]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
[NETPOLL]: wrong return for null netpoll_poll_lock()
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 #define SLAB_SKB /* Slabified skbuffs */
36
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_HW 1
39 #define CHECKSUM_UNNECESSARY 2
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49 /* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
87 struct net_device;
88
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93 };
94
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102 #endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107
108 #endif
109
110 struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117 };
118
119 struct sk_buff;
120
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124 typedef struct skb_frag_struct skb_frag_t;
125
126 struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130 };
131
132 /* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135 struct skb_shared_info {
136 atomic_t dataref;
137 unsigned int nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
140 struct sk_buff *frag_list;
141 skb_frag_t frags[MAX_SKB_FRAGS];
142 };
143
144 /* We divide dataref into two halves. The higher 16 bits hold references
145 * to the payload part of skb->data. The lower 16 bits hold references to
146 * the entire skb->data. It is up to the users of the skb to agree on
147 * where the payload starts.
148 *
149 * All users must obey the rule that the skb->data reference count must be
150 * greater than or equal to the payload reference count.
151 *
152 * Holding a reference to the payload part means that the user does not
153 * care about modifications to the header part of skb->data.
154 */
155 #define SKB_DATAREF_SHIFT 16
156 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157
158 struct skb_timeval {
159 u32 off_sec;
160 u32 off_usec;
161 };
162
163
164 enum {
165 SKB_FCLONE_UNAVAILABLE,
166 SKB_FCLONE_ORIG,
167 SKB_FCLONE_CLONE,
168 };
169
170 /**
171 * struct sk_buff - socket buffer
172 * @next: Next buffer in list
173 * @prev: Previous buffer in list
174 * @list: List we are on
175 * @sk: Socket we are owned by
176 * @tstamp: Time we arrived
177 * @dev: Device we arrived on/are leaving by
178 * @input_dev: Device we arrived on
179 * @h: Transport layer header
180 * @nh: Network layer header
181 * @mac: Link layer header
182 * @dst: destination entry
183 * @sp: the security path, used for xfrm
184 * @cb: Control buffer. Free for use by every layer. Put private vars here
185 * @len: Length of actual data
186 * @data_len: Data length
187 * @mac_len: Length of link layer header
188 * @csum: Checksum
189 * @local_df: allow local fragmentation
190 * @cloned: Head may be cloned (check refcnt to be sure)
191 * @nohdr: Payload reference only, must not modify header
192 * @pkt_type: Packet class
193 * @ip_summed: Driver fed us an IP checksum
194 * @priority: Packet queueing priority
195 * @users: User count - see {datagram,tcp}.c
196 * @protocol: Packet protocol from driver
197 * @truesize: Buffer size
198 * @head: Head of buffer
199 * @data: Data head pointer
200 * @tail: Tail pointer
201 * @end: End pointer
202 * @destructor: Destruct function
203 * @nfmark: Can be used for communication between hooks
204 * @nfct: Associated connection, if any
205 * @nfctinfo: Relationship of this skb to the connection
206 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
207 * @tc_index: Traffic control index
208 * @tc_verd: traffic control verdict
209 */
210
211 struct sk_buff {
212 /* These two members must be first. */
213 struct sk_buff *next;
214 struct sk_buff *prev;
215
216 struct sock *sk;
217 struct skb_timeval tstamp;
218 struct net_device *dev;
219 struct net_device *input_dev;
220
221 union {
222 struct tcphdr *th;
223 struct udphdr *uh;
224 struct icmphdr *icmph;
225 struct igmphdr *igmph;
226 struct iphdr *ipiph;
227 struct ipv6hdr *ipv6h;
228 unsigned char *raw;
229 } h;
230
231 union {
232 struct iphdr *iph;
233 struct ipv6hdr *ipv6h;
234 struct arphdr *arph;
235 unsigned char *raw;
236 } nh;
237
238 union {
239 unsigned char *raw;
240 } mac;
241
242 struct dst_entry *dst;
243 struct sec_path *sp;
244
245 /*
246 * This is the control buffer. It is free to use for every
247 * layer. Please put your private variables there. If you
248 * want to keep them across layers you have to do a skb_clone()
249 * first. This is owned by whoever has the skb queued ATM.
250 */
251 char cb[40];
252
253 unsigned int len,
254 data_len,
255 mac_len,
256 csum;
257 __u32 priority;
258 __u8 local_df:1,
259 cloned:1,
260 ip_summed:2,
261 nohdr:1,
262 nfctinfo:3;
263 __u8 pkt_type:3,
264 fclone:2;
265 __be16 protocol;
266
267 void (*destructor)(struct sk_buff *skb);
268 #ifdef CONFIG_NETFILTER
269 __u32 nfmark;
270 struct nf_conntrack *nfct;
271 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
272 __u8 ipvs_property:1;
273 #endif
274 #ifdef CONFIG_BRIDGE_NETFILTER
275 struct nf_bridge_info *nf_bridge;
276 #endif
277 #endif /* CONFIG_NETFILTER */
278 #ifdef CONFIG_NET_SCHED
279 __u16 tc_index; /* traffic control index */
280 #ifdef CONFIG_NET_CLS_ACT
281 __u16 tc_verd; /* traffic control verdict */
282 #endif
283 #endif
284
285
286 /* These elements must be at the end, see alloc_skb() for details. */
287 unsigned int truesize;
288 atomic_t users;
289 unsigned char *head,
290 *data,
291 *tail,
292 *end;
293 };
294
295 #ifdef __KERNEL__
296 /*
297 * Handling routines are only of interest to the kernel
298 */
299 #include <linux/slab.h>
300
301 #include <asm/system.h>
302
303 extern void __kfree_skb(struct sk_buff *skb);
304 extern struct sk_buff *__alloc_skb(unsigned int size,
305 gfp_t priority, int fclone);
306 static inline struct sk_buff *alloc_skb(unsigned int size,
307 gfp_t priority)
308 {
309 return __alloc_skb(size, priority, 0);
310 }
311
312 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
313 gfp_t priority)
314 {
315 return __alloc_skb(size, priority, 1);
316 }
317
318 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
319 unsigned int size,
320 gfp_t priority);
321 extern void kfree_skbmem(struct sk_buff *skb);
322 extern struct sk_buff *skb_clone(struct sk_buff *skb,
323 gfp_t priority);
324 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
325 gfp_t priority);
326 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
327 gfp_t gfp_mask);
328 extern int pskb_expand_head(struct sk_buff *skb,
329 int nhead, int ntail,
330 gfp_t gfp_mask);
331 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
332 unsigned int headroom);
333 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
334 int newheadroom, int newtailroom,
335 gfp_t priority);
336 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
337 #define dev_kfree_skb(a) kfree_skb(a)
338 extern void skb_over_panic(struct sk_buff *skb, int len,
339 void *here);
340 extern void skb_under_panic(struct sk_buff *skb, int len,
341 void *here);
342
343 struct skb_seq_state
344 {
345 __u32 lower_offset;
346 __u32 upper_offset;
347 __u32 frag_idx;
348 __u32 stepped_offset;
349 struct sk_buff *root_skb;
350 struct sk_buff *cur_skb;
351 __u8 *frag_data;
352 };
353
354 extern void skb_prepare_seq_read(struct sk_buff *skb,
355 unsigned int from, unsigned int to,
356 struct skb_seq_state *st);
357 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
358 struct skb_seq_state *st);
359 extern void skb_abort_seq_read(struct skb_seq_state *st);
360
361 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
362 unsigned int to, struct ts_config *config,
363 struct ts_state *state);
364
365 /* Internal */
366 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
367
368 /**
369 * skb_queue_empty - check if a queue is empty
370 * @list: queue head
371 *
372 * Returns true if the queue is empty, false otherwise.
373 */
374 static inline int skb_queue_empty(const struct sk_buff_head *list)
375 {
376 return list->next == (struct sk_buff *)list;
377 }
378
379 /**
380 * skb_get - reference buffer
381 * @skb: buffer to reference
382 *
383 * Makes another reference to a socket buffer and returns a pointer
384 * to the buffer.
385 */
386 static inline struct sk_buff *skb_get(struct sk_buff *skb)
387 {
388 atomic_inc(&skb->users);
389 return skb;
390 }
391
392 /*
393 * If users == 1, we are the only owner and are can avoid redundant
394 * atomic change.
395 */
396
397 /**
398 * kfree_skb - free an sk_buff
399 * @skb: buffer to free
400 *
401 * Drop a reference to the buffer and free it if the usage count has
402 * hit zero.
403 */
404 static inline void kfree_skb(struct sk_buff *skb)
405 {
406 if (likely(atomic_read(&skb->users) == 1))
407 smp_rmb();
408 else if (likely(!atomic_dec_and_test(&skb->users)))
409 return;
410 __kfree_skb(skb);
411 }
412
413 /**
414 * skb_cloned - is the buffer a clone
415 * @skb: buffer to check
416 *
417 * Returns true if the buffer was generated with skb_clone() and is
418 * one of multiple shared copies of the buffer. Cloned buffers are
419 * shared data so must not be written to under normal circumstances.
420 */
421 static inline int skb_cloned(const struct sk_buff *skb)
422 {
423 return skb->cloned &&
424 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
425 }
426
427 /**
428 * skb_header_cloned - is the header a clone
429 * @skb: buffer to check
430 *
431 * Returns true if modifying the header part of the buffer requires
432 * the data to be copied.
433 */
434 static inline int skb_header_cloned(const struct sk_buff *skb)
435 {
436 int dataref;
437
438 if (!skb->cloned)
439 return 0;
440
441 dataref = atomic_read(&skb_shinfo(skb)->dataref);
442 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
443 return dataref != 1;
444 }
445
446 /**
447 * skb_header_release - release reference to header
448 * @skb: buffer to operate on
449 *
450 * Drop a reference to the header part of the buffer. This is done
451 * by acquiring a payload reference. You must not read from the header
452 * part of skb->data after this.
453 */
454 static inline void skb_header_release(struct sk_buff *skb)
455 {
456 BUG_ON(skb->nohdr);
457 skb->nohdr = 1;
458 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
459 }
460
461 /**
462 * skb_shared - is the buffer shared
463 * @skb: buffer to check
464 *
465 * Returns true if more than one person has a reference to this
466 * buffer.
467 */
468 static inline int skb_shared(const struct sk_buff *skb)
469 {
470 return atomic_read(&skb->users) != 1;
471 }
472
473 /**
474 * skb_share_check - check if buffer is shared and if so clone it
475 * @skb: buffer to check
476 * @pri: priority for memory allocation
477 *
478 * If the buffer is shared the buffer is cloned and the old copy
479 * drops a reference. A new clone with a single reference is returned.
480 * If the buffer is not shared the original buffer is returned. When
481 * being called from interrupt status or with spinlocks held pri must
482 * be GFP_ATOMIC.
483 *
484 * NULL is returned on a memory allocation failure.
485 */
486 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
487 gfp_t pri)
488 {
489 might_sleep_if(pri & __GFP_WAIT);
490 if (skb_shared(skb)) {
491 struct sk_buff *nskb = skb_clone(skb, pri);
492 kfree_skb(skb);
493 skb = nskb;
494 }
495 return skb;
496 }
497
498 /*
499 * Copy shared buffers into a new sk_buff. We effectively do COW on
500 * packets to handle cases where we have a local reader and forward
501 * and a couple of other messy ones. The normal one is tcpdumping
502 * a packet thats being forwarded.
503 */
504
505 /**
506 * skb_unshare - make a copy of a shared buffer
507 * @skb: buffer to check
508 * @pri: priority for memory allocation
509 *
510 * If the socket buffer is a clone then this function creates a new
511 * copy of the data, drops a reference count on the old copy and returns
512 * the new copy with the reference count at 1. If the buffer is not a clone
513 * the original buffer is returned. When called with a spinlock held or
514 * from interrupt state @pri must be %GFP_ATOMIC
515 *
516 * %NULL is returned on a memory allocation failure.
517 */
518 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
519 gfp_t pri)
520 {
521 might_sleep_if(pri & __GFP_WAIT);
522 if (skb_cloned(skb)) {
523 struct sk_buff *nskb = skb_copy(skb, pri);
524 kfree_skb(skb); /* Free our shared copy */
525 skb = nskb;
526 }
527 return skb;
528 }
529
530 /**
531 * skb_peek
532 * @list_: list to peek at
533 *
534 * Peek an &sk_buff. Unlike most other operations you _MUST_
535 * be careful with this one. A peek leaves the buffer on the
536 * list and someone else may run off with it. You must hold
537 * the appropriate locks or have a private queue to do this.
538 *
539 * Returns %NULL for an empty list or a pointer to the head element.
540 * The reference count is not incremented and the reference is therefore
541 * volatile. Use with caution.
542 */
543 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
544 {
545 struct sk_buff *list = ((struct sk_buff *)list_)->next;
546 if (list == (struct sk_buff *)list_)
547 list = NULL;
548 return list;
549 }
550
551 /**
552 * skb_peek_tail
553 * @list_: list to peek at
554 *
555 * Peek an &sk_buff. Unlike most other operations you _MUST_
556 * be careful with this one. A peek leaves the buffer on the
557 * list and someone else may run off with it. You must hold
558 * the appropriate locks or have a private queue to do this.
559 *
560 * Returns %NULL for an empty list or a pointer to the tail element.
561 * The reference count is not incremented and the reference is therefore
562 * volatile. Use with caution.
563 */
564 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
565 {
566 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
567 if (list == (struct sk_buff *)list_)
568 list = NULL;
569 return list;
570 }
571
572 /**
573 * skb_queue_len - get queue length
574 * @list_: list to measure
575 *
576 * Return the length of an &sk_buff queue.
577 */
578 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
579 {
580 return list_->qlen;
581 }
582
583 static inline void skb_queue_head_init(struct sk_buff_head *list)
584 {
585 spin_lock_init(&list->lock);
586 list->prev = list->next = (struct sk_buff *)list;
587 list->qlen = 0;
588 }
589
590 /*
591 * Insert an sk_buff at the start of a list.
592 *
593 * The "__skb_xxxx()" functions are the non-atomic ones that
594 * can only be called with interrupts disabled.
595 */
596
597 /**
598 * __skb_queue_head - queue a buffer at the list head
599 * @list: list to use
600 * @newsk: buffer to queue
601 *
602 * Queue a buffer at the start of a list. This function takes no locks
603 * and you must therefore hold required locks before calling it.
604 *
605 * A buffer cannot be placed on two lists at the same time.
606 */
607 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
608 static inline void __skb_queue_head(struct sk_buff_head *list,
609 struct sk_buff *newsk)
610 {
611 struct sk_buff *prev, *next;
612
613 list->qlen++;
614 prev = (struct sk_buff *)list;
615 next = prev->next;
616 newsk->next = next;
617 newsk->prev = prev;
618 next->prev = prev->next = newsk;
619 }
620
621 /**
622 * __skb_queue_tail - queue a buffer at the list tail
623 * @list: list to use
624 * @newsk: buffer to queue
625 *
626 * Queue a buffer at the end of a list. This function takes no locks
627 * and you must therefore hold required locks before calling it.
628 *
629 * A buffer cannot be placed on two lists at the same time.
630 */
631 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
632 static inline void __skb_queue_tail(struct sk_buff_head *list,
633 struct sk_buff *newsk)
634 {
635 struct sk_buff *prev, *next;
636
637 list->qlen++;
638 next = (struct sk_buff *)list;
639 prev = next->prev;
640 newsk->next = next;
641 newsk->prev = prev;
642 next->prev = prev->next = newsk;
643 }
644
645
646 /**
647 * __skb_dequeue - remove from the head of the queue
648 * @list: list to dequeue from
649 *
650 * Remove the head of the list. This function does not take any locks
651 * so must be used with appropriate locks held only. The head item is
652 * returned or %NULL if the list is empty.
653 */
654 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
655 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
656 {
657 struct sk_buff *next, *prev, *result;
658
659 prev = (struct sk_buff *) list;
660 next = prev->next;
661 result = NULL;
662 if (next != prev) {
663 result = next;
664 next = next->next;
665 list->qlen--;
666 next->prev = prev;
667 prev->next = next;
668 result->next = result->prev = NULL;
669 }
670 return result;
671 }
672
673
674 /*
675 * Insert a packet on a list.
676 */
677 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
678 static inline void __skb_insert(struct sk_buff *newsk,
679 struct sk_buff *prev, struct sk_buff *next,
680 struct sk_buff_head *list)
681 {
682 newsk->next = next;
683 newsk->prev = prev;
684 next->prev = prev->next = newsk;
685 list->qlen++;
686 }
687
688 /*
689 * Place a packet after a given packet in a list.
690 */
691 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
692 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
693 {
694 __skb_insert(newsk, old, old->next, list);
695 }
696
697 /*
698 * remove sk_buff from list. _Must_ be called atomically, and with
699 * the list known..
700 */
701 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
702 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
703 {
704 struct sk_buff *next, *prev;
705
706 list->qlen--;
707 next = skb->next;
708 prev = skb->prev;
709 skb->next = skb->prev = NULL;
710 next->prev = prev;
711 prev->next = next;
712 }
713
714
715 /* XXX: more streamlined implementation */
716
717 /**
718 * __skb_dequeue_tail - remove from the tail of the queue
719 * @list: list to dequeue from
720 *
721 * Remove the tail of the list. This function does not take any locks
722 * so must be used with appropriate locks held only. The tail item is
723 * returned or %NULL if the list is empty.
724 */
725 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
726 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
727 {
728 struct sk_buff *skb = skb_peek_tail(list);
729 if (skb)
730 __skb_unlink(skb, list);
731 return skb;
732 }
733
734
735 static inline int skb_is_nonlinear(const struct sk_buff *skb)
736 {
737 return skb->data_len;
738 }
739
740 static inline unsigned int skb_headlen(const struct sk_buff *skb)
741 {
742 return skb->len - skb->data_len;
743 }
744
745 static inline int skb_pagelen(const struct sk_buff *skb)
746 {
747 int i, len = 0;
748
749 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
750 len += skb_shinfo(skb)->frags[i].size;
751 return len + skb_headlen(skb);
752 }
753
754 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
755 struct page *page, int off, int size)
756 {
757 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
758
759 frag->page = page;
760 frag->page_offset = off;
761 frag->size = size;
762 skb_shinfo(skb)->nr_frags = i + 1;
763 }
764
765 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
766 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
767 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
768
769 /*
770 * Add data to an sk_buff
771 */
772 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
773 {
774 unsigned char *tmp = skb->tail;
775 SKB_LINEAR_ASSERT(skb);
776 skb->tail += len;
777 skb->len += len;
778 return tmp;
779 }
780
781 /**
782 * skb_put - add data to a buffer
783 * @skb: buffer to use
784 * @len: amount of data to add
785 *
786 * This function extends the used data area of the buffer. If this would
787 * exceed the total buffer size the kernel will panic. A pointer to the
788 * first byte of the extra data is returned.
789 */
790 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
791 {
792 unsigned char *tmp = skb->tail;
793 SKB_LINEAR_ASSERT(skb);
794 skb->tail += len;
795 skb->len += len;
796 if (unlikely(skb->tail>skb->end))
797 skb_over_panic(skb, len, current_text_addr());
798 return tmp;
799 }
800
801 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
802 {
803 skb->data -= len;
804 skb->len += len;
805 return skb->data;
806 }
807
808 /**
809 * skb_push - add data to the start of a buffer
810 * @skb: buffer to use
811 * @len: amount of data to add
812 *
813 * This function extends the used data area of the buffer at the buffer
814 * start. If this would exceed the total buffer headroom the kernel will
815 * panic. A pointer to the first byte of the extra data is returned.
816 */
817 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
818 {
819 skb->data -= len;
820 skb->len += len;
821 if (unlikely(skb->data<skb->head))
822 skb_under_panic(skb, len, current_text_addr());
823 return skb->data;
824 }
825
826 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
827 {
828 skb->len -= len;
829 BUG_ON(skb->len < skb->data_len);
830 return skb->data += len;
831 }
832
833 /**
834 * skb_pull - remove data from the start of a buffer
835 * @skb: buffer to use
836 * @len: amount of data to remove
837 *
838 * This function removes data from the start of a buffer, returning
839 * the memory to the headroom. A pointer to the next data in the buffer
840 * is returned. Once the data has been pulled future pushes will overwrite
841 * the old data.
842 */
843 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
844 {
845 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
846 }
847
848 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
849
850 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
851 {
852 if (len > skb_headlen(skb) &&
853 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
854 return NULL;
855 skb->len -= len;
856 return skb->data += len;
857 }
858
859 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
860 {
861 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
862 }
863
864 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
865 {
866 if (likely(len <= skb_headlen(skb)))
867 return 1;
868 if (unlikely(len > skb->len))
869 return 0;
870 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
871 }
872
873 /**
874 * skb_headroom - bytes at buffer head
875 * @skb: buffer to check
876 *
877 * Return the number of bytes of free space at the head of an &sk_buff.
878 */
879 static inline int skb_headroom(const struct sk_buff *skb)
880 {
881 return skb->data - skb->head;
882 }
883
884 /**
885 * skb_tailroom - bytes at buffer end
886 * @skb: buffer to check
887 *
888 * Return the number of bytes of free space at the tail of an sk_buff
889 */
890 static inline int skb_tailroom(const struct sk_buff *skb)
891 {
892 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
893 }
894
895 /**
896 * skb_reserve - adjust headroom
897 * @skb: buffer to alter
898 * @len: bytes to move
899 *
900 * Increase the headroom of an empty &sk_buff by reducing the tail
901 * room. This is only allowed for an empty buffer.
902 */
903 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
904 {
905 skb->data += len;
906 skb->tail += len;
907 }
908
909 /*
910 * CPUs often take a performance hit when accessing unaligned memory
911 * locations. The actual performance hit varies, it can be small if the
912 * hardware handles it or large if we have to take an exception and fix it
913 * in software.
914 *
915 * Since an ethernet header is 14 bytes network drivers often end up with
916 * the IP header at an unaligned offset. The IP header can be aligned by
917 * shifting the start of the packet by 2 bytes. Drivers should do this
918 * with:
919 *
920 * skb_reserve(NET_IP_ALIGN);
921 *
922 * The downside to this alignment of the IP header is that the DMA is now
923 * unaligned. On some architectures the cost of an unaligned DMA is high
924 * and this cost outweighs the gains made by aligning the IP header.
925 *
926 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
927 * to be overridden.
928 */
929 #ifndef NET_IP_ALIGN
930 #define NET_IP_ALIGN 2
931 #endif
932
933 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
934
935 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
936 {
937 if (!skb->data_len) {
938 skb->len = len;
939 skb->tail = skb->data + len;
940 } else
941 ___pskb_trim(skb, len, 0);
942 }
943
944 /**
945 * skb_trim - remove end from a buffer
946 * @skb: buffer to alter
947 * @len: new length
948 *
949 * Cut the length of a buffer down by removing data from the tail. If
950 * the buffer is already under the length specified it is not modified.
951 */
952 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
953 {
954 if (skb->len > len)
955 __skb_trim(skb, len);
956 }
957
958
959 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
960 {
961 if (!skb->data_len) {
962 skb->len = len;
963 skb->tail = skb->data+len;
964 return 0;
965 }
966 return ___pskb_trim(skb, len, 1);
967 }
968
969 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
970 {
971 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
972 }
973
974 /**
975 * skb_orphan - orphan a buffer
976 * @skb: buffer to orphan
977 *
978 * If a buffer currently has an owner then we call the owner's
979 * destructor function and make the @skb unowned. The buffer continues
980 * to exist but is no longer charged to its former owner.
981 */
982 static inline void skb_orphan(struct sk_buff *skb)
983 {
984 if (skb->destructor)
985 skb->destructor(skb);
986 skb->destructor = NULL;
987 skb->sk = NULL;
988 }
989
990 /**
991 * __skb_queue_purge - empty a list
992 * @list: list to empty
993 *
994 * Delete all buffers on an &sk_buff list. Each buffer is removed from
995 * the list and one reference dropped. This function does not take the
996 * list lock and the caller must hold the relevant locks to use it.
997 */
998 extern void skb_queue_purge(struct sk_buff_head *list);
999 static inline void __skb_queue_purge(struct sk_buff_head *list)
1000 {
1001 struct sk_buff *skb;
1002 while ((skb = __skb_dequeue(list)) != NULL)
1003 kfree_skb(skb);
1004 }
1005
1006 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1007 /**
1008 * __dev_alloc_skb - allocate an skbuff for sending
1009 * @length: length to allocate
1010 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1011 *
1012 * Allocate a new &sk_buff and assign it a usage count of one. The
1013 * buffer has unspecified headroom built in. Users should allocate
1014 * the headroom they think they need without accounting for the
1015 * built in space. The built in space is used for optimisations.
1016 *
1017 * %NULL is returned in there is no free memory.
1018 */
1019 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1020 gfp_t gfp_mask)
1021 {
1022 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1023 if (likely(skb))
1024 skb_reserve(skb, 16);
1025 return skb;
1026 }
1027 #else
1028 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1029 #endif
1030
1031 /**
1032 * dev_alloc_skb - allocate an skbuff for sending
1033 * @length: length to allocate
1034 *
1035 * Allocate a new &sk_buff and assign it a usage count of one. The
1036 * buffer has unspecified headroom built in. Users should allocate
1037 * the headroom they think they need without accounting for the
1038 * built in space. The built in space is used for optimisations.
1039 *
1040 * %NULL is returned in there is no free memory. Although this function
1041 * allocates memory it can be called from an interrupt.
1042 */
1043 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1044 {
1045 return __dev_alloc_skb(length, GFP_ATOMIC);
1046 }
1047
1048 /**
1049 * skb_cow - copy header of skb when it is required
1050 * @skb: buffer to cow
1051 * @headroom: needed headroom
1052 *
1053 * If the skb passed lacks sufficient headroom or its data part
1054 * is shared, data is reallocated. If reallocation fails, an error
1055 * is returned and original skb is not changed.
1056 *
1057 * The result is skb with writable area skb->head...skb->tail
1058 * and at least @headroom of space at head.
1059 */
1060 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1061 {
1062 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1063
1064 if (delta < 0)
1065 delta = 0;
1066
1067 if (delta || skb_cloned(skb))
1068 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1069 return 0;
1070 }
1071
1072 /**
1073 * skb_padto - pad an skbuff up to a minimal size
1074 * @skb: buffer to pad
1075 * @len: minimal length
1076 *
1077 * Pads up a buffer to ensure the trailing bytes exist and are
1078 * blanked. If the buffer already contains sufficient data it
1079 * is untouched. Returns the buffer, which may be a replacement
1080 * for the original, or NULL for out of memory - in which case
1081 * the original buffer is still freed.
1082 */
1083
1084 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1085 {
1086 unsigned int size = skb->len;
1087 if (likely(size >= len))
1088 return skb;
1089 return skb_pad(skb, len-size);
1090 }
1091
1092 static inline int skb_add_data(struct sk_buff *skb,
1093 char __user *from, int copy)
1094 {
1095 const int off = skb->len;
1096
1097 if (skb->ip_summed == CHECKSUM_NONE) {
1098 int err = 0;
1099 unsigned int csum = csum_and_copy_from_user(from,
1100 skb_put(skb, copy),
1101 copy, 0, &err);
1102 if (!err) {
1103 skb->csum = csum_block_add(skb->csum, csum, off);
1104 return 0;
1105 }
1106 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1107 return 0;
1108
1109 __skb_trim(skb, off);
1110 return -EFAULT;
1111 }
1112
1113 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1114 struct page *page, int off)
1115 {
1116 if (i) {
1117 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1118
1119 return page == frag->page &&
1120 off == frag->page_offset + frag->size;
1121 }
1122 return 0;
1123 }
1124
1125 /**
1126 * skb_linearize - convert paged skb to linear one
1127 * @skb: buffer to linarize
1128 * @gfp: allocation mode
1129 *
1130 * If there is no free memory -ENOMEM is returned, otherwise zero
1131 * is returned and the old skb data released.
1132 */
1133 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1134 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1135 {
1136 return __skb_linearize(skb, gfp);
1137 }
1138
1139 /**
1140 * skb_postpull_rcsum - update checksum for received skb after pull
1141 * @skb: buffer to update
1142 * @start: start of data before pull
1143 * @len: length of data pulled
1144 *
1145 * After doing a pull on a received packet, you need to call this to
1146 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1147 * so that it can be recomputed from scratch.
1148 */
1149
1150 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1151 const void *start, int len)
1152 {
1153 if (skb->ip_summed == CHECKSUM_HW)
1154 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1155 }
1156
1157 /**
1158 * pskb_trim_rcsum - trim received skb and update checksum
1159 * @skb: buffer to trim
1160 * @len: new length
1161 *
1162 * This is exactly the same as pskb_trim except that it ensures the
1163 * checksum of received packets are still valid after the operation.
1164 */
1165
1166 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1167 {
1168 if (likely(len >= skb->len))
1169 return 0;
1170 if (skb->ip_summed == CHECKSUM_HW)
1171 skb->ip_summed = CHECKSUM_NONE;
1172 return __pskb_trim(skb, len);
1173 }
1174
1175 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1176 {
1177 #ifdef CONFIG_HIGHMEM
1178 BUG_ON(in_irq());
1179
1180 local_bh_disable();
1181 #endif
1182 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1183 }
1184
1185 static inline void kunmap_skb_frag(void *vaddr)
1186 {
1187 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1188 #ifdef CONFIG_HIGHMEM
1189 local_bh_enable();
1190 #endif
1191 }
1192
1193 #define skb_queue_walk(queue, skb) \
1194 for (skb = (queue)->next; \
1195 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1196 skb = skb->next)
1197
1198
1199 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1200 int noblock, int *err);
1201 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1202 struct poll_table_struct *wait);
1203 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1204 int offset, struct iovec *to,
1205 int size);
1206 extern int skb_copy_and_csum_datagram_iovec(const
1207 struct sk_buff *skb,
1208 int hlen,
1209 struct iovec *iov);
1210 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1211 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1212 int len, unsigned int csum);
1213 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1214 void *to, int len);
1215 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1216 void *from, int len);
1217 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1218 int offset, u8 *to, int len,
1219 unsigned int csum);
1220 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1221 extern void skb_split(struct sk_buff *skb,
1222 struct sk_buff *skb1, const u32 len);
1223
1224 extern void skb_release_data(struct sk_buff *skb);
1225
1226 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1227 int len, void *buffer)
1228 {
1229 int hlen = skb_headlen(skb);
1230
1231 if (hlen - offset >= len)
1232 return skb->data + offset;
1233
1234 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1235 return NULL;
1236
1237 return buffer;
1238 }
1239
1240 extern void skb_init(void);
1241 extern void skb_add_mtu(int mtu);
1242
1243 /**
1244 * skb_get_timestamp - get timestamp from a skb
1245 * @skb: skb to get stamp from
1246 * @stamp: pointer to struct timeval to store stamp in
1247 *
1248 * Timestamps are stored in the skb as offsets to a base timestamp.
1249 * This function converts the offset back to a struct timeval and stores
1250 * it in stamp.
1251 */
1252 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1253 {
1254 stamp->tv_sec = skb->tstamp.off_sec;
1255 stamp->tv_usec = skb->tstamp.off_usec;
1256 }
1257
1258 /**
1259 * skb_set_timestamp - set timestamp of a skb
1260 * @skb: skb to set stamp of
1261 * @stamp: pointer to struct timeval to get stamp from
1262 *
1263 * Timestamps are stored in the skb as offsets to a base timestamp.
1264 * This function converts a struct timeval to an offset and stores
1265 * it in the skb.
1266 */
1267 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1268 {
1269 skb->tstamp.off_sec = stamp->tv_sec;
1270 skb->tstamp.off_usec = stamp->tv_usec;
1271 }
1272
1273 extern void __net_timestamp(struct sk_buff *skb);
1274
1275 #ifdef CONFIG_NETFILTER
1276 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1277 {
1278 if (nfct && atomic_dec_and_test(&nfct->use))
1279 nfct->destroy(nfct);
1280 }
1281 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1282 {
1283 if (nfct)
1284 atomic_inc(&nfct->use);
1285 }
1286 static inline void nf_reset(struct sk_buff *skb)
1287 {
1288 nf_conntrack_put(skb->nfct);
1289 skb->nfct = NULL;
1290 }
1291
1292 #ifdef CONFIG_BRIDGE_NETFILTER
1293 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1294 {
1295 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1296 kfree(nf_bridge);
1297 }
1298 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1299 {
1300 if (nf_bridge)
1301 atomic_inc(&nf_bridge->use);
1302 }
1303 #endif /* CONFIG_BRIDGE_NETFILTER */
1304 #else /* CONFIG_NETFILTER */
1305 static inline void nf_reset(struct sk_buff *skb) {}
1306 #endif /* CONFIG_NETFILTER */
1307
1308 #endif /* __KERNEL__ */
1309 #endif /* _LINUX_SKBUFF_H */