]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
pkt_sched: Add 'deactivated' state.
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
151 };
152
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
157 *
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
160 *
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
163 */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166
167
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
172 };
173
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
177
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
180
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
183
184 SKB_GSO_TCPV6 = 1 << 4,
185 };
186
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @ndisc_nodetype: router type (from link layer)
246 * @do_not_encrypt: set to prevent encryption of this frame
247 * @dma_cookie: a cookie to one of several possible DMA operations
248 * done by skb DMA functions
249 * @secmark: security marking
250 * @vlan_tci: vlan tag control information
251 */
252
253 struct sk_buff {
254 /* These two members must be first. */
255 struct sk_buff *next;
256 struct sk_buff *prev;
257
258 struct sock *sk;
259 ktime_t tstamp;
260 struct net_device *dev;
261
262 union {
263 struct dst_entry *dst;
264 struct rtable *rtable;
265 };
266 struct sec_path *sp;
267
268 /*
269 * This is the control buffer. It is free to use for every
270 * layer. Please put your private variables there. If you
271 * want to keep them across layers you have to do a skb_clone()
272 * first. This is owned by whoever has the skb queued ATM.
273 */
274 char cb[48];
275
276 unsigned int len,
277 data_len;
278 __u16 mac_len,
279 hdr_len;
280 union {
281 __wsum csum;
282 struct {
283 __u16 csum_start;
284 __u16 csum_offset;
285 };
286 };
287 __u32 priority;
288 __u8 local_df:1,
289 cloned:1,
290 ip_summed:2,
291 nohdr:1,
292 nfctinfo:3;
293 __u8 pkt_type:3,
294 fclone:2,
295 ipvs_property:1,
296 peeked:1,
297 nf_trace:1;
298 __be16 protocol;
299
300 void (*destructor)(struct sk_buff *skb);
301 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
302 struct nf_conntrack *nfct;
303 struct sk_buff *nfct_reasm;
304 #endif
305 #ifdef CONFIG_BRIDGE_NETFILTER
306 struct nf_bridge_info *nf_bridge;
307 #endif
308
309 int iif;
310 __u16 queue_mapping;
311 #ifdef CONFIG_NET_SCHED
312 __u16 tc_index; /* traffic control index */
313 #ifdef CONFIG_NET_CLS_ACT
314 __u16 tc_verd; /* traffic control verdict */
315 #endif
316 #endif
317 #ifdef CONFIG_IPV6_NDISC_NODETYPE
318 __u8 ndisc_nodetype:2;
319 #endif
320 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
321 __u8 do_not_encrypt:1;
322 #endif
323 /* 0/13/14 bit hole */
324
325 #ifdef CONFIG_NET_DMA
326 dma_cookie_t dma_cookie;
327 #endif
328 #ifdef CONFIG_NETWORK_SECMARK
329 __u32 secmark;
330 #endif
331
332 __u32 mark;
333
334 __u16 vlan_tci;
335
336 sk_buff_data_t transport_header;
337 sk_buff_data_t network_header;
338 sk_buff_data_t mac_header;
339 /* These elements must be at the end, see alloc_skb() for details. */
340 sk_buff_data_t tail;
341 sk_buff_data_t end;
342 unsigned char *head,
343 *data;
344 unsigned int truesize;
345 atomic_t users;
346 };
347
348 #ifdef __KERNEL__
349 /*
350 * Handling routines are only of interest to the kernel
351 */
352 #include <linux/slab.h>
353
354 #include <asm/system.h>
355
356 extern void kfree_skb(struct sk_buff *skb);
357 extern void __kfree_skb(struct sk_buff *skb);
358 extern struct sk_buff *__alloc_skb(unsigned int size,
359 gfp_t priority, int fclone, int node);
360 static inline struct sk_buff *alloc_skb(unsigned int size,
361 gfp_t priority)
362 {
363 return __alloc_skb(size, priority, 0, -1);
364 }
365
366 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
367 gfp_t priority)
368 {
369 return __alloc_skb(size, priority, 1, -1);
370 }
371
372 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
373 extern struct sk_buff *skb_clone(struct sk_buff *skb,
374 gfp_t priority);
375 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
376 gfp_t priority);
377 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
378 gfp_t gfp_mask);
379 extern int pskb_expand_head(struct sk_buff *skb,
380 int nhead, int ntail,
381 gfp_t gfp_mask);
382 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
383 unsigned int headroom);
384 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
385 int newheadroom, int newtailroom,
386 gfp_t priority);
387 extern int skb_to_sgvec(struct sk_buff *skb,
388 struct scatterlist *sg, int offset,
389 int len);
390 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
391 struct sk_buff **trailer);
392 extern int skb_pad(struct sk_buff *skb, int pad);
393 #define dev_kfree_skb(a) kfree_skb(a)
394 extern void skb_over_panic(struct sk_buff *skb, int len,
395 void *here);
396 extern void skb_under_panic(struct sk_buff *skb, int len,
397 void *here);
398 extern void skb_truesize_bug(struct sk_buff *skb);
399
400 static inline void skb_truesize_check(struct sk_buff *skb)
401 {
402 int len = sizeof(struct sk_buff) + skb->len;
403
404 if (unlikely((int)skb->truesize < len))
405 skb_truesize_bug(skb);
406 }
407
408 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
409 int getfrag(void *from, char *to, int offset,
410 int len,int odd, struct sk_buff *skb),
411 void *from, int length);
412
413 struct skb_seq_state
414 {
415 __u32 lower_offset;
416 __u32 upper_offset;
417 __u32 frag_idx;
418 __u32 stepped_offset;
419 struct sk_buff *root_skb;
420 struct sk_buff *cur_skb;
421 __u8 *frag_data;
422 };
423
424 extern void skb_prepare_seq_read(struct sk_buff *skb,
425 unsigned int from, unsigned int to,
426 struct skb_seq_state *st);
427 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
428 struct skb_seq_state *st);
429 extern void skb_abort_seq_read(struct skb_seq_state *st);
430
431 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
432 unsigned int to, struct ts_config *config,
433 struct ts_state *state);
434
435 #ifdef NET_SKBUFF_DATA_USES_OFFSET
436 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
437 {
438 return skb->head + skb->end;
439 }
440 #else
441 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
442 {
443 return skb->end;
444 }
445 #endif
446
447 /* Internal */
448 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
449
450 /**
451 * skb_queue_empty - check if a queue is empty
452 * @list: queue head
453 *
454 * Returns true if the queue is empty, false otherwise.
455 */
456 static inline int skb_queue_empty(const struct sk_buff_head *list)
457 {
458 return list->next == (struct sk_buff *)list;
459 }
460
461 /**
462 * skb_get - reference buffer
463 * @skb: buffer to reference
464 *
465 * Makes another reference to a socket buffer and returns a pointer
466 * to the buffer.
467 */
468 static inline struct sk_buff *skb_get(struct sk_buff *skb)
469 {
470 atomic_inc(&skb->users);
471 return skb;
472 }
473
474 /*
475 * If users == 1, we are the only owner and are can avoid redundant
476 * atomic change.
477 */
478
479 /**
480 * skb_cloned - is the buffer a clone
481 * @skb: buffer to check
482 *
483 * Returns true if the buffer was generated with skb_clone() and is
484 * one of multiple shared copies of the buffer. Cloned buffers are
485 * shared data so must not be written to under normal circumstances.
486 */
487 static inline int skb_cloned(const struct sk_buff *skb)
488 {
489 return skb->cloned &&
490 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
491 }
492
493 /**
494 * skb_header_cloned - is the header a clone
495 * @skb: buffer to check
496 *
497 * Returns true if modifying the header part of the buffer requires
498 * the data to be copied.
499 */
500 static inline int skb_header_cloned(const struct sk_buff *skb)
501 {
502 int dataref;
503
504 if (!skb->cloned)
505 return 0;
506
507 dataref = atomic_read(&skb_shinfo(skb)->dataref);
508 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
509 return dataref != 1;
510 }
511
512 /**
513 * skb_header_release - release reference to header
514 * @skb: buffer to operate on
515 *
516 * Drop a reference to the header part of the buffer. This is done
517 * by acquiring a payload reference. You must not read from the header
518 * part of skb->data after this.
519 */
520 static inline void skb_header_release(struct sk_buff *skb)
521 {
522 BUG_ON(skb->nohdr);
523 skb->nohdr = 1;
524 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
525 }
526
527 /**
528 * skb_shared - is the buffer shared
529 * @skb: buffer to check
530 *
531 * Returns true if more than one person has a reference to this
532 * buffer.
533 */
534 static inline int skb_shared(const struct sk_buff *skb)
535 {
536 return atomic_read(&skb->users) != 1;
537 }
538
539 /**
540 * skb_share_check - check if buffer is shared and if so clone it
541 * @skb: buffer to check
542 * @pri: priority for memory allocation
543 *
544 * If the buffer is shared the buffer is cloned and the old copy
545 * drops a reference. A new clone with a single reference is returned.
546 * If the buffer is not shared the original buffer is returned. When
547 * being called from interrupt status or with spinlocks held pri must
548 * be GFP_ATOMIC.
549 *
550 * NULL is returned on a memory allocation failure.
551 */
552 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
553 gfp_t pri)
554 {
555 might_sleep_if(pri & __GFP_WAIT);
556 if (skb_shared(skb)) {
557 struct sk_buff *nskb = skb_clone(skb, pri);
558 kfree_skb(skb);
559 skb = nskb;
560 }
561 return skb;
562 }
563
564 /*
565 * Copy shared buffers into a new sk_buff. We effectively do COW on
566 * packets to handle cases where we have a local reader and forward
567 * and a couple of other messy ones. The normal one is tcpdumping
568 * a packet thats being forwarded.
569 */
570
571 /**
572 * skb_unshare - make a copy of a shared buffer
573 * @skb: buffer to check
574 * @pri: priority for memory allocation
575 *
576 * If the socket buffer is a clone then this function creates a new
577 * copy of the data, drops a reference count on the old copy and returns
578 * the new copy with the reference count at 1. If the buffer is not a clone
579 * the original buffer is returned. When called with a spinlock held or
580 * from interrupt state @pri must be %GFP_ATOMIC
581 *
582 * %NULL is returned on a memory allocation failure.
583 */
584 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
585 gfp_t pri)
586 {
587 might_sleep_if(pri & __GFP_WAIT);
588 if (skb_cloned(skb)) {
589 struct sk_buff *nskb = skb_copy(skb, pri);
590 kfree_skb(skb); /* Free our shared copy */
591 skb = nskb;
592 }
593 return skb;
594 }
595
596 /**
597 * skb_peek
598 * @list_: list to peek at
599 *
600 * Peek an &sk_buff. Unlike most other operations you _MUST_
601 * be careful with this one. A peek leaves the buffer on the
602 * list and someone else may run off with it. You must hold
603 * the appropriate locks or have a private queue to do this.
604 *
605 * Returns %NULL for an empty list or a pointer to the head element.
606 * The reference count is not incremented and the reference is therefore
607 * volatile. Use with caution.
608 */
609 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
610 {
611 struct sk_buff *list = ((struct sk_buff *)list_)->next;
612 if (list == (struct sk_buff *)list_)
613 list = NULL;
614 return list;
615 }
616
617 /**
618 * skb_peek_tail
619 * @list_: list to peek at
620 *
621 * Peek an &sk_buff. Unlike most other operations you _MUST_
622 * be careful with this one. A peek leaves the buffer on the
623 * list and someone else may run off with it. You must hold
624 * the appropriate locks or have a private queue to do this.
625 *
626 * Returns %NULL for an empty list or a pointer to the tail element.
627 * The reference count is not incremented and the reference is therefore
628 * volatile. Use with caution.
629 */
630 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
631 {
632 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
633 if (list == (struct sk_buff *)list_)
634 list = NULL;
635 return list;
636 }
637
638 /**
639 * skb_queue_len - get queue length
640 * @list_: list to measure
641 *
642 * Return the length of an &sk_buff queue.
643 */
644 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
645 {
646 return list_->qlen;
647 }
648
649 /*
650 * This function creates a split out lock class for each invocation;
651 * this is needed for now since a whole lot of users of the skb-queue
652 * infrastructure in drivers have different locking usage (in hardirq)
653 * than the networking core (in softirq only). In the long run either the
654 * network layer or drivers should need annotation to consolidate the
655 * main types of usage into 3 classes.
656 */
657 static inline void skb_queue_head_init(struct sk_buff_head *list)
658 {
659 spin_lock_init(&list->lock);
660 list->prev = list->next = (struct sk_buff *)list;
661 list->qlen = 0;
662 }
663
664 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
665 struct lock_class_key *class)
666 {
667 skb_queue_head_init(list);
668 lockdep_set_class(&list->lock, class);
669 }
670
671 /*
672 * Insert an sk_buff on a list.
673 *
674 * The "__skb_xxxx()" functions are the non-atomic ones that
675 * can only be called with interrupts disabled.
676 */
677 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
678 static inline void __skb_insert(struct sk_buff *newsk,
679 struct sk_buff *prev, struct sk_buff *next,
680 struct sk_buff_head *list)
681 {
682 newsk->next = next;
683 newsk->prev = prev;
684 next->prev = prev->next = newsk;
685 list->qlen++;
686 }
687
688 /**
689 * __skb_queue_after - queue a buffer at the list head
690 * @list: list to use
691 * @prev: place after this buffer
692 * @newsk: buffer to queue
693 *
694 * Queue a buffer int the middle of a list. This function takes no locks
695 * and you must therefore hold required locks before calling it.
696 *
697 * A buffer cannot be placed on two lists at the same time.
698 */
699 static inline void __skb_queue_after(struct sk_buff_head *list,
700 struct sk_buff *prev,
701 struct sk_buff *newsk)
702 {
703 __skb_insert(newsk, prev, prev->next, list);
704 }
705
706 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
707 struct sk_buff_head *list);
708
709 static inline void __skb_queue_before(struct sk_buff_head *list,
710 struct sk_buff *next,
711 struct sk_buff *newsk)
712 {
713 __skb_insert(newsk, next->prev, next, list);
714 }
715
716 /**
717 * __skb_queue_head - queue a buffer at the list head
718 * @list: list to use
719 * @newsk: buffer to queue
720 *
721 * Queue a buffer at the start of a list. This function takes no locks
722 * and you must therefore hold required locks before calling it.
723 *
724 * A buffer cannot be placed on two lists at the same time.
725 */
726 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
727 static inline void __skb_queue_head(struct sk_buff_head *list,
728 struct sk_buff *newsk)
729 {
730 __skb_queue_after(list, (struct sk_buff *)list, newsk);
731 }
732
733 /**
734 * __skb_queue_tail - queue a buffer at the list tail
735 * @list: list to use
736 * @newsk: buffer to queue
737 *
738 * Queue a buffer at the end of a list. This function takes no locks
739 * and you must therefore hold required locks before calling it.
740 *
741 * A buffer cannot be placed on two lists at the same time.
742 */
743 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
744 static inline void __skb_queue_tail(struct sk_buff_head *list,
745 struct sk_buff *newsk)
746 {
747 __skb_queue_before(list, (struct sk_buff *)list, newsk);
748 }
749
750 /*
751 * remove sk_buff from list. _Must_ be called atomically, and with
752 * the list known..
753 */
754 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
755 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
756 {
757 struct sk_buff *next, *prev;
758
759 list->qlen--;
760 next = skb->next;
761 prev = skb->prev;
762 skb->next = skb->prev = NULL;
763 next->prev = prev;
764 prev->next = next;
765 }
766
767 /**
768 * __skb_dequeue - remove from the head of the queue
769 * @list: list to dequeue from
770 *
771 * Remove the head of the list. This function does not take any locks
772 * so must be used with appropriate locks held only. The head item is
773 * returned or %NULL if the list is empty.
774 */
775 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
776 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
777 {
778 struct sk_buff *skb = skb_peek(list);
779 if (skb)
780 __skb_unlink(skb, list);
781 return skb;
782 }
783
784 /**
785 * __skb_dequeue_tail - remove from the tail of the queue
786 * @list: list to dequeue from
787 *
788 * Remove the tail of the list. This function does not take any locks
789 * so must be used with appropriate locks held only. The tail item is
790 * returned or %NULL if the list is empty.
791 */
792 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
793 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
794 {
795 struct sk_buff *skb = skb_peek_tail(list);
796 if (skb)
797 __skb_unlink(skb, list);
798 return skb;
799 }
800
801
802 static inline int skb_is_nonlinear(const struct sk_buff *skb)
803 {
804 return skb->data_len;
805 }
806
807 static inline unsigned int skb_headlen(const struct sk_buff *skb)
808 {
809 return skb->len - skb->data_len;
810 }
811
812 static inline int skb_pagelen(const struct sk_buff *skb)
813 {
814 int i, len = 0;
815
816 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
817 len += skb_shinfo(skb)->frags[i].size;
818 return len + skb_headlen(skb);
819 }
820
821 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
822 struct page *page, int off, int size)
823 {
824 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
825
826 frag->page = page;
827 frag->page_offset = off;
828 frag->size = size;
829 skb_shinfo(skb)->nr_frags = i + 1;
830 }
831
832 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
833 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
834 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
835
836 #ifdef NET_SKBUFF_DATA_USES_OFFSET
837 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
838 {
839 return skb->head + skb->tail;
840 }
841
842 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
843 {
844 skb->tail = skb->data - skb->head;
845 }
846
847 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
848 {
849 skb_reset_tail_pointer(skb);
850 skb->tail += offset;
851 }
852 #else /* NET_SKBUFF_DATA_USES_OFFSET */
853 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
854 {
855 return skb->tail;
856 }
857
858 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
859 {
860 skb->tail = skb->data;
861 }
862
863 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
864 {
865 skb->tail = skb->data + offset;
866 }
867
868 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
869
870 /*
871 * Add data to an sk_buff
872 */
873 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
874 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
875 {
876 unsigned char *tmp = skb_tail_pointer(skb);
877 SKB_LINEAR_ASSERT(skb);
878 skb->tail += len;
879 skb->len += len;
880 return tmp;
881 }
882
883 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
884 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
885 {
886 skb->data -= len;
887 skb->len += len;
888 return skb->data;
889 }
890
891 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
892 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
893 {
894 skb->len -= len;
895 BUG_ON(skb->len < skb->data_len);
896 return skb->data += len;
897 }
898
899 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
900
901 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
902 {
903 if (len > skb_headlen(skb) &&
904 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
905 return NULL;
906 skb->len -= len;
907 return skb->data += len;
908 }
909
910 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
911 {
912 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
913 }
914
915 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
916 {
917 if (likely(len <= skb_headlen(skb)))
918 return 1;
919 if (unlikely(len > skb->len))
920 return 0;
921 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
922 }
923
924 /**
925 * skb_headroom - bytes at buffer head
926 * @skb: buffer to check
927 *
928 * Return the number of bytes of free space at the head of an &sk_buff.
929 */
930 static inline unsigned int skb_headroom(const struct sk_buff *skb)
931 {
932 return skb->data - skb->head;
933 }
934
935 /**
936 * skb_tailroom - bytes at buffer end
937 * @skb: buffer to check
938 *
939 * Return the number of bytes of free space at the tail of an sk_buff
940 */
941 static inline int skb_tailroom(const struct sk_buff *skb)
942 {
943 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
944 }
945
946 /**
947 * skb_reserve - adjust headroom
948 * @skb: buffer to alter
949 * @len: bytes to move
950 *
951 * Increase the headroom of an empty &sk_buff by reducing the tail
952 * room. This is only allowed for an empty buffer.
953 */
954 static inline void skb_reserve(struct sk_buff *skb, int len)
955 {
956 skb->data += len;
957 skb->tail += len;
958 }
959
960 #ifdef NET_SKBUFF_DATA_USES_OFFSET
961 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
962 {
963 return skb->head + skb->transport_header;
964 }
965
966 static inline void skb_reset_transport_header(struct sk_buff *skb)
967 {
968 skb->transport_header = skb->data - skb->head;
969 }
970
971 static inline void skb_set_transport_header(struct sk_buff *skb,
972 const int offset)
973 {
974 skb_reset_transport_header(skb);
975 skb->transport_header += offset;
976 }
977
978 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
979 {
980 return skb->head + skb->network_header;
981 }
982
983 static inline void skb_reset_network_header(struct sk_buff *skb)
984 {
985 skb->network_header = skb->data - skb->head;
986 }
987
988 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
989 {
990 skb_reset_network_header(skb);
991 skb->network_header += offset;
992 }
993
994 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
995 {
996 return skb->head + skb->mac_header;
997 }
998
999 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1000 {
1001 return skb->mac_header != ~0U;
1002 }
1003
1004 static inline void skb_reset_mac_header(struct sk_buff *skb)
1005 {
1006 skb->mac_header = skb->data - skb->head;
1007 }
1008
1009 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1010 {
1011 skb_reset_mac_header(skb);
1012 skb->mac_header += offset;
1013 }
1014
1015 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1016
1017 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1018 {
1019 return skb->transport_header;
1020 }
1021
1022 static inline void skb_reset_transport_header(struct sk_buff *skb)
1023 {
1024 skb->transport_header = skb->data;
1025 }
1026
1027 static inline void skb_set_transport_header(struct sk_buff *skb,
1028 const int offset)
1029 {
1030 skb->transport_header = skb->data + offset;
1031 }
1032
1033 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1034 {
1035 return skb->network_header;
1036 }
1037
1038 static inline void skb_reset_network_header(struct sk_buff *skb)
1039 {
1040 skb->network_header = skb->data;
1041 }
1042
1043 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1044 {
1045 skb->network_header = skb->data + offset;
1046 }
1047
1048 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1049 {
1050 return skb->mac_header;
1051 }
1052
1053 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1054 {
1055 return skb->mac_header != NULL;
1056 }
1057
1058 static inline void skb_reset_mac_header(struct sk_buff *skb)
1059 {
1060 skb->mac_header = skb->data;
1061 }
1062
1063 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1064 {
1065 skb->mac_header = skb->data + offset;
1066 }
1067 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1068
1069 static inline int skb_transport_offset(const struct sk_buff *skb)
1070 {
1071 return skb_transport_header(skb) - skb->data;
1072 }
1073
1074 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1075 {
1076 return skb->transport_header - skb->network_header;
1077 }
1078
1079 static inline int skb_network_offset(const struct sk_buff *skb)
1080 {
1081 return skb_network_header(skb) - skb->data;
1082 }
1083
1084 /*
1085 * CPUs often take a performance hit when accessing unaligned memory
1086 * locations. The actual performance hit varies, it can be small if the
1087 * hardware handles it or large if we have to take an exception and fix it
1088 * in software.
1089 *
1090 * Since an ethernet header is 14 bytes network drivers often end up with
1091 * the IP header at an unaligned offset. The IP header can be aligned by
1092 * shifting the start of the packet by 2 bytes. Drivers should do this
1093 * with:
1094 *
1095 * skb_reserve(NET_IP_ALIGN);
1096 *
1097 * The downside to this alignment of the IP header is that the DMA is now
1098 * unaligned. On some architectures the cost of an unaligned DMA is high
1099 * and this cost outweighs the gains made by aligning the IP header.
1100 *
1101 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1102 * to be overridden.
1103 */
1104 #ifndef NET_IP_ALIGN
1105 #define NET_IP_ALIGN 2
1106 #endif
1107
1108 /*
1109 * The networking layer reserves some headroom in skb data (via
1110 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1111 * the header has to grow. In the default case, if the header has to grow
1112 * 16 bytes or less we avoid the reallocation.
1113 *
1114 * Unfortunately this headroom changes the DMA alignment of the resulting
1115 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1116 * on some architectures. An architecture can override this value,
1117 * perhaps setting it to a cacheline in size (since that will maintain
1118 * cacheline alignment of the DMA). It must be a power of 2.
1119 *
1120 * Various parts of the networking layer expect at least 16 bytes of
1121 * headroom, you should not reduce this.
1122 */
1123 #ifndef NET_SKB_PAD
1124 #define NET_SKB_PAD 16
1125 #endif
1126
1127 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1128
1129 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1130 {
1131 if (unlikely(skb->data_len)) {
1132 WARN_ON(1);
1133 return;
1134 }
1135 skb->len = len;
1136 skb_set_tail_pointer(skb, len);
1137 }
1138
1139 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1140
1141 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1142 {
1143 if (skb->data_len)
1144 return ___pskb_trim(skb, len);
1145 __skb_trim(skb, len);
1146 return 0;
1147 }
1148
1149 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1150 {
1151 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1152 }
1153
1154 /**
1155 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1156 * @skb: buffer to alter
1157 * @len: new length
1158 *
1159 * This is identical to pskb_trim except that the caller knows that
1160 * the skb is not cloned so we should never get an error due to out-
1161 * of-memory.
1162 */
1163 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1164 {
1165 int err = pskb_trim(skb, len);
1166 BUG_ON(err);
1167 }
1168
1169 /**
1170 * skb_orphan - orphan a buffer
1171 * @skb: buffer to orphan
1172 *
1173 * If a buffer currently has an owner then we call the owner's
1174 * destructor function and make the @skb unowned. The buffer continues
1175 * to exist but is no longer charged to its former owner.
1176 */
1177 static inline void skb_orphan(struct sk_buff *skb)
1178 {
1179 if (skb->destructor)
1180 skb->destructor(skb);
1181 skb->destructor = NULL;
1182 skb->sk = NULL;
1183 }
1184
1185 /**
1186 * __skb_queue_purge - empty a list
1187 * @list: list to empty
1188 *
1189 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1190 * the list and one reference dropped. This function does not take the
1191 * list lock and the caller must hold the relevant locks to use it.
1192 */
1193 extern void skb_queue_purge(struct sk_buff_head *list);
1194 static inline void __skb_queue_purge(struct sk_buff_head *list)
1195 {
1196 struct sk_buff *skb;
1197 while ((skb = __skb_dequeue(list)) != NULL)
1198 kfree_skb(skb);
1199 }
1200
1201 /**
1202 * __dev_alloc_skb - allocate an skbuff for receiving
1203 * @length: length to allocate
1204 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1205 *
1206 * Allocate a new &sk_buff and assign it a usage count of one. The
1207 * buffer has unspecified headroom built in. Users should allocate
1208 * the headroom they think they need without accounting for the
1209 * built in space. The built in space is used for optimisations.
1210 *
1211 * %NULL is returned if there is no free memory.
1212 */
1213 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1214 gfp_t gfp_mask)
1215 {
1216 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1217 if (likely(skb))
1218 skb_reserve(skb, NET_SKB_PAD);
1219 return skb;
1220 }
1221
1222 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1223
1224 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1225 unsigned int length, gfp_t gfp_mask);
1226
1227 /**
1228 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1229 * @dev: network device to receive on
1230 * @length: length to allocate
1231 *
1232 * Allocate a new &sk_buff and assign it a usage count of one. The
1233 * buffer has unspecified headroom built in. Users should allocate
1234 * the headroom they think they need without accounting for the
1235 * built in space. The built in space is used for optimisations.
1236 *
1237 * %NULL is returned if there is no free memory. Although this function
1238 * allocates memory it can be called from an interrupt.
1239 */
1240 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1241 unsigned int length)
1242 {
1243 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1244 }
1245
1246 /**
1247 * skb_clone_writable - is the header of a clone writable
1248 * @skb: buffer to check
1249 * @len: length up to which to write
1250 *
1251 * Returns true if modifying the header part of the cloned buffer
1252 * does not requires the data to be copied.
1253 */
1254 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1255 {
1256 return !skb_header_cloned(skb) &&
1257 skb_headroom(skb) + len <= skb->hdr_len;
1258 }
1259
1260 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1261 int cloned)
1262 {
1263 int delta = 0;
1264
1265 if (headroom < NET_SKB_PAD)
1266 headroom = NET_SKB_PAD;
1267 if (headroom > skb_headroom(skb))
1268 delta = headroom - skb_headroom(skb);
1269
1270 if (delta || cloned)
1271 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1272 GFP_ATOMIC);
1273 return 0;
1274 }
1275
1276 /**
1277 * skb_cow - copy header of skb when it is required
1278 * @skb: buffer to cow
1279 * @headroom: needed headroom
1280 *
1281 * If the skb passed lacks sufficient headroom or its data part
1282 * is shared, data is reallocated. If reallocation fails, an error
1283 * is returned and original skb is not changed.
1284 *
1285 * The result is skb with writable area skb->head...skb->tail
1286 * and at least @headroom of space at head.
1287 */
1288 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1289 {
1290 return __skb_cow(skb, headroom, skb_cloned(skb));
1291 }
1292
1293 /**
1294 * skb_cow_head - skb_cow but only making the head writable
1295 * @skb: buffer to cow
1296 * @headroom: needed headroom
1297 *
1298 * This function is identical to skb_cow except that we replace the
1299 * skb_cloned check by skb_header_cloned. It should be used when
1300 * you only need to push on some header and do not need to modify
1301 * the data.
1302 */
1303 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1304 {
1305 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1306 }
1307
1308 /**
1309 * skb_padto - pad an skbuff up to a minimal size
1310 * @skb: buffer to pad
1311 * @len: minimal length
1312 *
1313 * Pads up a buffer to ensure the trailing bytes exist and are
1314 * blanked. If the buffer already contains sufficient data it
1315 * is untouched. Otherwise it is extended. Returns zero on
1316 * success. The skb is freed on error.
1317 */
1318
1319 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1320 {
1321 unsigned int size = skb->len;
1322 if (likely(size >= len))
1323 return 0;
1324 return skb_pad(skb, len - size);
1325 }
1326
1327 static inline int skb_add_data(struct sk_buff *skb,
1328 char __user *from, int copy)
1329 {
1330 const int off = skb->len;
1331
1332 if (skb->ip_summed == CHECKSUM_NONE) {
1333 int err = 0;
1334 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1335 copy, 0, &err);
1336 if (!err) {
1337 skb->csum = csum_block_add(skb->csum, csum, off);
1338 return 0;
1339 }
1340 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1341 return 0;
1342
1343 __skb_trim(skb, off);
1344 return -EFAULT;
1345 }
1346
1347 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1348 struct page *page, int off)
1349 {
1350 if (i) {
1351 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1352
1353 return page == frag->page &&
1354 off == frag->page_offset + frag->size;
1355 }
1356 return 0;
1357 }
1358
1359 static inline int __skb_linearize(struct sk_buff *skb)
1360 {
1361 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1362 }
1363
1364 /**
1365 * skb_linearize - convert paged skb to linear one
1366 * @skb: buffer to linarize
1367 *
1368 * If there is no free memory -ENOMEM is returned, otherwise zero
1369 * is returned and the old skb data released.
1370 */
1371 static inline int skb_linearize(struct sk_buff *skb)
1372 {
1373 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1374 }
1375
1376 /**
1377 * skb_linearize_cow - make sure skb is linear and writable
1378 * @skb: buffer to process
1379 *
1380 * If there is no free memory -ENOMEM is returned, otherwise zero
1381 * is returned and the old skb data released.
1382 */
1383 static inline int skb_linearize_cow(struct sk_buff *skb)
1384 {
1385 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1386 __skb_linearize(skb) : 0;
1387 }
1388
1389 /**
1390 * skb_postpull_rcsum - update checksum for received skb after pull
1391 * @skb: buffer to update
1392 * @start: start of data before pull
1393 * @len: length of data pulled
1394 *
1395 * After doing a pull on a received packet, you need to call this to
1396 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1397 * CHECKSUM_NONE so that it can be recomputed from scratch.
1398 */
1399
1400 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1401 const void *start, unsigned int len)
1402 {
1403 if (skb->ip_summed == CHECKSUM_COMPLETE)
1404 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1405 }
1406
1407 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1408
1409 /**
1410 * pskb_trim_rcsum - trim received skb and update checksum
1411 * @skb: buffer to trim
1412 * @len: new length
1413 *
1414 * This is exactly the same as pskb_trim except that it ensures the
1415 * checksum of received packets are still valid after the operation.
1416 */
1417
1418 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1419 {
1420 if (likely(len >= skb->len))
1421 return 0;
1422 if (skb->ip_summed == CHECKSUM_COMPLETE)
1423 skb->ip_summed = CHECKSUM_NONE;
1424 return __pskb_trim(skb, len);
1425 }
1426
1427 #define skb_queue_walk(queue, skb) \
1428 for (skb = (queue)->next; \
1429 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1430 skb = skb->next)
1431
1432 #define skb_queue_walk_safe(queue, skb, tmp) \
1433 for (skb = (queue)->next, tmp = skb->next; \
1434 skb != (struct sk_buff *)(queue); \
1435 skb = tmp, tmp = skb->next)
1436
1437 #define skb_queue_reverse_walk(queue, skb) \
1438 for (skb = (queue)->prev; \
1439 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1440 skb = skb->prev)
1441
1442
1443 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1444 int *peeked, int *err);
1445 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1446 int noblock, int *err);
1447 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1448 struct poll_table_struct *wait);
1449 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1450 int offset, struct iovec *to,
1451 int size);
1452 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1453 int hlen,
1454 struct iovec *iov);
1455 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1456 int offset,
1457 struct iovec *from,
1458 int len);
1459 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1460 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1461 unsigned int flags);
1462 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1463 int len, __wsum csum);
1464 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1465 void *to, int len);
1466 extern int skb_store_bits(struct sk_buff *skb, int offset,
1467 const void *from, int len);
1468 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1469 int offset, u8 *to, int len,
1470 __wsum csum);
1471 extern int skb_splice_bits(struct sk_buff *skb,
1472 unsigned int offset,
1473 struct pipe_inode_info *pipe,
1474 unsigned int len,
1475 unsigned int flags);
1476 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1477 extern void skb_split(struct sk_buff *skb,
1478 struct sk_buff *skb1, const u32 len);
1479
1480 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1481
1482 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1483 int len, void *buffer)
1484 {
1485 int hlen = skb_headlen(skb);
1486
1487 if (hlen - offset >= len)
1488 return skb->data + offset;
1489
1490 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1491 return NULL;
1492
1493 return buffer;
1494 }
1495
1496 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1497 void *to,
1498 const unsigned int len)
1499 {
1500 memcpy(to, skb->data, len);
1501 }
1502
1503 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1504 const int offset, void *to,
1505 const unsigned int len)
1506 {
1507 memcpy(to, skb->data + offset, len);
1508 }
1509
1510 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1511 const void *from,
1512 const unsigned int len)
1513 {
1514 memcpy(skb->data, from, len);
1515 }
1516
1517 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1518 const int offset,
1519 const void *from,
1520 const unsigned int len)
1521 {
1522 memcpy(skb->data + offset, from, len);
1523 }
1524
1525 extern void skb_init(void);
1526
1527 /**
1528 * skb_get_timestamp - get timestamp from a skb
1529 * @skb: skb to get stamp from
1530 * @stamp: pointer to struct timeval to store stamp in
1531 *
1532 * Timestamps are stored in the skb as offsets to a base timestamp.
1533 * This function converts the offset back to a struct timeval and stores
1534 * it in stamp.
1535 */
1536 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1537 {
1538 *stamp = ktime_to_timeval(skb->tstamp);
1539 }
1540
1541 static inline void __net_timestamp(struct sk_buff *skb)
1542 {
1543 skb->tstamp = ktime_get_real();
1544 }
1545
1546 static inline ktime_t net_timedelta(ktime_t t)
1547 {
1548 return ktime_sub(ktime_get_real(), t);
1549 }
1550
1551 static inline ktime_t net_invalid_timestamp(void)
1552 {
1553 return ktime_set(0, 0);
1554 }
1555
1556 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1557 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1558
1559 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1560 {
1561 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1562 }
1563
1564 /**
1565 * skb_checksum_complete - Calculate checksum of an entire packet
1566 * @skb: packet to process
1567 *
1568 * This function calculates the checksum over the entire packet plus
1569 * the value of skb->csum. The latter can be used to supply the
1570 * checksum of a pseudo header as used by TCP/UDP. It returns the
1571 * checksum.
1572 *
1573 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1574 * this function can be used to verify that checksum on received
1575 * packets. In that case the function should return zero if the
1576 * checksum is correct. In particular, this function will return zero
1577 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1578 * hardware has already verified the correctness of the checksum.
1579 */
1580 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1581 {
1582 return skb_csum_unnecessary(skb) ?
1583 0 : __skb_checksum_complete(skb);
1584 }
1585
1586 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1587 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1588 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1589 {
1590 if (nfct && atomic_dec_and_test(&nfct->use))
1591 nf_conntrack_destroy(nfct);
1592 }
1593 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1594 {
1595 if (nfct)
1596 atomic_inc(&nfct->use);
1597 }
1598 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1599 {
1600 if (skb)
1601 atomic_inc(&skb->users);
1602 }
1603 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1604 {
1605 if (skb)
1606 kfree_skb(skb);
1607 }
1608 #endif
1609 #ifdef CONFIG_BRIDGE_NETFILTER
1610 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1611 {
1612 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1613 kfree(nf_bridge);
1614 }
1615 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1616 {
1617 if (nf_bridge)
1618 atomic_inc(&nf_bridge->use);
1619 }
1620 #endif /* CONFIG_BRIDGE_NETFILTER */
1621 static inline void nf_reset(struct sk_buff *skb)
1622 {
1623 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1624 nf_conntrack_put(skb->nfct);
1625 skb->nfct = NULL;
1626 nf_conntrack_put_reasm(skb->nfct_reasm);
1627 skb->nfct_reasm = NULL;
1628 #endif
1629 #ifdef CONFIG_BRIDGE_NETFILTER
1630 nf_bridge_put(skb->nf_bridge);
1631 skb->nf_bridge = NULL;
1632 #endif
1633 }
1634
1635 /* Note: This doesn't put any conntrack and bridge info in dst. */
1636 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1637 {
1638 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1639 dst->nfct = src->nfct;
1640 nf_conntrack_get(src->nfct);
1641 dst->nfctinfo = src->nfctinfo;
1642 dst->nfct_reasm = src->nfct_reasm;
1643 nf_conntrack_get_reasm(src->nfct_reasm);
1644 #endif
1645 #ifdef CONFIG_BRIDGE_NETFILTER
1646 dst->nf_bridge = src->nf_bridge;
1647 nf_bridge_get(src->nf_bridge);
1648 #endif
1649 }
1650
1651 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1652 {
1653 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1654 nf_conntrack_put(dst->nfct);
1655 nf_conntrack_put_reasm(dst->nfct_reasm);
1656 #endif
1657 #ifdef CONFIG_BRIDGE_NETFILTER
1658 nf_bridge_put(dst->nf_bridge);
1659 #endif
1660 __nf_copy(dst, src);
1661 }
1662
1663 #ifdef CONFIG_NETWORK_SECMARK
1664 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1665 {
1666 to->secmark = from->secmark;
1667 }
1668
1669 static inline void skb_init_secmark(struct sk_buff *skb)
1670 {
1671 skb->secmark = 0;
1672 }
1673 #else
1674 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1675 { }
1676
1677 static inline void skb_init_secmark(struct sk_buff *skb)
1678 { }
1679 #endif
1680
1681 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1682 {
1683 skb->queue_mapping = queue_mapping;
1684 }
1685
1686 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1687 {
1688 return skb->queue_mapping;
1689 }
1690
1691 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1692 {
1693 to->queue_mapping = from->queue_mapping;
1694 }
1695
1696 static inline int skb_is_gso(const struct sk_buff *skb)
1697 {
1698 return skb_shinfo(skb)->gso_size;
1699 }
1700
1701 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1702 {
1703 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1704 }
1705
1706 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1707
1708 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1709 {
1710 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1711 * wanted then gso_type will be set. */
1712 struct skb_shared_info *shinfo = skb_shinfo(skb);
1713 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1714 __skb_warn_lro_forwarding(skb);
1715 return true;
1716 }
1717 return false;
1718 }
1719
1720 static inline void skb_forward_csum(struct sk_buff *skb)
1721 {
1722 /* Unfortunately we don't support this one. Any brave souls? */
1723 if (skb->ip_summed == CHECKSUM_COMPLETE)
1724 skb->ip_summed = CHECKSUM_NONE;
1725 }
1726
1727 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1728 #endif /* __KERNEL__ */
1729 #endif /* _LINUX_SKBUFF_H */