]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
Merge tag 'mac80211-next-for-davem-2015-05-19' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38
39 /* A. Checksumming of received packets by device.
40 *
41 * CHECKSUM_NONE:
42 *
43 * Device failed to checksum this packet e.g. due to lack of capabilities.
44 * The packet contains full (though not verified) checksum in packet but
45 * not in skb->csum. Thus, skb->csum is undefined in this case.
46 *
47 * CHECKSUM_UNNECESSARY:
48 *
49 * The hardware you're dealing with doesn't calculate the full checksum
50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52 * if their checksums are okay. skb->csum is still undefined in this case
53 * though. It is a bad option, but, unfortunately, nowadays most vendors do
54 * this. Apparently with the secret goal to sell you new devices, when you
55 * will add new protocol to your host, f.e. IPv6 8)
56 *
57 * CHECKSUM_UNNECESSARY is applicable to following protocols:
58 * TCP: IPv6 and IPv4.
59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60 * zero UDP checksum for either IPv4 or IPv6, the networking stack
61 * may perform further validation in this case.
62 * GRE: only if the checksum is present in the header.
63 * SCTP: indicates the CRC in SCTP header has been validated.
64 *
65 * skb->csum_level indicates the number of consecutive checksums found in
66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68 * and a device is able to verify the checksums for UDP (possibly zero),
69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70 * two. If the device were only able to verify the UDP checksum and not
71 * GRE, either because it doesn't support GRE checksum of because GRE
72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73 * not considered in this case).
74 *
75 * CHECKSUM_COMPLETE:
76 *
77 * This is the most generic way. The device supplied checksum of the _whole_
78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79 * hardware doesn't need to parse L3/L4 headers to implement this.
80 *
81 * Note: Even if device supports only some protocols, but is able to produce
82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83 *
84 * CHECKSUM_PARTIAL:
85 *
86 * A checksum is set up to be offloaded to a device as described in the
87 * output description for CHECKSUM_PARTIAL. This may occur on a packet
88 * received directly from another Linux OS, e.g., a virtualized Linux kernel
89 * on the same host, or it may be set in the input path in GRO or remote
90 * checksum offload. For the purposes of checksum verification, the checksum
91 * referred to by skb->csum_start + skb->csum_offset and any preceding
92 * checksums in the packet are considered verified. Any checksums in the
93 * packet that are after the checksum being offloaded are not considered to
94 * be verified.
95 *
96 * B. Checksumming on output.
97 *
98 * CHECKSUM_NONE:
99 *
100 * The skb was already checksummed by the protocol, or a checksum is not
101 * required.
102 *
103 * CHECKSUM_PARTIAL:
104 *
105 * The device is required to checksum the packet as seen by hard_start_xmit()
106 * from skb->csum_start up to the end, and to record/write the checksum at
107 * offset skb->csum_start + skb->csum_offset.
108 *
109 * The device must show its capabilities in dev->features, set up at device
110 * setup time, e.g. netdev_features.h:
111 *
112 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
113 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114 * IPv4. Sigh. Vendors like this way for an unknown reason.
115 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117 * NETIF_F_... - Well, you get the picture.
118 *
119 * CHECKSUM_UNNECESSARY:
120 *
121 * Normally, the device will do per protocol specific checksumming. Protocol
122 * implementations that do not want the NIC to perform the checksum
123 * calculation should use this flag in their outgoing skbs.
124 *
125 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126 * offload. Correspondingly, the FCoE protocol driver
127 * stack should use CHECKSUM_UNNECESSARY.
128 *
129 * Any questions? No questions, good. --ANK
130 */
131
132 /* Don't change this without changing skb_csum_unnecessary! */
133 #define CHECKSUM_NONE 0
134 #define CHECKSUM_UNNECESSARY 1
135 #define CHECKSUM_COMPLETE 2
136 #define CHECKSUM_PARTIAL 3
137
138 /* Maximum value in skb->csum_level */
139 #define SKB_MAX_CSUM_LEVEL 3
140
141 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
142 #define SKB_WITH_OVERHEAD(X) \
143 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144 #define SKB_MAX_ORDER(X, ORDER) \
145 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
147 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
148
149 /* return minimum truesize of one skb containing X bytes of data */
150 #define SKB_TRUESIZE(X) ((X) + \
151 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
152 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153
154 struct net_device;
155 struct scatterlist;
156 struct pipe_inode_info;
157 struct iov_iter;
158 struct napi_struct;
159
160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161 struct nf_conntrack {
162 atomic_t use;
163 };
164 #endif
165
166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167 struct nf_bridge_info {
168 atomic_t use;
169 enum {
170 BRNF_PROTO_UNCHANGED,
171 BRNF_PROTO_8021Q,
172 BRNF_PROTO_PPPOE
173 } orig_proto:8;
174 bool pkt_otherhost;
175 unsigned int mask;
176 struct net_device *physindev;
177 union {
178 struct net_device *physoutdev;
179 char neigh_header[8];
180 };
181 };
182 #endif
183
184 struct sk_buff_head {
185 /* These two members must be first. */
186 struct sk_buff *next;
187 struct sk_buff *prev;
188
189 __u32 qlen;
190 spinlock_t lock;
191 };
192
193 struct sk_buff;
194
195 /* To allow 64K frame to be packed as single skb without frag_list we
196 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
197 * buffers which do not start on a page boundary.
198 *
199 * Since GRO uses frags we allocate at least 16 regardless of page
200 * size.
201 */
202 #if (65536/PAGE_SIZE + 1) < 16
203 #define MAX_SKB_FRAGS 16UL
204 #else
205 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
206 #endif
207
208 typedef struct skb_frag_struct skb_frag_t;
209
210 struct skb_frag_struct {
211 struct {
212 struct page *p;
213 } page;
214 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
215 __u32 page_offset;
216 __u32 size;
217 #else
218 __u16 page_offset;
219 __u16 size;
220 #endif
221 };
222
223 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
224 {
225 return frag->size;
226 }
227
228 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
229 {
230 frag->size = size;
231 }
232
233 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
234 {
235 frag->size += delta;
236 }
237
238 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
239 {
240 frag->size -= delta;
241 }
242
243 #define HAVE_HW_TIME_STAMP
244
245 /**
246 * struct skb_shared_hwtstamps - hardware time stamps
247 * @hwtstamp: hardware time stamp transformed into duration
248 * since arbitrary point in time
249 *
250 * Software time stamps generated by ktime_get_real() are stored in
251 * skb->tstamp.
252 *
253 * hwtstamps can only be compared against other hwtstamps from
254 * the same device.
255 *
256 * This structure is attached to packets as part of the
257 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
258 */
259 struct skb_shared_hwtstamps {
260 ktime_t hwtstamp;
261 };
262
263 /* Definitions for tx_flags in struct skb_shared_info */
264 enum {
265 /* generate hardware time stamp */
266 SKBTX_HW_TSTAMP = 1 << 0,
267
268 /* generate software time stamp when queueing packet to NIC */
269 SKBTX_SW_TSTAMP = 1 << 1,
270
271 /* device driver is going to provide hardware time stamp */
272 SKBTX_IN_PROGRESS = 1 << 2,
273
274 /* device driver supports TX zero-copy buffers */
275 SKBTX_DEV_ZEROCOPY = 1 << 3,
276
277 /* generate wifi status information (where possible) */
278 SKBTX_WIFI_STATUS = 1 << 4,
279
280 /* This indicates at least one fragment might be overwritten
281 * (as in vmsplice(), sendfile() ...)
282 * If we need to compute a TX checksum, we'll need to copy
283 * all frags to avoid possible bad checksum
284 */
285 SKBTX_SHARED_FRAG = 1 << 5,
286
287 /* generate software time stamp when entering packet scheduling */
288 SKBTX_SCHED_TSTAMP = 1 << 6,
289
290 /* generate software timestamp on peer data acknowledgment */
291 SKBTX_ACK_TSTAMP = 1 << 7,
292 };
293
294 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
295 SKBTX_SCHED_TSTAMP | \
296 SKBTX_ACK_TSTAMP)
297 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
298
299 /*
300 * The callback notifies userspace to release buffers when skb DMA is done in
301 * lower device, the skb last reference should be 0 when calling this.
302 * The zerocopy_success argument is true if zero copy transmit occurred,
303 * false on data copy or out of memory error caused by data copy attempt.
304 * The ctx field is used to track device context.
305 * The desc field is used to track userspace buffer index.
306 */
307 struct ubuf_info {
308 void (*callback)(struct ubuf_info *, bool zerocopy_success);
309 void *ctx;
310 unsigned long desc;
311 };
312
313 /* This data is invariant across clones and lives at
314 * the end of the header data, ie. at skb->end.
315 */
316 struct skb_shared_info {
317 unsigned char nr_frags;
318 __u8 tx_flags;
319 unsigned short gso_size;
320 /* Warning: this field is not always filled in (UFO)! */
321 unsigned short gso_segs;
322 unsigned short gso_type;
323 struct sk_buff *frag_list;
324 struct skb_shared_hwtstamps hwtstamps;
325 u32 tskey;
326 __be32 ip6_frag_id;
327
328 /*
329 * Warning : all fields before dataref are cleared in __alloc_skb()
330 */
331 atomic_t dataref;
332
333 /* Intermediate layers must ensure that destructor_arg
334 * remains valid until skb destructor */
335 void * destructor_arg;
336
337 /* must be last field, see pskb_expand_head() */
338 skb_frag_t frags[MAX_SKB_FRAGS];
339 };
340
341 /* We divide dataref into two halves. The higher 16 bits hold references
342 * to the payload part of skb->data. The lower 16 bits hold references to
343 * the entire skb->data. A clone of a headerless skb holds the length of
344 * the header in skb->hdr_len.
345 *
346 * All users must obey the rule that the skb->data reference count must be
347 * greater than or equal to the payload reference count.
348 *
349 * Holding a reference to the payload part means that the user does not
350 * care about modifications to the header part of skb->data.
351 */
352 #define SKB_DATAREF_SHIFT 16
353 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
354
355
356 enum {
357 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
358 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
359 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
360 };
361
362 enum {
363 SKB_GSO_TCPV4 = 1 << 0,
364 SKB_GSO_UDP = 1 << 1,
365
366 /* This indicates the skb is from an untrusted source. */
367 SKB_GSO_DODGY = 1 << 2,
368
369 /* This indicates the tcp segment has CWR set. */
370 SKB_GSO_TCP_ECN = 1 << 3,
371
372 SKB_GSO_TCPV6 = 1 << 4,
373
374 SKB_GSO_FCOE = 1 << 5,
375
376 SKB_GSO_GRE = 1 << 6,
377
378 SKB_GSO_GRE_CSUM = 1 << 7,
379
380 SKB_GSO_IPIP = 1 << 8,
381
382 SKB_GSO_SIT = 1 << 9,
383
384 SKB_GSO_UDP_TUNNEL = 1 << 10,
385
386 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
387
388 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
389 };
390
391 #if BITS_PER_LONG > 32
392 #define NET_SKBUFF_DATA_USES_OFFSET 1
393 #endif
394
395 #ifdef NET_SKBUFF_DATA_USES_OFFSET
396 typedef unsigned int sk_buff_data_t;
397 #else
398 typedef unsigned char *sk_buff_data_t;
399 #endif
400
401 /**
402 * struct skb_mstamp - multi resolution time stamps
403 * @stamp_us: timestamp in us resolution
404 * @stamp_jiffies: timestamp in jiffies
405 */
406 struct skb_mstamp {
407 union {
408 u64 v64;
409 struct {
410 u32 stamp_us;
411 u32 stamp_jiffies;
412 };
413 };
414 };
415
416 /**
417 * skb_mstamp_get - get current timestamp
418 * @cl: place to store timestamps
419 */
420 static inline void skb_mstamp_get(struct skb_mstamp *cl)
421 {
422 u64 val = local_clock();
423
424 do_div(val, NSEC_PER_USEC);
425 cl->stamp_us = (u32)val;
426 cl->stamp_jiffies = (u32)jiffies;
427 }
428
429 /**
430 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
431 * @t1: pointer to newest sample
432 * @t0: pointer to oldest sample
433 */
434 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
435 const struct skb_mstamp *t0)
436 {
437 s32 delta_us = t1->stamp_us - t0->stamp_us;
438 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
439
440 /* If delta_us is negative, this might be because interval is too big,
441 * or local_clock() drift is too big : fallback using jiffies.
442 */
443 if (delta_us <= 0 ||
444 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
445
446 delta_us = jiffies_to_usecs(delta_jiffies);
447
448 return delta_us;
449 }
450
451
452 /**
453 * struct sk_buff - socket buffer
454 * @next: Next buffer in list
455 * @prev: Previous buffer in list
456 * @tstamp: Time we arrived/left
457 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
458 * @sk: Socket we are owned by
459 * @dev: Device we arrived on/are leaving by
460 * @cb: Control buffer. Free for use by every layer. Put private vars here
461 * @_skb_refdst: destination entry (with norefcount bit)
462 * @sp: the security path, used for xfrm
463 * @len: Length of actual data
464 * @data_len: Data length
465 * @mac_len: Length of link layer header
466 * @hdr_len: writable header length of cloned skb
467 * @csum: Checksum (must include start/offset pair)
468 * @csum_start: Offset from skb->head where checksumming should start
469 * @csum_offset: Offset from csum_start where checksum should be stored
470 * @priority: Packet queueing priority
471 * @ignore_df: allow local fragmentation
472 * @cloned: Head may be cloned (check refcnt to be sure)
473 * @ip_summed: Driver fed us an IP checksum
474 * @nohdr: Payload reference only, must not modify header
475 * @nfctinfo: Relationship of this skb to the connection
476 * @pkt_type: Packet class
477 * @fclone: skbuff clone status
478 * @ipvs_property: skbuff is owned by ipvs
479 * @peeked: this packet has been seen already, so stats have been
480 * done for it, don't do them again
481 * @nf_trace: netfilter packet trace flag
482 * @protocol: Packet protocol from driver
483 * @destructor: Destruct function
484 * @nfct: Associated connection, if any
485 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
486 * @skb_iif: ifindex of device we arrived on
487 * @tc_index: Traffic control index
488 * @tc_verd: traffic control verdict
489 * @hash: the packet hash
490 * @queue_mapping: Queue mapping for multiqueue devices
491 * @xmit_more: More SKBs are pending for this queue
492 * @ndisc_nodetype: router type (from link layer)
493 * @ooo_okay: allow the mapping of a socket to a queue to be changed
494 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
495 * ports.
496 * @sw_hash: indicates hash was computed in software stack
497 * @wifi_acked_valid: wifi_acked was set
498 * @wifi_acked: whether frame was acked on wifi or not
499 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
500 * @napi_id: id of the NAPI struct this skb came from
501 * @secmark: security marking
502 * @mark: Generic packet mark
503 * @vlan_proto: vlan encapsulation protocol
504 * @vlan_tci: vlan tag control information
505 * @inner_protocol: Protocol (encapsulation)
506 * @inner_transport_header: Inner transport layer header (encapsulation)
507 * @inner_network_header: Network layer header (encapsulation)
508 * @inner_mac_header: Link layer header (encapsulation)
509 * @transport_header: Transport layer header
510 * @network_header: Network layer header
511 * @mac_header: Link layer header
512 * @tail: Tail pointer
513 * @end: End pointer
514 * @head: Head of buffer
515 * @data: Data head pointer
516 * @truesize: Buffer size
517 * @users: User count - see {datagram,tcp}.c
518 */
519
520 struct sk_buff {
521 union {
522 struct {
523 /* These two members must be first. */
524 struct sk_buff *next;
525 struct sk_buff *prev;
526
527 union {
528 ktime_t tstamp;
529 struct skb_mstamp skb_mstamp;
530 };
531 };
532 struct rb_node rbnode; /* used in netem & tcp stack */
533 };
534 struct sock *sk;
535 struct net_device *dev;
536
537 /*
538 * This is the control buffer. It is free to use for every
539 * layer. Please put your private variables there. If you
540 * want to keep them across layers you have to do a skb_clone()
541 * first. This is owned by whoever has the skb queued ATM.
542 */
543 char cb[48] __aligned(8);
544
545 unsigned long _skb_refdst;
546 void (*destructor)(struct sk_buff *skb);
547 #ifdef CONFIG_XFRM
548 struct sec_path *sp;
549 #endif
550 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
551 struct nf_conntrack *nfct;
552 #endif
553 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
554 struct nf_bridge_info *nf_bridge;
555 #endif
556 unsigned int len,
557 data_len;
558 __u16 mac_len,
559 hdr_len;
560
561 /* Following fields are _not_ copied in __copy_skb_header()
562 * Note that queue_mapping is here mostly to fill a hole.
563 */
564 kmemcheck_bitfield_begin(flags1);
565 __u16 queue_mapping;
566 __u8 cloned:1,
567 nohdr:1,
568 fclone:2,
569 peeked:1,
570 head_frag:1,
571 xmit_more:1;
572 /* one bit hole */
573 kmemcheck_bitfield_end(flags1);
574
575 /* fields enclosed in headers_start/headers_end are copied
576 * using a single memcpy() in __copy_skb_header()
577 */
578 /* private: */
579 __u32 headers_start[0];
580 /* public: */
581
582 /* if you move pkt_type around you also must adapt those constants */
583 #ifdef __BIG_ENDIAN_BITFIELD
584 #define PKT_TYPE_MAX (7 << 5)
585 #else
586 #define PKT_TYPE_MAX 7
587 #endif
588 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
589
590 __u8 __pkt_type_offset[0];
591 __u8 pkt_type:3;
592 __u8 pfmemalloc:1;
593 __u8 ignore_df:1;
594 __u8 nfctinfo:3;
595
596 __u8 nf_trace:1;
597 __u8 ip_summed:2;
598 __u8 ooo_okay:1;
599 __u8 l4_hash:1;
600 __u8 sw_hash:1;
601 __u8 wifi_acked_valid:1;
602 __u8 wifi_acked:1;
603
604 __u8 no_fcs:1;
605 /* Indicates the inner headers are valid in the skbuff. */
606 __u8 encapsulation:1;
607 __u8 encap_hdr_csum:1;
608 __u8 csum_valid:1;
609 __u8 csum_complete_sw:1;
610 __u8 csum_level:2;
611 __u8 csum_bad:1;
612
613 #ifdef CONFIG_IPV6_NDISC_NODETYPE
614 __u8 ndisc_nodetype:2;
615 #endif
616 __u8 ipvs_property:1;
617 __u8 inner_protocol_type:1;
618 __u8 remcsum_offload:1;
619 /* 3 or 5 bit hole */
620
621 #ifdef CONFIG_NET_SCHED
622 __u16 tc_index; /* traffic control index */
623 #ifdef CONFIG_NET_CLS_ACT
624 __u16 tc_verd; /* traffic control verdict */
625 #endif
626 #endif
627
628 union {
629 __wsum csum;
630 struct {
631 __u16 csum_start;
632 __u16 csum_offset;
633 };
634 };
635 __u32 priority;
636 int skb_iif;
637 __u32 hash;
638 __be16 vlan_proto;
639 __u16 vlan_tci;
640 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
641 union {
642 unsigned int napi_id;
643 unsigned int sender_cpu;
644 };
645 #endif
646 #ifdef CONFIG_NETWORK_SECMARK
647 __u32 secmark;
648 #endif
649 union {
650 __u32 mark;
651 __u32 reserved_tailroom;
652 };
653
654 union {
655 __be16 inner_protocol;
656 __u8 inner_ipproto;
657 };
658
659 __u16 inner_transport_header;
660 __u16 inner_network_header;
661 __u16 inner_mac_header;
662
663 __be16 protocol;
664 __u16 transport_header;
665 __u16 network_header;
666 __u16 mac_header;
667
668 /* private: */
669 __u32 headers_end[0];
670 /* public: */
671
672 /* These elements must be at the end, see alloc_skb() for details. */
673 sk_buff_data_t tail;
674 sk_buff_data_t end;
675 unsigned char *head,
676 *data;
677 unsigned int truesize;
678 atomic_t users;
679 };
680
681 #ifdef __KERNEL__
682 /*
683 * Handling routines are only of interest to the kernel
684 */
685 #include <linux/slab.h>
686
687
688 #define SKB_ALLOC_FCLONE 0x01
689 #define SKB_ALLOC_RX 0x02
690 #define SKB_ALLOC_NAPI 0x04
691
692 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
693 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
694 {
695 return unlikely(skb->pfmemalloc);
696 }
697
698 /*
699 * skb might have a dst pointer attached, refcounted or not.
700 * _skb_refdst low order bit is set if refcount was _not_ taken
701 */
702 #define SKB_DST_NOREF 1UL
703 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
704
705 /**
706 * skb_dst - returns skb dst_entry
707 * @skb: buffer
708 *
709 * Returns skb dst_entry, regardless of reference taken or not.
710 */
711 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
712 {
713 /* If refdst was not refcounted, check we still are in a
714 * rcu_read_lock section
715 */
716 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
717 !rcu_read_lock_held() &&
718 !rcu_read_lock_bh_held());
719 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
720 }
721
722 /**
723 * skb_dst_set - sets skb dst
724 * @skb: buffer
725 * @dst: dst entry
726 *
727 * Sets skb dst, assuming a reference was taken on dst and should
728 * be released by skb_dst_drop()
729 */
730 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
731 {
732 skb->_skb_refdst = (unsigned long)dst;
733 }
734
735 /**
736 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
737 * @skb: buffer
738 * @dst: dst entry
739 *
740 * Sets skb dst, assuming a reference was not taken on dst.
741 * If dst entry is cached, we do not take reference and dst_release
742 * will be avoided by refdst_drop. If dst entry is not cached, we take
743 * reference, so that last dst_release can destroy the dst immediately.
744 */
745 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
746 {
747 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
748 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
749 }
750
751 /**
752 * skb_dst_is_noref - Test if skb dst isn't refcounted
753 * @skb: buffer
754 */
755 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
756 {
757 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
758 }
759
760 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
761 {
762 return (struct rtable *)skb_dst(skb);
763 }
764
765 void kfree_skb(struct sk_buff *skb);
766 void kfree_skb_list(struct sk_buff *segs);
767 void skb_tx_error(struct sk_buff *skb);
768 void consume_skb(struct sk_buff *skb);
769 void __kfree_skb(struct sk_buff *skb);
770 extern struct kmem_cache *skbuff_head_cache;
771
772 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
773 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
774 bool *fragstolen, int *delta_truesize);
775
776 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
777 int node);
778 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
779 struct sk_buff *build_skb(void *data, unsigned int frag_size);
780 static inline struct sk_buff *alloc_skb(unsigned int size,
781 gfp_t priority)
782 {
783 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
784 }
785
786 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
787 unsigned long data_len,
788 int max_page_order,
789 int *errcode,
790 gfp_t gfp_mask);
791
792 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
793 struct sk_buff_fclones {
794 struct sk_buff skb1;
795
796 struct sk_buff skb2;
797
798 atomic_t fclone_ref;
799 };
800
801 /**
802 * skb_fclone_busy - check if fclone is busy
803 * @skb: buffer
804 *
805 * Returns true is skb is a fast clone, and its clone is not freed.
806 * Some drivers call skb_orphan() in their ndo_start_xmit(),
807 * so we also check that this didnt happen.
808 */
809 static inline bool skb_fclone_busy(const struct sock *sk,
810 const struct sk_buff *skb)
811 {
812 const struct sk_buff_fclones *fclones;
813
814 fclones = container_of(skb, struct sk_buff_fclones, skb1);
815
816 return skb->fclone == SKB_FCLONE_ORIG &&
817 atomic_read(&fclones->fclone_ref) > 1 &&
818 fclones->skb2.sk == sk;
819 }
820
821 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
822 gfp_t priority)
823 {
824 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
825 }
826
827 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
828 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
829 {
830 return __alloc_skb_head(priority, -1);
831 }
832
833 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
834 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
835 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
836 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
837 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
838 gfp_t gfp_mask, bool fclone);
839 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
840 gfp_t gfp_mask)
841 {
842 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
843 }
844
845 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
846 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
847 unsigned int headroom);
848 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
849 int newtailroom, gfp_t priority);
850 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
851 int offset, int len);
852 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
853 int len);
854 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
855 int skb_pad(struct sk_buff *skb, int pad);
856 #define dev_kfree_skb(a) consume_skb(a)
857
858 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
859 int getfrag(void *from, char *to, int offset,
860 int len, int odd, struct sk_buff *skb),
861 void *from, int length);
862
863 struct skb_seq_state {
864 __u32 lower_offset;
865 __u32 upper_offset;
866 __u32 frag_idx;
867 __u32 stepped_offset;
868 struct sk_buff *root_skb;
869 struct sk_buff *cur_skb;
870 __u8 *frag_data;
871 };
872
873 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
874 unsigned int to, struct skb_seq_state *st);
875 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
876 struct skb_seq_state *st);
877 void skb_abort_seq_read(struct skb_seq_state *st);
878
879 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
880 unsigned int to, struct ts_config *config);
881
882 /*
883 * Packet hash types specify the type of hash in skb_set_hash.
884 *
885 * Hash types refer to the protocol layer addresses which are used to
886 * construct a packet's hash. The hashes are used to differentiate or identify
887 * flows of the protocol layer for the hash type. Hash types are either
888 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
889 *
890 * Properties of hashes:
891 *
892 * 1) Two packets in different flows have different hash values
893 * 2) Two packets in the same flow should have the same hash value
894 *
895 * A hash at a higher layer is considered to be more specific. A driver should
896 * set the most specific hash possible.
897 *
898 * A driver cannot indicate a more specific hash than the layer at which a hash
899 * was computed. For instance an L3 hash cannot be set as an L4 hash.
900 *
901 * A driver may indicate a hash level which is less specific than the
902 * actual layer the hash was computed on. For instance, a hash computed
903 * at L4 may be considered an L3 hash. This should only be done if the
904 * driver can't unambiguously determine that the HW computed the hash at
905 * the higher layer. Note that the "should" in the second property above
906 * permits this.
907 */
908 enum pkt_hash_types {
909 PKT_HASH_TYPE_NONE, /* Undefined type */
910 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
911 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
912 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
913 };
914
915 static inline void
916 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
917 {
918 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
919 skb->sw_hash = 0;
920 skb->hash = hash;
921 }
922
923 static inline __u32 skb_get_hash(struct sk_buff *skb)
924 {
925 if (!skb->l4_hash && !skb->sw_hash)
926 __skb_get_hash(skb);
927
928 return skb->hash;
929 }
930
931 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
932
933 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
934 {
935 return skb->hash;
936 }
937
938 static inline void skb_clear_hash(struct sk_buff *skb)
939 {
940 skb->hash = 0;
941 skb->sw_hash = 0;
942 skb->l4_hash = 0;
943 }
944
945 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
946 {
947 if (!skb->l4_hash)
948 skb_clear_hash(skb);
949 }
950
951 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
952 {
953 to->hash = from->hash;
954 to->sw_hash = from->sw_hash;
955 to->l4_hash = from->l4_hash;
956 };
957
958 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
959 {
960 #ifdef CONFIG_XPS
961 skb->sender_cpu = 0;
962 #endif
963 }
964
965 #ifdef NET_SKBUFF_DATA_USES_OFFSET
966 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
967 {
968 return skb->head + skb->end;
969 }
970
971 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
972 {
973 return skb->end;
974 }
975 #else
976 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
977 {
978 return skb->end;
979 }
980
981 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
982 {
983 return skb->end - skb->head;
984 }
985 #endif
986
987 /* Internal */
988 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
989
990 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
991 {
992 return &skb_shinfo(skb)->hwtstamps;
993 }
994
995 /**
996 * skb_queue_empty - check if a queue is empty
997 * @list: queue head
998 *
999 * Returns true if the queue is empty, false otherwise.
1000 */
1001 static inline int skb_queue_empty(const struct sk_buff_head *list)
1002 {
1003 return list->next == (const struct sk_buff *) list;
1004 }
1005
1006 /**
1007 * skb_queue_is_last - check if skb is the last entry in the queue
1008 * @list: queue head
1009 * @skb: buffer
1010 *
1011 * Returns true if @skb is the last buffer on the list.
1012 */
1013 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1014 const struct sk_buff *skb)
1015 {
1016 return skb->next == (const struct sk_buff *) list;
1017 }
1018
1019 /**
1020 * skb_queue_is_first - check if skb is the first entry in the queue
1021 * @list: queue head
1022 * @skb: buffer
1023 *
1024 * Returns true if @skb is the first buffer on the list.
1025 */
1026 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1027 const struct sk_buff *skb)
1028 {
1029 return skb->prev == (const struct sk_buff *) list;
1030 }
1031
1032 /**
1033 * skb_queue_next - return the next packet in the queue
1034 * @list: queue head
1035 * @skb: current buffer
1036 *
1037 * Return the next packet in @list after @skb. It is only valid to
1038 * call this if skb_queue_is_last() evaluates to false.
1039 */
1040 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1041 const struct sk_buff *skb)
1042 {
1043 /* This BUG_ON may seem severe, but if we just return then we
1044 * are going to dereference garbage.
1045 */
1046 BUG_ON(skb_queue_is_last(list, skb));
1047 return skb->next;
1048 }
1049
1050 /**
1051 * skb_queue_prev - return the prev packet in the queue
1052 * @list: queue head
1053 * @skb: current buffer
1054 *
1055 * Return the prev packet in @list before @skb. It is only valid to
1056 * call this if skb_queue_is_first() evaluates to false.
1057 */
1058 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1059 const struct sk_buff *skb)
1060 {
1061 /* This BUG_ON may seem severe, but if we just return then we
1062 * are going to dereference garbage.
1063 */
1064 BUG_ON(skb_queue_is_first(list, skb));
1065 return skb->prev;
1066 }
1067
1068 /**
1069 * skb_get - reference buffer
1070 * @skb: buffer to reference
1071 *
1072 * Makes another reference to a socket buffer and returns a pointer
1073 * to the buffer.
1074 */
1075 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1076 {
1077 atomic_inc(&skb->users);
1078 return skb;
1079 }
1080
1081 /*
1082 * If users == 1, we are the only owner and are can avoid redundant
1083 * atomic change.
1084 */
1085
1086 /**
1087 * skb_cloned - is the buffer a clone
1088 * @skb: buffer to check
1089 *
1090 * Returns true if the buffer was generated with skb_clone() and is
1091 * one of multiple shared copies of the buffer. Cloned buffers are
1092 * shared data so must not be written to under normal circumstances.
1093 */
1094 static inline int skb_cloned(const struct sk_buff *skb)
1095 {
1096 return skb->cloned &&
1097 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1098 }
1099
1100 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1101 {
1102 might_sleep_if(pri & __GFP_WAIT);
1103
1104 if (skb_cloned(skb))
1105 return pskb_expand_head(skb, 0, 0, pri);
1106
1107 return 0;
1108 }
1109
1110 /**
1111 * skb_header_cloned - is the header a clone
1112 * @skb: buffer to check
1113 *
1114 * Returns true if modifying the header part of the buffer requires
1115 * the data to be copied.
1116 */
1117 static inline int skb_header_cloned(const struct sk_buff *skb)
1118 {
1119 int dataref;
1120
1121 if (!skb->cloned)
1122 return 0;
1123
1124 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1125 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1126 return dataref != 1;
1127 }
1128
1129 /**
1130 * skb_header_release - release reference to header
1131 * @skb: buffer to operate on
1132 *
1133 * Drop a reference to the header part of the buffer. This is done
1134 * by acquiring a payload reference. You must not read from the header
1135 * part of skb->data after this.
1136 * Note : Check if you can use __skb_header_release() instead.
1137 */
1138 static inline void skb_header_release(struct sk_buff *skb)
1139 {
1140 BUG_ON(skb->nohdr);
1141 skb->nohdr = 1;
1142 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1143 }
1144
1145 /**
1146 * __skb_header_release - release reference to header
1147 * @skb: buffer to operate on
1148 *
1149 * Variant of skb_header_release() assuming skb is private to caller.
1150 * We can avoid one atomic operation.
1151 */
1152 static inline void __skb_header_release(struct sk_buff *skb)
1153 {
1154 skb->nohdr = 1;
1155 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1156 }
1157
1158
1159 /**
1160 * skb_shared - is the buffer shared
1161 * @skb: buffer to check
1162 *
1163 * Returns true if more than one person has a reference to this
1164 * buffer.
1165 */
1166 static inline int skb_shared(const struct sk_buff *skb)
1167 {
1168 return atomic_read(&skb->users) != 1;
1169 }
1170
1171 /**
1172 * skb_share_check - check if buffer is shared and if so clone it
1173 * @skb: buffer to check
1174 * @pri: priority for memory allocation
1175 *
1176 * If the buffer is shared the buffer is cloned and the old copy
1177 * drops a reference. A new clone with a single reference is returned.
1178 * If the buffer is not shared the original buffer is returned. When
1179 * being called from interrupt status or with spinlocks held pri must
1180 * be GFP_ATOMIC.
1181 *
1182 * NULL is returned on a memory allocation failure.
1183 */
1184 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1185 {
1186 might_sleep_if(pri & __GFP_WAIT);
1187 if (skb_shared(skb)) {
1188 struct sk_buff *nskb = skb_clone(skb, pri);
1189
1190 if (likely(nskb))
1191 consume_skb(skb);
1192 else
1193 kfree_skb(skb);
1194 skb = nskb;
1195 }
1196 return skb;
1197 }
1198
1199 /*
1200 * Copy shared buffers into a new sk_buff. We effectively do COW on
1201 * packets to handle cases where we have a local reader and forward
1202 * and a couple of other messy ones. The normal one is tcpdumping
1203 * a packet thats being forwarded.
1204 */
1205
1206 /**
1207 * skb_unshare - make a copy of a shared buffer
1208 * @skb: buffer to check
1209 * @pri: priority for memory allocation
1210 *
1211 * If the socket buffer is a clone then this function creates a new
1212 * copy of the data, drops a reference count on the old copy and returns
1213 * the new copy with the reference count at 1. If the buffer is not a clone
1214 * the original buffer is returned. When called with a spinlock held or
1215 * from interrupt state @pri must be %GFP_ATOMIC
1216 *
1217 * %NULL is returned on a memory allocation failure.
1218 */
1219 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1220 gfp_t pri)
1221 {
1222 might_sleep_if(pri & __GFP_WAIT);
1223 if (skb_cloned(skb)) {
1224 struct sk_buff *nskb = skb_copy(skb, pri);
1225
1226 /* Free our shared copy */
1227 if (likely(nskb))
1228 consume_skb(skb);
1229 else
1230 kfree_skb(skb);
1231 skb = nskb;
1232 }
1233 return skb;
1234 }
1235
1236 /**
1237 * skb_peek - peek at the head of an &sk_buff_head
1238 * @list_: list to peek at
1239 *
1240 * Peek an &sk_buff. Unlike most other operations you _MUST_
1241 * be careful with this one. A peek leaves the buffer on the
1242 * list and someone else may run off with it. You must hold
1243 * the appropriate locks or have a private queue to do this.
1244 *
1245 * Returns %NULL for an empty list or a pointer to the head element.
1246 * The reference count is not incremented and the reference is therefore
1247 * volatile. Use with caution.
1248 */
1249 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1250 {
1251 struct sk_buff *skb = list_->next;
1252
1253 if (skb == (struct sk_buff *)list_)
1254 skb = NULL;
1255 return skb;
1256 }
1257
1258 /**
1259 * skb_peek_next - peek skb following the given one from a queue
1260 * @skb: skb to start from
1261 * @list_: list to peek at
1262 *
1263 * Returns %NULL when the end of the list is met or a pointer to the
1264 * next element. The reference count is not incremented and the
1265 * reference is therefore volatile. Use with caution.
1266 */
1267 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1268 const struct sk_buff_head *list_)
1269 {
1270 struct sk_buff *next = skb->next;
1271
1272 if (next == (struct sk_buff *)list_)
1273 next = NULL;
1274 return next;
1275 }
1276
1277 /**
1278 * skb_peek_tail - peek at the tail of an &sk_buff_head
1279 * @list_: list to peek at
1280 *
1281 * Peek an &sk_buff. Unlike most other operations you _MUST_
1282 * be careful with this one. A peek leaves the buffer on the
1283 * list and someone else may run off with it. You must hold
1284 * the appropriate locks or have a private queue to do this.
1285 *
1286 * Returns %NULL for an empty list or a pointer to the tail element.
1287 * The reference count is not incremented and the reference is therefore
1288 * volatile. Use with caution.
1289 */
1290 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1291 {
1292 struct sk_buff *skb = list_->prev;
1293
1294 if (skb == (struct sk_buff *)list_)
1295 skb = NULL;
1296 return skb;
1297
1298 }
1299
1300 /**
1301 * skb_queue_len - get queue length
1302 * @list_: list to measure
1303 *
1304 * Return the length of an &sk_buff queue.
1305 */
1306 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1307 {
1308 return list_->qlen;
1309 }
1310
1311 /**
1312 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1313 * @list: queue to initialize
1314 *
1315 * This initializes only the list and queue length aspects of
1316 * an sk_buff_head object. This allows to initialize the list
1317 * aspects of an sk_buff_head without reinitializing things like
1318 * the spinlock. It can also be used for on-stack sk_buff_head
1319 * objects where the spinlock is known to not be used.
1320 */
1321 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1322 {
1323 list->prev = list->next = (struct sk_buff *)list;
1324 list->qlen = 0;
1325 }
1326
1327 /*
1328 * This function creates a split out lock class for each invocation;
1329 * this is needed for now since a whole lot of users of the skb-queue
1330 * infrastructure in drivers have different locking usage (in hardirq)
1331 * than the networking core (in softirq only). In the long run either the
1332 * network layer or drivers should need annotation to consolidate the
1333 * main types of usage into 3 classes.
1334 */
1335 static inline void skb_queue_head_init(struct sk_buff_head *list)
1336 {
1337 spin_lock_init(&list->lock);
1338 __skb_queue_head_init(list);
1339 }
1340
1341 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1342 struct lock_class_key *class)
1343 {
1344 skb_queue_head_init(list);
1345 lockdep_set_class(&list->lock, class);
1346 }
1347
1348 /*
1349 * Insert an sk_buff on a list.
1350 *
1351 * The "__skb_xxxx()" functions are the non-atomic ones that
1352 * can only be called with interrupts disabled.
1353 */
1354 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1355 struct sk_buff_head *list);
1356 static inline void __skb_insert(struct sk_buff *newsk,
1357 struct sk_buff *prev, struct sk_buff *next,
1358 struct sk_buff_head *list)
1359 {
1360 newsk->next = next;
1361 newsk->prev = prev;
1362 next->prev = prev->next = newsk;
1363 list->qlen++;
1364 }
1365
1366 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1367 struct sk_buff *prev,
1368 struct sk_buff *next)
1369 {
1370 struct sk_buff *first = list->next;
1371 struct sk_buff *last = list->prev;
1372
1373 first->prev = prev;
1374 prev->next = first;
1375
1376 last->next = next;
1377 next->prev = last;
1378 }
1379
1380 /**
1381 * skb_queue_splice - join two skb lists, this is designed for stacks
1382 * @list: the new list to add
1383 * @head: the place to add it in the first list
1384 */
1385 static inline void skb_queue_splice(const struct sk_buff_head *list,
1386 struct sk_buff_head *head)
1387 {
1388 if (!skb_queue_empty(list)) {
1389 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1390 head->qlen += list->qlen;
1391 }
1392 }
1393
1394 /**
1395 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1396 * @list: the new list to add
1397 * @head: the place to add it in the first list
1398 *
1399 * The list at @list is reinitialised
1400 */
1401 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1402 struct sk_buff_head *head)
1403 {
1404 if (!skb_queue_empty(list)) {
1405 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1406 head->qlen += list->qlen;
1407 __skb_queue_head_init(list);
1408 }
1409 }
1410
1411 /**
1412 * skb_queue_splice_tail - join two skb lists, each list being a queue
1413 * @list: the new list to add
1414 * @head: the place to add it in the first list
1415 */
1416 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1417 struct sk_buff_head *head)
1418 {
1419 if (!skb_queue_empty(list)) {
1420 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1421 head->qlen += list->qlen;
1422 }
1423 }
1424
1425 /**
1426 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1427 * @list: the new list to add
1428 * @head: the place to add it in the first list
1429 *
1430 * Each of the lists is a queue.
1431 * The list at @list is reinitialised
1432 */
1433 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1434 struct sk_buff_head *head)
1435 {
1436 if (!skb_queue_empty(list)) {
1437 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1438 head->qlen += list->qlen;
1439 __skb_queue_head_init(list);
1440 }
1441 }
1442
1443 /**
1444 * __skb_queue_after - queue a buffer at the list head
1445 * @list: list to use
1446 * @prev: place after this buffer
1447 * @newsk: buffer to queue
1448 *
1449 * Queue a buffer int the middle of a list. This function takes no locks
1450 * and you must therefore hold required locks before calling it.
1451 *
1452 * A buffer cannot be placed on two lists at the same time.
1453 */
1454 static inline void __skb_queue_after(struct sk_buff_head *list,
1455 struct sk_buff *prev,
1456 struct sk_buff *newsk)
1457 {
1458 __skb_insert(newsk, prev, prev->next, list);
1459 }
1460
1461 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1462 struct sk_buff_head *list);
1463
1464 static inline void __skb_queue_before(struct sk_buff_head *list,
1465 struct sk_buff *next,
1466 struct sk_buff *newsk)
1467 {
1468 __skb_insert(newsk, next->prev, next, list);
1469 }
1470
1471 /**
1472 * __skb_queue_head - queue a buffer at the list head
1473 * @list: list to use
1474 * @newsk: buffer to queue
1475 *
1476 * Queue a buffer at the start of a list. This function takes no locks
1477 * and you must therefore hold required locks before calling it.
1478 *
1479 * A buffer cannot be placed on two lists at the same time.
1480 */
1481 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1482 static inline void __skb_queue_head(struct sk_buff_head *list,
1483 struct sk_buff *newsk)
1484 {
1485 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1486 }
1487
1488 /**
1489 * __skb_queue_tail - queue a buffer at the list tail
1490 * @list: list to use
1491 * @newsk: buffer to queue
1492 *
1493 * Queue a buffer at the end of a list. This function takes no locks
1494 * and you must therefore hold required locks before calling it.
1495 *
1496 * A buffer cannot be placed on two lists at the same time.
1497 */
1498 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1499 static inline void __skb_queue_tail(struct sk_buff_head *list,
1500 struct sk_buff *newsk)
1501 {
1502 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1503 }
1504
1505 /*
1506 * remove sk_buff from list. _Must_ be called atomically, and with
1507 * the list known..
1508 */
1509 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1510 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1511 {
1512 struct sk_buff *next, *prev;
1513
1514 list->qlen--;
1515 next = skb->next;
1516 prev = skb->prev;
1517 skb->next = skb->prev = NULL;
1518 next->prev = prev;
1519 prev->next = next;
1520 }
1521
1522 /**
1523 * __skb_dequeue - remove from the head of the queue
1524 * @list: list to dequeue from
1525 *
1526 * Remove the head of the list. This function does not take any locks
1527 * so must be used with appropriate locks held only. The head item is
1528 * returned or %NULL if the list is empty.
1529 */
1530 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1531 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1532 {
1533 struct sk_buff *skb = skb_peek(list);
1534 if (skb)
1535 __skb_unlink(skb, list);
1536 return skb;
1537 }
1538
1539 /**
1540 * __skb_dequeue_tail - remove from the tail of the queue
1541 * @list: list to dequeue from
1542 *
1543 * Remove the tail of the list. This function does not take any locks
1544 * so must be used with appropriate locks held only. The tail item is
1545 * returned or %NULL if the list is empty.
1546 */
1547 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1548 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1549 {
1550 struct sk_buff *skb = skb_peek_tail(list);
1551 if (skb)
1552 __skb_unlink(skb, list);
1553 return skb;
1554 }
1555
1556
1557 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1558 {
1559 return skb->data_len;
1560 }
1561
1562 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1563 {
1564 return skb->len - skb->data_len;
1565 }
1566
1567 static inline int skb_pagelen(const struct sk_buff *skb)
1568 {
1569 int i, len = 0;
1570
1571 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1572 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1573 return len + skb_headlen(skb);
1574 }
1575
1576 /**
1577 * __skb_fill_page_desc - initialise a paged fragment in an skb
1578 * @skb: buffer containing fragment to be initialised
1579 * @i: paged fragment index to initialise
1580 * @page: the page to use for this fragment
1581 * @off: the offset to the data with @page
1582 * @size: the length of the data
1583 *
1584 * Initialises the @i'th fragment of @skb to point to &size bytes at
1585 * offset @off within @page.
1586 *
1587 * Does not take any additional reference on the fragment.
1588 */
1589 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1590 struct page *page, int off, int size)
1591 {
1592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1593
1594 /*
1595 * Propagate page->pfmemalloc to the skb if we can. The problem is
1596 * that not all callers have unique ownership of the page. If
1597 * pfmemalloc is set, we check the mapping as a mapping implies
1598 * page->index is set (index and pfmemalloc share space).
1599 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1600 * do not lose pfmemalloc information as the pages would not be
1601 * allocated using __GFP_MEMALLOC.
1602 */
1603 frag->page.p = page;
1604 frag->page_offset = off;
1605 skb_frag_size_set(frag, size);
1606
1607 page = compound_head(page);
1608 if (page->pfmemalloc && !page->mapping)
1609 skb->pfmemalloc = true;
1610 }
1611
1612 /**
1613 * skb_fill_page_desc - initialise a paged fragment in an skb
1614 * @skb: buffer containing fragment to be initialised
1615 * @i: paged fragment index to initialise
1616 * @page: the page to use for this fragment
1617 * @off: the offset to the data with @page
1618 * @size: the length of the data
1619 *
1620 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1621 * @skb to point to @size bytes at offset @off within @page. In
1622 * addition updates @skb such that @i is the last fragment.
1623 *
1624 * Does not take any additional reference on the fragment.
1625 */
1626 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1627 struct page *page, int off, int size)
1628 {
1629 __skb_fill_page_desc(skb, i, page, off, size);
1630 skb_shinfo(skb)->nr_frags = i + 1;
1631 }
1632
1633 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1634 int size, unsigned int truesize);
1635
1636 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1637 unsigned int truesize);
1638
1639 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1640 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1641 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1642
1643 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1644 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1645 {
1646 return skb->head + skb->tail;
1647 }
1648
1649 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1650 {
1651 skb->tail = skb->data - skb->head;
1652 }
1653
1654 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1655 {
1656 skb_reset_tail_pointer(skb);
1657 skb->tail += offset;
1658 }
1659
1660 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1661 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1662 {
1663 return skb->tail;
1664 }
1665
1666 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1667 {
1668 skb->tail = skb->data;
1669 }
1670
1671 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1672 {
1673 skb->tail = skb->data + offset;
1674 }
1675
1676 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1677
1678 /*
1679 * Add data to an sk_buff
1680 */
1681 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1682 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1683 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1684 {
1685 unsigned char *tmp = skb_tail_pointer(skb);
1686 SKB_LINEAR_ASSERT(skb);
1687 skb->tail += len;
1688 skb->len += len;
1689 return tmp;
1690 }
1691
1692 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1693 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1694 {
1695 skb->data -= len;
1696 skb->len += len;
1697 return skb->data;
1698 }
1699
1700 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1701 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1702 {
1703 skb->len -= len;
1704 BUG_ON(skb->len < skb->data_len);
1705 return skb->data += len;
1706 }
1707
1708 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1709 {
1710 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1711 }
1712
1713 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1714
1715 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1716 {
1717 if (len > skb_headlen(skb) &&
1718 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1719 return NULL;
1720 skb->len -= len;
1721 return skb->data += len;
1722 }
1723
1724 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1725 {
1726 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1727 }
1728
1729 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1730 {
1731 if (likely(len <= skb_headlen(skb)))
1732 return 1;
1733 if (unlikely(len > skb->len))
1734 return 0;
1735 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1736 }
1737
1738 /**
1739 * skb_headroom - bytes at buffer head
1740 * @skb: buffer to check
1741 *
1742 * Return the number of bytes of free space at the head of an &sk_buff.
1743 */
1744 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1745 {
1746 return skb->data - skb->head;
1747 }
1748
1749 /**
1750 * skb_tailroom - bytes at buffer end
1751 * @skb: buffer to check
1752 *
1753 * Return the number of bytes of free space at the tail of an sk_buff
1754 */
1755 static inline int skb_tailroom(const struct sk_buff *skb)
1756 {
1757 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1758 }
1759
1760 /**
1761 * skb_availroom - bytes at buffer end
1762 * @skb: buffer to check
1763 *
1764 * Return the number of bytes of free space at the tail of an sk_buff
1765 * allocated by sk_stream_alloc()
1766 */
1767 static inline int skb_availroom(const struct sk_buff *skb)
1768 {
1769 if (skb_is_nonlinear(skb))
1770 return 0;
1771
1772 return skb->end - skb->tail - skb->reserved_tailroom;
1773 }
1774
1775 /**
1776 * skb_reserve - adjust headroom
1777 * @skb: buffer to alter
1778 * @len: bytes to move
1779 *
1780 * Increase the headroom of an empty &sk_buff by reducing the tail
1781 * room. This is only allowed for an empty buffer.
1782 */
1783 static inline void skb_reserve(struct sk_buff *skb, int len)
1784 {
1785 skb->data += len;
1786 skb->tail += len;
1787 }
1788
1789 #define ENCAP_TYPE_ETHER 0
1790 #define ENCAP_TYPE_IPPROTO 1
1791
1792 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1793 __be16 protocol)
1794 {
1795 skb->inner_protocol = protocol;
1796 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1797 }
1798
1799 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1800 __u8 ipproto)
1801 {
1802 skb->inner_ipproto = ipproto;
1803 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1804 }
1805
1806 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1807 {
1808 skb->inner_mac_header = skb->mac_header;
1809 skb->inner_network_header = skb->network_header;
1810 skb->inner_transport_header = skb->transport_header;
1811 }
1812
1813 static inline void skb_reset_mac_len(struct sk_buff *skb)
1814 {
1815 skb->mac_len = skb->network_header - skb->mac_header;
1816 }
1817
1818 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1819 *skb)
1820 {
1821 return skb->head + skb->inner_transport_header;
1822 }
1823
1824 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1825 {
1826 skb->inner_transport_header = skb->data - skb->head;
1827 }
1828
1829 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1830 const int offset)
1831 {
1832 skb_reset_inner_transport_header(skb);
1833 skb->inner_transport_header += offset;
1834 }
1835
1836 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1837 {
1838 return skb->head + skb->inner_network_header;
1839 }
1840
1841 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1842 {
1843 skb->inner_network_header = skb->data - skb->head;
1844 }
1845
1846 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1847 const int offset)
1848 {
1849 skb_reset_inner_network_header(skb);
1850 skb->inner_network_header += offset;
1851 }
1852
1853 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1854 {
1855 return skb->head + skb->inner_mac_header;
1856 }
1857
1858 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1859 {
1860 skb->inner_mac_header = skb->data - skb->head;
1861 }
1862
1863 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1864 const int offset)
1865 {
1866 skb_reset_inner_mac_header(skb);
1867 skb->inner_mac_header += offset;
1868 }
1869 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1870 {
1871 return skb->transport_header != (typeof(skb->transport_header))~0U;
1872 }
1873
1874 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1875 {
1876 return skb->head + skb->transport_header;
1877 }
1878
1879 static inline void skb_reset_transport_header(struct sk_buff *skb)
1880 {
1881 skb->transport_header = skb->data - skb->head;
1882 }
1883
1884 static inline void skb_set_transport_header(struct sk_buff *skb,
1885 const int offset)
1886 {
1887 skb_reset_transport_header(skb);
1888 skb->transport_header += offset;
1889 }
1890
1891 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1892 {
1893 return skb->head + skb->network_header;
1894 }
1895
1896 static inline void skb_reset_network_header(struct sk_buff *skb)
1897 {
1898 skb->network_header = skb->data - skb->head;
1899 }
1900
1901 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1902 {
1903 skb_reset_network_header(skb);
1904 skb->network_header += offset;
1905 }
1906
1907 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1908 {
1909 return skb->head + skb->mac_header;
1910 }
1911
1912 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1913 {
1914 return skb->mac_header != (typeof(skb->mac_header))~0U;
1915 }
1916
1917 static inline void skb_reset_mac_header(struct sk_buff *skb)
1918 {
1919 skb->mac_header = skb->data - skb->head;
1920 }
1921
1922 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1923 {
1924 skb_reset_mac_header(skb);
1925 skb->mac_header += offset;
1926 }
1927
1928 static inline void skb_pop_mac_header(struct sk_buff *skb)
1929 {
1930 skb->mac_header = skb->network_header;
1931 }
1932
1933 static inline void skb_probe_transport_header(struct sk_buff *skb,
1934 const int offset_hint)
1935 {
1936 struct flow_keys keys;
1937
1938 if (skb_transport_header_was_set(skb))
1939 return;
1940 else if (skb_flow_dissect_flow_keys(skb, &keys))
1941 skb_set_transport_header(skb, keys.basic.thoff);
1942 else
1943 skb_set_transport_header(skb, offset_hint);
1944 }
1945
1946 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1947 {
1948 if (skb_mac_header_was_set(skb)) {
1949 const unsigned char *old_mac = skb_mac_header(skb);
1950
1951 skb_set_mac_header(skb, -skb->mac_len);
1952 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1953 }
1954 }
1955
1956 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1957 {
1958 return skb->csum_start - skb_headroom(skb);
1959 }
1960
1961 static inline int skb_transport_offset(const struct sk_buff *skb)
1962 {
1963 return skb_transport_header(skb) - skb->data;
1964 }
1965
1966 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1967 {
1968 return skb->transport_header - skb->network_header;
1969 }
1970
1971 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1972 {
1973 return skb->inner_transport_header - skb->inner_network_header;
1974 }
1975
1976 static inline int skb_network_offset(const struct sk_buff *skb)
1977 {
1978 return skb_network_header(skb) - skb->data;
1979 }
1980
1981 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1982 {
1983 return skb_inner_network_header(skb) - skb->data;
1984 }
1985
1986 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1987 {
1988 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1989 }
1990
1991 /*
1992 * CPUs often take a performance hit when accessing unaligned memory
1993 * locations. The actual performance hit varies, it can be small if the
1994 * hardware handles it or large if we have to take an exception and fix it
1995 * in software.
1996 *
1997 * Since an ethernet header is 14 bytes network drivers often end up with
1998 * the IP header at an unaligned offset. The IP header can be aligned by
1999 * shifting the start of the packet by 2 bytes. Drivers should do this
2000 * with:
2001 *
2002 * skb_reserve(skb, NET_IP_ALIGN);
2003 *
2004 * The downside to this alignment of the IP header is that the DMA is now
2005 * unaligned. On some architectures the cost of an unaligned DMA is high
2006 * and this cost outweighs the gains made by aligning the IP header.
2007 *
2008 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2009 * to be overridden.
2010 */
2011 #ifndef NET_IP_ALIGN
2012 #define NET_IP_ALIGN 2
2013 #endif
2014
2015 /*
2016 * The networking layer reserves some headroom in skb data (via
2017 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2018 * the header has to grow. In the default case, if the header has to grow
2019 * 32 bytes or less we avoid the reallocation.
2020 *
2021 * Unfortunately this headroom changes the DMA alignment of the resulting
2022 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2023 * on some architectures. An architecture can override this value,
2024 * perhaps setting it to a cacheline in size (since that will maintain
2025 * cacheline alignment of the DMA). It must be a power of 2.
2026 *
2027 * Various parts of the networking layer expect at least 32 bytes of
2028 * headroom, you should not reduce this.
2029 *
2030 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2031 * to reduce average number of cache lines per packet.
2032 * get_rps_cpus() for example only access one 64 bytes aligned block :
2033 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2034 */
2035 #ifndef NET_SKB_PAD
2036 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2037 #endif
2038
2039 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2040
2041 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2042 {
2043 if (unlikely(skb_is_nonlinear(skb))) {
2044 WARN_ON(1);
2045 return;
2046 }
2047 skb->len = len;
2048 skb_set_tail_pointer(skb, len);
2049 }
2050
2051 void skb_trim(struct sk_buff *skb, unsigned int len);
2052
2053 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2054 {
2055 if (skb->data_len)
2056 return ___pskb_trim(skb, len);
2057 __skb_trim(skb, len);
2058 return 0;
2059 }
2060
2061 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2062 {
2063 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2064 }
2065
2066 /**
2067 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2068 * @skb: buffer to alter
2069 * @len: new length
2070 *
2071 * This is identical to pskb_trim except that the caller knows that
2072 * the skb is not cloned so we should never get an error due to out-
2073 * of-memory.
2074 */
2075 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2076 {
2077 int err = pskb_trim(skb, len);
2078 BUG_ON(err);
2079 }
2080
2081 /**
2082 * skb_orphan - orphan a buffer
2083 * @skb: buffer to orphan
2084 *
2085 * If a buffer currently has an owner then we call the owner's
2086 * destructor function and make the @skb unowned. The buffer continues
2087 * to exist but is no longer charged to its former owner.
2088 */
2089 static inline void skb_orphan(struct sk_buff *skb)
2090 {
2091 if (skb->destructor) {
2092 skb->destructor(skb);
2093 skb->destructor = NULL;
2094 skb->sk = NULL;
2095 } else {
2096 BUG_ON(skb->sk);
2097 }
2098 }
2099
2100 /**
2101 * skb_orphan_frags - orphan the frags contained in a buffer
2102 * @skb: buffer to orphan frags from
2103 * @gfp_mask: allocation mask for replacement pages
2104 *
2105 * For each frag in the SKB which needs a destructor (i.e. has an
2106 * owner) create a copy of that frag and release the original
2107 * page by calling the destructor.
2108 */
2109 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2110 {
2111 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2112 return 0;
2113 return skb_copy_ubufs(skb, gfp_mask);
2114 }
2115
2116 /**
2117 * __skb_queue_purge - empty a list
2118 * @list: list to empty
2119 *
2120 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2121 * the list and one reference dropped. This function does not take the
2122 * list lock and the caller must hold the relevant locks to use it.
2123 */
2124 void skb_queue_purge(struct sk_buff_head *list);
2125 static inline void __skb_queue_purge(struct sk_buff_head *list)
2126 {
2127 struct sk_buff *skb;
2128 while ((skb = __skb_dequeue(list)) != NULL)
2129 kfree_skb(skb);
2130 }
2131
2132 void *netdev_alloc_frag(unsigned int fragsz);
2133
2134 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2135 gfp_t gfp_mask);
2136
2137 /**
2138 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2139 * @dev: network device to receive on
2140 * @length: length to allocate
2141 *
2142 * Allocate a new &sk_buff and assign it a usage count of one. The
2143 * buffer has unspecified headroom built in. Users should allocate
2144 * the headroom they think they need without accounting for the
2145 * built in space. The built in space is used for optimisations.
2146 *
2147 * %NULL is returned if there is no free memory. Although this function
2148 * allocates memory it can be called from an interrupt.
2149 */
2150 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2151 unsigned int length)
2152 {
2153 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2154 }
2155
2156 /* legacy helper around __netdev_alloc_skb() */
2157 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2158 gfp_t gfp_mask)
2159 {
2160 return __netdev_alloc_skb(NULL, length, gfp_mask);
2161 }
2162
2163 /* legacy helper around netdev_alloc_skb() */
2164 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2165 {
2166 return netdev_alloc_skb(NULL, length);
2167 }
2168
2169
2170 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2171 unsigned int length, gfp_t gfp)
2172 {
2173 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2174
2175 if (NET_IP_ALIGN && skb)
2176 skb_reserve(skb, NET_IP_ALIGN);
2177 return skb;
2178 }
2179
2180 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2181 unsigned int length)
2182 {
2183 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2184 }
2185
2186 static inline void skb_free_frag(void *addr)
2187 {
2188 __free_page_frag(addr);
2189 }
2190
2191 void *napi_alloc_frag(unsigned int fragsz);
2192 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2193 unsigned int length, gfp_t gfp_mask);
2194 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2195 unsigned int length)
2196 {
2197 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2198 }
2199
2200 /**
2201 * __dev_alloc_pages - allocate page for network Rx
2202 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2203 * @order: size of the allocation
2204 *
2205 * Allocate a new page.
2206 *
2207 * %NULL is returned if there is no free memory.
2208 */
2209 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2210 unsigned int order)
2211 {
2212 /* This piece of code contains several assumptions.
2213 * 1. This is for device Rx, therefor a cold page is preferred.
2214 * 2. The expectation is the user wants a compound page.
2215 * 3. If requesting a order 0 page it will not be compound
2216 * due to the check to see if order has a value in prep_new_page
2217 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2218 * code in gfp_to_alloc_flags that should be enforcing this.
2219 */
2220 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2221
2222 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2223 }
2224
2225 static inline struct page *dev_alloc_pages(unsigned int order)
2226 {
2227 return __dev_alloc_pages(GFP_ATOMIC, order);
2228 }
2229
2230 /**
2231 * __dev_alloc_page - allocate a page for network Rx
2232 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2233 *
2234 * Allocate a new page.
2235 *
2236 * %NULL is returned if there is no free memory.
2237 */
2238 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2239 {
2240 return __dev_alloc_pages(gfp_mask, 0);
2241 }
2242
2243 static inline struct page *dev_alloc_page(void)
2244 {
2245 return __dev_alloc_page(GFP_ATOMIC);
2246 }
2247
2248 /**
2249 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2250 * @page: The page that was allocated from skb_alloc_page
2251 * @skb: The skb that may need pfmemalloc set
2252 */
2253 static inline void skb_propagate_pfmemalloc(struct page *page,
2254 struct sk_buff *skb)
2255 {
2256 if (page && page->pfmemalloc)
2257 skb->pfmemalloc = true;
2258 }
2259
2260 /**
2261 * skb_frag_page - retrieve the page referred to by a paged fragment
2262 * @frag: the paged fragment
2263 *
2264 * Returns the &struct page associated with @frag.
2265 */
2266 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2267 {
2268 return frag->page.p;
2269 }
2270
2271 /**
2272 * __skb_frag_ref - take an addition reference on a paged fragment.
2273 * @frag: the paged fragment
2274 *
2275 * Takes an additional reference on the paged fragment @frag.
2276 */
2277 static inline void __skb_frag_ref(skb_frag_t *frag)
2278 {
2279 get_page(skb_frag_page(frag));
2280 }
2281
2282 /**
2283 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2284 * @skb: the buffer
2285 * @f: the fragment offset.
2286 *
2287 * Takes an additional reference on the @f'th paged fragment of @skb.
2288 */
2289 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2290 {
2291 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2292 }
2293
2294 /**
2295 * __skb_frag_unref - release a reference on a paged fragment.
2296 * @frag: the paged fragment
2297 *
2298 * Releases a reference on the paged fragment @frag.
2299 */
2300 static inline void __skb_frag_unref(skb_frag_t *frag)
2301 {
2302 put_page(skb_frag_page(frag));
2303 }
2304
2305 /**
2306 * skb_frag_unref - release a reference on a paged fragment of an skb.
2307 * @skb: the buffer
2308 * @f: the fragment offset
2309 *
2310 * Releases a reference on the @f'th paged fragment of @skb.
2311 */
2312 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2313 {
2314 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2315 }
2316
2317 /**
2318 * skb_frag_address - gets the address of the data contained in a paged fragment
2319 * @frag: the paged fragment buffer
2320 *
2321 * Returns the address of the data within @frag. The page must already
2322 * be mapped.
2323 */
2324 static inline void *skb_frag_address(const skb_frag_t *frag)
2325 {
2326 return page_address(skb_frag_page(frag)) + frag->page_offset;
2327 }
2328
2329 /**
2330 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2331 * @frag: the paged fragment buffer
2332 *
2333 * Returns the address of the data within @frag. Checks that the page
2334 * is mapped and returns %NULL otherwise.
2335 */
2336 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2337 {
2338 void *ptr = page_address(skb_frag_page(frag));
2339 if (unlikely(!ptr))
2340 return NULL;
2341
2342 return ptr + frag->page_offset;
2343 }
2344
2345 /**
2346 * __skb_frag_set_page - sets the page contained in a paged fragment
2347 * @frag: the paged fragment
2348 * @page: the page to set
2349 *
2350 * Sets the fragment @frag to contain @page.
2351 */
2352 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2353 {
2354 frag->page.p = page;
2355 }
2356
2357 /**
2358 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2359 * @skb: the buffer
2360 * @f: the fragment offset
2361 * @page: the page to set
2362 *
2363 * Sets the @f'th fragment of @skb to contain @page.
2364 */
2365 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2366 struct page *page)
2367 {
2368 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2369 }
2370
2371 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2372
2373 /**
2374 * skb_frag_dma_map - maps a paged fragment via the DMA API
2375 * @dev: the device to map the fragment to
2376 * @frag: the paged fragment to map
2377 * @offset: the offset within the fragment (starting at the
2378 * fragment's own offset)
2379 * @size: the number of bytes to map
2380 * @dir: the direction of the mapping (%PCI_DMA_*)
2381 *
2382 * Maps the page associated with @frag to @device.
2383 */
2384 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2385 const skb_frag_t *frag,
2386 size_t offset, size_t size,
2387 enum dma_data_direction dir)
2388 {
2389 return dma_map_page(dev, skb_frag_page(frag),
2390 frag->page_offset + offset, size, dir);
2391 }
2392
2393 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2394 gfp_t gfp_mask)
2395 {
2396 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2397 }
2398
2399
2400 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2401 gfp_t gfp_mask)
2402 {
2403 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2404 }
2405
2406
2407 /**
2408 * skb_clone_writable - is the header of a clone writable
2409 * @skb: buffer to check
2410 * @len: length up to which to write
2411 *
2412 * Returns true if modifying the header part of the cloned buffer
2413 * does not requires the data to be copied.
2414 */
2415 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2416 {
2417 return !skb_header_cloned(skb) &&
2418 skb_headroom(skb) + len <= skb->hdr_len;
2419 }
2420
2421 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2422 int cloned)
2423 {
2424 int delta = 0;
2425
2426 if (headroom > skb_headroom(skb))
2427 delta = headroom - skb_headroom(skb);
2428
2429 if (delta || cloned)
2430 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2431 GFP_ATOMIC);
2432 return 0;
2433 }
2434
2435 /**
2436 * skb_cow - copy header of skb when it is required
2437 * @skb: buffer to cow
2438 * @headroom: needed headroom
2439 *
2440 * If the skb passed lacks sufficient headroom or its data part
2441 * is shared, data is reallocated. If reallocation fails, an error
2442 * is returned and original skb is not changed.
2443 *
2444 * The result is skb with writable area skb->head...skb->tail
2445 * and at least @headroom of space at head.
2446 */
2447 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2448 {
2449 return __skb_cow(skb, headroom, skb_cloned(skb));
2450 }
2451
2452 /**
2453 * skb_cow_head - skb_cow but only making the head writable
2454 * @skb: buffer to cow
2455 * @headroom: needed headroom
2456 *
2457 * This function is identical to skb_cow except that we replace the
2458 * skb_cloned check by skb_header_cloned. It should be used when
2459 * you only need to push on some header and do not need to modify
2460 * the data.
2461 */
2462 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2463 {
2464 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2465 }
2466
2467 /**
2468 * skb_padto - pad an skbuff up to a minimal size
2469 * @skb: buffer to pad
2470 * @len: minimal length
2471 *
2472 * Pads up a buffer to ensure the trailing bytes exist and are
2473 * blanked. If the buffer already contains sufficient data it
2474 * is untouched. Otherwise it is extended. Returns zero on
2475 * success. The skb is freed on error.
2476 */
2477 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2478 {
2479 unsigned int size = skb->len;
2480 if (likely(size >= len))
2481 return 0;
2482 return skb_pad(skb, len - size);
2483 }
2484
2485 /**
2486 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2487 * @skb: buffer to pad
2488 * @len: minimal length
2489 *
2490 * Pads up a buffer to ensure the trailing bytes exist and are
2491 * blanked. If the buffer already contains sufficient data it
2492 * is untouched. Otherwise it is extended. Returns zero on
2493 * success. The skb is freed on error.
2494 */
2495 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2496 {
2497 unsigned int size = skb->len;
2498
2499 if (unlikely(size < len)) {
2500 len -= size;
2501 if (skb_pad(skb, len))
2502 return -ENOMEM;
2503 __skb_put(skb, len);
2504 }
2505 return 0;
2506 }
2507
2508 static inline int skb_add_data(struct sk_buff *skb,
2509 struct iov_iter *from, int copy)
2510 {
2511 const int off = skb->len;
2512
2513 if (skb->ip_summed == CHECKSUM_NONE) {
2514 __wsum csum = 0;
2515 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2516 &csum, from) == copy) {
2517 skb->csum = csum_block_add(skb->csum, csum, off);
2518 return 0;
2519 }
2520 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2521 return 0;
2522
2523 __skb_trim(skb, off);
2524 return -EFAULT;
2525 }
2526
2527 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2528 const struct page *page, int off)
2529 {
2530 if (i) {
2531 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2532
2533 return page == skb_frag_page(frag) &&
2534 off == frag->page_offset + skb_frag_size(frag);
2535 }
2536 return false;
2537 }
2538
2539 static inline int __skb_linearize(struct sk_buff *skb)
2540 {
2541 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2542 }
2543
2544 /**
2545 * skb_linearize - convert paged skb to linear one
2546 * @skb: buffer to linarize
2547 *
2548 * If there is no free memory -ENOMEM is returned, otherwise zero
2549 * is returned and the old skb data released.
2550 */
2551 static inline int skb_linearize(struct sk_buff *skb)
2552 {
2553 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2554 }
2555
2556 /**
2557 * skb_has_shared_frag - can any frag be overwritten
2558 * @skb: buffer to test
2559 *
2560 * Return true if the skb has at least one frag that might be modified
2561 * by an external entity (as in vmsplice()/sendfile())
2562 */
2563 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2564 {
2565 return skb_is_nonlinear(skb) &&
2566 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2567 }
2568
2569 /**
2570 * skb_linearize_cow - make sure skb is linear and writable
2571 * @skb: buffer to process
2572 *
2573 * If there is no free memory -ENOMEM is returned, otherwise zero
2574 * is returned and the old skb data released.
2575 */
2576 static inline int skb_linearize_cow(struct sk_buff *skb)
2577 {
2578 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2579 __skb_linearize(skb) : 0;
2580 }
2581
2582 /**
2583 * skb_postpull_rcsum - update checksum for received skb after pull
2584 * @skb: buffer to update
2585 * @start: start of data before pull
2586 * @len: length of data pulled
2587 *
2588 * After doing a pull on a received packet, you need to call this to
2589 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2590 * CHECKSUM_NONE so that it can be recomputed from scratch.
2591 */
2592
2593 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2594 const void *start, unsigned int len)
2595 {
2596 if (skb->ip_summed == CHECKSUM_COMPLETE)
2597 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2598 }
2599
2600 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2601
2602 /**
2603 * pskb_trim_rcsum - trim received skb and update checksum
2604 * @skb: buffer to trim
2605 * @len: new length
2606 *
2607 * This is exactly the same as pskb_trim except that it ensures the
2608 * checksum of received packets are still valid after the operation.
2609 */
2610
2611 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2612 {
2613 if (likely(len >= skb->len))
2614 return 0;
2615 if (skb->ip_summed == CHECKSUM_COMPLETE)
2616 skb->ip_summed = CHECKSUM_NONE;
2617 return __pskb_trim(skb, len);
2618 }
2619
2620 #define skb_queue_walk(queue, skb) \
2621 for (skb = (queue)->next; \
2622 skb != (struct sk_buff *)(queue); \
2623 skb = skb->next)
2624
2625 #define skb_queue_walk_safe(queue, skb, tmp) \
2626 for (skb = (queue)->next, tmp = skb->next; \
2627 skb != (struct sk_buff *)(queue); \
2628 skb = tmp, tmp = skb->next)
2629
2630 #define skb_queue_walk_from(queue, skb) \
2631 for (; skb != (struct sk_buff *)(queue); \
2632 skb = skb->next)
2633
2634 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2635 for (tmp = skb->next; \
2636 skb != (struct sk_buff *)(queue); \
2637 skb = tmp, tmp = skb->next)
2638
2639 #define skb_queue_reverse_walk(queue, skb) \
2640 for (skb = (queue)->prev; \
2641 skb != (struct sk_buff *)(queue); \
2642 skb = skb->prev)
2643
2644 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2645 for (skb = (queue)->prev, tmp = skb->prev; \
2646 skb != (struct sk_buff *)(queue); \
2647 skb = tmp, tmp = skb->prev)
2648
2649 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2650 for (tmp = skb->prev; \
2651 skb != (struct sk_buff *)(queue); \
2652 skb = tmp, tmp = skb->prev)
2653
2654 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2655 {
2656 return skb_shinfo(skb)->frag_list != NULL;
2657 }
2658
2659 static inline void skb_frag_list_init(struct sk_buff *skb)
2660 {
2661 skb_shinfo(skb)->frag_list = NULL;
2662 }
2663
2664 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2665 {
2666 frag->next = skb_shinfo(skb)->frag_list;
2667 skb_shinfo(skb)->frag_list = frag;
2668 }
2669
2670 #define skb_walk_frags(skb, iter) \
2671 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2672
2673 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2674 int *peeked, int *off, int *err);
2675 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2676 int *err);
2677 unsigned int datagram_poll(struct file *file, struct socket *sock,
2678 struct poll_table_struct *wait);
2679 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2680 struct iov_iter *to, int size);
2681 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2682 struct msghdr *msg, int size)
2683 {
2684 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2685 }
2686 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2687 struct msghdr *msg);
2688 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2689 struct iov_iter *from, int len);
2690 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2691 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2692 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2693 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2694 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2695 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2696 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2697 int len, __wsum csum);
2698 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2699 struct pipe_inode_info *pipe, unsigned int len,
2700 unsigned int flags);
2701 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2702 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2703 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2704 int len, int hlen);
2705 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2706 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2707 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2708 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2709 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2710 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2711 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2712 int skb_vlan_pop(struct sk_buff *skb);
2713 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2714
2715 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2716 {
2717 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2718 }
2719
2720 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2721 {
2722 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2723 }
2724
2725 struct skb_checksum_ops {
2726 __wsum (*update)(const void *mem, int len, __wsum wsum);
2727 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2728 };
2729
2730 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2731 __wsum csum, const struct skb_checksum_ops *ops);
2732 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2733 __wsum csum);
2734
2735 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2736 int len, void *data, int hlen, void *buffer)
2737 {
2738 if (hlen - offset >= len)
2739 return data + offset;
2740
2741 if (!skb ||
2742 skb_copy_bits(skb, offset, buffer, len) < 0)
2743 return NULL;
2744
2745 return buffer;
2746 }
2747
2748 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2749 int len, void *buffer)
2750 {
2751 return __skb_header_pointer(skb, offset, len, skb->data,
2752 skb_headlen(skb), buffer);
2753 }
2754
2755 /**
2756 * skb_needs_linearize - check if we need to linearize a given skb
2757 * depending on the given device features.
2758 * @skb: socket buffer to check
2759 * @features: net device features
2760 *
2761 * Returns true if either:
2762 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2763 * 2. skb is fragmented and the device does not support SG.
2764 */
2765 static inline bool skb_needs_linearize(struct sk_buff *skb,
2766 netdev_features_t features)
2767 {
2768 return skb_is_nonlinear(skb) &&
2769 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2770 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2771 }
2772
2773 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2774 void *to,
2775 const unsigned int len)
2776 {
2777 memcpy(to, skb->data, len);
2778 }
2779
2780 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2781 const int offset, void *to,
2782 const unsigned int len)
2783 {
2784 memcpy(to, skb->data + offset, len);
2785 }
2786
2787 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2788 const void *from,
2789 const unsigned int len)
2790 {
2791 memcpy(skb->data, from, len);
2792 }
2793
2794 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2795 const int offset,
2796 const void *from,
2797 const unsigned int len)
2798 {
2799 memcpy(skb->data + offset, from, len);
2800 }
2801
2802 void skb_init(void);
2803
2804 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2805 {
2806 return skb->tstamp;
2807 }
2808
2809 /**
2810 * skb_get_timestamp - get timestamp from a skb
2811 * @skb: skb to get stamp from
2812 * @stamp: pointer to struct timeval to store stamp in
2813 *
2814 * Timestamps are stored in the skb as offsets to a base timestamp.
2815 * This function converts the offset back to a struct timeval and stores
2816 * it in stamp.
2817 */
2818 static inline void skb_get_timestamp(const struct sk_buff *skb,
2819 struct timeval *stamp)
2820 {
2821 *stamp = ktime_to_timeval(skb->tstamp);
2822 }
2823
2824 static inline void skb_get_timestampns(const struct sk_buff *skb,
2825 struct timespec *stamp)
2826 {
2827 *stamp = ktime_to_timespec(skb->tstamp);
2828 }
2829
2830 static inline void __net_timestamp(struct sk_buff *skb)
2831 {
2832 skb->tstamp = ktime_get_real();
2833 }
2834
2835 static inline ktime_t net_timedelta(ktime_t t)
2836 {
2837 return ktime_sub(ktime_get_real(), t);
2838 }
2839
2840 static inline ktime_t net_invalid_timestamp(void)
2841 {
2842 return ktime_set(0, 0);
2843 }
2844
2845 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2846
2847 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2848
2849 void skb_clone_tx_timestamp(struct sk_buff *skb);
2850 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2851
2852 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2853
2854 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2855 {
2856 }
2857
2858 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2859 {
2860 return false;
2861 }
2862
2863 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2864
2865 /**
2866 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2867 *
2868 * PHY drivers may accept clones of transmitted packets for
2869 * timestamping via their phy_driver.txtstamp method. These drivers
2870 * must call this function to return the skb back to the stack, with
2871 * or without a timestamp.
2872 *
2873 * @skb: clone of the the original outgoing packet
2874 * @hwtstamps: hardware time stamps, may be NULL if not available
2875 *
2876 */
2877 void skb_complete_tx_timestamp(struct sk_buff *skb,
2878 struct skb_shared_hwtstamps *hwtstamps);
2879
2880 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2881 struct skb_shared_hwtstamps *hwtstamps,
2882 struct sock *sk, int tstype);
2883
2884 /**
2885 * skb_tstamp_tx - queue clone of skb with send time stamps
2886 * @orig_skb: the original outgoing packet
2887 * @hwtstamps: hardware time stamps, may be NULL if not available
2888 *
2889 * If the skb has a socket associated, then this function clones the
2890 * skb (thus sharing the actual data and optional structures), stores
2891 * the optional hardware time stamping information (if non NULL) or
2892 * generates a software time stamp (otherwise), then queues the clone
2893 * to the error queue of the socket. Errors are silently ignored.
2894 */
2895 void skb_tstamp_tx(struct sk_buff *orig_skb,
2896 struct skb_shared_hwtstamps *hwtstamps);
2897
2898 static inline void sw_tx_timestamp(struct sk_buff *skb)
2899 {
2900 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2901 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2902 skb_tstamp_tx(skb, NULL);
2903 }
2904
2905 /**
2906 * skb_tx_timestamp() - Driver hook for transmit timestamping
2907 *
2908 * Ethernet MAC Drivers should call this function in their hard_xmit()
2909 * function immediately before giving the sk_buff to the MAC hardware.
2910 *
2911 * Specifically, one should make absolutely sure that this function is
2912 * called before TX completion of this packet can trigger. Otherwise
2913 * the packet could potentially already be freed.
2914 *
2915 * @skb: A socket buffer.
2916 */
2917 static inline void skb_tx_timestamp(struct sk_buff *skb)
2918 {
2919 skb_clone_tx_timestamp(skb);
2920 sw_tx_timestamp(skb);
2921 }
2922
2923 /**
2924 * skb_complete_wifi_ack - deliver skb with wifi status
2925 *
2926 * @skb: the original outgoing packet
2927 * @acked: ack status
2928 *
2929 */
2930 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2931
2932 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2933 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2934
2935 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2936 {
2937 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2938 skb->csum_valid ||
2939 (skb->ip_summed == CHECKSUM_PARTIAL &&
2940 skb_checksum_start_offset(skb) >= 0));
2941 }
2942
2943 /**
2944 * skb_checksum_complete - Calculate checksum of an entire packet
2945 * @skb: packet to process
2946 *
2947 * This function calculates the checksum over the entire packet plus
2948 * the value of skb->csum. The latter can be used to supply the
2949 * checksum of a pseudo header as used by TCP/UDP. It returns the
2950 * checksum.
2951 *
2952 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2953 * this function can be used to verify that checksum on received
2954 * packets. In that case the function should return zero if the
2955 * checksum is correct. In particular, this function will return zero
2956 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2957 * hardware has already verified the correctness of the checksum.
2958 */
2959 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2960 {
2961 return skb_csum_unnecessary(skb) ?
2962 0 : __skb_checksum_complete(skb);
2963 }
2964
2965 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2966 {
2967 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2968 if (skb->csum_level == 0)
2969 skb->ip_summed = CHECKSUM_NONE;
2970 else
2971 skb->csum_level--;
2972 }
2973 }
2974
2975 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2976 {
2977 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2978 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2979 skb->csum_level++;
2980 } else if (skb->ip_summed == CHECKSUM_NONE) {
2981 skb->ip_summed = CHECKSUM_UNNECESSARY;
2982 skb->csum_level = 0;
2983 }
2984 }
2985
2986 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2987 {
2988 /* Mark current checksum as bad (typically called from GRO
2989 * path). In the case that ip_summed is CHECKSUM_NONE
2990 * this must be the first checksum encountered in the packet.
2991 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2992 * checksum after the last one validated. For UDP, a zero
2993 * checksum can not be marked as bad.
2994 */
2995
2996 if (skb->ip_summed == CHECKSUM_NONE ||
2997 skb->ip_summed == CHECKSUM_UNNECESSARY)
2998 skb->csum_bad = 1;
2999 }
3000
3001 /* Check if we need to perform checksum complete validation.
3002 *
3003 * Returns true if checksum complete is needed, false otherwise
3004 * (either checksum is unnecessary or zero checksum is allowed).
3005 */
3006 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3007 bool zero_okay,
3008 __sum16 check)
3009 {
3010 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3011 skb->csum_valid = 1;
3012 __skb_decr_checksum_unnecessary(skb);
3013 return false;
3014 }
3015
3016 return true;
3017 }
3018
3019 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3020 * in checksum_init.
3021 */
3022 #define CHECKSUM_BREAK 76
3023
3024 /* Unset checksum-complete
3025 *
3026 * Unset checksum complete can be done when packet is being modified
3027 * (uncompressed for instance) and checksum-complete value is
3028 * invalidated.
3029 */
3030 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3031 {
3032 if (skb->ip_summed == CHECKSUM_COMPLETE)
3033 skb->ip_summed = CHECKSUM_NONE;
3034 }
3035
3036 /* Validate (init) checksum based on checksum complete.
3037 *
3038 * Return values:
3039 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3040 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3041 * checksum is stored in skb->csum for use in __skb_checksum_complete
3042 * non-zero: value of invalid checksum
3043 *
3044 */
3045 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3046 bool complete,
3047 __wsum psum)
3048 {
3049 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3050 if (!csum_fold(csum_add(psum, skb->csum))) {
3051 skb->csum_valid = 1;
3052 return 0;
3053 }
3054 } else if (skb->csum_bad) {
3055 /* ip_summed == CHECKSUM_NONE in this case */
3056 return (__force __sum16)1;
3057 }
3058
3059 skb->csum = psum;
3060
3061 if (complete || skb->len <= CHECKSUM_BREAK) {
3062 __sum16 csum;
3063
3064 csum = __skb_checksum_complete(skb);
3065 skb->csum_valid = !csum;
3066 return csum;
3067 }
3068
3069 return 0;
3070 }
3071
3072 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3073 {
3074 return 0;
3075 }
3076
3077 /* Perform checksum validate (init). Note that this is a macro since we only
3078 * want to calculate the pseudo header which is an input function if necessary.
3079 * First we try to validate without any computation (checksum unnecessary) and
3080 * then calculate based on checksum complete calling the function to compute
3081 * pseudo header.
3082 *
3083 * Return values:
3084 * 0: checksum is validated or try to in skb_checksum_complete
3085 * non-zero: value of invalid checksum
3086 */
3087 #define __skb_checksum_validate(skb, proto, complete, \
3088 zero_okay, check, compute_pseudo) \
3089 ({ \
3090 __sum16 __ret = 0; \
3091 skb->csum_valid = 0; \
3092 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3093 __ret = __skb_checksum_validate_complete(skb, \
3094 complete, compute_pseudo(skb, proto)); \
3095 __ret; \
3096 })
3097
3098 #define skb_checksum_init(skb, proto, compute_pseudo) \
3099 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3100
3101 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3102 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3103
3104 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3105 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3106
3107 #define skb_checksum_validate_zero_check(skb, proto, check, \
3108 compute_pseudo) \
3109 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3110
3111 #define skb_checksum_simple_validate(skb) \
3112 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3113
3114 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3115 {
3116 return (skb->ip_summed == CHECKSUM_NONE &&
3117 skb->csum_valid && !skb->csum_bad);
3118 }
3119
3120 static inline void __skb_checksum_convert(struct sk_buff *skb,
3121 __sum16 check, __wsum pseudo)
3122 {
3123 skb->csum = ~pseudo;
3124 skb->ip_summed = CHECKSUM_COMPLETE;
3125 }
3126
3127 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3128 do { \
3129 if (__skb_checksum_convert_check(skb)) \
3130 __skb_checksum_convert(skb, check, \
3131 compute_pseudo(skb, proto)); \
3132 } while (0)
3133
3134 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3135 u16 start, u16 offset)
3136 {
3137 skb->ip_summed = CHECKSUM_PARTIAL;
3138 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3139 skb->csum_offset = offset - start;
3140 }
3141
3142 /* Update skbuf and packet to reflect the remote checksum offload operation.
3143 * When called, ptr indicates the starting point for skb->csum when
3144 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3145 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3146 */
3147 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3148 int start, int offset, bool nopartial)
3149 {
3150 __wsum delta;
3151
3152 if (!nopartial) {
3153 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3154 return;
3155 }
3156
3157 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3158 __skb_checksum_complete(skb);
3159 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3160 }
3161
3162 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3163
3164 /* Adjust skb->csum since we changed the packet */
3165 skb->csum = csum_add(skb->csum, delta);
3166 }
3167
3168 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3169 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3170 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3171 {
3172 if (nfct && atomic_dec_and_test(&nfct->use))
3173 nf_conntrack_destroy(nfct);
3174 }
3175 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3176 {
3177 if (nfct)
3178 atomic_inc(&nfct->use);
3179 }
3180 #endif
3181 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3182 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3183 {
3184 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3185 kfree(nf_bridge);
3186 }
3187 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3188 {
3189 if (nf_bridge)
3190 atomic_inc(&nf_bridge->use);
3191 }
3192 #endif /* CONFIG_BRIDGE_NETFILTER */
3193 static inline void nf_reset(struct sk_buff *skb)
3194 {
3195 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3196 nf_conntrack_put(skb->nfct);
3197 skb->nfct = NULL;
3198 #endif
3199 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3200 nf_bridge_put(skb->nf_bridge);
3201 skb->nf_bridge = NULL;
3202 #endif
3203 }
3204
3205 static inline void nf_reset_trace(struct sk_buff *skb)
3206 {
3207 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3208 skb->nf_trace = 0;
3209 #endif
3210 }
3211
3212 /* Note: This doesn't put any conntrack and bridge info in dst. */
3213 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3214 bool copy)
3215 {
3216 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3217 dst->nfct = src->nfct;
3218 nf_conntrack_get(src->nfct);
3219 if (copy)
3220 dst->nfctinfo = src->nfctinfo;
3221 #endif
3222 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3223 dst->nf_bridge = src->nf_bridge;
3224 nf_bridge_get(src->nf_bridge);
3225 #endif
3226 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3227 if (copy)
3228 dst->nf_trace = src->nf_trace;
3229 #endif
3230 }
3231
3232 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3233 {
3234 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3235 nf_conntrack_put(dst->nfct);
3236 #endif
3237 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3238 nf_bridge_put(dst->nf_bridge);
3239 #endif
3240 __nf_copy(dst, src, true);
3241 }
3242
3243 #ifdef CONFIG_NETWORK_SECMARK
3244 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3245 {
3246 to->secmark = from->secmark;
3247 }
3248
3249 static inline void skb_init_secmark(struct sk_buff *skb)
3250 {
3251 skb->secmark = 0;
3252 }
3253 #else
3254 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3255 { }
3256
3257 static inline void skb_init_secmark(struct sk_buff *skb)
3258 { }
3259 #endif
3260
3261 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3262 {
3263 return !skb->destructor &&
3264 #if IS_ENABLED(CONFIG_XFRM)
3265 !skb->sp &&
3266 #endif
3267 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3268 !skb->nfct &&
3269 #endif
3270 !skb->_skb_refdst &&
3271 !skb_has_frag_list(skb);
3272 }
3273
3274 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3275 {
3276 skb->queue_mapping = queue_mapping;
3277 }
3278
3279 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3280 {
3281 return skb->queue_mapping;
3282 }
3283
3284 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3285 {
3286 to->queue_mapping = from->queue_mapping;
3287 }
3288
3289 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3290 {
3291 skb->queue_mapping = rx_queue + 1;
3292 }
3293
3294 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3295 {
3296 return skb->queue_mapping - 1;
3297 }
3298
3299 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3300 {
3301 return skb->queue_mapping != 0;
3302 }
3303
3304 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3305 {
3306 #ifdef CONFIG_XFRM
3307 return skb->sp;
3308 #else
3309 return NULL;
3310 #endif
3311 }
3312
3313 /* Keeps track of mac header offset relative to skb->head.
3314 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3315 * For non-tunnel skb it points to skb_mac_header() and for
3316 * tunnel skb it points to outer mac header.
3317 * Keeps track of level of encapsulation of network headers.
3318 */
3319 struct skb_gso_cb {
3320 int mac_offset;
3321 int encap_level;
3322 __u16 csum_start;
3323 };
3324 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3325
3326 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3327 {
3328 return (skb_mac_header(inner_skb) - inner_skb->head) -
3329 SKB_GSO_CB(inner_skb)->mac_offset;
3330 }
3331
3332 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3333 {
3334 int new_headroom, headroom;
3335 int ret;
3336
3337 headroom = skb_headroom(skb);
3338 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3339 if (ret)
3340 return ret;
3341
3342 new_headroom = skb_headroom(skb);
3343 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3344 return 0;
3345 }
3346
3347 /* Compute the checksum for a gso segment. First compute the checksum value
3348 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3349 * then add in skb->csum (checksum from csum_start to end of packet).
3350 * skb->csum and csum_start are then updated to reflect the checksum of the
3351 * resultant packet starting from the transport header-- the resultant checksum
3352 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3353 * header.
3354 */
3355 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3356 {
3357 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3358 skb_transport_offset(skb);
3359 __wsum partial;
3360
3361 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3362 skb->csum = res;
3363 SKB_GSO_CB(skb)->csum_start -= plen;
3364
3365 return csum_fold(partial);
3366 }
3367
3368 static inline bool skb_is_gso(const struct sk_buff *skb)
3369 {
3370 return skb_shinfo(skb)->gso_size;
3371 }
3372
3373 /* Note: Should be called only if skb_is_gso(skb) is true */
3374 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3375 {
3376 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3377 }
3378
3379 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3380
3381 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3382 {
3383 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3384 * wanted then gso_type will be set. */
3385 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3386
3387 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3388 unlikely(shinfo->gso_type == 0)) {
3389 __skb_warn_lro_forwarding(skb);
3390 return true;
3391 }
3392 return false;
3393 }
3394
3395 static inline void skb_forward_csum(struct sk_buff *skb)
3396 {
3397 /* Unfortunately we don't support this one. Any brave souls? */
3398 if (skb->ip_summed == CHECKSUM_COMPLETE)
3399 skb->ip_summed = CHECKSUM_NONE;
3400 }
3401
3402 /**
3403 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3404 * @skb: skb to check
3405 *
3406 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3407 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3408 * use this helper, to document places where we make this assertion.
3409 */
3410 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3411 {
3412 #ifdef DEBUG
3413 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3414 #endif
3415 }
3416
3417 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3418
3419 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3420 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3421 unsigned int transport_len,
3422 __sum16(*skb_chkf)(struct sk_buff *skb));
3423
3424 /**
3425 * skb_head_is_locked - Determine if the skb->head is locked down
3426 * @skb: skb to check
3427 *
3428 * The head on skbs build around a head frag can be removed if they are
3429 * not cloned. This function returns true if the skb head is locked down
3430 * due to either being allocated via kmalloc, or by being a clone with
3431 * multiple references to the head.
3432 */
3433 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3434 {
3435 return !skb->head_frag || skb_cloned(skb);
3436 }
3437
3438 /**
3439 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3440 *
3441 * @skb: GSO skb
3442 *
3443 * skb_gso_network_seglen is used to determine the real size of the
3444 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3445 *
3446 * The MAC/L2 header is not accounted for.
3447 */
3448 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3449 {
3450 unsigned int hdr_len = skb_transport_header(skb) -
3451 skb_network_header(skb);
3452 return hdr_len + skb_gso_transport_seglen(skb);
3453 }
3454 #endif /* __KERNEL__ */
3455 #endif /* _LINUX_SKBUFF_H */