]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pkl/squashfs-linus
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48 /* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
63 * not UNNECESSARY.
64 *
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
71 *
72 * B. Checksumming on output.
73 *
74 * NONE: skb is checksummed by protocol or csum is not required.
75 *
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
79 *
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * everything.
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 *
91 * Any questions? No questions, good. --ANK
92 */
93
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 atomic_t use;
101 };
102 #endif
103
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 atomic_t use;
107 struct net_device *physindev;
108 struct net_device *physoutdev;
109 unsigned int mask;
110 unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113
114 struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
118
119 __u32 qlen;
120 spinlock_t lock;
121 };
122
123 struct sk_buff;
124
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127
128 typedef struct skb_frag_struct skb_frag_t;
129
130 struct skb_frag_struct {
131 struct page *page;
132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
133 __u32 page_offset;
134 __u32 size;
135 #else
136 __u16 page_offset;
137 __u16 size;
138 #endif
139 };
140
141 #define HAVE_HW_TIME_STAMP
142
143 /**
144 * struct skb_shared_hwtstamps - hardware time stamps
145 * @hwtstamp: hardware time stamp transformed into duration
146 * since arbitrary point in time
147 * @syststamp: hwtstamp transformed to system time base
148 *
149 * Software time stamps generated by ktime_get_real() are stored in
150 * skb->tstamp. The relation between the different kinds of time
151 * stamps is as follows:
152 *
153 * syststamp and tstamp can be compared against each other in
154 * arbitrary combinations. The accuracy of a
155 * syststamp/tstamp/"syststamp from other device" comparison is
156 * limited by the accuracy of the transformation into system time
157 * base. This depends on the device driver and its underlying
158 * hardware.
159 *
160 * hwtstamps can only be compared against other hwtstamps from
161 * the same device.
162 *
163 * This structure is attached to packets as part of the
164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
165 */
166 struct skb_shared_hwtstamps {
167 ktime_t hwtstamp;
168 ktime_t syststamp;
169 };
170
171 /* Definitions for tx_flags in struct skb_shared_info */
172 enum {
173 /* generate hardware time stamp */
174 SKBTX_HW_TSTAMP = 1 << 0,
175
176 /* generate software time stamp */
177 SKBTX_SW_TSTAMP = 1 << 1,
178
179 /* device driver is going to provide hardware time stamp */
180 SKBTX_IN_PROGRESS = 1 << 2,
181
182 /* ensure the originating sk reference is available on driver level */
183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
184 };
185
186 /* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
188 */
189 struct skb_shared_info {
190 unsigned short nr_frags;
191 unsigned short gso_size;
192 /* Warning: this field is not always filled in (UFO)! */
193 unsigned short gso_segs;
194 unsigned short gso_type;
195 __be32 ip6_frag_id;
196 __u8 tx_flags;
197 struct sk_buff *frag_list;
198 struct skb_shared_hwtstamps hwtstamps;
199
200 /*
201 * Warning : all fields before dataref are cleared in __alloc_skb()
202 */
203 atomic_t dataref;
204
205 /* Intermediate layers must ensure that destructor_arg
206 * remains valid until skb destructor */
207 void * destructor_arg;
208 /* must be last field, see pskb_expand_head() */
209 skb_frag_t frags[MAX_SKB_FRAGS];
210 };
211
212 /* We divide dataref into two halves. The higher 16 bits hold references
213 * to the payload part of skb->data. The lower 16 bits hold references to
214 * the entire skb->data. A clone of a headerless skb holds the length of
215 * the header in skb->hdr_len.
216 *
217 * All users must obey the rule that the skb->data reference count must be
218 * greater than or equal to the payload reference count.
219 *
220 * Holding a reference to the payload part means that the user does not
221 * care about modifications to the header part of skb->data.
222 */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225
226
227 enum {
228 SKB_FCLONE_UNAVAILABLE,
229 SKB_FCLONE_ORIG,
230 SKB_FCLONE_CLONE,
231 };
232
233 enum {
234 SKB_GSO_TCPV4 = 1 << 0,
235 SKB_GSO_UDP = 1 << 1,
236
237 /* This indicates the skb is from an untrusted source. */
238 SKB_GSO_DODGY = 1 << 2,
239
240 /* This indicates the tcp segment has CWR set. */
241 SKB_GSO_TCP_ECN = 1 << 3,
242
243 SKB_GSO_TCPV6 = 1 << 4,
244
245 SKB_GSO_FCOE = 1 << 5,
246 };
247
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257
258 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
259 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
260 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
261 #endif
262
263 /**
264 * struct sk_buff - socket buffer
265 * @next: Next buffer in list
266 * @prev: Previous buffer in list
267 * @sk: Socket we are owned by
268 * @tstamp: Time we arrived
269 * @dev: Device we arrived on/are leaving by
270 * @transport_header: Transport layer header
271 * @network_header: Network layer header
272 * @mac_header: Link layer header
273 * @_skb_refdst: destination entry (with norefcount bit)
274 * @sp: the security path, used for xfrm
275 * @cb: Control buffer. Free for use by every layer. Put private vars here
276 * @len: Length of actual data
277 * @data_len: Data length
278 * @mac_len: Length of link layer header
279 * @hdr_len: writable header length of cloned skb
280 * @csum: Checksum (must include start/offset pair)
281 * @csum_start: Offset from skb->head where checksumming should start
282 * @csum_offset: Offset from csum_start where checksum should be stored
283 * @local_df: allow local fragmentation
284 * @cloned: Head may be cloned (check refcnt to be sure)
285 * @nohdr: Payload reference only, must not modify header
286 * @pkt_type: Packet class
287 * @fclone: skbuff clone status
288 * @ip_summed: Driver fed us an IP checksum
289 * @priority: Packet queueing priority
290 * @users: User count - see {datagram,tcp}.c
291 * @protocol: Packet protocol from driver
292 * @truesize: Buffer size
293 * @head: Head of buffer
294 * @data: Data head pointer
295 * @tail: Tail pointer
296 * @end: End pointer
297 * @destructor: Destruct function
298 * @mark: Generic packet mark
299 * @nfct: Associated connection, if any
300 * @ipvs_property: skbuff is owned by ipvs
301 * @peeked: this packet has been seen already, so stats have been
302 * done for it, don't do them again
303 * @nf_trace: netfilter packet trace flag
304 * @nfctinfo: Relationship of this skb to the connection
305 * @nfct_reasm: netfilter conntrack re-assembly pointer
306 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
307 * @skb_iif: ifindex of device we arrived on
308 * @rxhash: the packet hash computed on receive
309 * @queue_mapping: Queue mapping for multiqueue devices
310 * @tc_index: Traffic control index
311 * @tc_verd: traffic control verdict
312 * @ndisc_nodetype: router type (from link layer)
313 * @dma_cookie: a cookie to one of several possible DMA operations
314 * done by skb DMA functions
315 * @secmark: security marking
316 * @vlan_tci: vlan tag control information
317 */
318
319 struct sk_buff {
320 /* These two members must be first. */
321 struct sk_buff *next;
322 struct sk_buff *prev;
323
324 ktime_t tstamp;
325
326 struct sock *sk;
327 struct net_device *dev;
328
329 /*
330 * This is the control buffer. It is free to use for every
331 * layer. Please put your private variables there. If you
332 * want to keep them across layers you have to do a skb_clone()
333 * first. This is owned by whoever has the skb queued ATM.
334 */
335 char cb[48] __aligned(8);
336
337 unsigned long _skb_refdst;
338 #ifdef CONFIG_XFRM
339 struct sec_path *sp;
340 #endif
341 unsigned int len,
342 data_len;
343 __u16 mac_len,
344 hdr_len;
345 union {
346 __wsum csum;
347 struct {
348 __u16 csum_start;
349 __u16 csum_offset;
350 };
351 };
352 __u32 priority;
353 kmemcheck_bitfield_begin(flags1);
354 __u8 local_df:1,
355 cloned:1,
356 ip_summed:2,
357 nohdr:1,
358 nfctinfo:3;
359 __u8 pkt_type:3,
360 fclone:2,
361 ipvs_property:1,
362 peeked:1,
363 nf_trace:1;
364 kmemcheck_bitfield_end(flags1);
365 __be16 protocol;
366
367 void (*destructor)(struct sk_buff *skb);
368 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
369 struct nf_conntrack *nfct;
370 #endif
371 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
372 struct sk_buff *nfct_reasm;
373 #endif
374 #ifdef CONFIG_BRIDGE_NETFILTER
375 struct nf_bridge_info *nf_bridge;
376 #endif
377
378 int skb_iif;
379 #ifdef CONFIG_NET_SCHED
380 __u16 tc_index; /* traffic control index */
381 #ifdef CONFIG_NET_CLS_ACT
382 __u16 tc_verd; /* traffic control verdict */
383 #endif
384 #endif
385
386 __u32 rxhash;
387
388 kmemcheck_bitfield_begin(flags2);
389 __u16 queue_mapping:16;
390 #ifdef CONFIG_IPV6_NDISC_NODETYPE
391 __u8 ndisc_nodetype:2,
392 deliver_no_wcard:1;
393 #else
394 __u8 deliver_no_wcard:1;
395 #endif
396 __u8 ooo_okay:1;
397 kmemcheck_bitfield_end(flags2);
398
399 /* 0/13 bit hole */
400
401 #ifdef CONFIG_NET_DMA
402 dma_cookie_t dma_cookie;
403 #endif
404 #ifdef CONFIG_NETWORK_SECMARK
405 __u32 secmark;
406 #endif
407 union {
408 __u32 mark;
409 __u32 dropcount;
410 };
411
412 __u16 vlan_tci;
413
414 sk_buff_data_t transport_header;
415 sk_buff_data_t network_header;
416 sk_buff_data_t mac_header;
417 /* These elements must be at the end, see alloc_skb() for details. */
418 sk_buff_data_t tail;
419 sk_buff_data_t end;
420 unsigned char *head,
421 *data;
422 unsigned int truesize;
423 atomic_t users;
424 };
425
426 #ifdef __KERNEL__
427 /*
428 * Handling routines are only of interest to the kernel
429 */
430 #include <linux/slab.h>
431
432 #include <asm/system.h>
433
434 /*
435 * skb might have a dst pointer attached, refcounted or not.
436 * _skb_refdst low order bit is set if refcount was _not_ taken
437 */
438 #define SKB_DST_NOREF 1UL
439 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
440
441 /**
442 * skb_dst - returns skb dst_entry
443 * @skb: buffer
444 *
445 * Returns skb dst_entry, regardless of reference taken or not.
446 */
447 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
448 {
449 /* If refdst was not refcounted, check we still are in a
450 * rcu_read_lock section
451 */
452 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
453 !rcu_read_lock_held() &&
454 !rcu_read_lock_bh_held());
455 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
456 }
457
458 /**
459 * skb_dst_set - sets skb dst
460 * @skb: buffer
461 * @dst: dst entry
462 *
463 * Sets skb dst, assuming a reference was taken on dst and should
464 * be released by skb_dst_drop()
465 */
466 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
467 {
468 skb->_skb_refdst = (unsigned long)dst;
469 }
470
471 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
472
473 /**
474 * skb_dst_is_noref - Test if skb dst isnt refcounted
475 * @skb: buffer
476 */
477 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
478 {
479 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
480 }
481
482 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
483 {
484 return (struct rtable *)skb_dst(skb);
485 }
486
487 extern void kfree_skb(struct sk_buff *skb);
488 extern void consume_skb(struct sk_buff *skb);
489 extern void __kfree_skb(struct sk_buff *skb);
490 extern struct sk_buff *__alloc_skb(unsigned int size,
491 gfp_t priority, int fclone, int node);
492 static inline struct sk_buff *alloc_skb(unsigned int size,
493 gfp_t priority)
494 {
495 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
496 }
497
498 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
499 gfp_t priority)
500 {
501 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
502 }
503
504 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
505
506 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
507 extern struct sk_buff *skb_clone(struct sk_buff *skb,
508 gfp_t priority);
509 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
510 gfp_t priority);
511 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
512 gfp_t gfp_mask);
513 extern int pskb_expand_head(struct sk_buff *skb,
514 int nhead, int ntail,
515 gfp_t gfp_mask);
516 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
517 unsigned int headroom);
518 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
519 int newheadroom, int newtailroom,
520 gfp_t priority);
521 extern int skb_to_sgvec(struct sk_buff *skb,
522 struct scatterlist *sg, int offset,
523 int len);
524 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
525 struct sk_buff **trailer);
526 extern int skb_pad(struct sk_buff *skb, int pad);
527 #define dev_kfree_skb(a) consume_skb(a)
528
529 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
530 int getfrag(void *from, char *to, int offset,
531 int len,int odd, struct sk_buff *skb),
532 void *from, int length);
533
534 struct skb_seq_state {
535 __u32 lower_offset;
536 __u32 upper_offset;
537 __u32 frag_idx;
538 __u32 stepped_offset;
539 struct sk_buff *root_skb;
540 struct sk_buff *cur_skb;
541 __u8 *frag_data;
542 };
543
544 extern void skb_prepare_seq_read(struct sk_buff *skb,
545 unsigned int from, unsigned int to,
546 struct skb_seq_state *st);
547 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
548 struct skb_seq_state *st);
549 extern void skb_abort_seq_read(struct skb_seq_state *st);
550
551 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
552 unsigned int to, struct ts_config *config,
553 struct ts_state *state);
554
555 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
556 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
557 {
558 if (!skb->rxhash)
559 skb->rxhash = __skb_get_rxhash(skb);
560
561 return skb->rxhash;
562 }
563
564 #ifdef NET_SKBUFF_DATA_USES_OFFSET
565 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
566 {
567 return skb->head + skb->end;
568 }
569 #else
570 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
571 {
572 return skb->end;
573 }
574 #endif
575
576 /* Internal */
577 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
578
579 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
580 {
581 return &skb_shinfo(skb)->hwtstamps;
582 }
583
584 /**
585 * skb_queue_empty - check if a queue is empty
586 * @list: queue head
587 *
588 * Returns true if the queue is empty, false otherwise.
589 */
590 static inline int skb_queue_empty(const struct sk_buff_head *list)
591 {
592 return list->next == (struct sk_buff *)list;
593 }
594
595 /**
596 * skb_queue_is_last - check if skb is the last entry in the queue
597 * @list: queue head
598 * @skb: buffer
599 *
600 * Returns true if @skb is the last buffer on the list.
601 */
602 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
603 const struct sk_buff *skb)
604 {
605 return skb->next == (struct sk_buff *)list;
606 }
607
608 /**
609 * skb_queue_is_first - check if skb is the first entry in the queue
610 * @list: queue head
611 * @skb: buffer
612 *
613 * Returns true if @skb is the first buffer on the list.
614 */
615 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
616 const struct sk_buff *skb)
617 {
618 return skb->prev == (struct sk_buff *)list;
619 }
620
621 /**
622 * skb_queue_next - return the next packet in the queue
623 * @list: queue head
624 * @skb: current buffer
625 *
626 * Return the next packet in @list after @skb. It is only valid to
627 * call this if skb_queue_is_last() evaluates to false.
628 */
629 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
630 const struct sk_buff *skb)
631 {
632 /* This BUG_ON may seem severe, but if we just return then we
633 * are going to dereference garbage.
634 */
635 BUG_ON(skb_queue_is_last(list, skb));
636 return skb->next;
637 }
638
639 /**
640 * skb_queue_prev - return the prev packet in the queue
641 * @list: queue head
642 * @skb: current buffer
643 *
644 * Return the prev packet in @list before @skb. It is only valid to
645 * call this if skb_queue_is_first() evaluates to false.
646 */
647 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
648 const struct sk_buff *skb)
649 {
650 /* This BUG_ON may seem severe, but if we just return then we
651 * are going to dereference garbage.
652 */
653 BUG_ON(skb_queue_is_first(list, skb));
654 return skb->prev;
655 }
656
657 /**
658 * skb_get - reference buffer
659 * @skb: buffer to reference
660 *
661 * Makes another reference to a socket buffer and returns a pointer
662 * to the buffer.
663 */
664 static inline struct sk_buff *skb_get(struct sk_buff *skb)
665 {
666 atomic_inc(&skb->users);
667 return skb;
668 }
669
670 /*
671 * If users == 1, we are the only owner and are can avoid redundant
672 * atomic change.
673 */
674
675 /**
676 * skb_cloned - is the buffer a clone
677 * @skb: buffer to check
678 *
679 * Returns true if the buffer was generated with skb_clone() and is
680 * one of multiple shared copies of the buffer. Cloned buffers are
681 * shared data so must not be written to under normal circumstances.
682 */
683 static inline int skb_cloned(const struct sk_buff *skb)
684 {
685 return skb->cloned &&
686 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
687 }
688
689 /**
690 * skb_header_cloned - is the header a clone
691 * @skb: buffer to check
692 *
693 * Returns true if modifying the header part of the buffer requires
694 * the data to be copied.
695 */
696 static inline int skb_header_cloned(const struct sk_buff *skb)
697 {
698 int dataref;
699
700 if (!skb->cloned)
701 return 0;
702
703 dataref = atomic_read(&skb_shinfo(skb)->dataref);
704 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
705 return dataref != 1;
706 }
707
708 /**
709 * skb_header_release - release reference to header
710 * @skb: buffer to operate on
711 *
712 * Drop a reference to the header part of the buffer. This is done
713 * by acquiring a payload reference. You must not read from the header
714 * part of skb->data after this.
715 */
716 static inline void skb_header_release(struct sk_buff *skb)
717 {
718 BUG_ON(skb->nohdr);
719 skb->nohdr = 1;
720 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
721 }
722
723 /**
724 * skb_shared - is the buffer shared
725 * @skb: buffer to check
726 *
727 * Returns true if more than one person has a reference to this
728 * buffer.
729 */
730 static inline int skb_shared(const struct sk_buff *skb)
731 {
732 return atomic_read(&skb->users) != 1;
733 }
734
735 /**
736 * skb_share_check - check if buffer is shared and if so clone it
737 * @skb: buffer to check
738 * @pri: priority for memory allocation
739 *
740 * If the buffer is shared the buffer is cloned and the old copy
741 * drops a reference. A new clone with a single reference is returned.
742 * If the buffer is not shared the original buffer is returned. When
743 * being called from interrupt status or with spinlocks held pri must
744 * be GFP_ATOMIC.
745 *
746 * NULL is returned on a memory allocation failure.
747 */
748 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
749 gfp_t pri)
750 {
751 might_sleep_if(pri & __GFP_WAIT);
752 if (skb_shared(skb)) {
753 struct sk_buff *nskb = skb_clone(skb, pri);
754 kfree_skb(skb);
755 skb = nskb;
756 }
757 return skb;
758 }
759
760 /*
761 * Copy shared buffers into a new sk_buff. We effectively do COW on
762 * packets to handle cases where we have a local reader and forward
763 * and a couple of other messy ones. The normal one is tcpdumping
764 * a packet thats being forwarded.
765 */
766
767 /**
768 * skb_unshare - make a copy of a shared buffer
769 * @skb: buffer to check
770 * @pri: priority for memory allocation
771 *
772 * If the socket buffer is a clone then this function creates a new
773 * copy of the data, drops a reference count on the old copy and returns
774 * the new copy with the reference count at 1. If the buffer is not a clone
775 * the original buffer is returned. When called with a spinlock held or
776 * from interrupt state @pri must be %GFP_ATOMIC
777 *
778 * %NULL is returned on a memory allocation failure.
779 */
780 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
781 gfp_t pri)
782 {
783 might_sleep_if(pri & __GFP_WAIT);
784 if (skb_cloned(skb)) {
785 struct sk_buff *nskb = skb_copy(skb, pri);
786 kfree_skb(skb); /* Free our shared copy */
787 skb = nskb;
788 }
789 return skb;
790 }
791
792 /**
793 * skb_peek - peek at the head of an &sk_buff_head
794 * @list_: list to peek at
795 *
796 * Peek an &sk_buff. Unlike most other operations you _MUST_
797 * be careful with this one. A peek leaves the buffer on the
798 * list and someone else may run off with it. You must hold
799 * the appropriate locks or have a private queue to do this.
800 *
801 * Returns %NULL for an empty list or a pointer to the head element.
802 * The reference count is not incremented and the reference is therefore
803 * volatile. Use with caution.
804 */
805 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
806 {
807 struct sk_buff *list = ((struct sk_buff *)list_)->next;
808 if (list == (struct sk_buff *)list_)
809 list = NULL;
810 return list;
811 }
812
813 /**
814 * skb_peek_tail - peek at the tail of an &sk_buff_head
815 * @list_: list to peek at
816 *
817 * Peek an &sk_buff. Unlike most other operations you _MUST_
818 * be careful with this one. A peek leaves the buffer on the
819 * list and someone else may run off with it. You must hold
820 * the appropriate locks or have a private queue to do this.
821 *
822 * Returns %NULL for an empty list or a pointer to the tail element.
823 * The reference count is not incremented and the reference is therefore
824 * volatile. Use with caution.
825 */
826 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
827 {
828 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
829 if (list == (struct sk_buff *)list_)
830 list = NULL;
831 return list;
832 }
833
834 /**
835 * skb_queue_len - get queue length
836 * @list_: list to measure
837 *
838 * Return the length of an &sk_buff queue.
839 */
840 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
841 {
842 return list_->qlen;
843 }
844
845 /**
846 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
847 * @list: queue to initialize
848 *
849 * This initializes only the list and queue length aspects of
850 * an sk_buff_head object. This allows to initialize the list
851 * aspects of an sk_buff_head without reinitializing things like
852 * the spinlock. It can also be used for on-stack sk_buff_head
853 * objects where the spinlock is known to not be used.
854 */
855 static inline void __skb_queue_head_init(struct sk_buff_head *list)
856 {
857 list->prev = list->next = (struct sk_buff *)list;
858 list->qlen = 0;
859 }
860
861 /*
862 * This function creates a split out lock class for each invocation;
863 * this is needed for now since a whole lot of users of the skb-queue
864 * infrastructure in drivers have different locking usage (in hardirq)
865 * than the networking core (in softirq only). In the long run either the
866 * network layer or drivers should need annotation to consolidate the
867 * main types of usage into 3 classes.
868 */
869 static inline void skb_queue_head_init(struct sk_buff_head *list)
870 {
871 spin_lock_init(&list->lock);
872 __skb_queue_head_init(list);
873 }
874
875 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
876 struct lock_class_key *class)
877 {
878 skb_queue_head_init(list);
879 lockdep_set_class(&list->lock, class);
880 }
881
882 /*
883 * Insert an sk_buff on a list.
884 *
885 * The "__skb_xxxx()" functions are the non-atomic ones that
886 * can only be called with interrupts disabled.
887 */
888 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
889 static inline void __skb_insert(struct sk_buff *newsk,
890 struct sk_buff *prev, struct sk_buff *next,
891 struct sk_buff_head *list)
892 {
893 newsk->next = next;
894 newsk->prev = prev;
895 next->prev = prev->next = newsk;
896 list->qlen++;
897 }
898
899 static inline void __skb_queue_splice(const struct sk_buff_head *list,
900 struct sk_buff *prev,
901 struct sk_buff *next)
902 {
903 struct sk_buff *first = list->next;
904 struct sk_buff *last = list->prev;
905
906 first->prev = prev;
907 prev->next = first;
908
909 last->next = next;
910 next->prev = last;
911 }
912
913 /**
914 * skb_queue_splice - join two skb lists, this is designed for stacks
915 * @list: the new list to add
916 * @head: the place to add it in the first list
917 */
918 static inline void skb_queue_splice(const struct sk_buff_head *list,
919 struct sk_buff_head *head)
920 {
921 if (!skb_queue_empty(list)) {
922 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
923 head->qlen += list->qlen;
924 }
925 }
926
927 /**
928 * skb_queue_splice - join two skb lists and reinitialise the emptied list
929 * @list: the new list to add
930 * @head: the place to add it in the first list
931 *
932 * The list at @list is reinitialised
933 */
934 static inline void skb_queue_splice_init(struct sk_buff_head *list,
935 struct sk_buff_head *head)
936 {
937 if (!skb_queue_empty(list)) {
938 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
939 head->qlen += list->qlen;
940 __skb_queue_head_init(list);
941 }
942 }
943
944 /**
945 * skb_queue_splice_tail - join two skb lists, each list being a queue
946 * @list: the new list to add
947 * @head: the place to add it in the first list
948 */
949 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
950 struct sk_buff_head *head)
951 {
952 if (!skb_queue_empty(list)) {
953 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
954 head->qlen += list->qlen;
955 }
956 }
957
958 /**
959 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
960 * @list: the new list to add
961 * @head: the place to add it in the first list
962 *
963 * Each of the lists is a queue.
964 * The list at @list is reinitialised
965 */
966 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
967 struct sk_buff_head *head)
968 {
969 if (!skb_queue_empty(list)) {
970 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
971 head->qlen += list->qlen;
972 __skb_queue_head_init(list);
973 }
974 }
975
976 /**
977 * __skb_queue_after - queue a buffer at the list head
978 * @list: list to use
979 * @prev: place after this buffer
980 * @newsk: buffer to queue
981 *
982 * Queue a buffer int the middle of a list. This function takes no locks
983 * and you must therefore hold required locks before calling it.
984 *
985 * A buffer cannot be placed on two lists at the same time.
986 */
987 static inline void __skb_queue_after(struct sk_buff_head *list,
988 struct sk_buff *prev,
989 struct sk_buff *newsk)
990 {
991 __skb_insert(newsk, prev, prev->next, list);
992 }
993
994 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
995 struct sk_buff_head *list);
996
997 static inline void __skb_queue_before(struct sk_buff_head *list,
998 struct sk_buff *next,
999 struct sk_buff *newsk)
1000 {
1001 __skb_insert(newsk, next->prev, next, list);
1002 }
1003
1004 /**
1005 * __skb_queue_head - queue a buffer at the list head
1006 * @list: list to use
1007 * @newsk: buffer to queue
1008 *
1009 * Queue a buffer at the start of a list. This function takes no locks
1010 * and you must therefore hold required locks before calling it.
1011 *
1012 * A buffer cannot be placed on two lists at the same time.
1013 */
1014 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1015 static inline void __skb_queue_head(struct sk_buff_head *list,
1016 struct sk_buff *newsk)
1017 {
1018 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1019 }
1020
1021 /**
1022 * __skb_queue_tail - queue a buffer at the list tail
1023 * @list: list to use
1024 * @newsk: buffer to queue
1025 *
1026 * Queue a buffer at the end of a list. This function takes no locks
1027 * and you must therefore hold required locks before calling it.
1028 *
1029 * A buffer cannot be placed on two lists at the same time.
1030 */
1031 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1032 static inline void __skb_queue_tail(struct sk_buff_head *list,
1033 struct sk_buff *newsk)
1034 {
1035 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1036 }
1037
1038 /*
1039 * remove sk_buff from list. _Must_ be called atomically, and with
1040 * the list known..
1041 */
1042 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1043 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1044 {
1045 struct sk_buff *next, *prev;
1046
1047 list->qlen--;
1048 next = skb->next;
1049 prev = skb->prev;
1050 skb->next = skb->prev = NULL;
1051 next->prev = prev;
1052 prev->next = next;
1053 }
1054
1055 /**
1056 * __skb_dequeue - remove from the head of the queue
1057 * @list: list to dequeue from
1058 *
1059 * Remove the head of the list. This function does not take any locks
1060 * so must be used with appropriate locks held only. The head item is
1061 * returned or %NULL if the list is empty.
1062 */
1063 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1064 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1065 {
1066 struct sk_buff *skb = skb_peek(list);
1067 if (skb)
1068 __skb_unlink(skb, list);
1069 return skb;
1070 }
1071
1072 /**
1073 * __skb_dequeue_tail - remove from the tail of the queue
1074 * @list: list to dequeue from
1075 *
1076 * Remove the tail of the list. This function does not take any locks
1077 * so must be used with appropriate locks held only. The tail item is
1078 * returned or %NULL if the list is empty.
1079 */
1080 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1081 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1082 {
1083 struct sk_buff *skb = skb_peek_tail(list);
1084 if (skb)
1085 __skb_unlink(skb, list);
1086 return skb;
1087 }
1088
1089
1090 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1091 {
1092 return skb->data_len;
1093 }
1094
1095 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1096 {
1097 return skb->len - skb->data_len;
1098 }
1099
1100 static inline int skb_pagelen(const struct sk_buff *skb)
1101 {
1102 int i, len = 0;
1103
1104 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1105 len += skb_shinfo(skb)->frags[i].size;
1106 return len + skb_headlen(skb);
1107 }
1108
1109 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1110 struct page *page, int off, int size)
1111 {
1112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1113
1114 frag->page = page;
1115 frag->page_offset = off;
1116 frag->size = size;
1117 skb_shinfo(skb)->nr_frags = i + 1;
1118 }
1119
1120 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1121 int off, int size);
1122
1123 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1124 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1125 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1126
1127 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1128 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1129 {
1130 return skb->head + skb->tail;
1131 }
1132
1133 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1134 {
1135 skb->tail = skb->data - skb->head;
1136 }
1137
1138 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1139 {
1140 skb_reset_tail_pointer(skb);
1141 skb->tail += offset;
1142 }
1143 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1144 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1145 {
1146 return skb->tail;
1147 }
1148
1149 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1150 {
1151 skb->tail = skb->data;
1152 }
1153
1154 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1155 {
1156 skb->tail = skb->data + offset;
1157 }
1158
1159 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1160
1161 /*
1162 * Add data to an sk_buff
1163 */
1164 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1165 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1166 {
1167 unsigned char *tmp = skb_tail_pointer(skb);
1168 SKB_LINEAR_ASSERT(skb);
1169 skb->tail += len;
1170 skb->len += len;
1171 return tmp;
1172 }
1173
1174 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1175 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1176 {
1177 skb->data -= len;
1178 skb->len += len;
1179 return skb->data;
1180 }
1181
1182 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1183 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1184 {
1185 skb->len -= len;
1186 BUG_ON(skb->len < skb->data_len);
1187 return skb->data += len;
1188 }
1189
1190 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1191 {
1192 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1193 }
1194
1195 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1196
1197 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1198 {
1199 if (len > skb_headlen(skb) &&
1200 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1201 return NULL;
1202 skb->len -= len;
1203 return skb->data += len;
1204 }
1205
1206 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1207 {
1208 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1209 }
1210
1211 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1212 {
1213 if (likely(len <= skb_headlen(skb)))
1214 return 1;
1215 if (unlikely(len > skb->len))
1216 return 0;
1217 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1218 }
1219
1220 /**
1221 * skb_headroom - bytes at buffer head
1222 * @skb: buffer to check
1223 *
1224 * Return the number of bytes of free space at the head of an &sk_buff.
1225 */
1226 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1227 {
1228 return skb->data - skb->head;
1229 }
1230
1231 /**
1232 * skb_tailroom - bytes at buffer end
1233 * @skb: buffer to check
1234 *
1235 * Return the number of bytes of free space at the tail of an sk_buff
1236 */
1237 static inline int skb_tailroom(const struct sk_buff *skb)
1238 {
1239 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1240 }
1241
1242 /**
1243 * skb_reserve - adjust headroom
1244 * @skb: buffer to alter
1245 * @len: bytes to move
1246 *
1247 * Increase the headroom of an empty &sk_buff by reducing the tail
1248 * room. This is only allowed for an empty buffer.
1249 */
1250 static inline void skb_reserve(struct sk_buff *skb, int len)
1251 {
1252 skb->data += len;
1253 skb->tail += len;
1254 }
1255
1256 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1257 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1258 {
1259 return skb->head + skb->transport_header;
1260 }
1261
1262 static inline void skb_reset_transport_header(struct sk_buff *skb)
1263 {
1264 skb->transport_header = skb->data - skb->head;
1265 }
1266
1267 static inline void skb_set_transport_header(struct sk_buff *skb,
1268 const int offset)
1269 {
1270 skb_reset_transport_header(skb);
1271 skb->transport_header += offset;
1272 }
1273
1274 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1275 {
1276 return skb->head + skb->network_header;
1277 }
1278
1279 static inline void skb_reset_network_header(struct sk_buff *skb)
1280 {
1281 skb->network_header = skb->data - skb->head;
1282 }
1283
1284 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1285 {
1286 skb_reset_network_header(skb);
1287 skb->network_header += offset;
1288 }
1289
1290 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1291 {
1292 return skb->head + skb->mac_header;
1293 }
1294
1295 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1296 {
1297 return skb->mac_header != ~0U;
1298 }
1299
1300 static inline void skb_reset_mac_header(struct sk_buff *skb)
1301 {
1302 skb->mac_header = skb->data - skb->head;
1303 }
1304
1305 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1306 {
1307 skb_reset_mac_header(skb);
1308 skb->mac_header += offset;
1309 }
1310
1311 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1312
1313 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1314 {
1315 return skb->transport_header;
1316 }
1317
1318 static inline void skb_reset_transport_header(struct sk_buff *skb)
1319 {
1320 skb->transport_header = skb->data;
1321 }
1322
1323 static inline void skb_set_transport_header(struct sk_buff *skb,
1324 const int offset)
1325 {
1326 skb->transport_header = skb->data + offset;
1327 }
1328
1329 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1330 {
1331 return skb->network_header;
1332 }
1333
1334 static inline void skb_reset_network_header(struct sk_buff *skb)
1335 {
1336 skb->network_header = skb->data;
1337 }
1338
1339 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1340 {
1341 skb->network_header = skb->data + offset;
1342 }
1343
1344 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1345 {
1346 return skb->mac_header;
1347 }
1348
1349 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1350 {
1351 return skb->mac_header != NULL;
1352 }
1353
1354 static inline void skb_reset_mac_header(struct sk_buff *skb)
1355 {
1356 skb->mac_header = skb->data;
1357 }
1358
1359 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1360 {
1361 skb->mac_header = skb->data + offset;
1362 }
1363 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1364
1365 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1366 {
1367 return skb->csum_start - skb_headroom(skb);
1368 }
1369
1370 static inline int skb_transport_offset(const struct sk_buff *skb)
1371 {
1372 return skb_transport_header(skb) - skb->data;
1373 }
1374
1375 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1376 {
1377 return skb->transport_header - skb->network_header;
1378 }
1379
1380 static inline int skb_network_offset(const struct sk_buff *skb)
1381 {
1382 return skb_network_header(skb) - skb->data;
1383 }
1384
1385 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1386 {
1387 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1388 }
1389
1390 /*
1391 * CPUs often take a performance hit when accessing unaligned memory
1392 * locations. The actual performance hit varies, it can be small if the
1393 * hardware handles it or large if we have to take an exception and fix it
1394 * in software.
1395 *
1396 * Since an ethernet header is 14 bytes network drivers often end up with
1397 * the IP header at an unaligned offset. The IP header can be aligned by
1398 * shifting the start of the packet by 2 bytes. Drivers should do this
1399 * with:
1400 *
1401 * skb_reserve(skb, NET_IP_ALIGN);
1402 *
1403 * The downside to this alignment of the IP header is that the DMA is now
1404 * unaligned. On some architectures the cost of an unaligned DMA is high
1405 * and this cost outweighs the gains made by aligning the IP header.
1406 *
1407 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1408 * to be overridden.
1409 */
1410 #ifndef NET_IP_ALIGN
1411 #define NET_IP_ALIGN 2
1412 #endif
1413
1414 /*
1415 * The networking layer reserves some headroom in skb data (via
1416 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1417 * the header has to grow. In the default case, if the header has to grow
1418 * 32 bytes or less we avoid the reallocation.
1419 *
1420 * Unfortunately this headroom changes the DMA alignment of the resulting
1421 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1422 * on some architectures. An architecture can override this value,
1423 * perhaps setting it to a cacheline in size (since that will maintain
1424 * cacheline alignment of the DMA). It must be a power of 2.
1425 *
1426 * Various parts of the networking layer expect at least 32 bytes of
1427 * headroom, you should not reduce this.
1428 *
1429 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1430 * to reduce average number of cache lines per packet.
1431 * get_rps_cpus() for example only access one 64 bytes aligned block :
1432 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1433 */
1434 #ifndef NET_SKB_PAD
1435 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1436 #endif
1437
1438 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1439
1440 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1441 {
1442 if (unlikely(skb->data_len)) {
1443 WARN_ON(1);
1444 return;
1445 }
1446 skb->len = len;
1447 skb_set_tail_pointer(skb, len);
1448 }
1449
1450 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1451
1452 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1453 {
1454 if (skb->data_len)
1455 return ___pskb_trim(skb, len);
1456 __skb_trim(skb, len);
1457 return 0;
1458 }
1459
1460 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1461 {
1462 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1463 }
1464
1465 /**
1466 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1467 * @skb: buffer to alter
1468 * @len: new length
1469 *
1470 * This is identical to pskb_trim except that the caller knows that
1471 * the skb is not cloned so we should never get an error due to out-
1472 * of-memory.
1473 */
1474 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1475 {
1476 int err = pskb_trim(skb, len);
1477 BUG_ON(err);
1478 }
1479
1480 /**
1481 * skb_orphan - orphan a buffer
1482 * @skb: buffer to orphan
1483 *
1484 * If a buffer currently has an owner then we call the owner's
1485 * destructor function and make the @skb unowned. The buffer continues
1486 * to exist but is no longer charged to its former owner.
1487 */
1488 static inline void skb_orphan(struct sk_buff *skb)
1489 {
1490 if (skb->destructor)
1491 skb->destructor(skb);
1492 skb->destructor = NULL;
1493 skb->sk = NULL;
1494 }
1495
1496 /**
1497 * __skb_queue_purge - empty a list
1498 * @list: list to empty
1499 *
1500 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1501 * the list and one reference dropped. This function does not take the
1502 * list lock and the caller must hold the relevant locks to use it.
1503 */
1504 extern void skb_queue_purge(struct sk_buff_head *list);
1505 static inline void __skb_queue_purge(struct sk_buff_head *list)
1506 {
1507 struct sk_buff *skb;
1508 while ((skb = __skb_dequeue(list)) != NULL)
1509 kfree_skb(skb);
1510 }
1511
1512 /**
1513 * __dev_alloc_skb - allocate an skbuff for receiving
1514 * @length: length to allocate
1515 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1516 *
1517 * Allocate a new &sk_buff and assign it a usage count of one. The
1518 * buffer has unspecified headroom built in. Users should allocate
1519 * the headroom they think they need without accounting for the
1520 * built in space. The built in space is used for optimisations.
1521 *
1522 * %NULL is returned if there is no free memory.
1523 */
1524 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1525 gfp_t gfp_mask)
1526 {
1527 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1528 if (likely(skb))
1529 skb_reserve(skb, NET_SKB_PAD);
1530 return skb;
1531 }
1532
1533 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1534
1535 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1536 unsigned int length, gfp_t gfp_mask);
1537
1538 /**
1539 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1540 * @dev: network device to receive on
1541 * @length: length to allocate
1542 *
1543 * Allocate a new &sk_buff and assign it a usage count of one. The
1544 * buffer has unspecified headroom built in. Users should allocate
1545 * the headroom they think they need without accounting for the
1546 * built in space. The built in space is used for optimisations.
1547 *
1548 * %NULL is returned if there is no free memory. Although this function
1549 * allocates memory it can be called from an interrupt.
1550 */
1551 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1552 unsigned int length)
1553 {
1554 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1555 }
1556
1557 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1558 unsigned int length)
1559 {
1560 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1561
1562 if (NET_IP_ALIGN && skb)
1563 skb_reserve(skb, NET_IP_ALIGN);
1564 return skb;
1565 }
1566
1567 /**
1568 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1569 * @dev: network device to receive on
1570 * @gfp_mask: alloc_pages_node mask
1571 *
1572 * Allocate a new page. dev currently unused.
1573 *
1574 * %NULL is returned if there is no free memory.
1575 */
1576 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1577 {
1578 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1579 }
1580
1581 /**
1582 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1583 * @dev: network device to receive on
1584 *
1585 * Allocate a new page. dev currently unused.
1586 *
1587 * %NULL is returned if there is no free memory.
1588 */
1589 static inline struct page *netdev_alloc_page(struct net_device *dev)
1590 {
1591 return __netdev_alloc_page(dev, GFP_ATOMIC);
1592 }
1593
1594 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1595 {
1596 __free_page(page);
1597 }
1598
1599 /**
1600 * skb_clone_writable - is the header of a clone writable
1601 * @skb: buffer to check
1602 * @len: length up to which to write
1603 *
1604 * Returns true if modifying the header part of the cloned buffer
1605 * does not requires the data to be copied.
1606 */
1607 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1608 {
1609 return !skb_header_cloned(skb) &&
1610 skb_headroom(skb) + len <= skb->hdr_len;
1611 }
1612
1613 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1614 int cloned)
1615 {
1616 int delta = 0;
1617
1618 if (headroom < NET_SKB_PAD)
1619 headroom = NET_SKB_PAD;
1620 if (headroom > skb_headroom(skb))
1621 delta = headroom - skb_headroom(skb);
1622
1623 if (delta || cloned)
1624 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1625 GFP_ATOMIC);
1626 return 0;
1627 }
1628
1629 /**
1630 * skb_cow - copy header of skb when it is required
1631 * @skb: buffer to cow
1632 * @headroom: needed headroom
1633 *
1634 * If the skb passed lacks sufficient headroom or its data part
1635 * is shared, data is reallocated. If reallocation fails, an error
1636 * is returned and original skb is not changed.
1637 *
1638 * The result is skb with writable area skb->head...skb->tail
1639 * and at least @headroom of space at head.
1640 */
1641 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1642 {
1643 return __skb_cow(skb, headroom, skb_cloned(skb));
1644 }
1645
1646 /**
1647 * skb_cow_head - skb_cow but only making the head writable
1648 * @skb: buffer to cow
1649 * @headroom: needed headroom
1650 *
1651 * This function is identical to skb_cow except that we replace the
1652 * skb_cloned check by skb_header_cloned. It should be used when
1653 * you only need to push on some header and do not need to modify
1654 * the data.
1655 */
1656 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1657 {
1658 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1659 }
1660
1661 /**
1662 * skb_padto - pad an skbuff up to a minimal size
1663 * @skb: buffer to pad
1664 * @len: minimal length
1665 *
1666 * Pads up a buffer to ensure the trailing bytes exist and are
1667 * blanked. If the buffer already contains sufficient data it
1668 * is untouched. Otherwise it is extended. Returns zero on
1669 * success. The skb is freed on error.
1670 */
1671
1672 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1673 {
1674 unsigned int size = skb->len;
1675 if (likely(size >= len))
1676 return 0;
1677 return skb_pad(skb, len - size);
1678 }
1679
1680 static inline int skb_add_data(struct sk_buff *skb,
1681 char __user *from, int copy)
1682 {
1683 const int off = skb->len;
1684
1685 if (skb->ip_summed == CHECKSUM_NONE) {
1686 int err = 0;
1687 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1688 copy, 0, &err);
1689 if (!err) {
1690 skb->csum = csum_block_add(skb->csum, csum, off);
1691 return 0;
1692 }
1693 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1694 return 0;
1695
1696 __skb_trim(skb, off);
1697 return -EFAULT;
1698 }
1699
1700 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1701 struct page *page, int off)
1702 {
1703 if (i) {
1704 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1705
1706 return page == frag->page &&
1707 off == frag->page_offset + frag->size;
1708 }
1709 return 0;
1710 }
1711
1712 static inline int __skb_linearize(struct sk_buff *skb)
1713 {
1714 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1715 }
1716
1717 /**
1718 * skb_linearize - convert paged skb to linear one
1719 * @skb: buffer to linarize
1720 *
1721 * If there is no free memory -ENOMEM is returned, otherwise zero
1722 * is returned and the old skb data released.
1723 */
1724 static inline int skb_linearize(struct sk_buff *skb)
1725 {
1726 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1727 }
1728
1729 /**
1730 * skb_linearize_cow - make sure skb is linear and writable
1731 * @skb: buffer to process
1732 *
1733 * If there is no free memory -ENOMEM is returned, otherwise zero
1734 * is returned and the old skb data released.
1735 */
1736 static inline int skb_linearize_cow(struct sk_buff *skb)
1737 {
1738 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1739 __skb_linearize(skb) : 0;
1740 }
1741
1742 /**
1743 * skb_postpull_rcsum - update checksum for received skb after pull
1744 * @skb: buffer to update
1745 * @start: start of data before pull
1746 * @len: length of data pulled
1747 *
1748 * After doing a pull on a received packet, you need to call this to
1749 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1750 * CHECKSUM_NONE so that it can be recomputed from scratch.
1751 */
1752
1753 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1754 const void *start, unsigned int len)
1755 {
1756 if (skb->ip_summed == CHECKSUM_COMPLETE)
1757 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1758 }
1759
1760 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1761
1762 /**
1763 * pskb_trim_rcsum - trim received skb and update checksum
1764 * @skb: buffer to trim
1765 * @len: new length
1766 *
1767 * This is exactly the same as pskb_trim except that it ensures the
1768 * checksum of received packets are still valid after the operation.
1769 */
1770
1771 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1772 {
1773 if (likely(len >= skb->len))
1774 return 0;
1775 if (skb->ip_summed == CHECKSUM_COMPLETE)
1776 skb->ip_summed = CHECKSUM_NONE;
1777 return __pskb_trim(skb, len);
1778 }
1779
1780 #define skb_queue_walk(queue, skb) \
1781 for (skb = (queue)->next; \
1782 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1783 skb = skb->next)
1784
1785 #define skb_queue_walk_safe(queue, skb, tmp) \
1786 for (skb = (queue)->next, tmp = skb->next; \
1787 skb != (struct sk_buff *)(queue); \
1788 skb = tmp, tmp = skb->next)
1789
1790 #define skb_queue_walk_from(queue, skb) \
1791 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1792 skb = skb->next)
1793
1794 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1795 for (tmp = skb->next; \
1796 skb != (struct sk_buff *)(queue); \
1797 skb = tmp, tmp = skb->next)
1798
1799 #define skb_queue_reverse_walk(queue, skb) \
1800 for (skb = (queue)->prev; \
1801 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1802 skb = skb->prev)
1803
1804
1805 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1806 {
1807 return skb_shinfo(skb)->frag_list != NULL;
1808 }
1809
1810 static inline void skb_frag_list_init(struct sk_buff *skb)
1811 {
1812 skb_shinfo(skb)->frag_list = NULL;
1813 }
1814
1815 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1816 {
1817 frag->next = skb_shinfo(skb)->frag_list;
1818 skb_shinfo(skb)->frag_list = frag;
1819 }
1820
1821 #define skb_walk_frags(skb, iter) \
1822 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1823
1824 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1825 int *peeked, int *err);
1826 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1827 int noblock, int *err);
1828 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1829 struct poll_table_struct *wait);
1830 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1831 int offset, struct iovec *to,
1832 int size);
1833 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1834 int hlen,
1835 struct iovec *iov);
1836 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1837 int offset,
1838 const struct iovec *from,
1839 int from_offset,
1840 int len);
1841 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1842 int offset,
1843 const struct iovec *to,
1844 int to_offset,
1845 int size);
1846 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1847 extern void skb_free_datagram_locked(struct sock *sk,
1848 struct sk_buff *skb);
1849 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1850 unsigned int flags);
1851 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1852 int len, __wsum csum);
1853 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1854 void *to, int len);
1855 extern int skb_store_bits(struct sk_buff *skb, int offset,
1856 const void *from, int len);
1857 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1858 int offset, u8 *to, int len,
1859 __wsum csum);
1860 extern int skb_splice_bits(struct sk_buff *skb,
1861 unsigned int offset,
1862 struct pipe_inode_info *pipe,
1863 unsigned int len,
1864 unsigned int flags);
1865 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1866 extern void skb_split(struct sk_buff *skb,
1867 struct sk_buff *skb1, const u32 len);
1868 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1869 int shiftlen);
1870
1871 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1872
1873 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1874 int len, void *buffer)
1875 {
1876 int hlen = skb_headlen(skb);
1877
1878 if (hlen - offset >= len)
1879 return skb->data + offset;
1880
1881 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1882 return NULL;
1883
1884 return buffer;
1885 }
1886
1887 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1888 void *to,
1889 const unsigned int len)
1890 {
1891 memcpy(to, skb->data, len);
1892 }
1893
1894 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1895 const int offset, void *to,
1896 const unsigned int len)
1897 {
1898 memcpy(to, skb->data + offset, len);
1899 }
1900
1901 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1902 const void *from,
1903 const unsigned int len)
1904 {
1905 memcpy(skb->data, from, len);
1906 }
1907
1908 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1909 const int offset,
1910 const void *from,
1911 const unsigned int len)
1912 {
1913 memcpy(skb->data + offset, from, len);
1914 }
1915
1916 extern void skb_init(void);
1917
1918 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1919 {
1920 return skb->tstamp;
1921 }
1922
1923 /**
1924 * skb_get_timestamp - get timestamp from a skb
1925 * @skb: skb to get stamp from
1926 * @stamp: pointer to struct timeval to store stamp in
1927 *
1928 * Timestamps are stored in the skb as offsets to a base timestamp.
1929 * This function converts the offset back to a struct timeval and stores
1930 * it in stamp.
1931 */
1932 static inline void skb_get_timestamp(const struct sk_buff *skb,
1933 struct timeval *stamp)
1934 {
1935 *stamp = ktime_to_timeval(skb->tstamp);
1936 }
1937
1938 static inline void skb_get_timestampns(const struct sk_buff *skb,
1939 struct timespec *stamp)
1940 {
1941 *stamp = ktime_to_timespec(skb->tstamp);
1942 }
1943
1944 static inline void __net_timestamp(struct sk_buff *skb)
1945 {
1946 skb->tstamp = ktime_get_real();
1947 }
1948
1949 static inline ktime_t net_timedelta(ktime_t t)
1950 {
1951 return ktime_sub(ktime_get_real(), t);
1952 }
1953
1954 static inline ktime_t net_invalid_timestamp(void)
1955 {
1956 return ktime_set(0, 0);
1957 }
1958
1959 extern void skb_timestamping_init(void);
1960
1961 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1962
1963 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1964 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1965
1966 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1967
1968 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1969 {
1970 }
1971
1972 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1973 {
1974 return false;
1975 }
1976
1977 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1978
1979 /**
1980 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1981 *
1982 * @skb: clone of the the original outgoing packet
1983 * @hwtstamps: hardware time stamps
1984 *
1985 */
1986 void skb_complete_tx_timestamp(struct sk_buff *skb,
1987 struct skb_shared_hwtstamps *hwtstamps);
1988
1989 /**
1990 * skb_tstamp_tx - queue clone of skb with send time stamps
1991 * @orig_skb: the original outgoing packet
1992 * @hwtstamps: hardware time stamps, may be NULL if not available
1993 *
1994 * If the skb has a socket associated, then this function clones the
1995 * skb (thus sharing the actual data and optional structures), stores
1996 * the optional hardware time stamping information (if non NULL) or
1997 * generates a software time stamp (otherwise), then queues the clone
1998 * to the error queue of the socket. Errors are silently ignored.
1999 */
2000 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2001 struct skb_shared_hwtstamps *hwtstamps);
2002
2003 static inline void sw_tx_timestamp(struct sk_buff *skb)
2004 {
2005 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2006 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2007 skb_tstamp_tx(skb, NULL);
2008 }
2009
2010 /**
2011 * skb_tx_timestamp() - Driver hook for transmit timestamping
2012 *
2013 * Ethernet MAC Drivers should call this function in their hard_xmit()
2014 * function as soon as possible after giving the sk_buff to the MAC
2015 * hardware, but before freeing the sk_buff.
2016 *
2017 * @skb: A socket buffer.
2018 */
2019 static inline void skb_tx_timestamp(struct sk_buff *skb)
2020 {
2021 skb_clone_tx_timestamp(skb);
2022 sw_tx_timestamp(skb);
2023 }
2024
2025 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2026 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2027
2028 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2029 {
2030 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2031 }
2032
2033 /**
2034 * skb_checksum_complete - Calculate checksum of an entire packet
2035 * @skb: packet to process
2036 *
2037 * This function calculates the checksum over the entire packet plus
2038 * the value of skb->csum. The latter can be used to supply the
2039 * checksum of a pseudo header as used by TCP/UDP. It returns the
2040 * checksum.
2041 *
2042 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2043 * this function can be used to verify that checksum on received
2044 * packets. In that case the function should return zero if the
2045 * checksum is correct. In particular, this function will return zero
2046 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2047 * hardware has already verified the correctness of the checksum.
2048 */
2049 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2050 {
2051 return skb_csum_unnecessary(skb) ?
2052 0 : __skb_checksum_complete(skb);
2053 }
2054
2055 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2056 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2057 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2058 {
2059 if (nfct && atomic_dec_and_test(&nfct->use))
2060 nf_conntrack_destroy(nfct);
2061 }
2062 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2063 {
2064 if (nfct)
2065 atomic_inc(&nfct->use);
2066 }
2067 #endif
2068 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2069 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2070 {
2071 if (skb)
2072 atomic_inc(&skb->users);
2073 }
2074 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2075 {
2076 if (skb)
2077 kfree_skb(skb);
2078 }
2079 #endif
2080 #ifdef CONFIG_BRIDGE_NETFILTER
2081 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2082 {
2083 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2084 kfree(nf_bridge);
2085 }
2086 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2087 {
2088 if (nf_bridge)
2089 atomic_inc(&nf_bridge->use);
2090 }
2091 #endif /* CONFIG_BRIDGE_NETFILTER */
2092 static inline void nf_reset(struct sk_buff *skb)
2093 {
2094 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2095 nf_conntrack_put(skb->nfct);
2096 skb->nfct = NULL;
2097 #endif
2098 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2099 nf_conntrack_put_reasm(skb->nfct_reasm);
2100 skb->nfct_reasm = NULL;
2101 #endif
2102 #ifdef CONFIG_BRIDGE_NETFILTER
2103 nf_bridge_put(skb->nf_bridge);
2104 skb->nf_bridge = NULL;
2105 #endif
2106 }
2107
2108 /* Note: This doesn't put any conntrack and bridge info in dst. */
2109 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2110 {
2111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2112 dst->nfct = src->nfct;
2113 nf_conntrack_get(src->nfct);
2114 dst->nfctinfo = src->nfctinfo;
2115 #endif
2116 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2117 dst->nfct_reasm = src->nfct_reasm;
2118 nf_conntrack_get_reasm(src->nfct_reasm);
2119 #endif
2120 #ifdef CONFIG_BRIDGE_NETFILTER
2121 dst->nf_bridge = src->nf_bridge;
2122 nf_bridge_get(src->nf_bridge);
2123 #endif
2124 }
2125
2126 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2127 {
2128 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2129 nf_conntrack_put(dst->nfct);
2130 #endif
2131 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2132 nf_conntrack_put_reasm(dst->nfct_reasm);
2133 #endif
2134 #ifdef CONFIG_BRIDGE_NETFILTER
2135 nf_bridge_put(dst->nf_bridge);
2136 #endif
2137 __nf_copy(dst, src);
2138 }
2139
2140 #ifdef CONFIG_NETWORK_SECMARK
2141 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2142 {
2143 to->secmark = from->secmark;
2144 }
2145
2146 static inline void skb_init_secmark(struct sk_buff *skb)
2147 {
2148 skb->secmark = 0;
2149 }
2150 #else
2151 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2152 { }
2153
2154 static inline void skb_init_secmark(struct sk_buff *skb)
2155 { }
2156 #endif
2157
2158 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2159 {
2160 skb->queue_mapping = queue_mapping;
2161 }
2162
2163 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2164 {
2165 return skb->queue_mapping;
2166 }
2167
2168 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2169 {
2170 to->queue_mapping = from->queue_mapping;
2171 }
2172
2173 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2174 {
2175 skb->queue_mapping = rx_queue + 1;
2176 }
2177
2178 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2179 {
2180 return skb->queue_mapping - 1;
2181 }
2182
2183 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2184 {
2185 return skb->queue_mapping != 0;
2186 }
2187
2188 extern u16 __skb_tx_hash(const struct net_device *dev,
2189 const struct sk_buff *skb,
2190 unsigned int num_tx_queues);
2191
2192 #ifdef CONFIG_XFRM
2193 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2194 {
2195 return skb->sp;
2196 }
2197 #else
2198 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2199 {
2200 return NULL;
2201 }
2202 #endif
2203
2204 static inline int skb_is_gso(const struct sk_buff *skb)
2205 {
2206 return skb_shinfo(skb)->gso_size;
2207 }
2208
2209 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2210 {
2211 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2212 }
2213
2214 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2215
2216 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2217 {
2218 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2219 * wanted then gso_type will be set. */
2220 struct skb_shared_info *shinfo = skb_shinfo(skb);
2221 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2222 unlikely(shinfo->gso_type == 0)) {
2223 __skb_warn_lro_forwarding(skb);
2224 return true;
2225 }
2226 return false;
2227 }
2228
2229 static inline void skb_forward_csum(struct sk_buff *skb)
2230 {
2231 /* Unfortunately we don't support this one. Any brave souls? */
2232 if (skb->ip_summed == CHECKSUM_COMPLETE)
2233 skb->ip_summed = CHECKSUM_NONE;
2234 }
2235
2236 /**
2237 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2238 * @skb: skb to check
2239 *
2240 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2241 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2242 * use this helper, to document places where we make this assertion.
2243 */
2244 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2245 {
2246 #ifdef DEBUG
2247 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2248 #endif
2249 }
2250
2251 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2252 #endif /* __KERNEL__ */
2253 #endif /* _LINUX_SKBUFF_H */