]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/skbuff.h
[NET]: Treat CHECKSUM_PARTIAL as CHECKSUM_UNNECESSARY
[mirror_ubuntu-zesty-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 (((X) - sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* A. Checksumming of received packets by device.
52 *
53 * NONE: device failed to checksum this packet.
54 * skb->csum is undefined.
55 *
56 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
57 * skb->csum is undefined.
58 * It is bad option, but, unfortunately, many of vendors do this.
59 * Apparently with secret goal to sell you new device, when you
60 * will add new protocol to your host. F.e. IPv6. 8)
61 *
62 * COMPLETE: the most generic way. Device supplied checksum of _all_
63 * the packet as seen by netif_rx in skb->csum.
64 * NOTE: Even if device supports only some protocols, but
65 * is able to produce some skb->csum, it MUST use COMPLETE,
66 * not UNNECESSARY.
67 *
68 * B. Checksumming on output.
69 *
70 * NONE: skb is checksummed by protocol or csum is not required.
71 *
72 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
73 * from skb->transport_header to the end and to record the checksum
74 * at skb->transport_header + skb->csum.
75 *
76 * Device must show its capabilities in dev->features, set
77 * at device setup time.
78 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
79 * everything.
80 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
81 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
82 * TCP/UDP over IPv4. Sigh. Vendors like this
83 * way by an unknown reason. Though, see comment above
84 * about CHECKSUM_UNNECESSARY. 8)
85 *
86 * Any questions? No questions, good. --ANK
87 */
88
89 struct net_device;
90 struct scatterlist;
91
92 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
93 struct nf_conntrack {
94 atomic_t use;
95 };
96 #endif
97
98 #ifdef CONFIG_BRIDGE_NETFILTER
99 struct nf_bridge_info {
100 atomic_t use;
101 struct net_device *physindev;
102 struct net_device *physoutdev;
103 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
104 struct net_device *netoutdev;
105 #endif
106 unsigned int mask;
107 unsigned long data[32 / sizeof(unsigned long)];
108 };
109 #endif
110
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
115
116 __u32 qlen;
117 spinlock_t lock;
118 };
119
120 struct sk_buff;
121
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124
125 typedef struct skb_frag_struct skb_frag_t;
126
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
131 };
132
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
135 */
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
146 };
147
148 /* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. It is up to the users of the skb to agree on
151 * where the payload starts.
152 *
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
155 *
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
158 */
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161
162
163 enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
167 };
168
169 enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
172
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
175
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
178
179 SKB_GSO_TCPV6 = 1 << 4,
180 };
181
182 #if BITS_PER_LONG > 32
183 #define NET_SKBUFF_DATA_USES_OFFSET 1
184 #endif
185
186 #ifdef NET_SKBUFF_DATA_USES_OFFSET
187 typedef unsigned int sk_buff_data_t;
188 #else
189 typedef unsigned char *sk_buff_data_t;
190 #endif
191
192 /**
193 * struct sk_buff - socket buffer
194 * @next: Next buffer in list
195 * @prev: Previous buffer in list
196 * @sk: Socket we are owned by
197 * @tstamp: Time we arrived
198 * @dev: Device we arrived on/are leaving by
199 * @iif: ifindex of device we arrived on
200 * @h: Transport layer header
201 * @network_header: Network layer header
202 * @mac_header: Link layer header
203 * @dst: destination entry
204 * @sp: the security path, used for xfrm
205 * @cb: Control buffer. Free for use by every layer. Put private vars here
206 * @len: Length of actual data
207 * @data_len: Data length
208 * @mac_len: Length of link layer header
209 * @csum: Checksum (must include start/offset pair)
210 * @csum_start: Offset from skb->head where checksumming should start
211 * @csum_offset: Offset from csum_start where checksum should be stored
212 * @local_df: allow local fragmentation
213 * @cloned: Head may be cloned (check refcnt to be sure)
214 * @nohdr: Payload reference only, must not modify header
215 * @pkt_type: Packet class
216 * @fclone: skbuff clone status
217 * @ip_summed: Driver fed us an IP checksum
218 * @priority: Packet queueing priority
219 * @users: User count - see {datagram,tcp}.c
220 * @protocol: Packet protocol from driver
221 * @truesize: Buffer size
222 * @head: Head of buffer
223 * @data: Data head pointer
224 * @tail: Tail pointer
225 * @end: End pointer
226 * @destructor: Destruct function
227 * @mark: Generic packet mark
228 * @nfct: Associated connection, if any
229 * @ipvs_property: skbuff is owned by ipvs
230 * @nfctinfo: Relationship of this skb to the connection
231 * @nfct_reasm: netfilter conntrack re-assembly pointer
232 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
233 * @tc_index: Traffic control index
234 * @tc_verd: traffic control verdict
235 * @dma_cookie: a cookie to one of several possible DMA operations
236 * done by skb DMA functions
237 * @secmark: security marking
238 */
239
240 struct sk_buff {
241 /* These two members must be first. */
242 struct sk_buff *next;
243 struct sk_buff *prev;
244
245 struct sock *sk;
246 ktime_t tstamp;
247 struct net_device *dev;
248 int iif;
249 /* 4 byte hole on 64 bit*/
250
251 struct dst_entry *dst;
252 struct sec_path *sp;
253
254 /*
255 * This is the control buffer. It is free to use for every
256 * layer. Please put your private variables there. If you
257 * want to keep them across layers you have to do a skb_clone()
258 * first. This is owned by whoever has the skb queued ATM.
259 */
260 char cb[48];
261
262 unsigned int len,
263 data_len,
264 mac_len;
265 union {
266 __wsum csum;
267 struct {
268 __u16 csum_start;
269 __u16 csum_offset;
270 };
271 };
272 __u32 priority;
273 __u8 local_df:1,
274 cloned:1,
275 ip_summed:2,
276 nohdr:1,
277 nfctinfo:3;
278 __u8 pkt_type:3,
279 fclone:2,
280 ipvs_property:1;
281 __be16 protocol;
282
283 void (*destructor)(struct sk_buff *skb);
284 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
285 struct nf_conntrack *nfct;
286 struct sk_buff *nfct_reasm;
287 #endif
288 #ifdef CONFIG_BRIDGE_NETFILTER
289 struct nf_bridge_info *nf_bridge;
290 #endif
291 #ifdef CONFIG_NET_SCHED
292 __u16 tc_index; /* traffic control index */
293 #ifdef CONFIG_NET_CLS_ACT
294 __u16 tc_verd; /* traffic control verdict */
295 #endif
296 #endif
297 #ifdef CONFIG_NET_DMA
298 dma_cookie_t dma_cookie;
299 #endif
300 #ifdef CONFIG_NETWORK_SECMARK
301 __u32 secmark;
302 #endif
303
304 __u32 mark;
305
306 sk_buff_data_t transport_header;
307 sk_buff_data_t network_header;
308 sk_buff_data_t mac_header;
309 /* These elements must be at the end, see alloc_skb() for details. */
310 sk_buff_data_t tail;
311 sk_buff_data_t end;
312 unsigned char *head,
313 *data;
314 unsigned int truesize;
315 atomic_t users;
316 };
317
318 #ifdef __KERNEL__
319 /*
320 * Handling routines are only of interest to the kernel
321 */
322 #include <linux/slab.h>
323
324 #include <asm/system.h>
325
326 extern void kfree_skb(struct sk_buff *skb);
327 extern void __kfree_skb(struct sk_buff *skb);
328 extern struct sk_buff *__alloc_skb(unsigned int size,
329 gfp_t priority, int fclone, int node);
330 static inline struct sk_buff *alloc_skb(unsigned int size,
331 gfp_t priority)
332 {
333 return __alloc_skb(size, priority, 0, -1);
334 }
335
336 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
337 gfp_t priority)
338 {
339 return __alloc_skb(size, priority, 1, -1);
340 }
341
342 extern void kfree_skbmem(struct sk_buff *skb);
343 extern struct sk_buff *skb_clone(struct sk_buff *skb,
344 gfp_t priority);
345 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
346 gfp_t priority);
347 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
348 gfp_t gfp_mask);
349 extern int pskb_expand_head(struct sk_buff *skb,
350 int nhead, int ntail,
351 gfp_t gfp_mask);
352 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
353 unsigned int headroom);
354 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
355 int newheadroom, int newtailroom,
356 gfp_t priority);
357 extern int skb_to_sgvec(struct sk_buff *skb,
358 struct scatterlist *sg, int offset,
359 int len);
360 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
361 struct sk_buff **trailer);
362 extern int skb_pad(struct sk_buff *skb, int pad);
363 #define dev_kfree_skb(a) kfree_skb(a)
364 extern void skb_over_panic(struct sk_buff *skb, int len,
365 void *here);
366 extern void skb_under_panic(struct sk_buff *skb, int len,
367 void *here);
368 extern void skb_truesize_bug(struct sk_buff *skb);
369
370 static inline void skb_truesize_check(struct sk_buff *skb)
371 {
372 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
373 skb_truesize_bug(skb);
374 }
375
376 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
377 int getfrag(void *from, char *to, int offset,
378 int len,int odd, struct sk_buff *skb),
379 void *from, int length);
380
381 struct skb_seq_state
382 {
383 __u32 lower_offset;
384 __u32 upper_offset;
385 __u32 frag_idx;
386 __u32 stepped_offset;
387 struct sk_buff *root_skb;
388 struct sk_buff *cur_skb;
389 __u8 *frag_data;
390 };
391
392 extern void skb_prepare_seq_read(struct sk_buff *skb,
393 unsigned int from, unsigned int to,
394 struct skb_seq_state *st);
395 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
396 struct skb_seq_state *st);
397 extern void skb_abort_seq_read(struct skb_seq_state *st);
398
399 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
400 unsigned int to, struct ts_config *config,
401 struct ts_state *state);
402
403 #ifdef NET_SKBUFF_DATA_USES_OFFSET
404 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
405 {
406 return skb->head + skb->end;
407 }
408 #else
409 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
410 {
411 return skb->end;
412 }
413 #endif
414
415 /* Internal */
416 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
417
418 /**
419 * skb_queue_empty - check if a queue is empty
420 * @list: queue head
421 *
422 * Returns true if the queue is empty, false otherwise.
423 */
424 static inline int skb_queue_empty(const struct sk_buff_head *list)
425 {
426 return list->next == (struct sk_buff *)list;
427 }
428
429 /**
430 * skb_get - reference buffer
431 * @skb: buffer to reference
432 *
433 * Makes another reference to a socket buffer and returns a pointer
434 * to the buffer.
435 */
436 static inline struct sk_buff *skb_get(struct sk_buff *skb)
437 {
438 atomic_inc(&skb->users);
439 return skb;
440 }
441
442 /*
443 * If users == 1, we are the only owner and are can avoid redundant
444 * atomic change.
445 */
446
447 /**
448 * skb_cloned - is the buffer a clone
449 * @skb: buffer to check
450 *
451 * Returns true if the buffer was generated with skb_clone() and is
452 * one of multiple shared copies of the buffer. Cloned buffers are
453 * shared data so must not be written to under normal circumstances.
454 */
455 static inline int skb_cloned(const struct sk_buff *skb)
456 {
457 return skb->cloned &&
458 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
459 }
460
461 /**
462 * skb_header_cloned - is the header a clone
463 * @skb: buffer to check
464 *
465 * Returns true if modifying the header part of the buffer requires
466 * the data to be copied.
467 */
468 static inline int skb_header_cloned(const struct sk_buff *skb)
469 {
470 int dataref;
471
472 if (!skb->cloned)
473 return 0;
474
475 dataref = atomic_read(&skb_shinfo(skb)->dataref);
476 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
477 return dataref != 1;
478 }
479
480 /**
481 * skb_header_release - release reference to header
482 * @skb: buffer to operate on
483 *
484 * Drop a reference to the header part of the buffer. This is done
485 * by acquiring a payload reference. You must not read from the header
486 * part of skb->data after this.
487 */
488 static inline void skb_header_release(struct sk_buff *skb)
489 {
490 BUG_ON(skb->nohdr);
491 skb->nohdr = 1;
492 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
493 }
494
495 /**
496 * skb_shared - is the buffer shared
497 * @skb: buffer to check
498 *
499 * Returns true if more than one person has a reference to this
500 * buffer.
501 */
502 static inline int skb_shared(const struct sk_buff *skb)
503 {
504 return atomic_read(&skb->users) != 1;
505 }
506
507 /**
508 * skb_share_check - check if buffer is shared and if so clone it
509 * @skb: buffer to check
510 * @pri: priority for memory allocation
511 *
512 * If the buffer is shared the buffer is cloned and the old copy
513 * drops a reference. A new clone with a single reference is returned.
514 * If the buffer is not shared the original buffer is returned. When
515 * being called from interrupt status or with spinlocks held pri must
516 * be GFP_ATOMIC.
517 *
518 * NULL is returned on a memory allocation failure.
519 */
520 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
521 gfp_t pri)
522 {
523 might_sleep_if(pri & __GFP_WAIT);
524 if (skb_shared(skb)) {
525 struct sk_buff *nskb = skb_clone(skb, pri);
526 kfree_skb(skb);
527 skb = nskb;
528 }
529 return skb;
530 }
531
532 /*
533 * Copy shared buffers into a new sk_buff. We effectively do COW on
534 * packets to handle cases where we have a local reader and forward
535 * and a couple of other messy ones. The normal one is tcpdumping
536 * a packet thats being forwarded.
537 */
538
539 /**
540 * skb_unshare - make a copy of a shared buffer
541 * @skb: buffer to check
542 * @pri: priority for memory allocation
543 *
544 * If the socket buffer is a clone then this function creates a new
545 * copy of the data, drops a reference count on the old copy and returns
546 * the new copy with the reference count at 1. If the buffer is not a clone
547 * the original buffer is returned. When called with a spinlock held or
548 * from interrupt state @pri must be %GFP_ATOMIC
549 *
550 * %NULL is returned on a memory allocation failure.
551 */
552 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
553 gfp_t pri)
554 {
555 might_sleep_if(pri & __GFP_WAIT);
556 if (skb_cloned(skb)) {
557 struct sk_buff *nskb = skb_copy(skb, pri);
558 kfree_skb(skb); /* Free our shared copy */
559 skb = nskb;
560 }
561 return skb;
562 }
563
564 /**
565 * skb_peek
566 * @list_: list to peek at
567 *
568 * Peek an &sk_buff. Unlike most other operations you _MUST_
569 * be careful with this one. A peek leaves the buffer on the
570 * list and someone else may run off with it. You must hold
571 * the appropriate locks or have a private queue to do this.
572 *
573 * Returns %NULL for an empty list or a pointer to the head element.
574 * The reference count is not incremented and the reference is therefore
575 * volatile. Use with caution.
576 */
577 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
578 {
579 struct sk_buff *list = ((struct sk_buff *)list_)->next;
580 if (list == (struct sk_buff *)list_)
581 list = NULL;
582 return list;
583 }
584
585 /**
586 * skb_peek_tail
587 * @list_: list to peek at
588 *
589 * Peek an &sk_buff. Unlike most other operations you _MUST_
590 * be careful with this one. A peek leaves the buffer on the
591 * list and someone else may run off with it. You must hold
592 * the appropriate locks or have a private queue to do this.
593 *
594 * Returns %NULL for an empty list or a pointer to the tail element.
595 * The reference count is not incremented and the reference is therefore
596 * volatile. Use with caution.
597 */
598 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
599 {
600 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
601 if (list == (struct sk_buff *)list_)
602 list = NULL;
603 return list;
604 }
605
606 /**
607 * skb_queue_len - get queue length
608 * @list_: list to measure
609 *
610 * Return the length of an &sk_buff queue.
611 */
612 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
613 {
614 return list_->qlen;
615 }
616
617 /*
618 * This function creates a split out lock class for each invocation;
619 * this is needed for now since a whole lot of users of the skb-queue
620 * infrastructure in drivers have different locking usage (in hardirq)
621 * than the networking core (in softirq only). In the long run either the
622 * network layer or drivers should need annotation to consolidate the
623 * main types of usage into 3 classes.
624 */
625 static inline void skb_queue_head_init(struct sk_buff_head *list)
626 {
627 spin_lock_init(&list->lock);
628 list->prev = list->next = (struct sk_buff *)list;
629 list->qlen = 0;
630 }
631
632 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
633 struct lock_class_key *class)
634 {
635 skb_queue_head_init(list);
636 lockdep_set_class(&list->lock, class);
637 }
638
639 /*
640 * Insert an sk_buff at the start of a list.
641 *
642 * The "__skb_xxxx()" functions are the non-atomic ones that
643 * can only be called with interrupts disabled.
644 */
645
646 /**
647 * __skb_queue_after - queue a buffer at the list head
648 * @list: list to use
649 * @prev: place after this buffer
650 * @newsk: buffer to queue
651 *
652 * Queue a buffer int the middle of a list. This function takes no locks
653 * and you must therefore hold required locks before calling it.
654 *
655 * A buffer cannot be placed on two lists at the same time.
656 */
657 static inline void __skb_queue_after(struct sk_buff_head *list,
658 struct sk_buff *prev,
659 struct sk_buff *newsk)
660 {
661 struct sk_buff *next;
662 list->qlen++;
663
664 next = prev->next;
665 newsk->next = next;
666 newsk->prev = prev;
667 next->prev = prev->next = newsk;
668 }
669
670 /**
671 * __skb_queue_head - queue a buffer at the list head
672 * @list: list to use
673 * @newsk: buffer to queue
674 *
675 * Queue a buffer at the start of a list. This function takes no locks
676 * and you must therefore hold required locks before calling it.
677 *
678 * A buffer cannot be placed on two lists at the same time.
679 */
680 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
681 static inline void __skb_queue_head(struct sk_buff_head *list,
682 struct sk_buff *newsk)
683 {
684 __skb_queue_after(list, (struct sk_buff *)list, newsk);
685 }
686
687 /**
688 * __skb_queue_tail - queue a buffer at the list tail
689 * @list: list to use
690 * @newsk: buffer to queue
691 *
692 * Queue a buffer at the end of a list. This function takes no locks
693 * and you must therefore hold required locks before calling it.
694 *
695 * A buffer cannot be placed on two lists at the same time.
696 */
697 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
698 static inline void __skb_queue_tail(struct sk_buff_head *list,
699 struct sk_buff *newsk)
700 {
701 struct sk_buff *prev, *next;
702
703 list->qlen++;
704 next = (struct sk_buff *)list;
705 prev = next->prev;
706 newsk->next = next;
707 newsk->prev = prev;
708 next->prev = prev->next = newsk;
709 }
710
711
712 /**
713 * __skb_dequeue - remove from the head of the queue
714 * @list: list to dequeue from
715 *
716 * Remove the head of the list. This function does not take any locks
717 * so must be used with appropriate locks held only. The head item is
718 * returned or %NULL if the list is empty.
719 */
720 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
721 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
722 {
723 struct sk_buff *next, *prev, *result;
724
725 prev = (struct sk_buff *) list;
726 next = prev->next;
727 result = NULL;
728 if (next != prev) {
729 result = next;
730 next = next->next;
731 list->qlen--;
732 next->prev = prev;
733 prev->next = next;
734 result->next = result->prev = NULL;
735 }
736 return result;
737 }
738
739
740 /*
741 * Insert a packet on a list.
742 */
743 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
744 static inline void __skb_insert(struct sk_buff *newsk,
745 struct sk_buff *prev, struct sk_buff *next,
746 struct sk_buff_head *list)
747 {
748 newsk->next = next;
749 newsk->prev = prev;
750 next->prev = prev->next = newsk;
751 list->qlen++;
752 }
753
754 /*
755 * Place a packet after a given packet in a list.
756 */
757 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
758 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
759 {
760 __skb_insert(newsk, old, old->next, list);
761 }
762
763 /*
764 * remove sk_buff from list. _Must_ be called atomically, and with
765 * the list known..
766 */
767 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
768 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
769 {
770 struct sk_buff *next, *prev;
771
772 list->qlen--;
773 next = skb->next;
774 prev = skb->prev;
775 skb->next = skb->prev = NULL;
776 next->prev = prev;
777 prev->next = next;
778 }
779
780
781 /* XXX: more streamlined implementation */
782
783 /**
784 * __skb_dequeue_tail - remove from the tail of the queue
785 * @list: list to dequeue from
786 *
787 * Remove the tail of the list. This function does not take any locks
788 * so must be used with appropriate locks held only. The tail item is
789 * returned or %NULL if the list is empty.
790 */
791 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
792 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
793 {
794 struct sk_buff *skb = skb_peek_tail(list);
795 if (skb)
796 __skb_unlink(skb, list);
797 return skb;
798 }
799
800
801 static inline int skb_is_nonlinear(const struct sk_buff *skb)
802 {
803 return skb->data_len;
804 }
805
806 static inline unsigned int skb_headlen(const struct sk_buff *skb)
807 {
808 return skb->len - skb->data_len;
809 }
810
811 static inline int skb_pagelen(const struct sk_buff *skb)
812 {
813 int i, len = 0;
814
815 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
816 len += skb_shinfo(skb)->frags[i].size;
817 return len + skb_headlen(skb);
818 }
819
820 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
821 struct page *page, int off, int size)
822 {
823 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
824
825 frag->page = page;
826 frag->page_offset = off;
827 frag->size = size;
828 skb_shinfo(skb)->nr_frags = i + 1;
829 }
830
831 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
832 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
833 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
834
835 #ifdef NET_SKBUFF_DATA_USES_OFFSET
836 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
837 {
838 return skb->head + skb->tail;
839 }
840
841 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
842 {
843 skb->tail = skb->data - skb->head;
844 }
845
846 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
847 {
848 skb_reset_tail_pointer(skb);
849 skb->tail += offset;
850 }
851 #else /* NET_SKBUFF_DATA_USES_OFFSET */
852 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
853 {
854 return skb->tail;
855 }
856
857 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
858 {
859 skb->tail = skb->data;
860 }
861
862 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
863 {
864 skb->tail = skb->data + offset;
865 }
866
867 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
868
869 /*
870 * Add data to an sk_buff
871 */
872 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
873 {
874 unsigned char *tmp = skb_tail_pointer(skb);
875 SKB_LINEAR_ASSERT(skb);
876 skb->tail += len;
877 skb->len += len;
878 return tmp;
879 }
880
881 /**
882 * skb_put - add data to a buffer
883 * @skb: buffer to use
884 * @len: amount of data to add
885 *
886 * This function extends the used data area of the buffer. If this would
887 * exceed the total buffer size the kernel will panic. A pointer to the
888 * first byte of the extra data is returned.
889 */
890 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
891 {
892 unsigned char *tmp = skb_tail_pointer(skb);
893 SKB_LINEAR_ASSERT(skb);
894 skb->tail += len;
895 skb->len += len;
896 if (unlikely(skb->tail > skb->end))
897 skb_over_panic(skb, len, current_text_addr());
898 return tmp;
899 }
900
901 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
902 {
903 skb->data -= len;
904 skb->len += len;
905 return skb->data;
906 }
907
908 /**
909 * skb_push - add data to the start of a buffer
910 * @skb: buffer to use
911 * @len: amount of data to add
912 *
913 * This function extends the used data area of the buffer at the buffer
914 * start. If this would exceed the total buffer headroom the kernel will
915 * panic. A pointer to the first byte of the extra data is returned.
916 */
917 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
918 {
919 skb->data -= len;
920 skb->len += len;
921 if (unlikely(skb->data<skb->head))
922 skb_under_panic(skb, len, current_text_addr());
923 return skb->data;
924 }
925
926 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
927 {
928 skb->len -= len;
929 BUG_ON(skb->len < skb->data_len);
930 return skb->data += len;
931 }
932
933 /**
934 * skb_pull - remove data from the start of a buffer
935 * @skb: buffer to use
936 * @len: amount of data to remove
937 *
938 * This function removes data from the start of a buffer, returning
939 * the memory to the headroom. A pointer to the next data in the buffer
940 * is returned. Once the data has been pulled future pushes will overwrite
941 * the old data.
942 */
943 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
944 {
945 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
946 }
947
948 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
949
950 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
951 {
952 if (len > skb_headlen(skb) &&
953 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
954 return NULL;
955 skb->len -= len;
956 return skb->data += len;
957 }
958
959 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
960 {
961 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
962 }
963
964 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
965 {
966 if (likely(len <= skb_headlen(skb)))
967 return 1;
968 if (unlikely(len > skb->len))
969 return 0;
970 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
971 }
972
973 /**
974 * skb_headroom - bytes at buffer head
975 * @skb: buffer to check
976 *
977 * Return the number of bytes of free space at the head of an &sk_buff.
978 */
979 static inline int skb_headroom(const struct sk_buff *skb)
980 {
981 return skb->data - skb->head;
982 }
983
984 /**
985 * skb_tailroom - bytes at buffer end
986 * @skb: buffer to check
987 *
988 * Return the number of bytes of free space at the tail of an sk_buff
989 */
990 static inline int skb_tailroom(const struct sk_buff *skb)
991 {
992 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
993 }
994
995 /**
996 * skb_reserve - adjust headroom
997 * @skb: buffer to alter
998 * @len: bytes to move
999 *
1000 * Increase the headroom of an empty &sk_buff by reducing the tail
1001 * room. This is only allowed for an empty buffer.
1002 */
1003 static inline void skb_reserve(struct sk_buff *skb, int len)
1004 {
1005 skb->data += len;
1006 skb->tail += len;
1007 }
1008
1009 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1010 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1011 {
1012 return skb->head + skb->transport_header;
1013 }
1014
1015 static inline void skb_reset_transport_header(struct sk_buff *skb)
1016 {
1017 skb->transport_header = skb->data - skb->head;
1018 }
1019
1020 static inline void skb_set_transport_header(struct sk_buff *skb,
1021 const int offset)
1022 {
1023 skb_reset_transport_header(skb);
1024 skb->transport_header += offset;
1025 }
1026
1027 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1028 {
1029 return skb->head + skb->network_header;
1030 }
1031
1032 static inline void skb_reset_network_header(struct sk_buff *skb)
1033 {
1034 skb->network_header = skb->data - skb->head;
1035 }
1036
1037 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1038 {
1039 skb_reset_network_header(skb);
1040 skb->network_header += offset;
1041 }
1042
1043 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1044 {
1045 return skb->head + skb->mac_header;
1046 }
1047
1048 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1049 {
1050 return skb->mac_header != ~0U;
1051 }
1052
1053 static inline void skb_reset_mac_header(struct sk_buff *skb)
1054 {
1055 skb->mac_header = skb->data - skb->head;
1056 }
1057
1058 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1059 {
1060 skb_reset_mac_header(skb);
1061 skb->mac_header += offset;
1062 }
1063
1064 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1065
1066 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1067 {
1068 return skb->transport_header;
1069 }
1070
1071 static inline void skb_reset_transport_header(struct sk_buff *skb)
1072 {
1073 skb->transport_header = skb->data;
1074 }
1075
1076 static inline void skb_set_transport_header(struct sk_buff *skb,
1077 const int offset)
1078 {
1079 skb->transport_header = skb->data + offset;
1080 }
1081
1082 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1083 {
1084 return skb->network_header;
1085 }
1086
1087 static inline void skb_reset_network_header(struct sk_buff *skb)
1088 {
1089 skb->network_header = skb->data;
1090 }
1091
1092 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1093 {
1094 skb->network_header = skb->data + offset;
1095 }
1096
1097 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1098 {
1099 return skb->mac_header;
1100 }
1101
1102 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1103 {
1104 return skb->mac_header != NULL;
1105 }
1106
1107 static inline void skb_reset_mac_header(struct sk_buff *skb)
1108 {
1109 skb->mac_header = skb->data;
1110 }
1111
1112 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1113 {
1114 skb->mac_header = skb->data + offset;
1115 }
1116 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1117
1118 static inline int skb_transport_offset(const struct sk_buff *skb)
1119 {
1120 return skb_transport_header(skb) - skb->data;
1121 }
1122
1123 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1124 {
1125 return skb->transport_header - skb->network_header;
1126 }
1127
1128 static inline int skb_network_offset(const struct sk_buff *skb)
1129 {
1130 return skb_network_header(skb) - skb->data;
1131 }
1132
1133 /*
1134 * CPUs often take a performance hit when accessing unaligned memory
1135 * locations. The actual performance hit varies, it can be small if the
1136 * hardware handles it or large if we have to take an exception and fix it
1137 * in software.
1138 *
1139 * Since an ethernet header is 14 bytes network drivers often end up with
1140 * the IP header at an unaligned offset. The IP header can be aligned by
1141 * shifting the start of the packet by 2 bytes. Drivers should do this
1142 * with:
1143 *
1144 * skb_reserve(NET_IP_ALIGN);
1145 *
1146 * The downside to this alignment of the IP header is that the DMA is now
1147 * unaligned. On some architectures the cost of an unaligned DMA is high
1148 * and this cost outweighs the gains made by aligning the IP header.
1149 *
1150 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1151 * to be overridden.
1152 */
1153 #ifndef NET_IP_ALIGN
1154 #define NET_IP_ALIGN 2
1155 #endif
1156
1157 /*
1158 * The networking layer reserves some headroom in skb data (via
1159 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1160 * the header has to grow. In the default case, if the header has to grow
1161 * 16 bytes or less we avoid the reallocation.
1162 *
1163 * Unfortunately this headroom changes the DMA alignment of the resulting
1164 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1165 * on some architectures. An architecture can override this value,
1166 * perhaps setting it to a cacheline in size (since that will maintain
1167 * cacheline alignment of the DMA). It must be a power of 2.
1168 *
1169 * Various parts of the networking layer expect at least 16 bytes of
1170 * headroom, you should not reduce this.
1171 */
1172 #ifndef NET_SKB_PAD
1173 #define NET_SKB_PAD 16
1174 #endif
1175
1176 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1177
1178 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1179 {
1180 if (unlikely(skb->data_len)) {
1181 WARN_ON(1);
1182 return;
1183 }
1184 skb->len = len;
1185 skb_set_tail_pointer(skb, len);
1186 }
1187
1188 /**
1189 * skb_trim - remove end from a buffer
1190 * @skb: buffer to alter
1191 * @len: new length
1192 *
1193 * Cut the length of a buffer down by removing data from the tail. If
1194 * the buffer is already under the length specified it is not modified.
1195 * The skb must be linear.
1196 */
1197 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1198 {
1199 if (skb->len > len)
1200 __skb_trim(skb, len);
1201 }
1202
1203
1204 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1205 {
1206 if (skb->data_len)
1207 return ___pskb_trim(skb, len);
1208 __skb_trim(skb, len);
1209 return 0;
1210 }
1211
1212 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1213 {
1214 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1215 }
1216
1217 /**
1218 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1219 * @skb: buffer to alter
1220 * @len: new length
1221 *
1222 * This is identical to pskb_trim except that the caller knows that
1223 * the skb is not cloned so we should never get an error due to out-
1224 * of-memory.
1225 */
1226 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1227 {
1228 int err = pskb_trim(skb, len);
1229 BUG_ON(err);
1230 }
1231
1232 /**
1233 * skb_orphan - orphan a buffer
1234 * @skb: buffer to orphan
1235 *
1236 * If a buffer currently has an owner then we call the owner's
1237 * destructor function and make the @skb unowned. The buffer continues
1238 * to exist but is no longer charged to its former owner.
1239 */
1240 static inline void skb_orphan(struct sk_buff *skb)
1241 {
1242 if (skb->destructor)
1243 skb->destructor(skb);
1244 skb->destructor = NULL;
1245 skb->sk = NULL;
1246 }
1247
1248 /**
1249 * __skb_queue_purge - empty a list
1250 * @list: list to empty
1251 *
1252 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1253 * the list and one reference dropped. This function does not take the
1254 * list lock and the caller must hold the relevant locks to use it.
1255 */
1256 extern void skb_queue_purge(struct sk_buff_head *list);
1257 static inline void __skb_queue_purge(struct sk_buff_head *list)
1258 {
1259 struct sk_buff *skb;
1260 while ((skb = __skb_dequeue(list)) != NULL)
1261 kfree_skb(skb);
1262 }
1263
1264 /**
1265 * __dev_alloc_skb - allocate an skbuff for receiving
1266 * @length: length to allocate
1267 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1268 *
1269 * Allocate a new &sk_buff and assign it a usage count of one. The
1270 * buffer has unspecified headroom built in. Users should allocate
1271 * the headroom they think they need without accounting for the
1272 * built in space. The built in space is used for optimisations.
1273 *
1274 * %NULL is returned if there is no free memory.
1275 */
1276 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1277 gfp_t gfp_mask)
1278 {
1279 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1280 if (likely(skb))
1281 skb_reserve(skb, NET_SKB_PAD);
1282 return skb;
1283 }
1284
1285 /**
1286 * dev_alloc_skb - allocate an skbuff for receiving
1287 * @length: length to allocate
1288 *
1289 * Allocate a new &sk_buff and assign it a usage count of one. The
1290 * buffer has unspecified headroom built in. Users should allocate
1291 * the headroom they think they need without accounting for the
1292 * built in space. The built in space is used for optimisations.
1293 *
1294 * %NULL is returned if there is no free memory. Although this function
1295 * allocates memory it can be called from an interrupt.
1296 */
1297 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1298 {
1299 return __dev_alloc_skb(length, GFP_ATOMIC);
1300 }
1301
1302 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1303 unsigned int length, gfp_t gfp_mask);
1304
1305 /**
1306 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1307 * @dev: network device to receive on
1308 * @length: length to allocate
1309 *
1310 * Allocate a new &sk_buff and assign it a usage count of one. The
1311 * buffer has unspecified headroom built in. Users should allocate
1312 * the headroom they think they need without accounting for the
1313 * built in space. The built in space is used for optimisations.
1314 *
1315 * %NULL is returned if there is no free memory. Although this function
1316 * allocates memory it can be called from an interrupt.
1317 */
1318 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1319 unsigned int length)
1320 {
1321 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1322 }
1323
1324 /**
1325 * skb_cow - copy header of skb when it is required
1326 * @skb: buffer to cow
1327 * @headroom: needed headroom
1328 *
1329 * If the skb passed lacks sufficient headroom or its data part
1330 * is shared, data is reallocated. If reallocation fails, an error
1331 * is returned and original skb is not changed.
1332 *
1333 * The result is skb with writable area skb->head...skb->tail
1334 * and at least @headroom of space at head.
1335 */
1336 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1337 {
1338 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1339 skb_headroom(skb);
1340
1341 if (delta < 0)
1342 delta = 0;
1343
1344 if (delta || skb_cloned(skb))
1345 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1346 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1347 return 0;
1348 }
1349
1350 /**
1351 * skb_padto - pad an skbuff up to a minimal size
1352 * @skb: buffer to pad
1353 * @len: minimal length
1354 *
1355 * Pads up a buffer to ensure the trailing bytes exist and are
1356 * blanked. If the buffer already contains sufficient data it
1357 * is untouched. Otherwise it is extended. Returns zero on
1358 * success. The skb is freed on error.
1359 */
1360
1361 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1362 {
1363 unsigned int size = skb->len;
1364 if (likely(size >= len))
1365 return 0;
1366 return skb_pad(skb, len-size);
1367 }
1368
1369 static inline int skb_add_data(struct sk_buff *skb,
1370 char __user *from, int copy)
1371 {
1372 const int off = skb->len;
1373
1374 if (skb->ip_summed == CHECKSUM_NONE) {
1375 int err = 0;
1376 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1377 copy, 0, &err);
1378 if (!err) {
1379 skb->csum = csum_block_add(skb->csum, csum, off);
1380 return 0;
1381 }
1382 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1383 return 0;
1384
1385 __skb_trim(skb, off);
1386 return -EFAULT;
1387 }
1388
1389 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1390 struct page *page, int off)
1391 {
1392 if (i) {
1393 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1394
1395 return page == frag->page &&
1396 off == frag->page_offset + frag->size;
1397 }
1398 return 0;
1399 }
1400
1401 static inline int __skb_linearize(struct sk_buff *skb)
1402 {
1403 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1404 }
1405
1406 /**
1407 * skb_linearize - convert paged skb to linear one
1408 * @skb: buffer to linarize
1409 *
1410 * If there is no free memory -ENOMEM is returned, otherwise zero
1411 * is returned and the old skb data released.
1412 */
1413 static inline int skb_linearize(struct sk_buff *skb)
1414 {
1415 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1416 }
1417
1418 /**
1419 * skb_linearize_cow - make sure skb is linear and writable
1420 * @skb: buffer to process
1421 *
1422 * If there is no free memory -ENOMEM is returned, otherwise zero
1423 * is returned and the old skb data released.
1424 */
1425 static inline int skb_linearize_cow(struct sk_buff *skb)
1426 {
1427 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1428 __skb_linearize(skb) : 0;
1429 }
1430
1431 /**
1432 * skb_postpull_rcsum - update checksum for received skb after pull
1433 * @skb: buffer to update
1434 * @start: start of data before pull
1435 * @len: length of data pulled
1436 *
1437 * After doing a pull on a received packet, you need to call this to
1438 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1439 * CHECKSUM_NONE so that it can be recomputed from scratch.
1440 */
1441
1442 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1443 const void *start, unsigned int len)
1444 {
1445 if (skb->ip_summed == CHECKSUM_COMPLETE)
1446 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1447 }
1448
1449 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1450
1451 /**
1452 * pskb_trim_rcsum - trim received skb and update checksum
1453 * @skb: buffer to trim
1454 * @len: new length
1455 *
1456 * This is exactly the same as pskb_trim except that it ensures the
1457 * checksum of received packets are still valid after the operation.
1458 */
1459
1460 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1461 {
1462 if (likely(len >= skb->len))
1463 return 0;
1464 if (skb->ip_summed == CHECKSUM_COMPLETE)
1465 skb->ip_summed = CHECKSUM_NONE;
1466 return __pskb_trim(skb, len);
1467 }
1468
1469 #define skb_queue_walk(queue, skb) \
1470 for (skb = (queue)->next; \
1471 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1472 skb = skb->next)
1473
1474 #define skb_queue_reverse_walk(queue, skb) \
1475 for (skb = (queue)->prev; \
1476 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1477 skb = skb->prev)
1478
1479
1480 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1481 int noblock, int *err);
1482 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1483 struct poll_table_struct *wait);
1484 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1485 int offset, struct iovec *to,
1486 int size);
1487 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1488 int hlen,
1489 struct iovec *iov);
1490 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1491 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1492 unsigned int flags);
1493 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1494 int len, __wsum csum);
1495 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1496 void *to, int len);
1497 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1498 void *from, int len);
1499 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1500 int offset, u8 *to, int len,
1501 __wsum csum);
1502 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1503 extern void skb_split(struct sk_buff *skb,
1504 struct sk_buff *skb1, const u32 len);
1505
1506 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1507
1508 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1509 int len, void *buffer)
1510 {
1511 int hlen = skb_headlen(skb);
1512
1513 if (hlen - offset >= len)
1514 return skb->data + offset;
1515
1516 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1517 return NULL;
1518
1519 return buffer;
1520 }
1521
1522 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1523 void *to,
1524 const unsigned int len)
1525 {
1526 memcpy(to, skb->data, len);
1527 }
1528
1529 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1530 const int offset, void *to,
1531 const unsigned int len)
1532 {
1533 memcpy(to, skb->data + offset, len);
1534 }
1535
1536 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1537 const void *from,
1538 const unsigned int len)
1539 {
1540 memcpy(skb->data, from, len);
1541 }
1542
1543 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1544 const int offset,
1545 const void *from,
1546 const unsigned int len)
1547 {
1548 memcpy(skb->data + offset, from, len);
1549 }
1550
1551 extern void skb_init(void);
1552
1553 /**
1554 * skb_get_timestamp - get timestamp from a skb
1555 * @skb: skb to get stamp from
1556 * @stamp: pointer to struct timeval to store stamp in
1557 *
1558 * Timestamps are stored in the skb as offsets to a base timestamp.
1559 * This function converts the offset back to a struct timeval and stores
1560 * it in stamp.
1561 */
1562 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1563 {
1564 *stamp = ktime_to_timeval(skb->tstamp);
1565 }
1566
1567 static inline void __net_timestamp(struct sk_buff *skb)
1568 {
1569 skb->tstamp = ktime_get_real();
1570 }
1571
1572
1573 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1574 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1575
1576 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1577 {
1578 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1579 }
1580
1581 /**
1582 * skb_checksum_complete - Calculate checksum of an entire packet
1583 * @skb: packet to process
1584 *
1585 * This function calculates the checksum over the entire packet plus
1586 * the value of skb->csum. The latter can be used to supply the
1587 * checksum of a pseudo header as used by TCP/UDP. It returns the
1588 * checksum.
1589 *
1590 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1591 * this function can be used to verify that checksum on received
1592 * packets. In that case the function should return zero if the
1593 * checksum is correct. In particular, this function will return zero
1594 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1595 * hardware has already verified the correctness of the checksum.
1596 */
1597 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1598 {
1599 return skb_csum_unnecessary(skb) ?
1600 0 : __skb_checksum_complete(skb);
1601 }
1602
1603 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1604 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1605 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1606 {
1607 if (nfct && atomic_dec_and_test(&nfct->use))
1608 nf_conntrack_destroy(nfct);
1609 }
1610 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1611 {
1612 if (nfct)
1613 atomic_inc(&nfct->use);
1614 }
1615 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1616 {
1617 if (skb)
1618 atomic_inc(&skb->users);
1619 }
1620 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1621 {
1622 if (skb)
1623 kfree_skb(skb);
1624 }
1625 #endif
1626 #ifdef CONFIG_BRIDGE_NETFILTER
1627 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1628 {
1629 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1630 kfree(nf_bridge);
1631 }
1632 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1633 {
1634 if (nf_bridge)
1635 atomic_inc(&nf_bridge->use);
1636 }
1637 #endif /* CONFIG_BRIDGE_NETFILTER */
1638 static inline void nf_reset(struct sk_buff *skb)
1639 {
1640 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1641 nf_conntrack_put(skb->nfct);
1642 skb->nfct = NULL;
1643 nf_conntrack_put_reasm(skb->nfct_reasm);
1644 skb->nfct_reasm = NULL;
1645 #endif
1646 #ifdef CONFIG_BRIDGE_NETFILTER
1647 nf_bridge_put(skb->nf_bridge);
1648 skb->nf_bridge = NULL;
1649 #endif
1650 }
1651
1652 /* Note: This doesn't put any conntrack and bridge info in dst. */
1653 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1654 {
1655 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1656 dst->nfct = src->nfct;
1657 nf_conntrack_get(src->nfct);
1658 dst->nfctinfo = src->nfctinfo;
1659 dst->nfct_reasm = src->nfct_reasm;
1660 nf_conntrack_get_reasm(src->nfct_reasm);
1661 #endif
1662 #ifdef CONFIG_BRIDGE_NETFILTER
1663 dst->nf_bridge = src->nf_bridge;
1664 nf_bridge_get(src->nf_bridge);
1665 #endif
1666 }
1667
1668 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1669 {
1670 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1671 nf_conntrack_put(dst->nfct);
1672 nf_conntrack_put_reasm(dst->nfct_reasm);
1673 #endif
1674 #ifdef CONFIG_BRIDGE_NETFILTER
1675 nf_bridge_put(dst->nf_bridge);
1676 #endif
1677 __nf_copy(dst, src);
1678 }
1679
1680 #ifdef CONFIG_NETWORK_SECMARK
1681 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1682 {
1683 to->secmark = from->secmark;
1684 }
1685
1686 static inline void skb_init_secmark(struct sk_buff *skb)
1687 {
1688 skb->secmark = 0;
1689 }
1690 #else
1691 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1692 { }
1693
1694 static inline void skb_init_secmark(struct sk_buff *skb)
1695 { }
1696 #endif
1697
1698 static inline int skb_is_gso(const struct sk_buff *skb)
1699 {
1700 return skb_shinfo(skb)->gso_size;
1701 }
1702
1703 static inline void skb_forward_csum(struct sk_buff *skb)
1704 {
1705 /* Unfortunately we don't support this one. Any brave souls? */
1706 if (skb->ip_summed == CHECKSUM_COMPLETE)
1707 skb->ip_summed = CHECKSUM_NONE;
1708 }
1709
1710 #endif /* __KERNEL__ */
1711 #endif /* _LINUX_SKBUFF_H */