]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/skbuff.h
[SK_BUFF]: unions of just one member don't get anything done, kill them
[mirror_ubuntu-eoan-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_PARTIAL 1
37 #define CHECKSUM_UNNECESSARY 2
38 #define CHECKSUM_COMPLETE 3
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 (((X) - sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * B. Checksumming on output.
68 *
69 * NONE: skb is checksummed by protocol or csum is not required.
70 *
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->transport_header to the end and to record the checksum
73 * at skb->transport_header + skb->csum.
74 *
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
84 *
85 * Any questions? No questions, good. --ANK
86 */
87
88 struct net_device;
89
90 #ifdef CONFIG_NETFILTER
91 struct nf_conntrack {
92 atomic_t use;
93 void (*destroy)(struct nf_conntrack *);
94 };
95
96 #ifdef CONFIG_BRIDGE_NETFILTER
97 struct nf_bridge_info {
98 atomic_t use;
99 struct net_device *physindev;
100 struct net_device *physoutdev;
101 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
102 struct net_device *netoutdev;
103 #endif
104 unsigned int mask;
105 unsigned long data[32 / sizeof(unsigned long)];
106 };
107 #endif
108
109 #endif
110
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
115
116 __u32 qlen;
117 spinlock_t lock;
118 };
119
120 struct sk_buff;
121
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124
125 typedef struct skb_frag_struct skb_frag_t;
126
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
131 };
132
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
135 */
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
146 };
147
148 /* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. It is up to the users of the skb to agree on
151 * where the payload starts.
152 *
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
155 *
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
158 */
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161
162
163 enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
167 };
168
169 enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
172
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
175
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
178
179 SKB_GSO_TCPV6 = 1 << 4,
180 };
181
182 /**
183 * struct sk_buff - socket buffer
184 * @next: Next buffer in list
185 * @prev: Previous buffer in list
186 * @sk: Socket we are owned by
187 * @tstamp: Time we arrived
188 * @dev: Device we arrived on/are leaving by
189 * @iif: ifindex of device we arrived on
190 * @h: Transport layer header
191 * @network_header: Network layer header
192 * @mac_header: Link layer header
193 * @dst: destination entry
194 * @sp: the security path, used for xfrm
195 * @cb: Control buffer. Free for use by every layer. Put private vars here
196 * @len: Length of actual data
197 * @data_len: Data length
198 * @mac_len: Length of link layer header
199 * @csum: Checksum
200 * @local_df: allow local fragmentation
201 * @cloned: Head may be cloned (check refcnt to be sure)
202 * @nohdr: Payload reference only, must not modify header
203 * @pkt_type: Packet class
204 * @fclone: skbuff clone status
205 * @ip_summed: Driver fed us an IP checksum
206 * @priority: Packet queueing priority
207 * @users: User count - see {datagram,tcp}.c
208 * @protocol: Packet protocol from driver
209 * @truesize: Buffer size
210 * @head: Head of buffer
211 * @data: Data head pointer
212 * @tail: Tail pointer
213 * @end: End pointer
214 * @destructor: Destruct function
215 * @mark: Generic packet mark
216 * @nfct: Associated connection, if any
217 * @ipvs_property: skbuff is owned by ipvs
218 * @nfctinfo: Relationship of this skb to the connection
219 * @nfct_reasm: netfilter conntrack re-assembly pointer
220 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
221 * @tc_index: Traffic control index
222 * @tc_verd: traffic control verdict
223 * @dma_cookie: a cookie to one of several possible DMA operations
224 * done by skb DMA functions
225 * @secmark: security marking
226 */
227
228 struct sk_buff {
229 /* These two members must be first. */
230 struct sk_buff *next;
231 struct sk_buff *prev;
232
233 struct sock *sk;
234 ktime_t tstamp;
235 struct net_device *dev;
236 int iif;
237 /* 4 byte hole on 64 bit*/
238
239 unsigned char *transport_header;
240 unsigned char *network_header;
241 unsigned char *mac_header;
242 struct dst_entry *dst;
243 struct sec_path *sp;
244
245 /*
246 * This is the control buffer. It is free to use for every
247 * layer. Please put your private variables there. If you
248 * want to keep them across layers you have to do a skb_clone()
249 * first. This is owned by whoever has the skb queued ATM.
250 */
251 char cb[48];
252
253 unsigned int len,
254 data_len,
255 mac_len;
256 union {
257 __wsum csum;
258 __u32 csum_offset;
259 };
260 __u32 priority;
261 __u8 local_df:1,
262 cloned:1,
263 ip_summed:2,
264 nohdr:1,
265 nfctinfo:3;
266 __u8 pkt_type:3,
267 fclone:2,
268 ipvs_property:1;
269 __be16 protocol;
270
271 void (*destructor)(struct sk_buff *skb);
272 #ifdef CONFIG_NETFILTER
273 struct nf_conntrack *nfct;
274 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
275 struct sk_buff *nfct_reasm;
276 #endif
277 #ifdef CONFIG_BRIDGE_NETFILTER
278 struct nf_bridge_info *nf_bridge;
279 #endif
280 #endif /* CONFIG_NETFILTER */
281 #ifdef CONFIG_NET_SCHED
282 __u16 tc_index; /* traffic control index */
283 #ifdef CONFIG_NET_CLS_ACT
284 __u16 tc_verd; /* traffic control verdict */
285 #endif
286 #endif
287 #ifdef CONFIG_NET_DMA
288 dma_cookie_t dma_cookie;
289 #endif
290 #ifdef CONFIG_NETWORK_SECMARK
291 __u32 secmark;
292 #endif
293
294 __u32 mark;
295
296 /* These elements must be at the end, see alloc_skb() for details. */
297 unsigned int truesize;
298 atomic_t users;
299 unsigned char *head,
300 *data,
301 *tail,
302 *end;
303 };
304
305 #ifdef __KERNEL__
306 /*
307 * Handling routines are only of interest to the kernel
308 */
309 #include <linux/slab.h>
310
311 #include <asm/system.h>
312
313 extern void kfree_skb(struct sk_buff *skb);
314 extern void __kfree_skb(struct sk_buff *skb);
315 extern struct sk_buff *__alloc_skb(unsigned int size,
316 gfp_t priority, int fclone, int node);
317 static inline struct sk_buff *alloc_skb(unsigned int size,
318 gfp_t priority)
319 {
320 return __alloc_skb(size, priority, 0, -1);
321 }
322
323 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
324 gfp_t priority)
325 {
326 return __alloc_skb(size, priority, 1, -1);
327 }
328
329 extern void kfree_skbmem(struct sk_buff *skb);
330 extern struct sk_buff *skb_clone(struct sk_buff *skb,
331 gfp_t priority);
332 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
333 gfp_t priority);
334 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
335 gfp_t gfp_mask);
336 extern int pskb_expand_head(struct sk_buff *skb,
337 int nhead, int ntail,
338 gfp_t gfp_mask);
339 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
340 unsigned int headroom);
341 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
342 int newheadroom, int newtailroom,
343 gfp_t priority);
344 extern int skb_pad(struct sk_buff *skb, int pad);
345 #define dev_kfree_skb(a) kfree_skb(a)
346 extern void skb_over_panic(struct sk_buff *skb, int len,
347 void *here);
348 extern void skb_under_panic(struct sk_buff *skb, int len,
349 void *here);
350 extern void skb_truesize_bug(struct sk_buff *skb);
351
352 static inline void skb_truesize_check(struct sk_buff *skb)
353 {
354 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
355 skb_truesize_bug(skb);
356 }
357
358 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
359 int getfrag(void *from, char *to, int offset,
360 int len,int odd, struct sk_buff *skb),
361 void *from, int length);
362
363 struct skb_seq_state
364 {
365 __u32 lower_offset;
366 __u32 upper_offset;
367 __u32 frag_idx;
368 __u32 stepped_offset;
369 struct sk_buff *root_skb;
370 struct sk_buff *cur_skb;
371 __u8 *frag_data;
372 };
373
374 extern void skb_prepare_seq_read(struct sk_buff *skb,
375 unsigned int from, unsigned int to,
376 struct skb_seq_state *st);
377 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
378 struct skb_seq_state *st);
379 extern void skb_abort_seq_read(struct skb_seq_state *st);
380
381 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
382 unsigned int to, struct ts_config *config,
383 struct ts_state *state);
384
385 /* Internal */
386 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
387
388 /**
389 * skb_queue_empty - check if a queue is empty
390 * @list: queue head
391 *
392 * Returns true if the queue is empty, false otherwise.
393 */
394 static inline int skb_queue_empty(const struct sk_buff_head *list)
395 {
396 return list->next == (struct sk_buff *)list;
397 }
398
399 /**
400 * skb_get - reference buffer
401 * @skb: buffer to reference
402 *
403 * Makes another reference to a socket buffer and returns a pointer
404 * to the buffer.
405 */
406 static inline struct sk_buff *skb_get(struct sk_buff *skb)
407 {
408 atomic_inc(&skb->users);
409 return skb;
410 }
411
412 /*
413 * If users == 1, we are the only owner and are can avoid redundant
414 * atomic change.
415 */
416
417 /**
418 * skb_cloned - is the buffer a clone
419 * @skb: buffer to check
420 *
421 * Returns true if the buffer was generated with skb_clone() and is
422 * one of multiple shared copies of the buffer. Cloned buffers are
423 * shared data so must not be written to under normal circumstances.
424 */
425 static inline int skb_cloned(const struct sk_buff *skb)
426 {
427 return skb->cloned &&
428 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
429 }
430
431 /**
432 * skb_header_cloned - is the header a clone
433 * @skb: buffer to check
434 *
435 * Returns true if modifying the header part of the buffer requires
436 * the data to be copied.
437 */
438 static inline int skb_header_cloned(const struct sk_buff *skb)
439 {
440 int dataref;
441
442 if (!skb->cloned)
443 return 0;
444
445 dataref = atomic_read(&skb_shinfo(skb)->dataref);
446 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
447 return dataref != 1;
448 }
449
450 /**
451 * skb_header_release - release reference to header
452 * @skb: buffer to operate on
453 *
454 * Drop a reference to the header part of the buffer. This is done
455 * by acquiring a payload reference. You must not read from the header
456 * part of skb->data after this.
457 */
458 static inline void skb_header_release(struct sk_buff *skb)
459 {
460 BUG_ON(skb->nohdr);
461 skb->nohdr = 1;
462 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
463 }
464
465 /**
466 * skb_shared - is the buffer shared
467 * @skb: buffer to check
468 *
469 * Returns true if more than one person has a reference to this
470 * buffer.
471 */
472 static inline int skb_shared(const struct sk_buff *skb)
473 {
474 return atomic_read(&skb->users) != 1;
475 }
476
477 /**
478 * skb_share_check - check if buffer is shared and if so clone it
479 * @skb: buffer to check
480 * @pri: priority for memory allocation
481 *
482 * If the buffer is shared the buffer is cloned and the old copy
483 * drops a reference. A new clone with a single reference is returned.
484 * If the buffer is not shared the original buffer is returned. When
485 * being called from interrupt status or with spinlocks held pri must
486 * be GFP_ATOMIC.
487 *
488 * NULL is returned on a memory allocation failure.
489 */
490 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
491 gfp_t pri)
492 {
493 might_sleep_if(pri & __GFP_WAIT);
494 if (skb_shared(skb)) {
495 struct sk_buff *nskb = skb_clone(skb, pri);
496 kfree_skb(skb);
497 skb = nskb;
498 }
499 return skb;
500 }
501
502 /*
503 * Copy shared buffers into a new sk_buff. We effectively do COW on
504 * packets to handle cases where we have a local reader and forward
505 * and a couple of other messy ones. The normal one is tcpdumping
506 * a packet thats being forwarded.
507 */
508
509 /**
510 * skb_unshare - make a copy of a shared buffer
511 * @skb: buffer to check
512 * @pri: priority for memory allocation
513 *
514 * If the socket buffer is a clone then this function creates a new
515 * copy of the data, drops a reference count on the old copy and returns
516 * the new copy with the reference count at 1. If the buffer is not a clone
517 * the original buffer is returned. When called with a spinlock held or
518 * from interrupt state @pri must be %GFP_ATOMIC
519 *
520 * %NULL is returned on a memory allocation failure.
521 */
522 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
523 gfp_t pri)
524 {
525 might_sleep_if(pri & __GFP_WAIT);
526 if (skb_cloned(skb)) {
527 struct sk_buff *nskb = skb_copy(skb, pri);
528 kfree_skb(skb); /* Free our shared copy */
529 skb = nskb;
530 }
531 return skb;
532 }
533
534 /**
535 * skb_peek
536 * @list_: list to peek at
537 *
538 * Peek an &sk_buff. Unlike most other operations you _MUST_
539 * be careful with this one. A peek leaves the buffer on the
540 * list and someone else may run off with it. You must hold
541 * the appropriate locks or have a private queue to do this.
542 *
543 * Returns %NULL for an empty list or a pointer to the head element.
544 * The reference count is not incremented and the reference is therefore
545 * volatile. Use with caution.
546 */
547 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
548 {
549 struct sk_buff *list = ((struct sk_buff *)list_)->next;
550 if (list == (struct sk_buff *)list_)
551 list = NULL;
552 return list;
553 }
554
555 /**
556 * skb_peek_tail
557 * @list_: list to peek at
558 *
559 * Peek an &sk_buff. Unlike most other operations you _MUST_
560 * be careful with this one. A peek leaves the buffer on the
561 * list and someone else may run off with it. You must hold
562 * the appropriate locks or have a private queue to do this.
563 *
564 * Returns %NULL for an empty list or a pointer to the tail element.
565 * The reference count is not incremented and the reference is therefore
566 * volatile. Use with caution.
567 */
568 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
569 {
570 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
571 if (list == (struct sk_buff *)list_)
572 list = NULL;
573 return list;
574 }
575
576 /**
577 * skb_queue_len - get queue length
578 * @list_: list to measure
579 *
580 * Return the length of an &sk_buff queue.
581 */
582 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
583 {
584 return list_->qlen;
585 }
586
587 /*
588 * This function creates a split out lock class for each invocation;
589 * this is needed for now since a whole lot of users of the skb-queue
590 * infrastructure in drivers have different locking usage (in hardirq)
591 * than the networking core (in softirq only). In the long run either the
592 * network layer or drivers should need annotation to consolidate the
593 * main types of usage into 3 classes.
594 */
595 static inline void skb_queue_head_init(struct sk_buff_head *list)
596 {
597 spin_lock_init(&list->lock);
598 list->prev = list->next = (struct sk_buff *)list;
599 list->qlen = 0;
600 }
601
602 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
603 struct lock_class_key *class)
604 {
605 skb_queue_head_init(list);
606 lockdep_set_class(&list->lock, class);
607 }
608
609 /*
610 * Insert an sk_buff at the start of a list.
611 *
612 * The "__skb_xxxx()" functions are the non-atomic ones that
613 * can only be called with interrupts disabled.
614 */
615
616 /**
617 * __skb_queue_after - queue a buffer at the list head
618 * @list: list to use
619 * @prev: place after this buffer
620 * @newsk: buffer to queue
621 *
622 * Queue a buffer int the middle of a list. This function takes no locks
623 * and you must therefore hold required locks before calling it.
624 *
625 * A buffer cannot be placed on two lists at the same time.
626 */
627 static inline void __skb_queue_after(struct sk_buff_head *list,
628 struct sk_buff *prev,
629 struct sk_buff *newsk)
630 {
631 struct sk_buff *next;
632 list->qlen++;
633
634 next = prev->next;
635 newsk->next = next;
636 newsk->prev = prev;
637 next->prev = prev->next = newsk;
638 }
639
640 /**
641 * __skb_queue_head - queue a buffer at the list head
642 * @list: list to use
643 * @newsk: buffer to queue
644 *
645 * Queue a buffer at the start of a list. This function takes no locks
646 * and you must therefore hold required locks before calling it.
647 *
648 * A buffer cannot be placed on two lists at the same time.
649 */
650 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
651 static inline void __skb_queue_head(struct sk_buff_head *list,
652 struct sk_buff *newsk)
653 {
654 __skb_queue_after(list, (struct sk_buff *)list, newsk);
655 }
656
657 /**
658 * __skb_queue_tail - queue a buffer at the list tail
659 * @list: list to use
660 * @newsk: buffer to queue
661 *
662 * Queue a buffer at the end of a list. This function takes no locks
663 * and you must therefore hold required locks before calling it.
664 *
665 * A buffer cannot be placed on two lists at the same time.
666 */
667 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
668 static inline void __skb_queue_tail(struct sk_buff_head *list,
669 struct sk_buff *newsk)
670 {
671 struct sk_buff *prev, *next;
672
673 list->qlen++;
674 next = (struct sk_buff *)list;
675 prev = next->prev;
676 newsk->next = next;
677 newsk->prev = prev;
678 next->prev = prev->next = newsk;
679 }
680
681
682 /**
683 * __skb_dequeue - remove from the head of the queue
684 * @list: list to dequeue from
685 *
686 * Remove the head of the list. This function does not take any locks
687 * so must be used with appropriate locks held only. The head item is
688 * returned or %NULL if the list is empty.
689 */
690 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
691 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
692 {
693 struct sk_buff *next, *prev, *result;
694
695 prev = (struct sk_buff *) list;
696 next = prev->next;
697 result = NULL;
698 if (next != prev) {
699 result = next;
700 next = next->next;
701 list->qlen--;
702 next->prev = prev;
703 prev->next = next;
704 result->next = result->prev = NULL;
705 }
706 return result;
707 }
708
709
710 /*
711 * Insert a packet on a list.
712 */
713 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
714 static inline void __skb_insert(struct sk_buff *newsk,
715 struct sk_buff *prev, struct sk_buff *next,
716 struct sk_buff_head *list)
717 {
718 newsk->next = next;
719 newsk->prev = prev;
720 next->prev = prev->next = newsk;
721 list->qlen++;
722 }
723
724 /*
725 * Place a packet after a given packet in a list.
726 */
727 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
728 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
729 {
730 __skb_insert(newsk, old, old->next, list);
731 }
732
733 /*
734 * remove sk_buff from list. _Must_ be called atomically, and with
735 * the list known..
736 */
737 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
738 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
739 {
740 struct sk_buff *next, *prev;
741
742 list->qlen--;
743 next = skb->next;
744 prev = skb->prev;
745 skb->next = skb->prev = NULL;
746 next->prev = prev;
747 prev->next = next;
748 }
749
750
751 /* XXX: more streamlined implementation */
752
753 /**
754 * __skb_dequeue_tail - remove from the tail of the queue
755 * @list: list to dequeue from
756 *
757 * Remove the tail of the list. This function does not take any locks
758 * so must be used with appropriate locks held only. The tail item is
759 * returned or %NULL if the list is empty.
760 */
761 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
762 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
763 {
764 struct sk_buff *skb = skb_peek_tail(list);
765 if (skb)
766 __skb_unlink(skb, list);
767 return skb;
768 }
769
770
771 static inline int skb_is_nonlinear(const struct sk_buff *skb)
772 {
773 return skb->data_len;
774 }
775
776 static inline unsigned int skb_headlen(const struct sk_buff *skb)
777 {
778 return skb->len - skb->data_len;
779 }
780
781 static inline int skb_pagelen(const struct sk_buff *skb)
782 {
783 int i, len = 0;
784
785 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
786 len += skb_shinfo(skb)->frags[i].size;
787 return len + skb_headlen(skb);
788 }
789
790 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
791 struct page *page, int off, int size)
792 {
793 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
794
795 frag->page = page;
796 frag->page_offset = off;
797 frag->size = size;
798 skb_shinfo(skb)->nr_frags = i + 1;
799 }
800
801 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
802 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
803 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
804
805 /*
806 * Add data to an sk_buff
807 */
808 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
809 {
810 unsigned char *tmp = skb->tail;
811 SKB_LINEAR_ASSERT(skb);
812 skb->tail += len;
813 skb->len += len;
814 return tmp;
815 }
816
817 /**
818 * skb_put - add data to a buffer
819 * @skb: buffer to use
820 * @len: amount of data to add
821 *
822 * This function extends the used data area of the buffer. If this would
823 * exceed the total buffer size the kernel will panic. A pointer to the
824 * first byte of the extra data is returned.
825 */
826 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
827 {
828 unsigned char *tmp = skb->tail;
829 SKB_LINEAR_ASSERT(skb);
830 skb->tail += len;
831 skb->len += len;
832 if (unlikely(skb->tail>skb->end))
833 skb_over_panic(skb, len, current_text_addr());
834 return tmp;
835 }
836
837 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
838 {
839 skb->data -= len;
840 skb->len += len;
841 return skb->data;
842 }
843
844 /**
845 * skb_push - add data to the start of a buffer
846 * @skb: buffer to use
847 * @len: amount of data to add
848 *
849 * This function extends the used data area of the buffer at the buffer
850 * start. If this would exceed the total buffer headroom the kernel will
851 * panic. A pointer to the first byte of the extra data is returned.
852 */
853 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
854 {
855 skb->data -= len;
856 skb->len += len;
857 if (unlikely(skb->data<skb->head))
858 skb_under_panic(skb, len, current_text_addr());
859 return skb->data;
860 }
861
862 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
863 {
864 skb->len -= len;
865 BUG_ON(skb->len < skb->data_len);
866 return skb->data += len;
867 }
868
869 /**
870 * skb_pull - remove data from the start of a buffer
871 * @skb: buffer to use
872 * @len: amount of data to remove
873 *
874 * This function removes data from the start of a buffer, returning
875 * the memory to the headroom. A pointer to the next data in the buffer
876 * is returned. Once the data has been pulled future pushes will overwrite
877 * the old data.
878 */
879 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
880 {
881 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
882 }
883
884 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
885
886 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
887 {
888 if (len > skb_headlen(skb) &&
889 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
890 return NULL;
891 skb->len -= len;
892 return skb->data += len;
893 }
894
895 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
896 {
897 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
898 }
899
900 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
901 {
902 if (likely(len <= skb_headlen(skb)))
903 return 1;
904 if (unlikely(len > skb->len))
905 return 0;
906 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
907 }
908
909 /**
910 * skb_headroom - bytes at buffer head
911 * @skb: buffer to check
912 *
913 * Return the number of bytes of free space at the head of an &sk_buff.
914 */
915 static inline int skb_headroom(const struct sk_buff *skb)
916 {
917 return skb->data - skb->head;
918 }
919
920 /**
921 * skb_tailroom - bytes at buffer end
922 * @skb: buffer to check
923 *
924 * Return the number of bytes of free space at the tail of an sk_buff
925 */
926 static inline int skb_tailroom(const struct sk_buff *skb)
927 {
928 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
929 }
930
931 /**
932 * skb_reserve - adjust headroom
933 * @skb: buffer to alter
934 * @len: bytes to move
935 *
936 * Increase the headroom of an empty &sk_buff by reducing the tail
937 * room. This is only allowed for an empty buffer.
938 */
939 static inline void skb_reserve(struct sk_buff *skb, int len)
940 {
941 skb->data += len;
942 skb->tail += len;
943 }
944
945 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
946 {
947 return skb->transport_header;
948 }
949
950 static inline void skb_reset_transport_header(struct sk_buff *skb)
951 {
952 skb->transport_header = skb->data;
953 }
954
955 static inline void skb_set_transport_header(struct sk_buff *skb,
956 const int offset)
957 {
958 skb->transport_header = skb->data + offset;
959 }
960
961 static inline int skb_transport_offset(const struct sk_buff *skb)
962 {
963 return skb->transport_header - skb->data;
964 }
965
966 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
967 {
968 return skb->network_header;
969 }
970
971 static inline void skb_reset_network_header(struct sk_buff *skb)
972 {
973 skb->network_header = skb->data;
974 }
975
976 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
977 {
978 skb->network_header = skb->data + offset;
979 }
980
981 static inline int skb_network_offset(const struct sk_buff *skb)
982 {
983 return skb->network_header - skb->data;
984 }
985
986 static inline u32 skb_network_header_len(const struct sk_buff *skb)
987 {
988 return skb->transport_header - skb->network_header;
989 }
990
991 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
992 {
993 return skb->mac_header;
994 }
995
996 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
997 {
998 return skb->mac_header != NULL;
999 }
1000
1001 static inline void skb_reset_mac_header(struct sk_buff *skb)
1002 {
1003 skb->mac_header = skb->data;
1004 }
1005
1006 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1007 {
1008 skb->mac_header = skb->data + offset;
1009 }
1010
1011 /*
1012 * CPUs often take a performance hit when accessing unaligned memory
1013 * locations. The actual performance hit varies, it can be small if the
1014 * hardware handles it or large if we have to take an exception and fix it
1015 * in software.
1016 *
1017 * Since an ethernet header is 14 bytes network drivers often end up with
1018 * the IP header at an unaligned offset. The IP header can be aligned by
1019 * shifting the start of the packet by 2 bytes. Drivers should do this
1020 * with:
1021 *
1022 * skb_reserve(NET_IP_ALIGN);
1023 *
1024 * The downside to this alignment of the IP header is that the DMA is now
1025 * unaligned. On some architectures the cost of an unaligned DMA is high
1026 * and this cost outweighs the gains made by aligning the IP header.
1027 *
1028 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1029 * to be overridden.
1030 */
1031 #ifndef NET_IP_ALIGN
1032 #define NET_IP_ALIGN 2
1033 #endif
1034
1035 /*
1036 * The networking layer reserves some headroom in skb data (via
1037 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1038 * the header has to grow. In the default case, if the header has to grow
1039 * 16 bytes or less we avoid the reallocation.
1040 *
1041 * Unfortunately this headroom changes the DMA alignment of the resulting
1042 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1043 * on some architectures. An architecture can override this value,
1044 * perhaps setting it to a cacheline in size (since that will maintain
1045 * cacheline alignment of the DMA). It must be a power of 2.
1046 *
1047 * Various parts of the networking layer expect at least 16 bytes of
1048 * headroom, you should not reduce this.
1049 */
1050 #ifndef NET_SKB_PAD
1051 #define NET_SKB_PAD 16
1052 #endif
1053
1054 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1055
1056 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1057 {
1058 if (unlikely(skb->data_len)) {
1059 WARN_ON(1);
1060 return;
1061 }
1062 skb->len = len;
1063 skb->tail = skb->data + len;
1064 }
1065
1066 /**
1067 * skb_trim - remove end from a buffer
1068 * @skb: buffer to alter
1069 * @len: new length
1070 *
1071 * Cut the length of a buffer down by removing data from the tail. If
1072 * the buffer is already under the length specified it is not modified.
1073 * The skb must be linear.
1074 */
1075 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1076 {
1077 if (skb->len > len)
1078 __skb_trim(skb, len);
1079 }
1080
1081
1082 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1083 {
1084 if (skb->data_len)
1085 return ___pskb_trim(skb, len);
1086 __skb_trim(skb, len);
1087 return 0;
1088 }
1089
1090 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1091 {
1092 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1093 }
1094
1095 /**
1096 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1097 * @skb: buffer to alter
1098 * @len: new length
1099 *
1100 * This is identical to pskb_trim except that the caller knows that
1101 * the skb is not cloned so we should never get an error due to out-
1102 * of-memory.
1103 */
1104 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1105 {
1106 int err = pskb_trim(skb, len);
1107 BUG_ON(err);
1108 }
1109
1110 /**
1111 * skb_orphan - orphan a buffer
1112 * @skb: buffer to orphan
1113 *
1114 * If a buffer currently has an owner then we call the owner's
1115 * destructor function and make the @skb unowned. The buffer continues
1116 * to exist but is no longer charged to its former owner.
1117 */
1118 static inline void skb_orphan(struct sk_buff *skb)
1119 {
1120 if (skb->destructor)
1121 skb->destructor(skb);
1122 skb->destructor = NULL;
1123 skb->sk = NULL;
1124 }
1125
1126 /**
1127 * __skb_queue_purge - empty a list
1128 * @list: list to empty
1129 *
1130 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1131 * the list and one reference dropped. This function does not take the
1132 * list lock and the caller must hold the relevant locks to use it.
1133 */
1134 extern void skb_queue_purge(struct sk_buff_head *list);
1135 static inline void __skb_queue_purge(struct sk_buff_head *list)
1136 {
1137 struct sk_buff *skb;
1138 while ((skb = __skb_dequeue(list)) != NULL)
1139 kfree_skb(skb);
1140 }
1141
1142 /**
1143 * __dev_alloc_skb - allocate an skbuff for receiving
1144 * @length: length to allocate
1145 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1146 *
1147 * Allocate a new &sk_buff and assign it a usage count of one. The
1148 * buffer has unspecified headroom built in. Users should allocate
1149 * the headroom they think they need without accounting for the
1150 * built in space. The built in space is used for optimisations.
1151 *
1152 * %NULL is returned if there is no free memory.
1153 */
1154 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1155 gfp_t gfp_mask)
1156 {
1157 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1158 if (likely(skb))
1159 skb_reserve(skb, NET_SKB_PAD);
1160 return skb;
1161 }
1162
1163 /**
1164 * dev_alloc_skb - allocate an skbuff for receiving
1165 * @length: length to allocate
1166 *
1167 * Allocate a new &sk_buff and assign it a usage count of one. The
1168 * buffer has unspecified headroom built in. Users should allocate
1169 * the headroom they think they need without accounting for the
1170 * built in space. The built in space is used for optimisations.
1171 *
1172 * %NULL is returned if there is no free memory. Although this function
1173 * allocates memory it can be called from an interrupt.
1174 */
1175 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1176 {
1177 return __dev_alloc_skb(length, GFP_ATOMIC);
1178 }
1179
1180 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1181 unsigned int length, gfp_t gfp_mask);
1182
1183 /**
1184 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1185 * @dev: network device to receive on
1186 * @length: length to allocate
1187 *
1188 * Allocate a new &sk_buff and assign it a usage count of one. The
1189 * buffer has unspecified headroom built in. Users should allocate
1190 * the headroom they think they need without accounting for the
1191 * built in space. The built in space is used for optimisations.
1192 *
1193 * %NULL is returned if there is no free memory. Although this function
1194 * allocates memory it can be called from an interrupt.
1195 */
1196 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1197 unsigned int length)
1198 {
1199 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1200 }
1201
1202 /**
1203 * skb_cow - copy header of skb when it is required
1204 * @skb: buffer to cow
1205 * @headroom: needed headroom
1206 *
1207 * If the skb passed lacks sufficient headroom or its data part
1208 * is shared, data is reallocated. If reallocation fails, an error
1209 * is returned and original skb is not changed.
1210 *
1211 * The result is skb with writable area skb->head...skb->tail
1212 * and at least @headroom of space at head.
1213 */
1214 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1215 {
1216 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1217 skb_headroom(skb);
1218
1219 if (delta < 0)
1220 delta = 0;
1221
1222 if (delta || skb_cloned(skb))
1223 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1224 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1225 return 0;
1226 }
1227
1228 /**
1229 * skb_padto - pad an skbuff up to a minimal size
1230 * @skb: buffer to pad
1231 * @len: minimal length
1232 *
1233 * Pads up a buffer to ensure the trailing bytes exist and are
1234 * blanked. If the buffer already contains sufficient data it
1235 * is untouched. Otherwise it is extended. Returns zero on
1236 * success. The skb is freed on error.
1237 */
1238
1239 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1240 {
1241 unsigned int size = skb->len;
1242 if (likely(size >= len))
1243 return 0;
1244 return skb_pad(skb, len-size);
1245 }
1246
1247 static inline int skb_add_data(struct sk_buff *skb,
1248 char __user *from, int copy)
1249 {
1250 const int off = skb->len;
1251
1252 if (skb->ip_summed == CHECKSUM_NONE) {
1253 int err = 0;
1254 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1255 copy, 0, &err);
1256 if (!err) {
1257 skb->csum = csum_block_add(skb->csum, csum, off);
1258 return 0;
1259 }
1260 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1261 return 0;
1262
1263 __skb_trim(skb, off);
1264 return -EFAULT;
1265 }
1266
1267 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1268 struct page *page, int off)
1269 {
1270 if (i) {
1271 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1272
1273 return page == frag->page &&
1274 off == frag->page_offset + frag->size;
1275 }
1276 return 0;
1277 }
1278
1279 static inline int __skb_linearize(struct sk_buff *skb)
1280 {
1281 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1282 }
1283
1284 /**
1285 * skb_linearize - convert paged skb to linear one
1286 * @skb: buffer to linarize
1287 *
1288 * If there is no free memory -ENOMEM is returned, otherwise zero
1289 * is returned and the old skb data released.
1290 */
1291 static inline int skb_linearize(struct sk_buff *skb)
1292 {
1293 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1294 }
1295
1296 /**
1297 * skb_linearize_cow - make sure skb is linear and writable
1298 * @skb: buffer to process
1299 *
1300 * If there is no free memory -ENOMEM is returned, otherwise zero
1301 * is returned and the old skb data released.
1302 */
1303 static inline int skb_linearize_cow(struct sk_buff *skb)
1304 {
1305 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1306 __skb_linearize(skb) : 0;
1307 }
1308
1309 /**
1310 * skb_postpull_rcsum - update checksum for received skb after pull
1311 * @skb: buffer to update
1312 * @start: start of data before pull
1313 * @len: length of data pulled
1314 *
1315 * After doing a pull on a received packet, you need to call this to
1316 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1317 * CHECKSUM_NONE so that it can be recomputed from scratch.
1318 */
1319
1320 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1321 const void *start, unsigned int len)
1322 {
1323 if (skb->ip_summed == CHECKSUM_COMPLETE)
1324 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1325 }
1326
1327 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1328
1329 /**
1330 * pskb_trim_rcsum - trim received skb and update checksum
1331 * @skb: buffer to trim
1332 * @len: new length
1333 *
1334 * This is exactly the same as pskb_trim except that it ensures the
1335 * checksum of received packets are still valid after the operation.
1336 */
1337
1338 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1339 {
1340 if (likely(len >= skb->len))
1341 return 0;
1342 if (skb->ip_summed == CHECKSUM_COMPLETE)
1343 skb->ip_summed = CHECKSUM_NONE;
1344 return __pskb_trim(skb, len);
1345 }
1346
1347 #define skb_queue_walk(queue, skb) \
1348 for (skb = (queue)->next; \
1349 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1350 skb = skb->next)
1351
1352 #define skb_queue_reverse_walk(queue, skb) \
1353 for (skb = (queue)->prev; \
1354 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1355 skb = skb->prev)
1356
1357
1358 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1359 int noblock, int *err);
1360 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1361 struct poll_table_struct *wait);
1362 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1363 int offset, struct iovec *to,
1364 int size);
1365 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1366 int hlen,
1367 struct iovec *iov);
1368 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1369 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1370 unsigned int flags);
1371 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1372 int len, __wsum csum);
1373 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1374 void *to, int len);
1375 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1376 void *from, int len);
1377 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1378 int offset, u8 *to, int len,
1379 __wsum csum);
1380 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1381 extern void skb_split(struct sk_buff *skb,
1382 struct sk_buff *skb1, const u32 len);
1383
1384 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1385
1386 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1387 int len, void *buffer)
1388 {
1389 int hlen = skb_headlen(skb);
1390
1391 if (hlen - offset >= len)
1392 return skb->data + offset;
1393
1394 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1395 return NULL;
1396
1397 return buffer;
1398 }
1399
1400 extern void skb_init(void);
1401 extern void skb_add_mtu(int mtu);
1402
1403 /**
1404 * skb_get_timestamp - get timestamp from a skb
1405 * @skb: skb to get stamp from
1406 * @stamp: pointer to struct timeval to store stamp in
1407 *
1408 * Timestamps are stored in the skb as offsets to a base timestamp.
1409 * This function converts the offset back to a struct timeval and stores
1410 * it in stamp.
1411 */
1412 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1413 {
1414 *stamp = ktime_to_timeval(skb->tstamp);
1415 }
1416
1417 static inline void __net_timestamp(struct sk_buff *skb)
1418 {
1419 skb->tstamp = ktime_get_real();
1420 }
1421
1422
1423 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1424 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1425
1426 /**
1427 * skb_checksum_complete - Calculate checksum of an entire packet
1428 * @skb: packet to process
1429 *
1430 * This function calculates the checksum over the entire packet plus
1431 * the value of skb->csum. The latter can be used to supply the
1432 * checksum of a pseudo header as used by TCP/UDP. It returns the
1433 * checksum.
1434 *
1435 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1436 * this function can be used to verify that checksum on received
1437 * packets. In that case the function should return zero if the
1438 * checksum is correct. In particular, this function will return zero
1439 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1440 * hardware has already verified the correctness of the checksum.
1441 */
1442 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1443 {
1444 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1445 __skb_checksum_complete(skb);
1446 }
1447
1448 #ifdef CONFIG_NETFILTER
1449 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1450 {
1451 if (nfct && atomic_dec_and_test(&nfct->use))
1452 nfct->destroy(nfct);
1453 }
1454 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1455 {
1456 if (nfct)
1457 atomic_inc(&nfct->use);
1458 }
1459 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1460 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1461 {
1462 if (skb)
1463 atomic_inc(&skb->users);
1464 }
1465 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1466 {
1467 if (skb)
1468 kfree_skb(skb);
1469 }
1470 #endif
1471 #ifdef CONFIG_BRIDGE_NETFILTER
1472 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1473 {
1474 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1475 kfree(nf_bridge);
1476 }
1477 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1478 {
1479 if (nf_bridge)
1480 atomic_inc(&nf_bridge->use);
1481 }
1482 #endif /* CONFIG_BRIDGE_NETFILTER */
1483 static inline void nf_reset(struct sk_buff *skb)
1484 {
1485 nf_conntrack_put(skb->nfct);
1486 skb->nfct = NULL;
1487 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1488 nf_conntrack_put_reasm(skb->nfct_reasm);
1489 skb->nfct_reasm = NULL;
1490 #endif
1491 #ifdef CONFIG_BRIDGE_NETFILTER
1492 nf_bridge_put(skb->nf_bridge);
1493 skb->nf_bridge = NULL;
1494 #endif
1495 }
1496
1497 /* Note: This doesn't put any conntrack and bridge info in dst. */
1498 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1499 {
1500 dst->nfct = src->nfct;
1501 nf_conntrack_get(src->nfct);
1502 dst->nfctinfo = src->nfctinfo;
1503 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1504 dst->nfct_reasm = src->nfct_reasm;
1505 nf_conntrack_get_reasm(src->nfct_reasm);
1506 #endif
1507 #ifdef CONFIG_BRIDGE_NETFILTER
1508 dst->nf_bridge = src->nf_bridge;
1509 nf_bridge_get(src->nf_bridge);
1510 #endif
1511 }
1512
1513 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1514 {
1515 nf_conntrack_put(dst->nfct);
1516 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1517 nf_conntrack_put_reasm(dst->nfct_reasm);
1518 #endif
1519 #ifdef CONFIG_BRIDGE_NETFILTER
1520 nf_bridge_put(dst->nf_bridge);
1521 #endif
1522 __nf_copy(dst, src);
1523 }
1524
1525 #else /* CONFIG_NETFILTER */
1526 static inline void nf_reset(struct sk_buff *skb) {}
1527 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) {}
1528 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) {}
1529 #endif /* CONFIG_NETFILTER */
1530
1531 #ifdef CONFIG_NETWORK_SECMARK
1532 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1533 {
1534 to->secmark = from->secmark;
1535 }
1536
1537 static inline void skb_init_secmark(struct sk_buff *skb)
1538 {
1539 skb->secmark = 0;
1540 }
1541 #else
1542 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1543 { }
1544
1545 static inline void skb_init_secmark(struct sk_buff *skb)
1546 { }
1547 #endif
1548
1549 static inline int skb_is_gso(const struct sk_buff *skb)
1550 {
1551 return skb_shinfo(skb)->gso_size;
1552 }
1553
1554 #endif /* __KERNEL__ */
1555 #endif /* _LINUX_SKBUFF_H */