]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
net: fix kernel-doc warnings in header files
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
151 };
152
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
157 *
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
160 *
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
163 */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166
167
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
172 };
173
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
177
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
180
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
183
184 SKB_GSO_TCPV6 = 1 << 4,
185 };
186
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
248 */
249
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
254
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
258
259 struct dst_entry *dst;
260 struct sec_path *sp;
261
262 /*
263 * This is the control buffer. It is free to use for every
264 * layer. Please put your private variables there. If you
265 * want to keep them across layers you have to do a skb_clone()
266 * first. This is owned by whoever has the skb queued ATM.
267 */
268 char cb[48];
269
270 unsigned int len,
271 data_len;
272 __u16 mac_len,
273 hdr_len;
274 union {
275 __wsum csum;
276 struct {
277 __u16 csum_start;
278 __u16 csum_offset;
279 };
280 };
281 __u32 priority;
282 __u8 local_df:1,
283 cloned:1,
284 ip_summed:2,
285 nohdr:1,
286 nfctinfo:3;
287 __u8 pkt_type:3,
288 fclone:2,
289 ipvs_property:1,
290 peeked:1,
291 nf_trace:1;
292 __be16 protocol;
293
294 void (*destructor)(struct sk_buff *skb);
295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct nf_conntrack *nfct;
297 struct sk_buff *nfct_reasm;
298 #endif
299 #ifdef CONFIG_BRIDGE_NETFILTER
300 struct nf_bridge_info *nf_bridge;
301 #endif
302
303 int iif;
304 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
305 __u16 queue_mapping;
306 #endif
307 #ifdef CONFIG_NET_SCHED
308 __u16 tc_index; /* traffic control index */
309 #ifdef CONFIG_NET_CLS_ACT
310 __u16 tc_verd; /* traffic control verdict */
311 #endif
312 #endif
313 /* 2 byte hole */
314
315 #ifdef CONFIG_NET_DMA
316 dma_cookie_t dma_cookie;
317 #endif
318 #ifdef CONFIG_NETWORK_SECMARK
319 __u32 secmark;
320 #endif
321
322 __u32 mark;
323
324 sk_buff_data_t transport_header;
325 sk_buff_data_t network_header;
326 sk_buff_data_t mac_header;
327 /* These elements must be at the end, see alloc_skb() for details. */
328 sk_buff_data_t tail;
329 sk_buff_data_t end;
330 unsigned char *head,
331 *data;
332 unsigned int truesize;
333 atomic_t users;
334 };
335
336 #ifdef __KERNEL__
337 /*
338 * Handling routines are only of interest to the kernel
339 */
340 #include <linux/slab.h>
341
342 #include <asm/system.h>
343
344 extern void kfree_skb(struct sk_buff *skb);
345 extern void __kfree_skb(struct sk_buff *skb);
346 extern struct sk_buff *__alloc_skb(unsigned int size,
347 gfp_t priority, int fclone, int node);
348 static inline struct sk_buff *alloc_skb(unsigned int size,
349 gfp_t priority)
350 {
351 return __alloc_skb(size, priority, 0, -1);
352 }
353
354 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
355 gfp_t priority)
356 {
357 return __alloc_skb(size, priority, 1, -1);
358 }
359
360 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
361 extern struct sk_buff *skb_clone(struct sk_buff *skb,
362 gfp_t priority);
363 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
364 gfp_t priority);
365 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
366 gfp_t gfp_mask);
367 extern int pskb_expand_head(struct sk_buff *skb,
368 int nhead, int ntail,
369 gfp_t gfp_mask);
370 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
371 unsigned int headroom);
372 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
373 int newheadroom, int newtailroom,
374 gfp_t priority);
375 extern int skb_to_sgvec(struct sk_buff *skb,
376 struct scatterlist *sg, int offset,
377 int len);
378 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
379 struct sk_buff **trailer);
380 extern int skb_pad(struct sk_buff *skb, int pad);
381 #define dev_kfree_skb(a) kfree_skb(a)
382 extern void skb_over_panic(struct sk_buff *skb, int len,
383 void *here);
384 extern void skb_under_panic(struct sk_buff *skb, int len,
385 void *here);
386 extern void skb_truesize_bug(struct sk_buff *skb);
387
388 static inline void skb_truesize_check(struct sk_buff *skb)
389 {
390 int len = sizeof(struct sk_buff) + skb->len;
391
392 if (unlikely((int)skb->truesize < len))
393 skb_truesize_bug(skb);
394 }
395
396 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
397 int getfrag(void *from, char *to, int offset,
398 int len,int odd, struct sk_buff *skb),
399 void *from, int length);
400
401 struct skb_seq_state
402 {
403 __u32 lower_offset;
404 __u32 upper_offset;
405 __u32 frag_idx;
406 __u32 stepped_offset;
407 struct sk_buff *root_skb;
408 struct sk_buff *cur_skb;
409 __u8 *frag_data;
410 };
411
412 extern void skb_prepare_seq_read(struct sk_buff *skb,
413 unsigned int from, unsigned int to,
414 struct skb_seq_state *st);
415 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
416 struct skb_seq_state *st);
417 extern void skb_abort_seq_read(struct skb_seq_state *st);
418
419 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
420 unsigned int to, struct ts_config *config,
421 struct ts_state *state);
422
423 #ifdef NET_SKBUFF_DATA_USES_OFFSET
424 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
425 {
426 return skb->head + skb->end;
427 }
428 #else
429 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
430 {
431 return skb->end;
432 }
433 #endif
434
435 /* Internal */
436 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
437
438 /**
439 * skb_queue_empty - check if a queue is empty
440 * @list: queue head
441 *
442 * Returns true if the queue is empty, false otherwise.
443 */
444 static inline int skb_queue_empty(const struct sk_buff_head *list)
445 {
446 return list->next == (struct sk_buff *)list;
447 }
448
449 /**
450 * skb_get - reference buffer
451 * @skb: buffer to reference
452 *
453 * Makes another reference to a socket buffer and returns a pointer
454 * to the buffer.
455 */
456 static inline struct sk_buff *skb_get(struct sk_buff *skb)
457 {
458 atomic_inc(&skb->users);
459 return skb;
460 }
461
462 /*
463 * If users == 1, we are the only owner and are can avoid redundant
464 * atomic change.
465 */
466
467 /**
468 * skb_cloned - is the buffer a clone
469 * @skb: buffer to check
470 *
471 * Returns true if the buffer was generated with skb_clone() and is
472 * one of multiple shared copies of the buffer. Cloned buffers are
473 * shared data so must not be written to under normal circumstances.
474 */
475 static inline int skb_cloned(const struct sk_buff *skb)
476 {
477 return skb->cloned &&
478 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
479 }
480
481 /**
482 * skb_header_cloned - is the header a clone
483 * @skb: buffer to check
484 *
485 * Returns true if modifying the header part of the buffer requires
486 * the data to be copied.
487 */
488 static inline int skb_header_cloned(const struct sk_buff *skb)
489 {
490 int dataref;
491
492 if (!skb->cloned)
493 return 0;
494
495 dataref = atomic_read(&skb_shinfo(skb)->dataref);
496 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
497 return dataref != 1;
498 }
499
500 /**
501 * skb_header_release - release reference to header
502 * @skb: buffer to operate on
503 *
504 * Drop a reference to the header part of the buffer. This is done
505 * by acquiring a payload reference. You must not read from the header
506 * part of skb->data after this.
507 */
508 static inline void skb_header_release(struct sk_buff *skb)
509 {
510 BUG_ON(skb->nohdr);
511 skb->nohdr = 1;
512 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
513 }
514
515 /**
516 * skb_shared - is the buffer shared
517 * @skb: buffer to check
518 *
519 * Returns true if more than one person has a reference to this
520 * buffer.
521 */
522 static inline int skb_shared(const struct sk_buff *skb)
523 {
524 return atomic_read(&skb->users) != 1;
525 }
526
527 /**
528 * skb_share_check - check if buffer is shared and if so clone it
529 * @skb: buffer to check
530 * @pri: priority for memory allocation
531 *
532 * If the buffer is shared the buffer is cloned and the old copy
533 * drops a reference. A new clone with a single reference is returned.
534 * If the buffer is not shared the original buffer is returned. When
535 * being called from interrupt status or with spinlocks held pri must
536 * be GFP_ATOMIC.
537 *
538 * NULL is returned on a memory allocation failure.
539 */
540 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
541 gfp_t pri)
542 {
543 might_sleep_if(pri & __GFP_WAIT);
544 if (skb_shared(skb)) {
545 struct sk_buff *nskb = skb_clone(skb, pri);
546 kfree_skb(skb);
547 skb = nskb;
548 }
549 return skb;
550 }
551
552 /*
553 * Copy shared buffers into a new sk_buff. We effectively do COW on
554 * packets to handle cases where we have a local reader and forward
555 * and a couple of other messy ones. The normal one is tcpdumping
556 * a packet thats being forwarded.
557 */
558
559 /**
560 * skb_unshare - make a copy of a shared buffer
561 * @skb: buffer to check
562 * @pri: priority for memory allocation
563 *
564 * If the socket buffer is a clone then this function creates a new
565 * copy of the data, drops a reference count on the old copy and returns
566 * the new copy with the reference count at 1. If the buffer is not a clone
567 * the original buffer is returned. When called with a spinlock held or
568 * from interrupt state @pri must be %GFP_ATOMIC
569 *
570 * %NULL is returned on a memory allocation failure.
571 */
572 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
573 gfp_t pri)
574 {
575 might_sleep_if(pri & __GFP_WAIT);
576 if (skb_cloned(skb)) {
577 struct sk_buff *nskb = skb_copy(skb, pri);
578 kfree_skb(skb); /* Free our shared copy */
579 skb = nskb;
580 }
581 return skb;
582 }
583
584 /**
585 * skb_peek
586 * @list_: list to peek at
587 *
588 * Peek an &sk_buff. Unlike most other operations you _MUST_
589 * be careful with this one. A peek leaves the buffer on the
590 * list and someone else may run off with it. You must hold
591 * the appropriate locks or have a private queue to do this.
592 *
593 * Returns %NULL for an empty list or a pointer to the head element.
594 * The reference count is not incremented and the reference is therefore
595 * volatile. Use with caution.
596 */
597 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
598 {
599 struct sk_buff *list = ((struct sk_buff *)list_)->next;
600 if (list == (struct sk_buff *)list_)
601 list = NULL;
602 return list;
603 }
604
605 /**
606 * skb_peek_tail
607 * @list_: list to peek at
608 *
609 * Peek an &sk_buff. Unlike most other operations you _MUST_
610 * be careful with this one. A peek leaves the buffer on the
611 * list and someone else may run off with it. You must hold
612 * the appropriate locks or have a private queue to do this.
613 *
614 * Returns %NULL for an empty list or a pointer to the tail element.
615 * The reference count is not incremented and the reference is therefore
616 * volatile. Use with caution.
617 */
618 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
619 {
620 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
621 if (list == (struct sk_buff *)list_)
622 list = NULL;
623 return list;
624 }
625
626 /**
627 * skb_queue_len - get queue length
628 * @list_: list to measure
629 *
630 * Return the length of an &sk_buff queue.
631 */
632 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
633 {
634 return list_->qlen;
635 }
636
637 /*
638 * This function creates a split out lock class for each invocation;
639 * this is needed for now since a whole lot of users of the skb-queue
640 * infrastructure in drivers have different locking usage (in hardirq)
641 * than the networking core (in softirq only). In the long run either the
642 * network layer or drivers should need annotation to consolidate the
643 * main types of usage into 3 classes.
644 */
645 static inline void skb_queue_head_init(struct sk_buff_head *list)
646 {
647 spin_lock_init(&list->lock);
648 list->prev = list->next = (struct sk_buff *)list;
649 list->qlen = 0;
650 }
651
652 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
653 struct lock_class_key *class)
654 {
655 skb_queue_head_init(list);
656 lockdep_set_class(&list->lock, class);
657 }
658
659 /*
660 * Insert an sk_buff at the start of a list.
661 *
662 * The "__skb_xxxx()" functions are the non-atomic ones that
663 * can only be called with interrupts disabled.
664 */
665
666 /**
667 * __skb_queue_after - queue a buffer at the list head
668 * @list: list to use
669 * @prev: place after this buffer
670 * @newsk: buffer to queue
671 *
672 * Queue a buffer int the middle of a list. This function takes no locks
673 * and you must therefore hold required locks before calling it.
674 *
675 * A buffer cannot be placed on two lists at the same time.
676 */
677 static inline void __skb_queue_after(struct sk_buff_head *list,
678 struct sk_buff *prev,
679 struct sk_buff *newsk)
680 {
681 struct sk_buff *next;
682 list->qlen++;
683
684 next = prev->next;
685 newsk->next = next;
686 newsk->prev = prev;
687 next->prev = prev->next = newsk;
688 }
689
690 /**
691 * __skb_queue_head - queue a buffer at the list head
692 * @list: list to use
693 * @newsk: buffer to queue
694 *
695 * Queue a buffer at the start of a list. This function takes no locks
696 * and you must therefore hold required locks before calling it.
697 *
698 * A buffer cannot be placed on two lists at the same time.
699 */
700 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
701 static inline void __skb_queue_head(struct sk_buff_head *list,
702 struct sk_buff *newsk)
703 {
704 __skb_queue_after(list, (struct sk_buff *)list, newsk);
705 }
706
707 /**
708 * __skb_queue_tail - queue a buffer at the list tail
709 * @list: list to use
710 * @newsk: buffer to queue
711 *
712 * Queue a buffer at the end of a list. This function takes no locks
713 * and you must therefore hold required locks before calling it.
714 *
715 * A buffer cannot be placed on two lists at the same time.
716 */
717 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
718 static inline void __skb_queue_tail(struct sk_buff_head *list,
719 struct sk_buff *newsk)
720 {
721 struct sk_buff *prev, *next;
722
723 list->qlen++;
724 next = (struct sk_buff *)list;
725 prev = next->prev;
726 newsk->next = next;
727 newsk->prev = prev;
728 next->prev = prev->next = newsk;
729 }
730
731
732 /**
733 * __skb_dequeue - remove from the head of the queue
734 * @list: list to dequeue from
735 *
736 * Remove the head of the list. This function does not take any locks
737 * so must be used with appropriate locks held only. The head item is
738 * returned or %NULL if the list is empty.
739 */
740 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
741 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
742 {
743 struct sk_buff *next, *prev, *result;
744
745 prev = (struct sk_buff *) list;
746 next = prev->next;
747 result = NULL;
748 if (next != prev) {
749 result = next;
750 next = next->next;
751 list->qlen--;
752 next->prev = prev;
753 prev->next = next;
754 result->next = result->prev = NULL;
755 }
756 return result;
757 }
758
759
760 /*
761 * Insert a packet on a list.
762 */
763 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
764 static inline void __skb_insert(struct sk_buff *newsk,
765 struct sk_buff *prev, struct sk_buff *next,
766 struct sk_buff_head *list)
767 {
768 newsk->next = next;
769 newsk->prev = prev;
770 next->prev = prev->next = newsk;
771 list->qlen++;
772 }
773
774 /*
775 * Place a packet after a given packet in a list.
776 */
777 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
778 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
779 {
780 __skb_insert(newsk, old, old->next, list);
781 }
782
783 /*
784 * remove sk_buff from list. _Must_ be called atomically, and with
785 * the list known..
786 */
787 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
788 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
789 {
790 struct sk_buff *next, *prev;
791
792 list->qlen--;
793 next = skb->next;
794 prev = skb->prev;
795 skb->next = skb->prev = NULL;
796 next->prev = prev;
797 prev->next = next;
798 }
799
800
801 /* XXX: more streamlined implementation */
802
803 /**
804 * __skb_dequeue_tail - remove from the tail of the queue
805 * @list: list to dequeue from
806 *
807 * Remove the tail of the list. This function does not take any locks
808 * so must be used with appropriate locks held only. The tail item is
809 * returned or %NULL if the list is empty.
810 */
811 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
812 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
813 {
814 struct sk_buff *skb = skb_peek_tail(list);
815 if (skb)
816 __skb_unlink(skb, list);
817 return skb;
818 }
819
820
821 static inline int skb_is_nonlinear(const struct sk_buff *skb)
822 {
823 return skb->data_len;
824 }
825
826 static inline unsigned int skb_headlen(const struct sk_buff *skb)
827 {
828 return skb->len - skb->data_len;
829 }
830
831 static inline int skb_pagelen(const struct sk_buff *skb)
832 {
833 int i, len = 0;
834
835 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
836 len += skb_shinfo(skb)->frags[i].size;
837 return len + skb_headlen(skb);
838 }
839
840 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
841 struct page *page, int off, int size)
842 {
843 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
844
845 frag->page = page;
846 frag->page_offset = off;
847 frag->size = size;
848 skb_shinfo(skb)->nr_frags = i + 1;
849 }
850
851 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
852 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
853 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
854
855 #ifdef NET_SKBUFF_DATA_USES_OFFSET
856 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
857 {
858 return skb->head + skb->tail;
859 }
860
861 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
862 {
863 skb->tail = skb->data - skb->head;
864 }
865
866 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
867 {
868 skb_reset_tail_pointer(skb);
869 skb->tail += offset;
870 }
871 #else /* NET_SKBUFF_DATA_USES_OFFSET */
872 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
873 {
874 return skb->tail;
875 }
876
877 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
878 {
879 skb->tail = skb->data;
880 }
881
882 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
883 {
884 skb->tail = skb->data + offset;
885 }
886
887 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
888
889 /*
890 * Add data to an sk_buff
891 */
892 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
893 {
894 unsigned char *tmp = skb_tail_pointer(skb);
895 SKB_LINEAR_ASSERT(skb);
896 skb->tail += len;
897 skb->len += len;
898 return tmp;
899 }
900
901 /**
902 * skb_put - add data to a buffer
903 * @skb: buffer to use
904 * @len: amount of data to add
905 *
906 * This function extends the used data area of the buffer. If this would
907 * exceed the total buffer size the kernel will panic. A pointer to the
908 * first byte of the extra data is returned.
909 */
910 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
911 {
912 unsigned char *tmp = skb_tail_pointer(skb);
913 SKB_LINEAR_ASSERT(skb);
914 skb->tail += len;
915 skb->len += len;
916 if (unlikely(skb->tail > skb->end))
917 skb_over_panic(skb, len, current_text_addr());
918 return tmp;
919 }
920
921 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
922 {
923 skb->data -= len;
924 skb->len += len;
925 return skb->data;
926 }
927
928 /**
929 * skb_push - add data to the start of a buffer
930 * @skb: buffer to use
931 * @len: amount of data to add
932 *
933 * This function extends the used data area of the buffer at the buffer
934 * start. If this would exceed the total buffer headroom the kernel will
935 * panic. A pointer to the first byte of the extra data is returned.
936 */
937 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
938 {
939 skb->data -= len;
940 skb->len += len;
941 if (unlikely(skb->data<skb->head))
942 skb_under_panic(skb, len, current_text_addr());
943 return skb->data;
944 }
945
946 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
947 {
948 skb->len -= len;
949 BUG_ON(skb->len < skb->data_len);
950 return skb->data += len;
951 }
952
953 /**
954 * skb_pull - remove data from the start of a buffer
955 * @skb: buffer to use
956 * @len: amount of data to remove
957 *
958 * This function removes data from the start of a buffer, returning
959 * the memory to the headroom. A pointer to the next data in the buffer
960 * is returned. Once the data has been pulled future pushes will overwrite
961 * the old data.
962 */
963 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
964 {
965 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
966 }
967
968 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
969
970 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
971 {
972 if (len > skb_headlen(skb) &&
973 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
974 return NULL;
975 skb->len -= len;
976 return skb->data += len;
977 }
978
979 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
980 {
981 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
982 }
983
984 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
985 {
986 if (likely(len <= skb_headlen(skb)))
987 return 1;
988 if (unlikely(len > skb->len))
989 return 0;
990 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
991 }
992
993 /**
994 * skb_headroom - bytes at buffer head
995 * @skb: buffer to check
996 *
997 * Return the number of bytes of free space at the head of an &sk_buff.
998 */
999 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1000 {
1001 return skb->data - skb->head;
1002 }
1003
1004 /**
1005 * skb_tailroom - bytes at buffer end
1006 * @skb: buffer to check
1007 *
1008 * Return the number of bytes of free space at the tail of an sk_buff
1009 */
1010 static inline int skb_tailroom(const struct sk_buff *skb)
1011 {
1012 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1013 }
1014
1015 /**
1016 * skb_reserve - adjust headroom
1017 * @skb: buffer to alter
1018 * @len: bytes to move
1019 *
1020 * Increase the headroom of an empty &sk_buff by reducing the tail
1021 * room. This is only allowed for an empty buffer.
1022 */
1023 static inline void skb_reserve(struct sk_buff *skb, int len)
1024 {
1025 skb->data += len;
1026 skb->tail += len;
1027 }
1028
1029 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1030 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1031 {
1032 return skb->head + skb->transport_header;
1033 }
1034
1035 static inline void skb_reset_transport_header(struct sk_buff *skb)
1036 {
1037 skb->transport_header = skb->data - skb->head;
1038 }
1039
1040 static inline void skb_set_transport_header(struct sk_buff *skb,
1041 const int offset)
1042 {
1043 skb_reset_transport_header(skb);
1044 skb->transport_header += offset;
1045 }
1046
1047 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1048 {
1049 return skb->head + skb->network_header;
1050 }
1051
1052 static inline void skb_reset_network_header(struct sk_buff *skb)
1053 {
1054 skb->network_header = skb->data - skb->head;
1055 }
1056
1057 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1058 {
1059 skb_reset_network_header(skb);
1060 skb->network_header += offset;
1061 }
1062
1063 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1064 {
1065 return skb->head + skb->mac_header;
1066 }
1067
1068 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1069 {
1070 return skb->mac_header != ~0U;
1071 }
1072
1073 static inline void skb_reset_mac_header(struct sk_buff *skb)
1074 {
1075 skb->mac_header = skb->data - skb->head;
1076 }
1077
1078 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1079 {
1080 skb_reset_mac_header(skb);
1081 skb->mac_header += offset;
1082 }
1083
1084 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1085
1086 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1087 {
1088 return skb->transport_header;
1089 }
1090
1091 static inline void skb_reset_transport_header(struct sk_buff *skb)
1092 {
1093 skb->transport_header = skb->data;
1094 }
1095
1096 static inline void skb_set_transport_header(struct sk_buff *skb,
1097 const int offset)
1098 {
1099 skb->transport_header = skb->data + offset;
1100 }
1101
1102 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1103 {
1104 return skb->network_header;
1105 }
1106
1107 static inline void skb_reset_network_header(struct sk_buff *skb)
1108 {
1109 skb->network_header = skb->data;
1110 }
1111
1112 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1113 {
1114 skb->network_header = skb->data + offset;
1115 }
1116
1117 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1118 {
1119 return skb->mac_header;
1120 }
1121
1122 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1123 {
1124 return skb->mac_header != NULL;
1125 }
1126
1127 static inline void skb_reset_mac_header(struct sk_buff *skb)
1128 {
1129 skb->mac_header = skb->data;
1130 }
1131
1132 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1133 {
1134 skb->mac_header = skb->data + offset;
1135 }
1136 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1137
1138 static inline int skb_transport_offset(const struct sk_buff *skb)
1139 {
1140 return skb_transport_header(skb) - skb->data;
1141 }
1142
1143 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1144 {
1145 return skb->transport_header - skb->network_header;
1146 }
1147
1148 static inline int skb_network_offset(const struct sk_buff *skb)
1149 {
1150 return skb_network_header(skb) - skb->data;
1151 }
1152
1153 /*
1154 * CPUs often take a performance hit when accessing unaligned memory
1155 * locations. The actual performance hit varies, it can be small if the
1156 * hardware handles it or large if we have to take an exception and fix it
1157 * in software.
1158 *
1159 * Since an ethernet header is 14 bytes network drivers often end up with
1160 * the IP header at an unaligned offset. The IP header can be aligned by
1161 * shifting the start of the packet by 2 bytes. Drivers should do this
1162 * with:
1163 *
1164 * skb_reserve(NET_IP_ALIGN);
1165 *
1166 * The downside to this alignment of the IP header is that the DMA is now
1167 * unaligned. On some architectures the cost of an unaligned DMA is high
1168 * and this cost outweighs the gains made by aligning the IP header.
1169 *
1170 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1171 * to be overridden.
1172 */
1173 #ifndef NET_IP_ALIGN
1174 #define NET_IP_ALIGN 2
1175 #endif
1176
1177 /*
1178 * The networking layer reserves some headroom in skb data (via
1179 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1180 * the header has to grow. In the default case, if the header has to grow
1181 * 16 bytes or less we avoid the reallocation.
1182 *
1183 * Unfortunately this headroom changes the DMA alignment of the resulting
1184 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1185 * on some architectures. An architecture can override this value,
1186 * perhaps setting it to a cacheline in size (since that will maintain
1187 * cacheline alignment of the DMA). It must be a power of 2.
1188 *
1189 * Various parts of the networking layer expect at least 16 bytes of
1190 * headroom, you should not reduce this.
1191 */
1192 #ifndef NET_SKB_PAD
1193 #define NET_SKB_PAD 16
1194 #endif
1195
1196 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1197
1198 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1199 {
1200 if (unlikely(skb->data_len)) {
1201 WARN_ON(1);
1202 return;
1203 }
1204 skb->len = len;
1205 skb_set_tail_pointer(skb, len);
1206 }
1207
1208 /**
1209 * skb_trim - remove end from a buffer
1210 * @skb: buffer to alter
1211 * @len: new length
1212 *
1213 * Cut the length of a buffer down by removing data from the tail. If
1214 * the buffer is already under the length specified it is not modified.
1215 * The skb must be linear.
1216 */
1217 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1218 {
1219 if (skb->len > len)
1220 __skb_trim(skb, len);
1221 }
1222
1223
1224 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1225 {
1226 if (skb->data_len)
1227 return ___pskb_trim(skb, len);
1228 __skb_trim(skb, len);
1229 return 0;
1230 }
1231
1232 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1233 {
1234 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1235 }
1236
1237 /**
1238 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1239 * @skb: buffer to alter
1240 * @len: new length
1241 *
1242 * This is identical to pskb_trim except that the caller knows that
1243 * the skb is not cloned so we should never get an error due to out-
1244 * of-memory.
1245 */
1246 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1247 {
1248 int err = pskb_trim(skb, len);
1249 BUG_ON(err);
1250 }
1251
1252 /**
1253 * skb_orphan - orphan a buffer
1254 * @skb: buffer to orphan
1255 *
1256 * If a buffer currently has an owner then we call the owner's
1257 * destructor function and make the @skb unowned. The buffer continues
1258 * to exist but is no longer charged to its former owner.
1259 */
1260 static inline void skb_orphan(struct sk_buff *skb)
1261 {
1262 if (skb->destructor)
1263 skb->destructor(skb);
1264 skb->destructor = NULL;
1265 skb->sk = NULL;
1266 }
1267
1268 /**
1269 * __skb_queue_purge - empty a list
1270 * @list: list to empty
1271 *
1272 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1273 * the list and one reference dropped. This function does not take the
1274 * list lock and the caller must hold the relevant locks to use it.
1275 */
1276 extern void skb_queue_purge(struct sk_buff_head *list);
1277 static inline void __skb_queue_purge(struct sk_buff_head *list)
1278 {
1279 struct sk_buff *skb;
1280 while ((skb = __skb_dequeue(list)) != NULL)
1281 kfree_skb(skb);
1282 }
1283
1284 /**
1285 * __dev_alloc_skb - allocate an skbuff for receiving
1286 * @length: length to allocate
1287 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1288 *
1289 * Allocate a new &sk_buff and assign it a usage count of one. The
1290 * buffer has unspecified headroom built in. Users should allocate
1291 * the headroom they think they need without accounting for the
1292 * built in space. The built in space is used for optimisations.
1293 *
1294 * %NULL is returned if there is no free memory.
1295 */
1296 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1297 gfp_t gfp_mask)
1298 {
1299 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1300 if (likely(skb))
1301 skb_reserve(skb, NET_SKB_PAD);
1302 return skb;
1303 }
1304
1305 /**
1306 * dev_alloc_skb - allocate an skbuff for receiving
1307 * @length: length to allocate
1308 *
1309 * Allocate a new &sk_buff and assign it a usage count of one. The
1310 * buffer has unspecified headroom built in. Users should allocate
1311 * the headroom they think they need without accounting for the
1312 * built in space. The built in space is used for optimisations.
1313 *
1314 * %NULL is returned if there is no free memory. Although this function
1315 * allocates memory it can be called from an interrupt.
1316 */
1317 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1318 {
1319 return __dev_alloc_skb(length, GFP_ATOMIC);
1320 }
1321
1322 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1323 unsigned int length, gfp_t gfp_mask);
1324
1325 /**
1326 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1327 * @dev: network device to receive on
1328 * @length: length to allocate
1329 *
1330 * Allocate a new &sk_buff and assign it a usage count of one. The
1331 * buffer has unspecified headroom built in. Users should allocate
1332 * the headroom they think they need without accounting for the
1333 * built in space. The built in space is used for optimisations.
1334 *
1335 * %NULL is returned if there is no free memory. Although this function
1336 * allocates memory it can be called from an interrupt.
1337 */
1338 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1339 unsigned int length)
1340 {
1341 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1342 }
1343
1344 /**
1345 * skb_clone_writable - is the header of a clone writable
1346 * @skb: buffer to check
1347 * @len: length up to which to write
1348 *
1349 * Returns true if modifying the header part of the cloned buffer
1350 * does not requires the data to be copied.
1351 */
1352 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1353 {
1354 return !skb_header_cloned(skb) &&
1355 skb_headroom(skb) + len <= skb->hdr_len;
1356 }
1357
1358 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1359 int cloned)
1360 {
1361 int delta = 0;
1362
1363 if (headroom < NET_SKB_PAD)
1364 headroom = NET_SKB_PAD;
1365 if (headroom > skb_headroom(skb))
1366 delta = headroom - skb_headroom(skb);
1367
1368 if (delta || cloned)
1369 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1370 GFP_ATOMIC);
1371 return 0;
1372 }
1373
1374 /**
1375 * skb_cow - copy header of skb when it is required
1376 * @skb: buffer to cow
1377 * @headroom: needed headroom
1378 *
1379 * If the skb passed lacks sufficient headroom or its data part
1380 * is shared, data is reallocated. If reallocation fails, an error
1381 * is returned and original skb is not changed.
1382 *
1383 * The result is skb with writable area skb->head...skb->tail
1384 * and at least @headroom of space at head.
1385 */
1386 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1387 {
1388 return __skb_cow(skb, headroom, skb_cloned(skb));
1389 }
1390
1391 /**
1392 * skb_cow_head - skb_cow but only making the head writable
1393 * @skb: buffer to cow
1394 * @headroom: needed headroom
1395 *
1396 * This function is identical to skb_cow except that we replace the
1397 * skb_cloned check by skb_header_cloned. It should be used when
1398 * you only need to push on some header and do not need to modify
1399 * the data.
1400 */
1401 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1402 {
1403 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1404 }
1405
1406 /**
1407 * skb_padto - pad an skbuff up to a minimal size
1408 * @skb: buffer to pad
1409 * @len: minimal length
1410 *
1411 * Pads up a buffer to ensure the trailing bytes exist and are
1412 * blanked. If the buffer already contains sufficient data it
1413 * is untouched. Otherwise it is extended. Returns zero on
1414 * success. The skb is freed on error.
1415 */
1416
1417 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1418 {
1419 unsigned int size = skb->len;
1420 if (likely(size >= len))
1421 return 0;
1422 return skb_pad(skb, len-size);
1423 }
1424
1425 static inline int skb_add_data(struct sk_buff *skb,
1426 char __user *from, int copy)
1427 {
1428 const int off = skb->len;
1429
1430 if (skb->ip_summed == CHECKSUM_NONE) {
1431 int err = 0;
1432 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1433 copy, 0, &err);
1434 if (!err) {
1435 skb->csum = csum_block_add(skb->csum, csum, off);
1436 return 0;
1437 }
1438 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1439 return 0;
1440
1441 __skb_trim(skb, off);
1442 return -EFAULT;
1443 }
1444
1445 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1446 struct page *page, int off)
1447 {
1448 if (i) {
1449 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1450
1451 return page == frag->page &&
1452 off == frag->page_offset + frag->size;
1453 }
1454 return 0;
1455 }
1456
1457 static inline int __skb_linearize(struct sk_buff *skb)
1458 {
1459 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1460 }
1461
1462 /**
1463 * skb_linearize - convert paged skb to linear one
1464 * @skb: buffer to linarize
1465 *
1466 * If there is no free memory -ENOMEM is returned, otherwise zero
1467 * is returned and the old skb data released.
1468 */
1469 static inline int skb_linearize(struct sk_buff *skb)
1470 {
1471 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1472 }
1473
1474 /**
1475 * skb_linearize_cow - make sure skb is linear and writable
1476 * @skb: buffer to process
1477 *
1478 * If there is no free memory -ENOMEM is returned, otherwise zero
1479 * is returned and the old skb data released.
1480 */
1481 static inline int skb_linearize_cow(struct sk_buff *skb)
1482 {
1483 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1484 __skb_linearize(skb) : 0;
1485 }
1486
1487 /**
1488 * skb_postpull_rcsum - update checksum for received skb after pull
1489 * @skb: buffer to update
1490 * @start: start of data before pull
1491 * @len: length of data pulled
1492 *
1493 * After doing a pull on a received packet, you need to call this to
1494 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1495 * CHECKSUM_NONE so that it can be recomputed from scratch.
1496 */
1497
1498 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1499 const void *start, unsigned int len)
1500 {
1501 if (skb->ip_summed == CHECKSUM_COMPLETE)
1502 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1503 }
1504
1505 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1506
1507 /**
1508 * pskb_trim_rcsum - trim received skb and update checksum
1509 * @skb: buffer to trim
1510 * @len: new length
1511 *
1512 * This is exactly the same as pskb_trim except that it ensures the
1513 * checksum of received packets are still valid after the operation.
1514 */
1515
1516 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1517 {
1518 if (likely(len >= skb->len))
1519 return 0;
1520 if (skb->ip_summed == CHECKSUM_COMPLETE)
1521 skb->ip_summed = CHECKSUM_NONE;
1522 return __pskb_trim(skb, len);
1523 }
1524
1525 #define skb_queue_walk(queue, skb) \
1526 for (skb = (queue)->next; \
1527 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1528 skb = skb->next)
1529
1530 #define skb_queue_walk_safe(queue, skb, tmp) \
1531 for (skb = (queue)->next, tmp = skb->next; \
1532 skb != (struct sk_buff *)(queue); \
1533 skb = tmp, tmp = skb->next)
1534
1535 #define skb_queue_reverse_walk(queue, skb) \
1536 for (skb = (queue)->prev; \
1537 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1538 skb = skb->prev)
1539
1540
1541 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1542 int *peeked, int *err);
1543 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1544 int noblock, int *err);
1545 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1546 struct poll_table_struct *wait);
1547 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1548 int offset, struct iovec *to,
1549 int size);
1550 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1551 int hlen,
1552 struct iovec *iov);
1553 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1554 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1555 unsigned int flags);
1556 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1557 int len, __wsum csum);
1558 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1559 void *to, int len);
1560 extern int skb_store_bits(struct sk_buff *skb, int offset,
1561 const void *from, int len);
1562 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1563 int offset, u8 *to, int len,
1564 __wsum csum);
1565 extern int skb_splice_bits(struct sk_buff *skb,
1566 unsigned int offset,
1567 struct pipe_inode_info *pipe,
1568 unsigned int len,
1569 unsigned int flags);
1570 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1571 extern void skb_split(struct sk_buff *skb,
1572 struct sk_buff *skb1, const u32 len);
1573
1574 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1575
1576 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1577 int len, void *buffer)
1578 {
1579 int hlen = skb_headlen(skb);
1580
1581 if (hlen - offset >= len)
1582 return skb->data + offset;
1583
1584 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1585 return NULL;
1586
1587 return buffer;
1588 }
1589
1590 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1591 void *to,
1592 const unsigned int len)
1593 {
1594 memcpy(to, skb->data, len);
1595 }
1596
1597 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1598 const int offset, void *to,
1599 const unsigned int len)
1600 {
1601 memcpy(to, skb->data + offset, len);
1602 }
1603
1604 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1605 const void *from,
1606 const unsigned int len)
1607 {
1608 memcpy(skb->data, from, len);
1609 }
1610
1611 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1612 const int offset,
1613 const void *from,
1614 const unsigned int len)
1615 {
1616 memcpy(skb->data + offset, from, len);
1617 }
1618
1619 extern void skb_init(void);
1620
1621 /**
1622 * skb_get_timestamp - get timestamp from a skb
1623 * @skb: skb to get stamp from
1624 * @stamp: pointer to struct timeval to store stamp in
1625 *
1626 * Timestamps are stored in the skb as offsets to a base timestamp.
1627 * This function converts the offset back to a struct timeval and stores
1628 * it in stamp.
1629 */
1630 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1631 {
1632 *stamp = ktime_to_timeval(skb->tstamp);
1633 }
1634
1635 static inline void __net_timestamp(struct sk_buff *skb)
1636 {
1637 skb->tstamp = ktime_get_real();
1638 }
1639
1640 static inline ktime_t net_timedelta(ktime_t t)
1641 {
1642 return ktime_sub(ktime_get_real(), t);
1643 }
1644
1645 static inline ktime_t net_invalid_timestamp(void)
1646 {
1647 return ktime_set(0, 0);
1648 }
1649
1650 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1651 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1652
1653 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1654 {
1655 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1656 }
1657
1658 /**
1659 * skb_checksum_complete - Calculate checksum of an entire packet
1660 * @skb: packet to process
1661 *
1662 * This function calculates the checksum over the entire packet plus
1663 * the value of skb->csum. The latter can be used to supply the
1664 * checksum of a pseudo header as used by TCP/UDP. It returns the
1665 * checksum.
1666 *
1667 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1668 * this function can be used to verify that checksum on received
1669 * packets. In that case the function should return zero if the
1670 * checksum is correct. In particular, this function will return zero
1671 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1672 * hardware has already verified the correctness of the checksum.
1673 */
1674 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1675 {
1676 return skb_csum_unnecessary(skb) ?
1677 0 : __skb_checksum_complete(skb);
1678 }
1679
1680 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1681 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1682 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1683 {
1684 if (nfct && atomic_dec_and_test(&nfct->use))
1685 nf_conntrack_destroy(nfct);
1686 }
1687 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1688 {
1689 if (nfct)
1690 atomic_inc(&nfct->use);
1691 }
1692 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1693 {
1694 if (skb)
1695 atomic_inc(&skb->users);
1696 }
1697 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1698 {
1699 if (skb)
1700 kfree_skb(skb);
1701 }
1702 #endif
1703 #ifdef CONFIG_BRIDGE_NETFILTER
1704 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1705 {
1706 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1707 kfree(nf_bridge);
1708 }
1709 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1710 {
1711 if (nf_bridge)
1712 atomic_inc(&nf_bridge->use);
1713 }
1714 #endif /* CONFIG_BRIDGE_NETFILTER */
1715 static inline void nf_reset(struct sk_buff *skb)
1716 {
1717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1718 nf_conntrack_put(skb->nfct);
1719 skb->nfct = NULL;
1720 nf_conntrack_put_reasm(skb->nfct_reasm);
1721 skb->nfct_reasm = NULL;
1722 #endif
1723 #ifdef CONFIG_BRIDGE_NETFILTER
1724 nf_bridge_put(skb->nf_bridge);
1725 skb->nf_bridge = NULL;
1726 #endif
1727 }
1728
1729 /* Note: This doesn't put any conntrack and bridge info in dst. */
1730 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1731 {
1732 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1733 dst->nfct = src->nfct;
1734 nf_conntrack_get(src->nfct);
1735 dst->nfctinfo = src->nfctinfo;
1736 dst->nfct_reasm = src->nfct_reasm;
1737 nf_conntrack_get_reasm(src->nfct_reasm);
1738 #endif
1739 #ifdef CONFIG_BRIDGE_NETFILTER
1740 dst->nf_bridge = src->nf_bridge;
1741 nf_bridge_get(src->nf_bridge);
1742 #endif
1743 }
1744
1745 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1746 {
1747 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1748 nf_conntrack_put(dst->nfct);
1749 nf_conntrack_put_reasm(dst->nfct_reasm);
1750 #endif
1751 #ifdef CONFIG_BRIDGE_NETFILTER
1752 nf_bridge_put(dst->nf_bridge);
1753 #endif
1754 __nf_copy(dst, src);
1755 }
1756
1757 #ifdef CONFIG_NETWORK_SECMARK
1758 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1759 {
1760 to->secmark = from->secmark;
1761 }
1762
1763 static inline void skb_init_secmark(struct sk_buff *skb)
1764 {
1765 skb->secmark = 0;
1766 }
1767 #else
1768 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1769 { }
1770
1771 static inline void skb_init_secmark(struct sk_buff *skb)
1772 { }
1773 #endif
1774
1775 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1776 {
1777 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1778 skb->queue_mapping = queue_mapping;
1779 #endif
1780 }
1781
1782 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1783 {
1784 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1785 return skb->queue_mapping;
1786 #else
1787 return 0;
1788 #endif
1789 }
1790
1791 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1792 {
1793 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1794 to->queue_mapping = from->queue_mapping;
1795 #endif
1796 }
1797
1798 static inline int skb_is_gso(const struct sk_buff *skb)
1799 {
1800 return skb_shinfo(skb)->gso_size;
1801 }
1802
1803 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1804 {
1805 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1806 }
1807
1808 static inline void skb_forward_csum(struct sk_buff *skb)
1809 {
1810 /* Unfortunately we don't support this one. Any brave souls? */
1811 if (skb->ip_summed == CHECKSUM_COMPLETE)
1812 skb->ip_summed = CHECKSUM_NONE;
1813 }
1814
1815 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1816 #endif /* __KERNEL__ */
1817 #endif /* _LINUX_SKBUFF_H */