3720 skb->csum = psum;
3721
3722 if (complete || skb->len <= CHECKSUM_BREAK) {
3723 __sum16 csum;
3724
3725 csum = __skb_checksum_complete(skb);
3726 skb->csum_valid = !csum;
3727 return csum;
3728 }
3729
3730 return 0;
3731 }
3732
3733 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3734 {
3735 return 0;
3736 }
3737
3738 /* Perform checksum validate (init). Note that this is a macro since we only
3739 * want to calculate the pseudo header which is an input function if necessary.
3740 * First we try to validate without any computation (checksum unnecessary) and
3741 * then calculate based on checksum complete calling the function to compute
3742 * pseudo header.
3743 *
3744 * Return values:
3745 * 0: checksum is validated or try to in skb_checksum_complete
3746 * non-zero: value of invalid checksum
3747 */
3748 #define __skb_checksum_validate(skb, proto, complete, \
3749 zero_okay, check, compute_pseudo) \
3750 ({ \
3751 __sum16 __ret = 0; \
3752 skb->csum_valid = 0; \
3753 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3754 __ret = __skb_checksum_validate_complete(skb, \
3755 complete, compute_pseudo(skb, proto)); \
3756 __ret; \
3757 })
3758
3759 #define skb_checksum_init(skb, proto, compute_pseudo) \
3760 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3761
3762 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3763 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3764
3765 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3766 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3767
3768 #define skb_checksum_validate_zero_check(skb, proto, check, \
3769 compute_pseudo) \
3770 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3771
3772 #define skb_checksum_simple_validate(skb) \
3773 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3774
3775 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3776 {
3777 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3778 }
3779
3780 static inline void __skb_checksum_convert(struct sk_buff *skb,
3781 __sum16 check, __wsum pseudo)
3782 {
3783 skb->csum = ~pseudo;
3784 skb->ip_summed = CHECKSUM_COMPLETE;
3785 }
3786
3787 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3788 do { \
3789 if (__skb_checksum_convert_check(skb)) \
3790 __skb_checksum_convert(skb, check, \
3791 compute_pseudo(skb, proto)); \
3792 } while (0)
3793
3794 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3795 u16 start, u16 offset)
3796 {
3797 skb->ip_summed = CHECKSUM_PARTIAL;
3798 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3799 skb->csum_offset = offset - start;
3800 }
3801
3802 /* Update skbuf and packet to reflect the remote checksum offload operation.
3803 * When called, ptr indicates the starting point for skb->csum when
3804 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3805 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3806 */
3807 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3808 int start, int offset, bool nopartial)
3809 {
3810 __wsum delta;
3811
3812 if (!nopartial) {
3813 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3814 return;
3815 }
3816
3817 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3818 __skb_checksum_complete(skb);
3819 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3820 }
3821
3822 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3823
3824 /* Adjust skb->csum since we changed the packet */
3825 skb->csum = csum_add(skb->csum, delta);
3826 }
3827
3828 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3829 {
3830 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3831 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3832 #else
3833 return NULL;
3834 #endif
3835 }
3836
3837 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3838 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3839 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3840 {
3841 if (nfct && atomic_dec_and_test(&nfct->use))
3842 nf_conntrack_destroy(nfct);
3843 }
3844 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3845 {
3846 if (nfct)
3847 atomic_inc(&nfct->use);
3848 }
3849 #endif
3850 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3851 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3852 {
3853 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3854 kfree(nf_bridge);
3855 }
3856 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3857 {
3858 if (nf_bridge)
3859 refcount_inc(&nf_bridge->use);
3860 }
3861 #endif /* CONFIG_BRIDGE_NETFILTER */
3862 static inline void nf_reset(struct sk_buff *skb)
3863 {
3864 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3865 nf_conntrack_put(skb_nfct(skb));
3866 skb->_nfct = 0;
3867 #endif
3868 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3869 nf_bridge_put(skb->nf_bridge);
3870 skb->nf_bridge = NULL;
3871 #endif
3872 }
3873
3874 static inline void nf_reset_trace(struct sk_buff *skb)
3875 {
3876 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3877 skb->nf_trace = 0;
3878 #endif
3879 }
3880
3881 static inline void ipvs_reset(struct sk_buff *skb)
3882 {
3883 #if IS_ENABLED(CONFIG_IP_VS)
3884 skb->ipvs_property = 0;
3885 #endif
3886 }
3887
3888 /* Note: This doesn't put any conntrack and bridge info in dst. */
3889 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3890 bool copy)
3891 {
3892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3893 dst->_nfct = src->_nfct;
3894 nf_conntrack_get(skb_nfct(src));
3895 #endif
3896 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3897 dst->nf_bridge = src->nf_bridge;
3898 nf_bridge_get(src->nf_bridge);
3899 #endif
3900 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3901 if (copy)
3902 dst->nf_trace = src->nf_trace;
3903 #endif
3904 }
3905
3906 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3907 {
3908 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3909 nf_conntrack_put(skb_nfct(dst));
3910 #endif
3911 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3912 nf_bridge_put(dst->nf_bridge);
3913 #endif
3914 __nf_copy(dst, src, true);
3915 }
3916
3917 #ifdef CONFIG_NETWORK_SECMARK
3918 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3919 {
3920 to->secmark = from->secmark;
3921 }
3922
3923 static inline void skb_init_secmark(struct sk_buff *skb)
3924 {
3925 skb->secmark = 0;
3926 }
3927 #else
3928 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3929 { }
3930
3931 static inline void skb_init_secmark(struct sk_buff *skb)
3932 { }
3933 #endif
3934
3935 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3936 {
3937 return !skb->destructor &&
3938 #if IS_ENABLED(CONFIG_XFRM)
3939 !skb->sp &&
3940 #endif
3941 !skb_nfct(skb) &&
3942 !skb->_skb_refdst &&
3943 !skb_has_frag_list(skb);
3944 }
3945
3946 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3947 {
3948 skb->queue_mapping = queue_mapping;
3949 }
3950
3951 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3952 {
3953 return skb->queue_mapping;
3954 }
3955
3956 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3957 {
3958 to->queue_mapping = from->queue_mapping;
3959 }
3960
3961 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3962 {
3963 skb->queue_mapping = rx_queue + 1;
3964 }
3965
3966 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3967 {
3968 return skb->queue_mapping - 1;
3969 }
3970
3971 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3972 {
3973 return skb->queue_mapping != 0;
3974 }
3975
3976 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3977 {
3978 skb->dst_pending_confirm = val;
3979 }
3980
3981 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3982 {
3983 return skb->dst_pending_confirm != 0;
3984 }
3985
3986 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3987 {
3988 #ifdef CONFIG_XFRM
3989 return skb->sp;
3990 #else
3991 return NULL;
3992 #endif
3993 }
3994
3995 /* Keeps track of mac header offset relative to skb->head.
3996 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3997 * For non-tunnel skb it points to skb_mac_header() and for
3998 * tunnel skb it points to outer mac header.
3999 * Keeps track of level of encapsulation of network headers.
4000 */
4001 struct skb_gso_cb {
4002 union {
4003 int mac_offset;
4004 int data_offset;
4005 };
4006 int encap_level;
4007 __wsum csum;
4008 __u16 csum_start;
4009 };
4010 #define SKB_SGO_CB_OFFSET 32
4011 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4012
4013 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4014 {
4015 return (skb_mac_header(inner_skb) - inner_skb->head) -
4016 SKB_GSO_CB(inner_skb)->mac_offset;
4017 }
4018
4019 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4020 {
4021 int new_headroom, headroom;
4022 int ret;
4023
4024 headroom = skb_headroom(skb);
4025 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4026 if (ret)
4027 return ret;
4028
4029 new_headroom = skb_headroom(skb);
4030 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4031 return 0;
4032 }
4033
4034 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4035 {
4036 /* Do not update partial checksums if remote checksum is enabled. */
4037 if (skb->remcsum_offload)
4038 return;
4039
4040 SKB_GSO_CB(skb)->csum = res;
4041 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4042 }
4043
4044 /* Compute the checksum for a gso segment. First compute the checksum value
4045 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4046 * then add in skb->csum (checksum from csum_start to end of packet).
4047 * skb->csum and csum_start are then updated to reflect the checksum of the
4048 * resultant packet starting from the transport header-- the resultant checksum
4049 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4050 * header.
4051 */
4052 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4053 {
4054 unsigned char *csum_start = skb_transport_header(skb);
4055 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4056 __wsum partial = SKB_GSO_CB(skb)->csum;
4057
4058 SKB_GSO_CB(skb)->csum = res;
4059 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4060
4061 return csum_fold(csum_partial(csum_start, plen, partial));
4062 }
4063
4064 static inline bool skb_is_gso(const struct sk_buff *skb)
4065 {
4066 return skb_shinfo(skb)->gso_size;
4067 }
4068
4069 /* Note: Should be called only if skb_is_gso(skb) is true */
4070 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4071 {
4072 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4073 }
4074
4075 static inline void skb_gso_reset(struct sk_buff *skb)
4076 {
4077 skb_shinfo(skb)->gso_size = 0;
4078 skb_shinfo(skb)->gso_segs = 0;
4079 skb_shinfo(skb)->gso_type = 0;
4080 }
4081
4082 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4083
4084 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4085 {
4086 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4087 * wanted then gso_type will be set. */
4088 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4089
4090 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4091 unlikely(shinfo->gso_type == 0)) {
4092 __skb_warn_lro_forwarding(skb);
4093 return true;
4094 }
4095 return false;
4096 }
4097
4098 static inline void skb_forward_csum(struct sk_buff *skb)
4099 {
4100 /* Unfortunately we don't support this one. Any brave souls? */
4101 if (skb->ip_summed == CHECKSUM_COMPLETE)
4102 skb->ip_summed = CHECKSUM_NONE;
4103 }
4104
4105 /**
4106 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4107 * @skb: skb to check
4108 *
4109 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4110 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4111 * use this helper, to document places where we make this assertion.
4112 */
4113 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4114 {
4115 #ifdef DEBUG
4116 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4117 #endif
4118 }
4119
4120 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4121
4122 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4123 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4124 unsigned int transport_len,
4125 __sum16(*skb_chkf)(struct sk_buff *skb));
4126
4127 /**
4128 * skb_head_is_locked - Determine if the skb->head is locked down
4129 * @skb: skb to check
4130 *
4131 * The head on skbs build around a head frag can be removed if they are
4132 * not cloned. This function returns true if the skb head is locked down
4133 * due to either being allocated via kmalloc, or by being a clone with
4134 * multiple references to the head.
4135 */
4136 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4137 {
4138 return !skb->head_frag || skb_cloned(skb);
4139 }
4140
4141 /**
4142 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4143 *
4144 * @skb: GSO skb
4145 *
4146 * skb_gso_network_seglen is used to determine the real size of the
4147 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4148 *
4149 * The MAC/L2 header is not accounted for.
4150 */
4151 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4152 {
4153 unsigned int hdr_len = skb_transport_header(skb) -
4154 skb_network_header(skb);
4155 return hdr_len + skb_gso_transport_seglen(skb);
4156 }
4157
4158 /**
4159 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4160 *
4161 * @skb: GSO skb
4162 *
4163 * skb_gso_mac_seglen is used to determine the real size of the
4164 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4165 * headers (TCP/UDP).
4166 */
4167 static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4168 {
4169 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4170 return hdr_len + skb_gso_transport_seglen(skb);
4171 }
4172
4173 /* Local Checksum Offload.
4174 * Compute outer checksum based on the assumption that the
4175 * inner checksum will be offloaded later.
4176 * See Documentation/networking/checksum-offloads.txt for
4177 * explanation of how this works.
4178 * Fill in outer checksum adjustment (e.g. with sum of outer
4179 * pseudo-header) before calling.
4180 * Also ensure that inner checksum is in linear data area.
4181 */
4182 static inline __wsum lco_csum(struct sk_buff *skb)
4183 {
4184 unsigned char *csum_start = skb_checksum_start(skb);
4185 unsigned char *l4_hdr = skb_transport_header(skb);
4186 __wsum partial;
4187
4188 /* Start with complement of inner checksum adjustment */
4189 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4190 skb->csum_offset));
4191
4192 /* Add in checksum of our headers (incl. outer checksum
4193 * adjustment filled in by caller) and return result.
4194 */
4195 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4196 }
4197
4198 #endif /* __KERNEL__ */
4199 #endif /* _LINUX_SKBUFF_H */