]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/skbuff.h
mac80211: Re-enable aggregation
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 unsigned int num_dma_maps;
151 #endif
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158
159 /* We divide dataref into two halves. The higher 16 bits hold references
160 * to the payload part of skb->data. The lower 16 bits hold references to
161 * the entire skb->data. A clone of a headerless skb holds the length of
162 * the header in skb->hdr_len.
163 *
164 * All users must obey the rule that the skb->data reference count must be
165 * greater than or equal to the payload reference count.
166 *
167 * Holding a reference to the payload part means that the user does not
168 * care about modifications to the header part of skb->data.
169 */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172
173
174 enum {
175 SKB_FCLONE_UNAVAILABLE,
176 SKB_FCLONE_ORIG,
177 SKB_FCLONE_CLONE,
178 };
179
180 enum {
181 SKB_GSO_TCPV4 = 1 << 0,
182 SKB_GSO_UDP = 1 << 1,
183
184 /* This indicates the skb is from an untrusted source. */
185 SKB_GSO_DODGY = 1 << 2,
186
187 /* This indicates the tcp segment has CWR set. */
188 SKB_GSO_TCP_ECN = 1 << 3,
189
190 SKB_GSO_TCPV6 = 1 << 4,
191 };
192
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202
203 /**
204 * struct sk_buff - socket buffer
205 * @next: Next buffer in list
206 * @prev: Previous buffer in list
207 * @sk: Socket we are owned by
208 * @tstamp: Time we arrived
209 * @dev: Device we arrived on/are leaving by
210 * @transport_header: Transport layer header
211 * @network_header: Network layer header
212 * @mac_header: Link layer header
213 * @dst: destination entry
214 * @sp: the security path, used for xfrm
215 * @cb: Control buffer. Free for use by every layer. Put private vars here
216 * @len: Length of actual data
217 * @data_len: Data length
218 * @mac_len: Length of link layer header
219 * @hdr_len: writable header length of cloned skb
220 * @csum: Checksum (must include start/offset pair)
221 * @csum_start: Offset from skb->head where checksumming should start
222 * @csum_offset: Offset from csum_start where checksum should be stored
223 * @local_df: allow local fragmentation
224 * @cloned: Head may be cloned (check refcnt to be sure)
225 * @nohdr: Payload reference only, must not modify header
226 * @pkt_type: Packet class
227 * @fclone: skbuff clone status
228 * @ip_summed: Driver fed us an IP checksum
229 * @priority: Packet queueing priority
230 * @users: User count - see {datagram,tcp}.c
231 * @protocol: Packet protocol from driver
232 * @truesize: Buffer size
233 * @head: Head of buffer
234 * @data: Data head pointer
235 * @tail: Tail pointer
236 * @end: End pointer
237 * @destructor: Destruct function
238 * @mark: Generic packet mark
239 * @nfct: Associated connection, if any
240 * @ipvs_property: skbuff is owned by ipvs
241 * @peeked: this packet has been seen already, so stats have been
242 * done for it, don't do them again
243 * @nf_trace: netfilter packet trace flag
244 * @nfctinfo: Relationship of this skb to the connection
245 * @nfct_reasm: netfilter conntrack re-assembly pointer
246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247 * @iif: ifindex of device we arrived on
248 * @queue_mapping: Queue mapping for multiqueue devices
249 * @tc_index: Traffic control index
250 * @tc_verd: traffic control verdict
251 * @ndisc_nodetype: router type (from link layer)
252 * @do_not_encrypt: set to prevent encryption of this frame
253 * @requeue: set to indicate that the wireless core should attempt
254 * a software retry on this frame if we failed to
255 * receive an ACK for it
256 * @dma_cookie: a cookie to one of several possible DMA operations
257 * done by skb DMA functions
258 * @secmark: security marking
259 * @vlan_tci: vlan tag control information
260 */
261
262 struct sk_buff {
263 /* These two members must be first. */
264 struct sk_buff *next;
265 struct sk_buff *prev;
266
267 struct sock *sk;
268 ktime_t tstamp;
269 struct net_device *dev;
270
271 union {
272 struct dst_entry *dst;
273 struct rtable *rtable;
274 };
275 #ifdef CONFIG_XFRM
276 struct sec_path *sp;
277 #endif
278 /*
279 * This is the control buffer. It is free to use for every
280 * layer. Please put your private variables there. If you
281 * want to keep them across layers you have to do a skb_clone()
282 * first. This is owned by whoever has the skb queued ATM.
283 */
284 char cb[48];
285
286 unsigned int len,
287 data_len;
288 __u16 mac_len,
289 hdr_len;
290 union {
291 __wsum csum;
292 struct {
293 __u16 csum_start;
294 __u16 csum_offset;
295 };
296 };
297 __u32 priority;
298 __u8 local_df:1,
299 cloned:1,
300 ip_summed:2,
301 nohdr:1,
302 nfctinfo:3;
303 __u8 pkt_type:3,
304 fclone:2,
305 ipvs_property:1,
306 peeked:1,
307 nf_trace:1;
308 __be16 protocol;
309
310 void (*destructor)(struct sk_buff *skb);
311 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
312 struct nf_conntrack *nfct;
313 struct sk_buff *nfct_reasm;
314 #endif
315 #ifdef CONFIG_BRIDGE_NETFILTER
316 struct nf_bridge_info *nf_bridge;
317 #endif
318
319 int iif;
320 __u16 queue_mapping;
321 #ifdef CONFIG_NET_SCHED
322 __u16 tc_index; /* traffic control index */
323 #ifdef CONFIG_NET_CLS_ACT
324 __u16 tc_verd; /* traffic control verdict */
325 #endif
326 #endif
327 #ifdef CONFIG_IPV6_NDISC_NODETYPE
328 __u8 ndisc_nodetype:2;
329 #endif
330 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
331 __u8 do_not_encrypt:1;
332 __u8 requeue:1;
333 #endif
334 /* 0/13/14 bit hole */
335
336 #ifdef CONFIG_NET_DMA
337 dma_cookie_t dma_cookie;
338 #endif
339 #ifdef CONFIG_NETWORK_SECMARK
340 __u32 secmark;
341 #endif
342
343 __u32 mark;
344
345 __u16 vlan_tci;
346
347 sk_buff_data_t transport_header;
348 sk_buff_data_t network_header;
349 sk_buff_data_t mac_header;
350 /* These elements must be at the end, see alloc_skb() for details. */
351 sk_buff_data_t tail;
352 sk_buff_data_t end;
353 unsigned char *head,
354 *data;
355 unsigned int truesize;
356 atomic_t users;
357 };
358
359 #ifdef __KERNEL__
360 /*
361 * Handling routines are only of interest to the kernel
362 */
363 #include <linux/slab.h>
364
365 #include <asm/system.h>
366
367 #ifdef CONFIG_HAS_DMA
368 #include <linux/dma-mapping.h>
369 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
370 enum dma_data_direction dir);
371 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
372 enum dma_data_direction dir);
373 #endif
374
375 extern void kfree_skb(struct sk_buff *skb);
376 extern void __kfree_skb(struct sk_buff *skb);
377 extern struct sk_buff *__alloc_skb(unsigned int size,
378 gfp_t priority, int fclone, int node);
379 static inline struct sk_buff *alloc_skb(unsigned int size,
380 gfp_t priority)
381 {
382 return __alloc_skb(size, priority, 0, -1);
383 }
384
385 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
386 gfp_t priority)
387 {
388 return __alloc_skb(size, priority, 1, -1);
389 }
390
391 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
392
393 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
394 extern struct sk_buff *skb_clone(struct sk_buff *skb,
395 gfp_t priority);
396 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
397 gfp_t priority);
398 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
399 gfp_t gfp_mask);
400 extern int pskb_expand_head(struct sk_buff *skb,
401 int nhead, int ntail,
402 gfp_t gfp_mask);
403 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
404 unsigned int headroom);
405 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
406 int newheadroom, int newtailroom,
407 gfp_t priority);
408 extern int skb_to_sgvec(struct sk_buff *skb,
409 struct scatterlist *sg, int offset,
410 int len);
411 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
412 struct sk_buff **trailer);
413 extern int skb_pad(struct sk_buff *skb, int pad);
414 #define dev_kfree_skb(a) kfree_skb(a)
415 extern void skb_over_panic(struct sk_buff *skb, int len,
416 void *here);
417 extern void skb_under_panic(struct sk_buff *skb, int len,
418 void *here);
419 extern void skb_truesize_bug(struct sk_buff *skb);
420
421 static inline void skb_truesize_check(struct sk_buff *skb)
422 {
423 int len = sizeof(struct sk_buff) + skb->len;
424
425 if (unlikely((int)skb->truesize < len))
426 skb_truesize_bug(skb);
427 }
428
429 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
430 int getfrag(void *from, char *to, int offset,
431 int len,int odd, struct sk_buff *skb),
432 void *from, int length);
433
434 struct skb_seq_state
435 {
436 __u32 lower_offset;
437 __u32 upper_offset;
438 __u32 frag_idx;
439 __u32 stepped_offset;
440 struct sk_buff *root_skb;
441 struct sk_buff *cur_skb;
442 __u8 *frag_data;
443 };
444
445 extern void skb_prepare_seq_read(struct sk_buff *skb,
446 unsigned int from, unsigned int to,
447 struct skb_seq_state *st);
448 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
449 struct skb_seq_state *st);
450 extern void skb_abort_seq_read(struct skb_seq_state *st);
451
452 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
453 unsigned int to, struct ts_config *config,
454 struct ts_state *state);
455
456 #ifdef NET_SKBUFF_DATA_USES_OFFSET
457 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
458 {
459 return skb->head + skb->end;
460 }
461 #else
462 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
463 {
464 return skb->end;
465 }
466 #endif
467
468 /* Internal */
469 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
470
471 /**
472 * skb_queue_empty - check if a queue is empty
473 * @list: queue head
474 *
475 * Returns true if the queue is empty, false otherwise.
476 */
477 static inline int skb_queue_empty(const struct sk_buff_head *list)
478 {
479 return list->next == (struct sk_buff *)list;
480 }
481
482 /**
483 * skb_queue_is_last - check if skb is the last entry in the queue
484 * @list: queue head
485 * @skb: buffer
486 *
487 * Returns true if @skb is the last buffer on the list.
488 */
489 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
490 const struct sk_buff *skb)
491 {
492 return (skb->next == (struct sk_buff *) list);
493 }
494
495 /**
496 * skb_queue_next - return the next packet in the queue
497 * @list: queue head
498 * @skb: current buffer
499 *
500 * Return the next packet in @list after @skb. It is only valid to
501 * call this if skb_queue_is_last() evaluates to false.
502 */
503 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
504 const struct sk_buff *skb)
505 {
506 /* This BUG_ON may seem severe, but if we just return then we
507 * are going to dereference garbage.
508 */
509 BUG_ON(skb_queue_is_last(list, skb));
510 return skb->next;
511 }
512
513 /**
514 * skb_get - reference buffer
515 * @skb: buffer to reference
516 *
517 * Makes another reference to a socket buffer and returns a pointer
518 * to the buffer.
519 */
520 static inline struct sk_buff *skb_get(struct sk_buff *skb)
521 {
522 atomic_inc(&skb->users);
523 return skb;
524 }
525
526 /*
527 * If users == 1, we are the only owner and are can avoid redundant
528 * atomic change.
529 */
530
531 /**
532 * skb_cloned - is the buffer a clone
533 * @skb: buffer to check
534 *
535 * Returns true if the buffer was generated with skb_clone() and is
536 * one of multiple shared copies of the buffer. Cloned buffers are
537 * shared data so must not be written to under normal circumstances.
538 */
539 static inline int skb_cloned(const struct sk_buff *skb)
540 {
541 return skb->cloned &&
542 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
543 }
544
545 /**
546 * skb_header_cloned - is the header a clone
547 * @skb: buffer to check
548 *
549 * Returns true if modifying the header part of the buffer requires
550 * the data to be copied.
551 */
552 static inline int skb_header_cloned(const struct sk_buff *skb)
553 {
554 int dataref;
555
556 if (!skb->cloned)
557 return 0;
558
559 dataref = atomic_read(&skb_shinfo(skb)->dataref);
560 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
561 return dataref != 1;
562 }
563
564 /**
565 * skb_header_release - release reference to header
566 * @skb: buffer to operate on
567 *
568 * Drop a reference to the header part of the buffer. This is done
569 * by acquiring a payload reference. You must not read from the header
570 * part of skb->data after this.
571 */
572 static inline void skb_header_release(struct sk_buff *skb)
573 {
574 BUG_ON(skb->nohdr);
575 skb->nohdr = 1;
576 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
577 }
578
579 /**
580 * skb_shared - is the buffer shared
581 * @skb: buffer to check
582 *
583 * Returns true if more than one person has a reference to this
584 * buffer.
585 */
586 static inline int skb_shared(const struct sk_buff *skb)
587 {
588 return atomic_read(&skb->users) != 1;
589 }
590
591 /**
592 * skb_share_check - check if buffer is shared and if so clone it
593 * @skb: buffer to check
594 * @pri: priority for memory allocation
595 *
596 * If the buffer is shared the buffer is cloned and the old copy
597 * drops a reference. A new clone with a single reference is returned.
598 * If the buffer is not shared the original buffer is returned. When
599 * being called from interrupt status or with spinlocks held pri must
600 * be GFP_ATOMIC.
601 *
602 * NULL is returned on a memory allocation failure.
603 */
604 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
605 gfp_t pri)
606 {
607 might_sleep_if(pri & __GFP_WAIT);
608 if (skb_shared(skb)) {
609 struct sk_buff *nskb = skb_clone(skb, pri);
610 kfree_skb(skb);
611 skb = nskb;
612 }
613 return skb;
614 }
615
616 /*
617 * Copy shared buffers into a new sk_buff. We effectively do COW on
618 * packets to handle cases where we have a local reader and forward
619 * and a couple of other messy ones. The normal one is tcpdumping
620 * a packet thats being forwarded.
621 */
622
623 /**
624 * skb_unshare - make a copy of a shared buffer
625 * @skb: buffer to check
626 * @pri: priority for memory allocation
627 *
628 * If the socket buffer is a clone then this function creates a new
629 * copy of the data, drops a reference count on the old copy and returns
630 * the new copy with the reference count at 1. If the buffer is not a clone
631 * the original buffer is returned. When called with a spinlock held or
632 * from interrupt state @pri must be %GFP_ATOMIC
633 *
634 * %NULL is returned on a memory allocation failure.
635 */
636 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
637 gfp_t pri)
638 {
639 might_sleep_if(pri & __GFP_WAIT);
640 if (skb_cloned(skb)) {
641 struct sk_buff *nskb = skb_copy(skb, pri);
642 kfree_skb(skb); /* Free our shared copy */
643 skb = nskb;
644 }
645 return skb;
646 }
647
648 /**
649 * skb_peek
650 * @list_: list to peek at
651 *
652 * Peek an &sk_buff. Unlike most other operations you _MUST_
653 * be careful with this one. A peek leaves the buffer on the
654 * list and someone else may run off with it. You must hold
655 * the appropriate locks or have a private queue to do this.
656 *
657 * Returns %NULL for an empty list or a pointer to the head element.
658 * The reference count is not incremented and the reference is therefore
659 * volatile. Use with caution.
660 */
661 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
662 {
663 struct sk_buff *list = ((struct sk_buff *)list_)->next;
664 if (list == (struct sk_buff *)list_)
665 list = NULL;
666 return list;
667 }
668
669 /**
670 * skb_peek_tail
671 * @list_: list to peek at
672 *
673 * Peek an &sk_buff. Unlike most other operations you _MUST_
674 * be careful with this one. A peek leaves the buffer on the
675 * list and someone else may run off with it. You must hold
676 * the appropriate locks or have a private queue to do this.
677 *
678 * Returns %NULL for an empty list or a pointer to the tail element.
679 * The reference count is not incremented and the reference is therefore
680 * volatile. Use with caution.
681 */
682 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
683 {
684 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
685 if (list == (struct sk_buff *)list_)
686 list = NULL;
687 return list;
688 }
689
690 /**
691 * skb_queue_len - get queue length
692 * @list_: list to measure
693 *
694 * Return the length of an &sk_buff queue.
695 */
696 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
697 {
698 return list_->qlen;
699 }
700
701 /**
702 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
703 * @list: queue to initialize
704 *
705 * This initializes only the list and queue length aspects of
706 * an sk_buff_head object. This allows to initialize the list
707 * aspects of an sk_buff_head without reinitializing things like
708 * the spinlock. It can also be used for on-stack sk_buff_head
709 * objects where the spinlock is known to not be used.
710 */
711 static inline void __skb_queue_head_init(struct sk_buff_head *list)
712 {
713 list->prev = list->next = (struct sk_buff *)list;
714 list->qlen = 0;
715 }
716
717 /*
718 * This function creates a split out lock class for each invocation;
719 * this is needed for now since a whole lot of users of the skb-queue
720 * infrastructure in drivers have different locking usage (in hardirq)
721 * than the networking core (in softirq only). In the long run either the
722 * network layer or drivers should need annotation to consolidate the
723 * main types of usage into 3 classes.
724 */
725 static inline void skb_queue_head_init(struct sk_buff_head *list)
726 {
727 spin_lock_init(&list->lock);
728 __skb_queue_head_init(list);
729 }
730
731 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
732 struct lock_class_key *class)
733 {
734 skb_queue_head_init(list);
735 lockdep_set_class(&list->lock, class);
736 }
737
738 /*
739 * Insert an sk_buff on a list.
740 *
741 * The "__skb_xxxx()" functions are the non-atomic ones that
742 * can only be called with interrupts disabled.
743 */
744 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
745 static inline void __skb_insert(struct sk_buff *newsk,
746 struct sk_buff *prev, struct sk_buff *next,
747 struct sk_buff_head *list)
748 {
749 newsk->next = next;
750 newsk->prev = prev;
751 next->prev = prev->next = newsk;
752 list->qlen++;
753 }
754
755 static inline void __skb_queue_splice(const struct sk_buff_head *list,
756 struct sk_buff *prev,
757 struct sk_buff *next)
758 {
759 struct sk_buff *first = list->next;
760 struct sk_buff *last = list->prev;
761
762 first->prev = prev;
763 prev->next = first;
764
765 last->next = next;
766 next->prev = last;
767 }
768
769 /**
770 * skb_queue_splice - join two skb lists, this is designed for stacks
771 * @list: the new list to add
772 * @head: the place to add it in the first list
773 */
774 static inline void skb_queue_splice(const struct sk_buff_head *list,
775 struct sk_buff_head *head)
776 {
777 if (!skb_queue_empty(list)) {
778 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
779 head->qlen += list->qlen;
780 }
781 }
782
783 /**
784 * skb_queue_splice - join two skb lists and reinitialise the emptied list
785 * @list: the new list to add
786 * @head: the place to add it in the first list
787 *
788 * The list at @list is reinitialised
789 */
790 static inline void skb_queue_splice_init(struct sk_buff_head *list,
791 struct sk_buff_head *head)
792 {
793 if (!skb_queue_empty(list)) {
794 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
795 head->qlen += list->qlen;
796 __skb_queue_head_init(list);
797 }
798 }
799
800 /**
801 * skb_queue_splice_tail - join two skb lists, each list being a queue
802 * @list: the new list to add
803 * @head: the place to add it in the first list
804 */
805 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
806 struct sk_buff_head *head)
807 {
808 if (!skb_queue_empty(list)) {
809 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
810 head->qlen += list->qlen;
811 }
812 }
813
814 /**
815 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
816 * @list: the new list to add
817 * @head: the place to add it in the first list
818 *
819 * Each of the lists is a queue.
820 * The list at @list is reinitialised
821 */
822 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
823 struct sk_buff_head *head)
824 {
825 if (!skb_queue_empty(list)) {
826 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
827 head->qlen += list->qlen;
828 __skb_queue_head_init(list);
829 }
830 }
831
832 /**
833 * __skb_queue_after - queue a buffer at the list head
834 * @list: list to use
835 * @prev: place after this buffer
836 * @newsk: buffer to queue
837 *
838 * Queue a buffer int the middle of a list. This function takes no locks
839 * and you must therefore hold required locks before calling it.
840 *
841 * A buffer cannot be placed on two lists at the same time.
842 */
843 static inline void __skb_queue_after(struct sk_buff_head *list,
844 struct sk_buff *prev,
845 struct sk_buff *newsk)
846 {
847 __skb_insert(newsk, prev, prev->next, list);
848 }
849
850 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
851 struct sk_buff_head *list);
852
853 static inline void __skb_queue_before(struct sk_buff_head *list,
854 struct sk_buff *next,
855 struct sk_buff *newsk)
856 {
857 __skb_insert(newsk, next->prev, next, list);
858 }
859
860 /**
861 * __skb_queue_head - queue a buffer at the list head
862 * @list: list to use
863 * @newsk: buffer to queue
864 *
865 * Queue a buffer at the start of a list. This function takes no locks
866 * and you must therefore hold required locks before calling it.
867 *
868 * A buffer cannot be placed on two lists at the same time.
869 */
870 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
871 static inline void __skb_queue_head(struct sk_buff_head *list,
872 struct sk_buff *newsk)
873 {
874 __skb_queue_after(list, (struct sk_buff *)list, newsk);
875 }
876
877 /**
878 * __skb_queue_tail - queue a buffer at the list tail
879 * @list: list to use
880 * @newsk: buffer to queue
881 *
882 * Queue a buffer at the end of a list. This function takes no locks
883 * and you must therefore hold required locks before calling it.
884 *
885 * A buffer cannot be placed on two lists at the same time.
886 */
887 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
888 static inline void __skb_queue_tail(struct sk_buff_head *list,
889 struct sk_buff *newsk)
890 {
891 __skb_queue_before(list, (struct sk_buff *)list, newsk);
892 }
893
894 /*
895 * remove sk_buff from list. _Must_ be called atomically, and with
896 * the list known..
897 */
898 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
899 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
900 {
901 struct sk_buff *next, *prev;
902
903 list->qlen--;
904 next = skb->next;
905 prev = skb->prev;
906 skb->next = skb->prev = NULL;
907 next->prev = prev;
908 prev->next = next;
909 }
910
911 /**
912 * __skb_dequeue - remove from the head of the queue
913 * @list: list to dequeue from
914 *
915 * Remove the head of the list. This function does not take any locks
916 * so must be used with appropriate locks held only. The head item is
917 * returned or %NULL if the list is empty.
918 */
919 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
920 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
921 {
922 struct sk_buff *skb = skb_peek(list);
923 if (skb)
924 __skb_unlink(skb, list);
925 return skb;
926 }
927
928 /**
929 * __skb_dequeue_tail - remove from the tail of the queue
930 * @list: list to dequeue from
931 *
932 * Remove the tail of the list. This function does not take any locks
933 * so must be used with appropriate locks held only. The tail item is
934 * returned or %NULL if the list is empty.
935 */
936 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
937 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
938 {
939 struct sk_buff *skb = skb_peek_tail(list);
940 if (skb)
941 __skb_unlink(skb, list);
942 return skb;
943 }
944
945
946 static inline int skb_is_nonlinear(const struct sk_buff *skb)
947 {
948 return skb->data_len;
949 }
950
951 static inline unsigned int skb_headlen(const struct sk_buff *skb)
952 {
953 return skb->len - skb->data_len;
954 }
955
956 static inline int skb_pagelen(const struct sk_buff *skb)
957 {
958 int i, len = 0;
959
960 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
961 len += skb_shinfo(skb)->frags[i].size;
962 return len + skb_headlen(skb);
963 }
964
965 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
966 struct page *page, int off, int size)
967 {
968 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
969
970 frag->page = page;
971 frag->page_offset = off;
972 frag->size = size;
973 skb_shinfo(skb)->nr_frags = i + 1;
974 }
975
976 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
977 int off, int size);
978
979 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
980 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
981 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
982
983 #ifdef NET_SKBUFF_DATA_USES_OFFSET
984 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
985 {
986 return skb->head + skb->tail;
987 }
988
989 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
990 {
991 skb->tail = skb->data - skb->head;
992 }
993
994 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
995 {
996 skb_reset_tail_pointer(skb);
997 skb->tail += offset;
998 }
999 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1000 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1001 {
1002 return skb->tail;
1003 }
1004
1005 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1006 {
1007 skb->tail = skb->data;
1008 }
1009
1010 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1011 {
1012 skb->tail = skb->data + offset;
1013 }
1014
1015 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1016
1017 /*
1018 * Add data to an sk_buff
1019 */
1020 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1021 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1022 {
1023 unsigned char *tmp = skb_tail_pointer(skb);
1024 SKB_LINEAR_ASSERT(skb);
1025 skb->tail += len;
1026 skb->len += len;
1027 return tmp;
1028 }
1029
1030 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1031 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1032 {
1033 skb->data -= len;
1034 skb->len += len;
1035 return skb->data;
1036 }
1037
1038 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1039 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1040 {
1041 skb->len -= len;
1042 BUG_ON(skb->len < skb->data_len);
1043 return skb->data += len;
1044 }
1045
1046 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1047
1048 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1049 {
1050 if (len > skb_headlen(skb) &&
1051 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1052 return NULL;
1053 skb->len -= len;
1054 return skb->data += len;
1055 }
1056
1057 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1058 {
1059 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1060 }
1061
1062 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1063 {
1064 if (likely(len <= skb_headlen(skb)))
1065 return 1;
1066 if (unlikely(len > skb->len))
1067 return 0;
1068 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1069 }
1070
1071 /**
1072 * skb_headroom - bytes at buffer head
1073 * @skb: buffer to check
1074 *
1075 * Return the number of bytes of free space at the head of an &sk_buff.
1076 */
1077 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1078 {
1079 return skb->data - skb->head;
1080 }
1081
1082 /**
1083 * skb_tailroom - bytes at buffer end
1084 * @skb: buffer to check
1085 *
1086 * Return the number of bytes of free space at the tail of an sk_buff
1087 */
1088 static inline int skb_tailroom(const struct sk_buff *skb)
1089 {
1090 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1091 }
1092
1093 /**
1094 * skb_reserve - adjust headroom
1095 * @skb: buffer to alter
1096 * @len: bytes to move
1097 *
1098 * Increase the headroom of an empty &sk_buff by reducing the tail
1099 * room. This is only allowed for an empty buffer.
1100 */
1101 static inline void skb_reserve(struct sk_buff *skb, int len)
1102 {
1103 skb->data += len;
1104 skb->tail += len;
1105 }
1106
1107 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1108 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1109 {
1110 return skb->head + skb->transport_header;
1111 }
1112
1113 static inline void skb_reset_transport_header(struct sk_buff *skb)
1114 {
1115 skb->transport_header = skb->data - skb->head;
1116 }
1117
1118 static inline void skb_set_transport_header(struct sk_buff *skb,
1119 const int offset)
1120 {
1121 skb_reset_transport_header(skb);
1122 skb->transport_header += offset;
1123 }
1124
1125 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1126 {
1127 return skb->head + skb->network_header;
1128 }
1129
1130 static inline void skb_reset_network_header(struct sk_buff *skb)
1131 {
1132 skb->network_header = skb->data - skb->head;
1133 }
1134
1135 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1136 {
1137 skb_reset_network_header(skb);
1138 skb->network_header += offset;
1139 }
1140
1141 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1142 {
1143 return skb->head + skb->mac_header;
1144 }
1145
1146 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1147 {
1148 return skb->mac_header != ~0U;
1149 }
1150
1151 static inline void skb_reset_mac_header(struct sk_buff *skb)
1152 {
1153 skb->mac_header = skb->data - skb->head;
1154 }
1155
1156 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1157 {
1158 skb_reset_mac_header(skb);
1159 skb->mac_header += offset;
1160 }
1161
1162 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1163
1164 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1165 {
1166 return skb->transport_header;
1167 }
1168
1169 static inline void skb_reset_transport_header(struct sk_buff *skb)
1170 {
1171 skb->transport_header = skb->data;
1172 }
1173
1174 static inline void skb_set_transport_header(struct sk_buff *skb,
1175 const int offset)
1176 {
1177 skb->transport_header = skb->data + offset;
1178 }
1179
1180 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1181 {
1182 return skb->network_header;
1183 }
1184
1185 static inline void skb_reset_network_header(struct sk_buff *skb)
1186 {
1187 skb->network_header = skb->data;
1188 }
1189
1190 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1191 {
1192 skb->network_header = skb->data + offset;
1193 }
1194
1195 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1196 {
1197 return skb->mac_header;
1198 }
1199
1200 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1201 {
1202 return skb->mac_header != NULL;
1203 }
1204
1205 static inline void skb_reset_mac_header(struct sk_buff *skb)
1206 {
1207 skb->mac_header = skb->data;
1208 }
1209
1210 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1211 {
1212 skb->mac_header = skb->data + offset;
1213 }
1214 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1215
1216 static inline int skb_transport_offset(const struct sk_buff *skb)
1217 {
1218 return skb_transport_header(skb) - skb->data;
1219 }
1220
1221 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1222 {
1223 return skb->transport_header - skb->network_header;
1224 }
1225
1226 static inline int skb_network_offset(const struct sk_buff *skb)
1227 {
1228 return skb_network_header(skb) - skb->data;
1229 }
1230
1231 /*
1232 * CPUs often take a performance hit when accessing unaligned memory
1233 * locations. The actual performance hit varies, it can be small if the
1234 * hardware handles it or large if we have to take an exception and fix it
1235 * in software.
1236 *
1237 * Since an ethernet header is 14 bytes network drivers often end up with
1238 * the IP header at an unaligned offset. The IP header can be aligned by
1239 * shifting the start of the packet by 2 bytes. Drivers should do this
1240 * with:
1241 *
1242 * skb_reserve(NET_IP_ALIGN);
1243 *
1244 * The downside to this alignment of the IP header is that the DMA is now
1245 * unaligned. On some architectures the cost of an unaligned DMA is high
1246 * and this cost outweighs the gains made by aligning the IP header.
1247 *
1248 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1249 * to be overridden.
1250 */
1251 #ifndef NET_IP_ALIGN
1252 #define NET_IP_ALIGN 2
1253 #endif
1254
1255 /*
1256 * The networking layer reserves some headroom in skb data (via
1257 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1258 * the header has to grow. In the default case, if the header has to grow
1259 * 16 bytes or less we avoid the reallocation.
1260 *
1261 * Unfortunately this headroom changes the DMA alignment of the resulting
1262 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1263 * on some architectures. An architecture can override this value,
1264 * perhaps setting it to a cacheline in size (since that will maintain
1265 * cacheline alignment of the DMA). It must be a power of 2.
1266 *
1267 * Various parts of the networking layer expect at least 16 bytes of
1268 * headroom, you should not reduce this.
1269 */
1270 #ifndef NET_SKB_PAD
1271 #define NET_SKB_PAD 16
1272 #endif
1273
1274 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1275
1276 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1277 {
1278 if (unlikely(skb->data_len)) {
1279 WARN_ON(1);
1280 return;
1281 }
1282 skb->len = len;
1283 skb_set_tail_pointer(skb, len);
1284 }
1285
1286 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1287
1288 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1289 {
1290 if (skb->data_len)
1291 return ___pskb_trim(skb, len);
1292 __skb_trim(skb, len);
1293 return 0;
1294 }
1295
1296 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1297 {
1298 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1299 }
1300
1301 /**
1302 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1303 * @skb: buffer to alter
1304 * @len: new length
1305 *
1306 * This is identical to pskb_trim except that the caller knows that
1307 * the skb is not cloned so we should never get an error due to out-
1308 * of-memory.
1309 */
1310 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1311 {
1312 int err = pskb_trim(skb, len);
1313 BUG_ON(err);
1314 }
1315
1316 /**
1317 * skb_orphan - orphan a buffer
1318 * @skb: buffer to orphan
1319 *
1320 * If a buffer currently has an owner then we call the owner's
1321 * destructor function and make the @skb unowned. The buffer continues
1322 * to exist but is no longer charged to its former owner.
1323 */
1324 static inline void skb_orphan(struct sk_buff *skb)
1325 {
1326 if (skb->destructor)
1327 skb->destructor(skb);
1328 skb->destructor = NULL;
1329 skb->sk = NULL;
1330 }
1331
1332 /**
1333 * __skb_queue_purge - empty a list
1334 * @list: list to empty
1335 *
1336 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1337 * the list and one reference dropped. This function does not take the
1338 * list lock and the caller must hold the relevant locks to use it.
1339 */
1340 extern void skb_queue_purge(struct sk_buff_head *list);
1341 static inline void __skb_queue_purge(struct sk_buff_head *list)
1342 {
1343 struct sk_buff *skb;
1344 while ((skb = __skb_dequeue(list)) != NULL)
1345 kfree_skb(skb);
1346 }
1347
1348 /**
1349 * __dev_alloc_skb - allocate an skbuff for receiving
1350 * @length: length to allocate
1351 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1352 *
1353 * Allocate a new &sk_buff and assign it a usage count of one. The
1354 * buffer has unspecified headroom built in. Users should allocate
1355 * the headroom they think they need without accounting for the
1356 * built in space. The built in space is used for optimisations.
1357 *
1358 * %NULL is returned if there is no free memory.
1359 */
1360 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1361 gfp_t gfp_mask)
1362 {
1363 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1364 if (likely(skb))
1365 skb_reserve(skb, NET_SKB_PAD);
1366 return skb;
1367 }
1368
1369 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1370
1371 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1372 unsigned int length, gfp_t gfp_mask);
1373
1374 /**
1375 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1376 * @dev: network device to receive on
1377 * @length: length to allocate
1378 *
1379 * Allocate a new &sk_buff and assign it a usage count of one. The
1380 * buffer has unspecified headroom built in. Users should allocate
1381 * the headroom they think they need without accounting for the
1382 * built in space. The built in space is used for optimisations.
1383 *
1384 * %NULL is returned if there is no free memory. Although this function
1385 * allocates memory it can be called from an interrupt.
1386 */
1387 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1388 unsigned int length)
1389 {
1390 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1391 }
1392
1393 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1394
1395 /**
1396 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1397 * @dev: network device to receive on
1398 *
1399 * Allocate a new page node local to the specified device.
1400 *
1401 * %NULL is returned if there is no free memory.
1402 */
1403 static inline struct page *netdev_alloc_page(struct net_device *dev)
1404 {
1405 return __netdev_alloc_page(dev, GFP_ATOMIC);
1406 }
1407
1408 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1409 {
1410 __free_page(page);
1411 }
1412
1413 /**
1414 * skb_clone_writable - is the header of a clone writable
1415 * @skb: buffer to check
1416 * @len: length up to which to write
1417 *
1418 * Returns true if modifying the header part of the cloned buffer
1419 * does not requires the data to be copied.
1420 */
1421 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1422 {
1423 return !skb_header_cloned(skb) &&
1424 skb_headroom(skb) + len <= skb->hdr_len;
1425 }
1426
1427 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1428 int cloned)
1429 {
1430 int delta = 0;
1431
1432 if (headroom < NET_SKB_PAD)
1433 headroom = NET_SKB_PAD;
1434 if (headroom > skb_headroom(skb))
1435 delta = headroom - skb_headroom(skb);
1436
1437 if (delta || cloned)
1438 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1439 GFP_ATOMIC);
1440 return 0;
1441 }
1442
1443 /**
1444 * skb_cow - copy header of skb when it is required
1445 * @skb: buffer to cow
1446 * @headroom: needed headroom
1447 *
1448 * If the skb passed lacks sufficient headroom or its data part
1449 * is shared, data is reallocated. If reallocation fails, an error
1450 * is returned and original skb is not changed.
1451 *
1452 * The result is skb with writable area skb->head...skb->tail
1453 * and at least @headroom of space at head.
1454 */
1455 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1456 {
1457 return __skb_cow(skb, headroom, skb_cloned(skb));
1458 }
1459
1460 /**
1461 * skb_cow_head - skb_cow but only making the head writable
1462 * @skb: buffer to cow
1463 * @headroom: needed headroom
1464 *
1465 * This function is identical to skb_cow except that we replace the
1466 * skb_cloned check by skb_header_cloned. It should be used when
1467 * you only need to push on some header and do not need to modify
1468 * the data.
1469 */
1470 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1471 {
1472 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1473 }
1474
1475 /**
1476 * skb_padto - pad an skbuff up to a minimal size
1477 * @skb: buffer to pad
1478 * @len: minimal length
1479 *
1480 * Pads up a buffer to ensure the trailing bytes exist and are
1481 * blanked. If the buffer already contains sufficient data it
1482 * is untouched. Otherwise it is extended. Returns zero on
1483 * success. The skb is freed on error.
1484 */
1485
1486 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1487 {
1488 unsigned int size = skb->len;
1489 if (likely(size >= len))
1490 return 0;
1491 return skb_pad(skb, len - size);
1492 }
1493
1494 static inline int skb_add_data(struct sk_buff *skb,
1495 char __user *from, int copy)
1496 {
1497 const int off = skb->len;
1498
1499 if (skb->ip_summed == CHECKSUM_NONE) {
1500 int err = 0;
1501 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1502 copy, 0, &err);
1503 if (!err) {
1504 skb->csum = csum_block_add(skb->csum, csum, off);
1505 return 0;
1506 }
1507 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1508 return 0;
1509
1510 __skb_trim(skb, off);
1511 return -EFAULT;
1512 }
1513
1514 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1515 struct page *page, int off)
1516 {
1517 if (i) {
1518 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1519
1520 return page == frag->page &&
1521 off == frag->page_offset + frag->size;
1522 }
1523 return 0;
1524 }
1525
1526 static inline int __skb_linearize(struct sk_buff *skb)
1527 {
1528 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1529 }
1530
1531 /**
1532 * skb_linearize - convert paged skb to linear one
1533 * @skb: buffer to linarize
1534 *
1535 * If there is no free memory -ENOMEM is returned, otherwise zero
1536 * is returned and the old skb data released.
1537 */
1538 static inline int skb_linearize(struct sk_buff *skb)
1539 {
1540 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1541 }
1542
1543 /**
1544 * skb_linearize_cow - make sure skb is linear and writable
1545 * @skb: buffer to process
1546 *
1547 * If there is no free memory -ENOMEM is returned, otherwise zero
1548 * is returned and the old skb data released.
1549 */
1550 static inline int skb_linearize_cow(struct sk_buff *skb)
1551 {
1552 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1553 __skb_linearize(skb) : 0;
1554 }
1555
1556 /**
1557 * skb_postpull_rcsum - update checksum for received skb after pull
1558 * @skb: buffer to update
1559 * @start: start of data before pull
1560 * @len: length of data pulled
1561 *
1562 * After doing a pull on a received packet, you need to call this to
1563 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1564 * CHECKSUM_NONE so that it can be recomputed from scratch.
1565 */
1566
1567 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1568 const void *start, unsigned int len)
1569 {
1570 if (skb->ip_summed == CHECKSUM_COMPLETE)
1571 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1572 }
1573
1574 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1575
1576 /**
1577 * pskb_trim_rcsum - trim received skb and update checksum
1578 * @skb: buffer to trim
1579 * @len: new length
1580 *
1581 * This is exactly the same as pskb_trim except that it ensures the
1582 * checksum of received packets are still valid after the operation.
1583 */
1584
1585 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1586 {
1587 if (likely(len >= skb->len))
1588 return 0;
1589 if (skb->ip_summed == CHECKSUM_COMPLETE)
1590 skb->ip_summed = CHECKSUM_NONE;
1591 return __pskb_trim(skb, len);
1592 }
1593
1594 #define skb_queue_walk(queue, skb) \
1595 for (skb = (queue)->next; \
1596 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1597 skb = skb->next)
1598
1599 #define skb_queue_walk_safe(queue, skb, tmp) \
1600 for (skb = (queue)->next, tmp = skb->next; \
1601 skb != (struct sk_buff *)(queue); \
1602 skb = tmp, tmp = skb->next)
1603
1604 #define skb_queue_walk_from(queue, skb) \
1605 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1606 skb = skb->next)
1607
1608 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1609 for (tmp = skb->next; \
1610 skb != (struct sk_buff *)(queue); \
1611 skb = tmp, tmp = skb->next)
1612
1613 #define skb_queue_reverse_walk(queue, skb) \
1614 for (skb = (queue)->prev; \
1615 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1616 skb = skb->prev)
1617
1618
1619 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1620 int *peeked, int *err);
1621 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1622 int noblock, int *err);
1623 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1624 struct poll_table_struct *wait);
1625 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1626 int offset, struct iovec *to,
1627 int size);
1628 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1629 int hlen,
1630 struct iovec *iov);
1631 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1632 int offset,
1633 struct iovec *from,
1634 int len);
1635 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1636 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1637 unsigned int flags);
1638 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1639 int len, __wsum csum);
1640 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1641 void *to, int len);
1642 extern int skb_store_bits(struct sk_buff *skb, int offset,
1643 const void *from, int len);
1644 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1645 int offset, u8 *to, int len,
1646 __wsum csum);
1647 extern int skb_splice_bits(struct sk_buff *skb,
1648 unsigned int offset,
1649 struct pipe_inode_info *pipe,
1650 unsigned int len,
1651 unsigned int flags);
1652 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1653 extern void skb_split(struct sk_buff *skb,
1654 struct sk_buff *skb1, const u32 len);
1655
1656 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1657
1658 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1659 int len, void *buffer)
1660 {
1661 int hlen = skb_headlen(skb);
1662
1663 if (hlen - offset >= len)
1664 return skb->data + offset;
1665
1666 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1667 return NULL;
1668
1669 return buffer;
1670 }
1671
1672 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1673 void *to,
1674 const unsigned int len)
1675 {
1676 memcpy(to, skb->data, len);
1677 }
1678
1679 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1680 const int offset, void *to,
1681 const unsigned int len)
1682 {
1683 memcpy(to, skb->data + offset, len);
1684 }
1685
1686 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1687 const void *from,
1688 const unsigned int len)
1689 {
1690 memcpy(skb->data, from, len);
1691 }
1692
1693 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1694 const int offset,
1695 const void *from,
1696 const unsigned int len)
1697 {
1698 memcpy(skb->data + offset, from, len);
1699 }
1700
1701 extern void skb_init(void);
1702
1703 /**
1704 * skb_get_timestamp - get timestamp from a skb
1705 * @skb: skb to get stamp from
1706 * @stamp: pointer to struct timeval to store stamp in
1707 *
1708 * Timestamps are stored in the skb as offsets to a base timestamp.
1709 * This function converts the offset back to a struct timeval and stores
1710 * it in stamp.
1711 */
1712 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1713 {
1714 *stamp = ktime_to_timeval(skb->tstamp);
1715 }
1716
1717 static inline void __net_timestamp(struct sk_buff *skb)
1718 {
1719 skb->tstamp = ktime_get_real();
1720 }
1721
1722 static inline ktime_t net_timedelta(ktime_t t)
1723 {
1724 return ktime_sub(ktime_get_real(), t);
1725 }
1726
1727 static inline ktime_t net_invalid_timestamp(void)
1728 {
1729 return ktime_set(0, 0);
1730 }
1731
1732 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1733 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1734
1735 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1736 {
1737 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1738 }
1739
1740 /**
1741 * skb_checksum_complete - Calculate checksum of an entire packet
1742 * @skb: packet to process
1743 *
1744 * This function calculates the checksum over the entire packet plus
1745 * the value of skb->csum. The latter can be used to supply the
1746 * checksum of a pseudo header as used by TCP/UDP. It returns the
1747 * checksum.
1748 *
1749 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1750 * this function can be used to verify that checksum on received
1751 * packets. In that case the function should return zero if the
1752 * checksum is correct. In particular, this function will return zero
1753 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1754 * hardware has already verified the correctness of the checksum.
1755 */
1756 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1757 {
1758 return skb_csum_unnecessary(skb) ?
1759 0 : __skb_checksum_complete(skb);
1760 }
1761
1762 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1763 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1764 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1765 {
1766 if (nfct && atomic_dec_and_test(&nfct->use))
1767 nf_conntrack_destroy(nfct);
1768 }
1769 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1770 {
1771 if (nfct)
1772 atomic_inc(&nfct->use);
1773 }
1774 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1775 {
1776 if (skb)
1777 atomic_inc(&skb->users);
1778 }
1779 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1780 {
1781 if (skb)
1782 kfree_skb(skb);
1783 }
1784 #endif
1785 #ifdef CONFIG_BRIDGE_NETFILTER
1786 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1787 {
1788 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1789 kfree(nf_bridge);
1790 }
1791 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1792 {
1793 if (nf_bridge)
1794 atomic_inc(&nf_bridge->use);
1795 }
1796 #endif /* CONFIG_BRIDGE_NETFILTER */
1797 static inline void nf_reset(struct sk_buff *skb)
1798 {
1799 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1800 nf_conntrack_put(skb->nfct);
1801 skb->nfct = NULL;
1802 nf_conntrack_put_reasm(skb->nfct_reasm);
1803 skb->nfct_reasm = NULL;
1804 #endif
1805 #ifdef CONFIG_BRIDGE_NETFILTER
1806 nf_bridge_put(skb->nf_bridge);
1807 skb->nf_bridge = NULL;
1808 #endif
1809 }
1810
1811 /* Note: This doesn't put any conntrack and bridge info in dst. */
1812 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1813 {
1814 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1815 dst->nfct = src->nfct;
1816 nf_conntrack_get(src->nfct);
1817 dst->nfctinfo = src->nfctinfo;
1818 dst->nfct_reasm = src->nfct_reasm;
1819 nf_conntrack_get_reasm(src->nfct_reasm);
1820 #endif
1821 #ifdef CONFIG_BRIDGE_NETFILTER
1822 dst->nf_bridge = src->nf_bridge;
1823 nf_bridge_get(src->nf_bridge);
1824 #endif
1825 }
1826
1827 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1828 {
1829 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1830 nf_conntrack_put(dst->nfct);
1831 nf_conntrack_put_reasm(dst->nfct_reasm);
1832 #endif
1833 #ifdef CONFIG_BRIDGE_NETFILTER
1834 nf_bridge_put(dst->nf_bridge);
1835 #endif
1836 __nf_copy(dst, src);
1837 }
1838
1839 #ifdef CONFIG_NETWORK_SECMARK
1840 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1841 {
1842 to->secmark = from->secmark;
1843 }
1844
1845 static inline void skb_init_secmark(struct sk_buff *skb)
1846 {
1847 skb->secmark = 0;
1848 }
1849 #else
1850 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1851 { }
1852
1853 static inline void skb_init_secmark(struct sk_buff *skb)
1854 { }
1855 #endif
1856
1857 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1858 {
1859 skb->queue_mapping = queue_mapping;
1860 }
1861
1862 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1863 {
1864 return skb->queue_mapping;
1865 }
1866
1867 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1868 {
1869 to->queue_mapping = from->queue_mapping;
1870 }
1871
1872 #ifdef CONFIG_XFRM
1873 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1874 {
1875 return skb->sp;
1876 }
1877 #else
1878 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1879 {
1880 return NULL;
1881 }
1882 #endif
1883
1884 static inline int skb_is_gso(const struct sk_buff *skb)
1885 {
1886 return skb_shinfo(skb)->gso_size;
1887 }
1888
1889 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1890 {
1891 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1892 }
1893
1894 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1895
1896 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1897 {
1898 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1899 * wanted then gso_type will be set. */
1900 struct skb_shared_info *shinfo = skb_shinfo(skb);
1901 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1902 __skb_warn_lro_forwarding(skb);
1903 return true;
1904 }
1905 return false;
1906 }
1907
1908 static inline void skb_forward_csum(struct sk_buff *skb)
1909 {
1910 /* Unfortunately we don't support this one. Any brave souls? */
1911 if (skb->ip_summed == CHECKSUM_COMPLETE)
1912 skb->ip_summed = CHECKSUM_NONE;
1913 }
1914
1915 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1916 #endif /* __KERNEL__ */
1917 #endif /* _LINUX_SKBUFF_H */