]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/skbuff.h
[SK_BUFF]: Introduce skb_reset_network_header(skb)
[mirror_ubuntu-zesty-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_PARTIAL 1
37 #define CHECKSUM_UNNECESSARY 2
38 #define CHECKSUM_COMPLETE 3
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 (((X) - sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * B. Checksumming on output.
68 *
69 * NONE: skb is checksummed by protocol or csum is not required.
70 *
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->h.raw to the end and to record the checksum
73 * at skb->h.raw+skb->csum.
74 *
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
84 *
85 * Any questions? No questions, good. --ANK
86 */
87
88 struct net_device;
89
90 #ifdef CONFIG_NETFILTER
91 struct nf_conntrack {
92 atomic_t use;
93 void (*destroy)(struct nf_conntrack *);
94 };
95
96 #ifdef CONFIG_BRIDGE_NETFILTER
97 struct nf_bridge_info {
98 atomic_t use;
99 struct net_device *physindev;
100 struct net_device *physoutdev;
101 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
102 struct net_device *netoutdev;
103 #endif
104 unsigned int mask;
105 unsigned long data[32 / sizeof(unsigned long)];
106 };
107 #endif
108
109 #endif
110
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
115
116 __u32 qlen;
117 spinlock_t lock;
118 };
119
120 struct sk_buff;
121
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124
125 typedef struct skb_frag_struct skb_frag_t;
126
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
131 };
132
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
135 */
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
146 };
147
148 /* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. It is up to the users of the skb to agree on
151 * where the payload starts.
152 *
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
155 *
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
158 */
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161
162
163 enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
167 };
168
169 enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
172
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
175
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
178
179 SKB_GSO_TCPV6 = 1 << 4,
180 };
181
182 /**
183 * struct sk_buff - socket buffer
184 * @next: Next buffer in list
185 * @prev: Previous buffer in list
186 * @sk: Socket we are owned by
187 * @tstamp: Time we arrived
188 * @dev: Device we arrived on/are leaving by
189 * @iif: ifindex of device we arrived on
190 * @h: Transport layer header
191 * @nh: Network layer header
192 * @mac: Link layer header
193 * @dst: destination entry
194 * @sp: the security path, used for xfrm
195 * @cb: Control buffer. Free for use by every layer. Put private vars here
196 * @len: Length of actual data
197 * @data_len: Data length
198 * @mac_len: Length of link layer header
199 * @csum: Checksum
200 * @local_df: allow local fragmentation
201 * @cloned: Head may be cloned (check refcnt to be sure)
202 * @nohdr: Payload reference only, must not modify header
203 * @pkt_type: Packet class
204 * @fclone: skbuff clone status
205 * @ip_summed: Driver fed us an IP checksum
206 * @priority: Packet queueing priority
207 * @users: User count - see {datagram,tcp}.c
208 * @protocol: Packet protocol from driver
209 * @truesize: Buffer size
210 * @head: Head of buffer
211 * @data: Data head pointer
212 * @tail: Tail pointer
213 * @end: End pointer
214 * @destructor: Destruct function
215 * @mark: Generic packet mark
216 * @nfct: Associated connection, if any
217 * @ipvs_property: skbuff is owned by ipvs
218 * @nfctinfo: Relationship of this skb to the connection
219 * @nfct_reasm: netfilter conntrack re-assembly pointer
220 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
221 * @tc_index: Traffic control index
222 * @tc_verd: traffic control verdict
223 * @dma_cookie: a cookie to one of several possible DMA operations
224 * done by skb DMA functions
225 * @secmark: security marking
226 */
227
228 struct sk_buff {
229 /* These two members must be first. */
230 struct sk_buff *next;
231 struct sk_buff *prev;
232
233 struct sock *sk;
234 ktime_t tstamp;
235 struct net_device *dev;
236 int iif;
237 /* 4 byte hole on 64 bit*/
238
239 union {
240 struct tcphdr *th;
241 struct udphdr *uh;
242 struct icmphdr *icmph;
243 struct igmphdr *igmph;
244 struct iphdr *ipiph;
245 struct ipv6hdr *ipv6h;
246 unsigned char *raw;
247 } h;
248
249 union {
250 struct iphdr *iph;
251 struct ipv6hdr *ipv6h;
252 struct arphdr *arph;
253 unsigned char *raw;
254 } nh;
255
256 union {
257 unsigned char *raw;
258 } mac;
259
260 struct dst_entry *dst;
261 struct sec_path *sp;
262
263 /*
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
268 */
269 char cb[48];
270
271 unsigned int len,
272 data_len,
273 mac_len;
274 union {
275 __wsum csum;
276 __u32 csum_offset;
277 };
278 __u32 priority;
279 __u8 local_df:1,
280 cloned:1,
281 ip_summed:2,
282 nohdr:1,
283 nfctinfo:3;
284 __u8 pkt_type:3,
285 fclone:2,
286 ipvs_property:1;
287 __be16 protocol;
288
289 void (*destructor)(struct sk_buff *skb);
290 #ifdef CONFIG_NETFILTER
291 struct nf_conntrack *nfct;
292 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
293 struct sk_buff *nfct_reasm;
294 #endif
295 #ifdef CONFIG_BRIDGE_NETFILTER
296 struct nf_bridge_info *nf_bridge;
297 #endif
298 #endif /* CONFIG_NETFILTER */
299 #ifdef CONFIG_NET_SCHED
300 __u16 tc_index; /* traffic control index */
301 #ifdef CONFIG_NET_CLS_ACT
302 __u16 tc_verd; /* traffic control verdict */
303 #endif
304 #endif
305 #ifdef CONFIG_NET_DMA
306 dma_cookie_t dma_cookie;
307 #endif
308 #ifdef CONFIG_NETWORK_SECMARK
309 __u32 secmark;
310 #endif
311
312 __u32 mark;
313
314 /* These elements must be at the end, see alloc_skb() for details. */
315 unsigned int truesize;
316 atomic_t users;
317 unsigned char *head,
318 *data,
319 *tail,
320 *end;
321 };
322
323 #ifdef __KERNEL__
324 /*
325 * Handling routines are only of interest to the kernel
326 */
327 #include <linux/slab.h>
328
329 #include <asm/system.h>
330
331 extern void kfree_skb(struct sk_buff *skb);
332 extern void __kfree_skb(struct sk_buff *skb);
333 extern struct sk_buff *__alloc_skb(unsigned int size,
334 gfp_t priority, int fclone, int node);
335 static inline struct sk_buff *alloc_skb(unsigned int size,
336 gfp_t priority)
337 {
338 return __alloc_skb(size, priority, 0, -1);
339 }
340
341 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
342 gfp_t priority)
343 {
344 return __alloc_skb(size, priority, 1, -1);
345 }
346
347 extern void kfree_skbmem(struct sk_buff *skb);
348 extern struct sk_buff *skb_clone(struct sk_buff *skb,
349 gfp_t priority);
350 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
351 gfp_t priority);
352 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
353 gfp_t gfp_mask);
354 extern int pskb_expand_head(struct sk_buff *skb,
355 int nhead, int ntail,
356 gfp_t gfp_mask);
357 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
358 unsigned int headroom);
359 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
360 int newheadroom, int newtailroom,
361 gfp_t priority);
362 extern int skb_pad(struct sk_buff *skb, int pad);
363 #define dev_kfree_skb(a) kfree_skb(a)
364 extern void skb_over_panic(struct sk_buff *skb, int len,
365 void *here);
366 extern void skb_under_panic(struct sk_buff *skb, int len,
367 void *here);
368 extern void skb_truesize_bug(struct sk_buff *skb);
369
370 static inline void skb_truesize_check(struct sk_buff *skb)
371 {
372 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
373 skb_truesize_bug(skb);
374 }
375
376 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
377 int getfrag(void *from, char *to, int offset,
378 int len,int odd, struct sk_buff *skb),
379 void *from, int length);
380
381 struct skb_seq_state
382 {
383 __u32 lower_offset;
384 __u32 upper_offset;
385 __u32 frag_idx;
386 __u32 stepped_offset;
387 struct sk_buff *root_skb;
388 struct sk_buff *cur_skb;
389 __u8 *frag_data;
390 };
391
392 extern void skb_prepare_seq_read(struct sk_buff *skb,
393 unsigned int from, unsigned int to,
394 struct skb_seq_state *st);
395 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
396 struct skb_seq_state *st);
397 extern void skb_abort_seq_read(struct skb_seq_state *st);
398
399 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
400 unsigned int to, struct ts_config *config,
401 struct ts_state *state);
402
403 /* Internal */
404 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
405
406 /**
407 * skb_queue_empty - check if a queue is empty
408 * @list: queue head
409 *
410 * Returns true if the queue is empty, false otherwise.
411 */
412 static inline int skb_queue_empty(const struct sk_buff_head *list)
413 {
414 return list->next == (struct sk_buff *)list;
415 }
416
417 /**
418 * skb_get - reference buffer
419 * @skb: buffer to reference
420 *
421 * Makes another reference to a socket buffer and returns a pointer
422 * to the buffer.
423 */
424 static inline struct sk_buff *skb_get(struct sk_buff *skb)
425 {
426 atomic_inc(&skb->users);
427 return skb;
428 }
429
430 /*
431 * If users == 1, we are the only owner and are can avoid redundant
432 * atomic change.
433 */
434
435 /**
436 * skb_cloned - is the buffer a clone
437 * @skb: buffer to check
438 *
439 * Returns true if the buffer was generated with skb_clone() and is
440 * one of multiple shared copies of the buffer. Cloned buffers are
441 * shared data so must not be written to under normal circumstances.
442 */
443 static inline int skb_cloned(const struct sk_buff *skb)
444 {
445 return skb->cloned &&
446 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
447 }
448
449 /**
450 * skb_header_cloned - is the header a clone
451 * @skb: buffer to check
452 *
453 * Returns true if modifying the header part of the buffer requires
454 * the data to be copied.
455 */
456 static inline int skb_header_cloned(const struct sk_buff *skb)
457 {
458 int dataref;
459
460 if (!skb->cloned)
461 return 0;
462
463 dataref = atomic_read(&skb_shinfo(skb)->dataref);
464 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
465 return dataref != 1;
466 }
467
468 /**
469 * skb_header_release - release reference to header
470 * @skb: buffer to operate on
471 *
472 * Drop a reference to the header part of the buffer. This is done
473 * by acquiring a payload reference. You must not read from the header
474 * part of skb->data after this.
475 */
476 static inline void skb_header_release(struct sk_buff *skb)
477 {
478 BUG_ON(skb->nohdr);
479 skb->nohdr = 1;
480 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
481 }
482
483 /**
484 * skb_shared - is the buffer shared
485 * @skb: buffer to check
486 *
487 * Returns true if more than one person has a reference to this
488 * buffer.
489 */
490 static inline int skb_shared(const struct sk_buff *skb)
491 {
492 return atomic_read(&skb->users) != 1;
493 }
494
495 /**
496 * skb_share_check - check if buffer is shared and if so clone it
497 * @skb: buffer to check
498 * @pri: priority for memory allocation
499 *
500 * If the buffer is shared the buffer is cloned and the old copy
501 * drops a reference. A new clone with a single reference is returned.
502 * If the buffer is not shared the original buffer is returned. When
503 * being called from interrupt status or with spinlocks held pri must
504 * be GFP_ATOMIC.
505 *
506 * NULL is returned on a memory allocation failure.
507 */
508 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
509 gfp_t pri)
510 {
511 might_sleep_if(pri & __GFP_WAIT);
512 if (skb_shared(skb)) {
513 struct sk_buff *nskb = skb_clone(skb, pri);
514 kfree_skb(skb);
515 skb = nskb;
516 }
517 return skb;
518 }
519
520 /*
521 * Copy shared buffers into a new sk_buff. We effectively do COW on
522 * packets to handle cases where we have a local reader and forward
523 * and a couple of other messy ones. The normal one is tcpdumping
524 * a packet thats being forwarded.
525 */
526
527 /**
528 * skb_unshare - make a copy of a shared buffer
529 * @skb: buffer to check
530 * @pri: priority for memory allocation
531 *
532 * If the socket buffer is a clone then this function creates a new
533 * copy of the data, drops a reference count on the old copy and returns
534 * the new copy with the reference count at 1. If the buffer is not a clone
535 * the original buffer is returned. When called with a spinlock held or
536 * from interrupt state @pri must be %GFP_ATOMIC
537 *
538 * %NULL is returned on a memory allocation failure.
539 */
540 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
541 gfp_t pri)
542 {
543 might_sleep_if(pri & __GFP_WAIT);
544 if (skb_cloned(skb)) {
545 struct sk_buff *nskb = skb_copy(skb, pri);
546 kfree_skb(skb); /* Free our shared copy */
547 skb = nskb;
548 }
549 return skb;
550 }
551
552 /**
553 * skb_peek
554 * @list_: list to peek at
555 *
556 * Peek an &sk_buff. Unlike most other operations you _MUST_
557 * be careful with this one. A peek leaves the buffer on the
558 * list and someone else may run off with it. You must hold
559 * the appropriate locks or have a private queue to do this.
560 *
561 * Returns %NULL for an empty list or a pointer to the head element.
562 * The reference count is not incremented and the reference is therefore
563 * volatile. Use with caution.
564 */
565 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
566 {
567 struct sk_buff *list = ((struct sk_buff *)list_)->next;
568 if (list == (struct sk_buff *)list_)
569 list = NULL;
570 return list;
571 }
572
573 /**
574 * skb_peek_tail
575 * @list_: list to peek at
576 *
577 * Peek an &sk_buff. Unlike most other operations you _MUST_
578 * be careful with this one. A peek leaves the buffer on the
579 * list and someone else may run off with it. You must hold
580 * the appropriate locks or have a private queue to do this.
581 *
582 * Returns %NULL for an empty list or a pointer to the tail element.
583 * The reference count is not incremented and the reference is therefore
584 * volatile. Use with caution.
585 */
586 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
587 {
588 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
589 if (list == (struct sk_buff *)list_)
590 list = NULL;
591 return list;
592 }
593
594 /**
595 * skb_queue_len - get queue length
596 * @list_: list to measure
597 *
598 * Return the length of an &sk_buff queue.
599 */
600 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
601 {
602 return list_->qlen;
603 }
604
605 /*
606 * This function creates a split out lock class for each invocation;
607 * this is needed for now since a whole lot of users of the skb-queue
608 * infrastructure in drivers have different locking usage (in hardirq)
609 * than the networking core (in softirq only). In the long run either the
610 * network layer or drivers should need annotation to consolidate the
611 * main types of usage into 3 classes.
612 */
613 static inline void skb_queue_head_init(struct sk_buff_head *list)
614 {
615 spin_lock_init(&list->lock);
616 list->prev = list->next = (struct sk_buff *)list;
617 list->qlen = 0;
618 }
619
620 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
621 struct lock_class_key *class)
622 {
623 skb_queue_head_init(list);
624 lockdep_set_class(&list->lock, class);
625 }
626
627 /*
628 * Insert an sk_buff at the start of a list.
629 *
630 * The "__skb_xxxx()" functions are the non-atomic ones that
631 * can only be called with interrupts disabled.
632 */
633
634 /**
635 * __skb_queue_after - queue a buffer at the list head
636 * @list: list to use
637 * @prev: place after this buffer
638 * @newsk: buffer to queue
639 *
640 * Queue a buffer int the middle of a list. This function takes no locks
641 * and you must therefore hold required locks before calling it.
642 *
643 * A buffer cannot be placed on two lists at the same time.
644 */
645 static inline void __skb_queue_after(struct sk_buff_head *list,
646 struct sk_buff *prev,
647 struct sk_buff *newsk)
648 {
649 struct sk_buff *next;
650 list->qlen++;
651
652 next = prev->next;
653 newsk->next = next;
654 newsk->prev = prev;
655 next->prev = prev->next = newsk;
656 }
657
658 /**
659 * __skb_queue_head - queue a buffer at the list head
660 * @list: list to use
661 * @newsk: buffer to queue
662 *
663 * Queue a buffer at the start of a list. This function takes no locks
664 * and you must therefore hold required locks before calling it.
665 *
666 * A buffer cannot be placed on two lists at the same time.
667 */
668 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
669 static inline void __skb_queue_head(struct sk_buff_head *list,
670 struct sk_buff *newsk)
671 {
672 __skb_queue_after(list, (struct sk_buff *)list, newsk);
673 }
674
675 /**
676 * __skb_queue_tail - queue a buffer at the list tail
677 * @list: list to use
678 * @newsk: buffer to queue
679 *
680 * Queue a buffer at the end of a list. This function takes no locks
681 * and you must therefore hold required locks before calling it.
682 *
683 * A buffer cannot be placed on two lists at the same time.
684 */
685 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
686 static inline void __skb_queue_tail(struct sk_buff_head *list,
687 struct sk_buff *newsk)
688 {
689 struct sk_buff *prev, *next;
690
691 list->qlen++;
692 next = (struct sk_buff *)list;
693 prev = next->prev;
694 newsk->next = next;
695 newsk->prev = prev;
696 next->prev = prev->next = newsk;
697 }
698
699
700 /**
701 * __skb_dequeue - remove from the head of the queue
702 * @list: list to dequeue from
703 *
704 * Remove the head of the list. This function does not take any locks
705 * so must be used with appropriate locks held only. The head item is
706 * returned or %NULL if the list is empty.
707 */
708 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
709 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
710 {
711 struct sk_buff *next, *prev, *result;
712
713 prev = (struct sk_buff *) list;
714 next = prev->next;
715 result = NULL;
716 if (next != prev) {
717 result = next;
718 next = next->next;
719 list->qlen--;
720 next->prev = prev;
721 prev->next = next;
722 result->next = result->prev = NULL;
723 }
724 return result;
725 }
726
727
728 /*
729 * Insert a packet on a list.
730 */
731 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
732 static inline void __skb_insert(struct sk_buff *newsk,
733 struct sk_buff *prev, struct sk_buff *next,
734 struct sk_buff_head *list)
735 {
736 newsk->next = next;
737 newsk->prev = prev;
738 next->prev = prev->next = newsk;
739 list->qlen++;
740 }
741
742 /*
743 * Place a packet after a given packet in a list.
744 */
745 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
746 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
747 {
748 __skb_insert(newsk, old, old->next, list);
749 }
750
751 /*
752 * remove sk_buff from list. _Must_ be called atomically, and with
753 * the list known..
754 */
755 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
756 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
757 {
758 struct sk_buff *next, *prev;
759
760 list->qlen--;
761 next = skb->next;
762 prev = skb->prev;
763 skb->next = skb->prev = NULL;
764 next->prev = prev;
765 prev->next = next;
766 }
767
768
769 /* XXX: more streamlined implementation */
770
771 /**
772 * __skb_dequeue_tail - remove from the tail of the queue
773 * @list: list to dequeue from
774 *
775 * Remove the tail of the list. This function does not take any locks
776 * so must be used with appropriate locks held only. The tail item is
777 * returned or %NULL if the list is empty.
778 */
779 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
780 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
781 {
782 struct sk_buff *skb = skb_peek_tail(list);
783 if (skb)
784 __skb_unlink(skb, list);
785 return skb;
786 }
787
788
789 static inline int skb_is_nonlinear(const struct sk_buff *skb)
790 {
791 return skb->data_len;
792 }
793
794 static inline unsigned int skb_headlen(const struct sk_buff *skb)
795 {
796 return skb->len - skb->data_len;
797 }
798
799 static inline int skb_pagelen(const struct sk_buff *skb)
800 {
801 int i, len = 0;
802
803 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
804 len += skb_shinfo(skb)->frags[i].size;
805 return len + skb_headlen(skb);
806 }
807
808 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
809 struct page *page, int off, int size)
810 {
811 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
812
813 frag->page = page;
814 frag->page_offset = off;
815 frag->size = size;
816 skb_shinfo(skb)->nr_frags = i + 1;
817 }
818
819 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
820 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
821 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
822
823 /*
824 * Add data to an sk_buff
825 */
826 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
827 {
828 unsigned char *tmp = skb->tail;
829 SKB_LINEAR_ASSERT(skb);
830 skb->tail += len;
831 skb->len += len;
832 return tmp;
833 }
834
835 /**
836 * skb_put - add data to a buffer
837 * @skb: buffer to use
838 * @len: amount of data to add
839 *
840 * This function extends the used data area of the buffer. If this would
841 * exceed the total buffer size the kernel will panic. A pointer to the
842 * first byte of the extra data is returned.
843 */
844 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
845 {
846 unsigned char *tmp = skb->tail;
847 SKB_LINEAR_ASSERT(skb);
848 skb->tail += len;
849 skb->len += len;
850 if (unlikely(skb->tail>skb->end))
851 skb_over_panic(skb, len, current_text_addr());
852 return tmp;
853 }
854
855 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
856 {
857 skb->data -= len;
858 skb->len += len;
859 return skb->data;
860 }
861
862 /**
863 * skb_push - add data to the start of a buffer
864 * @skb: buffer to use
865 * @len: amount of data to add
866 *
867 * This function extends the used data area of the buffer at the buffer
868 * start. If this would exceed the total buffer headroom the kernel will
869 * panic. A pointer to the first byte of the extra data is returned.
870 */
871 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
872 {
873 skb->data -= len;
874 skb->len += len;
875 if (unlikely(skb->data<skb->head))
876 skb_under_panic(skb, len, current_text_addr());
877 return skb->data;
878 }
879
880 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
881 {
882 skb->len -= len;
883 BUG_ON(skb->len < skb->data_len);
884 return skb->data += len;
885 }
886
887 /**
888 * skb_pull - remove data from the start of a buffer
889 * @skb: buffer to use
890 * @len: amount of data to remove
891 *
892 * This function removes data from the start of a buffer, returning
893 * the memory to the headroom. A pointer to the next data in the buffer
894 * is returned. Once the data has been pulled future pushes will overwrite
895 * the old data.
896 */
897 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
898 {
899 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
900 }
901
902 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
903
904 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
905 {
906 if (len > skb_headlen(skb) &&
907 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
908 return NULL;
909 skb->len -= len;
910 return skb->data += len;
911 }
912
913 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
914 {
915 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
916 }
917
918 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
919 {
920 if (likely(len <= skb_headlen(skb)))
921 return 1;
922 if (unlikely(len > skb->len))
923 return 0;
924 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
925 }
926
927 /**
928 * skb_headroom - bytes at buffer head
929 * @skb: buffer to check
930 *
931 * Return the number of bytes of free space at the head of an &sk_buff.
932 */
933 static inline int skb_headroom(const struct sk_buff *skb)
934 {
935 return skb->data - skb->head;
936 }
937
938 /**
939 * skb_tailroom - bytes at buffer end
940 * @skb: buffer to check
941 *
942 * Return the number of bytes of free space at the tail of an sk_buff
943 */
944 static inline int skb_tailroom(const struct sk_buff *skb)
945 {
946 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
947 }
948
949 /**
950 * skb_reserve - adjust headroom
951 * @skb: buffer to alter
952 * @len: bytes to move
953 *
954 * Increase the headroom of an empty &sk_buff by reducing the tail
955 * room. This is only allowed for an empty buffer.
956 */
957 static inline void skb_reserve(struct sk_buff *skb, int len)
958 {
959 skb->data += len;
960 skb->tail += len;
961 }
962
963 static inline void skb_reset_network_header(struct sk_buff *skb)
964 {
965 skb->nh.raw = skb->data;
966 }
967
968 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
969 {
970 return skb->mac.raw;
971 }
972
973 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
974 {
975 return skb->mac.raw != NULL;
976 }
977
978 static inline void skb_reset_mac_header(struct sk_buff *skb)
979 {
980 skb->mac.raw = skb->data;
981 }
982
983 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
984 {
985 skb->mac.raw = skb->data + offset;
986 }
987
988 /*
989 * CPUs often take a performance hit when accessing unaligned memory
990 * locations. The actual performance hit varies, it can be small if the
991 * hardware handles it or large if we have to take an exception and fix it
992 * in software.
993 *
994 * Since an ethernet header is 14 bytes network drivers often end up with
995 * the IP header at an unaligned offset. The IP header can be aligned by
996 * shifting the start of the packet by 2 bytes. Drivers should do this
997 * with:
998 *
999 * skb_reserve(NET_IP_ALIGN);
1000 *
1001 * The downside to this alignment of the IP header is that the DMA is now
1002 * unaligned. On some architectures the cost of an unaligned DMA is high
1003 * and this cost outweighs the gains made by aligning the IP header.
1004 *
1005 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1006 * to be overridden.
1007 */
1008 #ifndef NET_IP_ALIGN
1009 #define NET_IP_ALIGN 2
1010 #endif
1011
1012 /*
1013 * The networking layer reserves some headroom in skb data (via
1014 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1015 * the header has to grow. In the default case, if the header has to grow
1016 * 16 bytes or less we avoid the reallocation.
1017 *
1018 * Unfortunately this headroom changes the DMA alignment of the resulting
1019 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1020 * on some architectures. An architecture can override this value,
1021 * perhaps setting it to a cacheline in size (since that will maintain
1022 * cacheline alignment of the DMA). It must be a power of 2.
1023 *
1024 * Various parts of the networking layer expect at least 16 bytes of
1025 * headroom, you should not reduce this.
1026 */
1027 #ifndef NET_SKB_PAD
1028 #define NET_SKB_PAD 16
1029 #endif
1030
1031 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1032
1033 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1034 {
1035 if (unlikely(skb->data_len)) {
1036 WARN_ON(1);
1037 return;
1038 }
1039 skb->len = len;
1040 skb->tail = skb->data + len;
1041 }
1042
1043 /**
1044 * skb_trim - remove end from a buffer
1045 * @skb: buffer to alter
1046 * @len: new length
1047 *
1048 * Cut the length of a buffer down by removing data from the tail. If
1049 * the buffer is already under the length specified it is not modified.
1050 * The skb must be linear.
1051 */
1052 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1053 {
1054 if (skb->len > len)
1055 __skb_trim(skb, len);
1056 }
1057
1058
1059 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1060 {
1061 if (skb->data_len)
1062 return ___pskb_trim(skb, len);
1063 __skb_trim(skb, len);
1064 return 0;
1065 }
1066
1067 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1068 {
1069 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1070 }
1071
1072 /**
1073 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1074 * @skb: buffer to alter
1075 * @len: new length
1076 *
1077 * This is identical to pskb_trim except that the caller knows that
1078 * the skb is not cloned so we should never get an error due to out-
1079 * of-memory.
1080 */
1081 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1082 {
1083 int err = pskb_trim(skb, len);
1084 BUG_ON(err);
1085 }
1086
1087 /**
1088 * skb_orphan - orphan a buffer
1089 * @skb: buffer to orphan
1090 *
1091 * If a buffer currently has an owner then we call the owner's
1092 * destructor function and make the @skb unowned. The buffer continues
1093 * to exist but is no longer charged to its former owner.
1094 */
1095 static inline void skb_orphan(struct sk_buff *skb)
1096 {
1097 if (skb->destructor)
1098 skb->destructor(skb);
1099 skb->destructor = NULL;
1100 skb->sk = NULL;
1101 }
1102
1103 /**
1104 * __skb_queue_purge - empty a list
1105 * @list: list to empty
1106 *
1107 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1108 * the list and one reference dropped. This function does not take the
1109 * list lock and the caller must hold the relevant locks to use it.
1110 */
1111 extern void skb_queue_purge(struct sk_buff_head *list);
1112 static inline void __skb_queue_purge(struct sk_buff_head *list)
1113 {
1114 struct sk_buff *skb;
1115 while ((skb = __skb_dequeue(list)) != NULL)
1116 kfree_skb(skb);
1117 }
1118
1119 /**
1120 * __dev_alloc_skb - allocate an skbuff for receiving
1121 * @length: length to allocate
1122 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1123 *
1124 * Allocate a new &sk_buff and assign it a usage count of one. The
1125 * buffer has unspecified headroom built in. Users should allocate
1126 * the headroom they think they need without accounting for the
1127 * built in space. The built in space is used for optimisations.
1128 *
1129 * %NULL is returned if there is no free memory.
1130 */
1131 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1132 gfp_t gfp_mask)
1133 {
1134 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1135 if (likely(skb))
1136 skb_reserve(skb, NET_SKB_PAD);
1137 return skb;
1138 }
1139
1140 /**
1141 * dev_alloc_skb - allocate an skbuff for receiving
1142 * @length: length to allocate
1143 *
1144 * Allocate a new &sk_buff and assign it a usage count of one. The
1145 * buffer has unspecified headroom built in. Users should allocate
1146 * the headroom they think they need without accounting for the
1147 * built in space. The built in space is used for optimisations.
1148 *
1149 * %NULL is returned if there is no free memory. Although this function
1150 * allocates memory it can be called from an interrupt.
1151 */
1152 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1153 {
1154 return __dev_alloc_skb(length, GFP_ATOMIC);
1155 }
1156
1157 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1158 unsigned int length, gfp_t gfp_mask);
1159
1160 /**
1161 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1162 * @dev: network device to receive on
1163 * @length: length to allocate
1164 *
1165 * Allocate a new &sk_buff and assign it a usage count of one. The
1166 * buffer has unspecified headroom built in. Users should allocate
1167 * the headroom they think they need without accounting for the
1168 * built in space. The built in space is used for optimisations.
1169 *
1170 * %NULL is returned if there is no free memory. Although this function
1171 * allocates memory it can be called from an interrupt.
1172 */
1173 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1174 unsigned int length)
1175 {
1176 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1177 }
1178
1179 /**
1180 * skb_cow - copy header of skb when it is required
1181 * @skb: buffer to cow
1182 * @headroom: needed headroom
1183 *
1184 * If the skb passed lacks sufficient headroom or its data part
1185 * is shared, data is reallocated. If reallocation fails, an error
1186 * is returned and original skb is not changed.
1187 *
1188 * The result is skb with writable area skb->head...skb->tail
1189 * and at least @headroom of space at head.
1190 */
1191 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1192 {
1193 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1194 skb_headroom(skb);
1195
1196 if (delta < 0)
1197 delta = 0;
1198
1199 if (delta || skb_cloned(skb))
1200 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1201 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1202 return 0;
1203 }
1204
1205 /**
1206 * skb_padto - pad an skbuff up to a minimal size
1207 * @skb: buffer to pad
1208 * @len: minimal length
1209 *
1210 * Pads up a buffer to ensure the trailing bytes exist and are
1211 * blanked. If the buffer already contains sufficient data it
1212 * is untouched. Otherwise it is extended. Returns zero on
1213 * success. The skb is freed on error.
1214 */
1215
1216 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1217 {
1218 unsigned int size = skb->len;
1219 if (likely(size >= len))
1220 return 0;
1221 return skb_pad(skb, len-size);
1222 }
1223
1224 static inline int skb_add_data(struct sk_buff *skb,
1225 char __user *from, int copy)
1226 {
1227 const int off = skb->len;
1228
1229 if (skb->ip_summed == CHECKSUM_NONE) {
1230 int err = 0;
1231 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1232 copy, 0, &err);
1233 if (!err) {
1234 skb->csum = csum_block_add(skb->csum, csum, off);
1235 return 0;
1236 }
1237 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1238 return 0;
1239
1240 __skb_trim(skb, off);
1241 return -EFAULT;
1242 }
1243
1244 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1245 struct page *page, int off)
1246 {
1247 if (i) {
1248 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1249
1250 return page == frag->page &&
1251 off == frag->page_offset + frag->size;
1252 }
1253 return 0;
1254 }
1255
1256 static inline int __skb_linearize(struct sk_buff *skb)
1257 {
1258 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1259 }
1260
1261 /**
1262 * skb_linearize - convert paged skb to linear one
1263 * @skb: buffer to linarize
1264 *
1265 * If there is no free memory -ENOMEM is returned, otherwise zero
1266 * is returned and the old skb data released.
1267 */
1268 static inline int skb_linearize(struct sk_buff *skb)
1269 {
1270 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1271 }
1272
1273 /**
1274 * skb_linearize_cow - make sure skb is linear and writable
1275 * @skb: buffer to process
1276 *
1277 * If there is no free memory -ENOMEM is returned, otherwise zero
1278 * is returned and the old skb data released.
1279 */
1280 static inline int skb_linearize_cow(struct sk_buff *skb)
1281 {
1282 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1283 __skb_linearize(skb) : 0;
1284 }
1285
1286 /**
1287 * skb_postpull_rcsum - update checksum for received skb after pull
1288 * @skb: buffer to update
1289 * @start: start of data before pull
1290 * @len: length of data pulled
1291 *
1292 * After doing a pull on a received packet, you need to call this to
1293 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1294 * CHECKSUM_NONE so that it can be recomputed from scratch.
1295 */
1296
1297 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1298 const void *start, unsigned int len)
1299 {
1300 if (skb->ip_summed == CHECKSUM_COMPLETE)
1301 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1302 }
1303
1304 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1305
1306 /**
1307 * pskb_trim_rcsum - trim received skb and update checksum
1308 * @skb: buffer to trim
1309 * @len: new length
1310 *
1311 * This is exactly the same as pskb_trim except that it ensures the
1312 * checksum of received packets are still valid after the operation.
1313 */
1314
1315 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1316 {
1317 if (likely(len >= skb->len))
1318 return 0;
1319 if (skb->ip_summed == CHECKSUM_COMPLETE)
1320 skb->ip_summed = CHECKSUM_NONE;
1321 return __pskb_trim(skb, len);
1322 }
1323
1324 #define skb_queue_walk(queue, skb) \
1325 for (skb = (queue)->next; \
1326 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1327 skb = skb->next)
1328
1329 #define skb_queue_reverse_walk(queue, skb) \
1330 for (skb = (queue)->prev; \
1331 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1332 skb = skb->prev)
1333
1334
1335 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1336 int noblock, int *err);
1337 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1338 struct poll_table_struct *wait);
1339 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1340 int offset, struct iovec *to,
1341 int size);
1342 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1343 int hlen,
1344 struct iovec *iov);
1345 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1346 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1347 unsigned int flags);
1348 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1349 int len, __wsum csum);
1350 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1351 void *to, int len);
1352 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1353 void *from, int len);
1354 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1355 int offset, u8 *to, int len,
1356 __wsum csum);
1357 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1358 extern void skb_split(struct sk_buff *skb,
1359 struct sk_buff *skb1, const u32 len);
1360
1361 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1362
1363 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1364 int len, void *buffer)
1365 {
1366 int hlen = skb_headlen(skb);
1367
1368 if (hlen - offset >= len)
1369 return skb->data + offset;
1370
1371 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1372 return NULL;
1373
1374 return buffer;
1375 }
1376
1377 extern void skb_init(void);
1378 extern void skb_add_mtu(int mtu);
1379
1380 /**
1381 * skb_get_timestamp - get timestamp from a skb
1382 * @skb: skb to get stamp from
1383 * @stamp: pointer to struct timeval to store stamp in
1384 *
1385 * Timestamps are stored in the skb as offsets to a base timestamp.
1386 * This function converts the offset back to a struct timeval and stores
1387 * it in stamp.
1388 */
1389 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1390 {
1391 *stamp = ktime_to_timeval(skb->tstamp);
1392 }
1393
1394 static inline void __net_timestamp(struct sk_buff *skb)
1395 {
1396 skb->tstamp = ktime_get_real();
1397 }
1398
1399
1400 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1401 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1402
1403 /**
1404 * skb_checksum_complete - Calculate checksum of an entire packet
1405 * @skb: packet to process
1406 *
1407 * This function calculates the checksum over the entire packet plus
1408 * the value of skb->csum. The latter can be used to supply the
1409 * checksum of a pseudo header as used by TCP/UDP. It returns the
1410 * checksum.
1411 *
1412 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1413 * this function can be used to verify that checksum on received
1414 * packets. In that case the function should return zero if the
1415 * checksum is correct. In particular, this function will return zero
1416 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1417 * hardware has already verified the correctness of the checksum.
1418 */
1419 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1420 {
1421 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1422 __skb_checksum_complete(skb);
1423 }
1424
1425 #ifdef CONFIG_NETFILTER
1426 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1427 {
1428 if (nfct && atomic_dec_and_test(&nfct->use))
1429 nfct->destroy(nfct);
1430 }
1431 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1432 {
1433 if (nfct)
1434 atomic_inc(&nfct->use);
1435 }
1436 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1437 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1438 {
1439 if (skb)
1440 atomic_inc(&skb->users);
1441 }
1442 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1443 {
1444 if (skb)
1445 kfree_skb(skb);
1446 }
1447 #endif
1448 #ifdef CONFIG_BRIDGE_NETFILTER
1449 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1450 {
1451 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1452 kfree(nf_bridge);
1453 }
1454 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1455 {
1456 if (nf_bridge)
1457 atomic_inc(&nf_bridge->use);
1458 }
1459 #endif /* CONFIG_BRIDGE_NETFILTER */
1460 static inline void nf_reset(struct sk_buff *skb)
1461 {
1462 nf_conntrack_put(skb->nfct);
1463 skb->nfct = NULL;
1464 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1465 nf_conntrack_put_reasm(skb->nfct_reasm);
1466 skb->nfct_reasm = NULL;
1467 #endif
1468 #ifdef CONFIG_BRIDGE_NETFILTER
1469 nf_bridge_put(skb->nf_bridge);
1470 skb->nf_bridge = NULL;
1471 #endif
1472 }
1473
1474 #else /* CONFIG_NETFILTER */
1475 static inline void nf_reset(struct sk_buff *skb) {}
1476 #endif /* CONFIG_NETFILTER */
1477
1478 #ifdef CONFIG_NETWORK_SECMARK
1479 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1480 {
1481 to->secmark = from->secmark;
1482 }
1483
1484 static inline void skb_init_secmark(struct sk_buff *skb)
1485 {
1486 skb->secmark = 0;
1487 }
1488 #else
1489 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1490 { }
1491
1492 static inline void skb_init_secmark(struct sk_buff *skb)
1493 { }
1494 #endif
1495
1496 static inline int skb_is_gso(const struct sk_buff *skb)
1497 {
1498 return skb_shinfo(skb)->gso_size;
1499 }
1500
1501 #endif /* __KERNEL__ */
1502 #endif /* _LINUX_SKBUFF_H */