]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/skbuff.h
Merge branch 'master'
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48 /* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
63 * not UNNECESSARY.
64 *
65 * B. Checksumming on output.
66 *
67 * NONE: skb is checksummed by protocol or csum is not required.
68 *
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
72 *
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
76 * everything.
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
82 *
83 * Any questions? No questions, good. --ANK
84 */
85
86 struct net_device;
87
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 atomic_t use;
91 void (*destroy)(struct nf_conntrack *);
92 };
93
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 atomic_t use;
97 struct net_device *physindev;
98 struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device *netoutdev;
101 #endif
102 unsigned int mask;
103 unsigned long data[32 / sizeof(unsigned long)];
104 };
105 #endif
106
107 #endif
108
109 struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
113
114 __u32 qlen;
115 spinlock_t lock;
116 };
117
118 struct sk_buff;
119
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122
123 typedef struct skb_frag_struct skb_frag_t;
124
125 struct skb_frag_struct {
126 struct page *page;
127 __u16 page_offset;
128 __u16 size;
129 };
130
131 /* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
133 */
134 struct skb_shared_info {
135 atomic_t dataref;
136 unsigned short nr_frags;
137 unsigned short tso_size;
138 unsigned short tso_segs;
139 unsigned short ufo_size;
140 unsigned int ip6_frag_id;
141 struct sk_buff *frag_list;
142 skb_frag_t frags[MAX_SKB_FRAGS];
143 };
144
145 /* We divide dataref into two halves. The higher 16 bits hold references
146 * to the payload part of skb->data. The lower 16 bits hold references to
147 * the entire skb->data. It is up to the users of the skb to agree on
148 * where the payload starts.
149 *
150 * All users must obey the rule that the skb->data reference count must be
151 * greater than or equal to the payload reference count.
152 *
153 * Holding a reference to the payload part means that the user does not
154 * care about modifications to the header part of skb->data.
155 */
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158
159 struct skb_timeval {
160 u32 off_sec;
161 u32 off_usec;
162 };
163
164
165 enum {
166 SKB_FCLONE_UNAVAILABLE,
167 SKB_FCLONE_ORIG,
168 SKB_FCLONE_CLONE,
169 };
170
171 /**
172 * struct sk_buff - socket buffer
173 * @next: Next buffer in list
174 * @prev: Previous buffer in list
175 * @sk: Socket we are owned by
176 * @tstamp: Time we arrived
177 * @dev: Device we arrived on/are leaving by
178 * @input_dev: Device we arrived on
179 * @h: Transport layer header
180 * @nh: Network layer header
181 * @mac: Link layer header
182 * @dst: destination entry
183 * @sp: the security path, used for xfrm
184 * @cb: Control buffer. Free for use by every layer. Put private vars here
185 * @len: Length of actual data
186 * @data_len: Data length
187 * @mac_len: Length of link layer header
188 * @csum: Checksum
189 * @local_df: allow local fragmentation
190 * @cloned: Head may be cloned (check refcnt to be sure)
191 * @nohdr: Payload reference only, must not modify header
192 * @pkt_type: Packet class
193 * @fclone: skbuff clone status
194 * @ip_summed: Driver fed us an IP checksum
195 * @priority: Packet queueing priority
196 * @users: User count - see {datagram,tcp}.c
197 * @protocol: Packet protocol from driver
198 * @truesize: Buffer size
199 * @head: Head of buffer
200 * @data: Data head pointer
201 * @tail: Tail pointer
202 * @end: End pointer
203 * @destructor: Destruct function
204 * @nfmark: Can be used for communication between hooks
205 * @nfct: Associated connection, if any
206 * @ipvs_property: skbuff is owned by ipvs
207 * @nfctinfo: Relationship of this skb to the connection
208 * @nfct_reasm: netfilter conntrack re-assembly pointer
209 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
210 * @tc_index: Traffic control index
211 * @tc_verd: traffic control verdict
212 */
213
214 struct sk_buff {
215 /* These two members must be first. */
216 struct sk_buff *next;
217 struct sk_buff *prev;
218
219 struct sock *sk;
220 struct skb_timeval tstamp;
221 struct net_device *dev;
222 struct net_device *input_dev;
223
224 union {
225 struct tcphdr *th;
226 struct udphdr *uh;
227 struct icmphdr *icmph;
228 struct igmphdr *igmph;
229 struct iphdr *ipiph;
230 struct ipv6hdr *ipv6h;
231 unsigned char *raw;
232 } h;
233
234 union {
235 struct iphdr *iph;
236 struct ipv6hdr *ipv6h;
237 struct arphdr *arph;
238 unsigned char *raw;
239 } nh;
240
241 union {
242 unsigned char *raw;
243 } mac;
244
245 struct dst_entry *dst;
246 struct sec_path *sp;
247
248 /*
249 * This is the control buffer. It is free to use for every
250 * layer. Please put your private variables there. If you
251 * want to keep them across layers you have to do a skb_clone()
252 * first. This is owned by whoever has the skb queued ATM.
253 */
254 char cb[48];
255
256 unsigned int len,
257 data_len,
258 mac_len,
259 csum;
260 __u32 priority;
261 __u8 local_df:1,
262 cloned:1,
263 ip_summed:2,
264 nohdr:1,
265 nfctinfo:3;
266 __u8 pkt_type:3,
267 fclone:2,
268 ipvs_property:1;
269 __be16 protocol;
270
271 void (*destructor)(struct sk_buff *skb);
272 #ifdef CONFIG_NETFILTER
273 struct nf_conntrack *nfct;
274 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
275 struct sk_buff *nfct_reasm;
276 #endif
277 #ifdef CONFIG_BRIDGE_NETFILTER
278 struct nf_bridge_info *nf_bridge;
279 #endif
280 __u32 nfmark;
281 #endif /* CONFIG_NETFILTER */
282 #ifdef CONFIG_NET_SCHED
283 __u16 tc_index; /* traffic control index */
284 #ifdef CONFIG_NET_CLS_ACT
285 __u16 tc_verd; /* traffic control verdict */
286 #endif
287 #endif
288
289
290 /* These elements must be at the end, see alloc_skb() for details. */
291 unsigned int truesize;
292 atomic_t users;
293 unsigned char *head,
294 *data,
295 *tail,
296 *end;
297 };
298
299 #ifdef __KERNEL__
300 /*
301 * Handling routines are only of interest to the kernel
302 */
303 #include <linux/slab.h>
304
305 #include <asm/system.h>
306
307 extern void kfree_skb(struct sk_buff *skb);
308 extern void __kfree_skb(struct sk_buff *skb);
309 extern struct sk_buff *__alloc_skb(unsigned int size,
310 gfp_t priority, int fclone);
311 static inline struct sk_buff *alloc_skb(unsigned int size,
312 gfp_t priority)
313 {
314 return __alloc_skb(size, priority, 0);
315 }
316
317 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
318 gfp_t priority)
319 {
320 return __alloc_skb(size, priority, 1);
321 }
322
323 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
324 unsigned int size,
325 gfp_t priority);
326 extern void kfree_skbmem(struct sk_buff *skb);
327 extern struct sk_buff *skb_clone(struct sk_buff *skb,
328 gfp_t priority);
329 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
330 gfp_t priority);
331 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
332 gfp_t gfp_mask);
333 extern int pskb_expand_head(struct sk_buff *skb,
334 int nhead, int ntail,
335 gfp_t gfp_mask);
336 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
337 unsigned int headroom);
338 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
339 int newheadroom, int newtailroom,
340 gfp_t priority);
341 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
342 #define dev_kfree_skb(a) kfree_skb(a)
343 extern void skb_over_panic(struct sk_buff *skb, int len,
344 void *here);
345 extern void skb_under_panic(struct sk_buff *skb, int len,
346 void *here);
347
348 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
349 int getfrag(void *from, char *to, int offset,
350 int len,int odd, struct sk_buff *skb),
351 void *from, int length);
352
353 struct skb_seq_state
354 {
355 __u32 lower_offset;
356 __u32 upper_offset;
357 __u32 frag_idx;
358 __u32 stepped_offset;
359 struct sk_buff *root_skb;
360 struct sk_buff *cur_skb;
361 __u8 *frag_data;
362 };
363
364 extern void skb_prepare_seq_read(struct sk_buff *skb,
365 unsigned int from, unsigned int to,
366 struct skb_seq_state *st);
367 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
368 struct skb_seq_state *st);
369 extern void skb_abort_seq_read(struct skb_seq_state *st);
370
371 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
372 unsigned int to, struct ts_config *config,
373 struct ts_state *state);
374
375 /* Internal */
376 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
377
378 /**
379 * skb_queue_empty - check if a queue is empty
380 * @list: queue head
381 *
382 * Returns true if the queue is empty, false otherwise.
383 */
384 static inline int skb_queue_empty(const struct sk_buff_head *list)
385 {
386 return list->next == (struct sk_buff *)list;
387 }
388
389 /**
390 * skb_get - reference buffer
391 * @skb: buffer to reference
392 *
393 * Makes another reference to a socket buffer and returns a pointer
394 * to the buffer.
395 */
396 static inline struct sk_buff *skb_get(struct sk_buff *skb)
397 {
398 atomic_inc(&skb->users);
399 return skb;
400 }
401
402 /*
403 * If users == 1, we are the only owner and are can avoid redundant
404 * atomic change.
405 */
406
407 /**
408 * skb_cloned - is the buffer a clone
409 * @skb: buffer to check
410 *
411 * Returns true if the buffer was generated with skb_clone() and is
412 * one of multiple shared copies of the buffer. Cloned buffers are
413 * shared data so must not be written to under normal circumstances.
414 */
415 static inline int skb_cloned(const struct sk_buff *skb)
416 {
417 return skb->cloned &&
418 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
419 }
420
421 /**
422 * skb_header_cloned - is the header a clone
423 * @skb: buffer to check
424 *
425 * Returns true if modifying the header part of the buffer requires
426 * the data to be copied.
427 */
428 static inline int skb_header_cloned(const struct sk_buff *skb)
429 {
430 int dataref;
431
432 if (!skb->cloned)
433 return 0;
434
435 dataref = atomic_read(&skb_shinfo(skb)->dataref);
436 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
437 return dataref != 1;
438 }
439
440 /**
441 * skb_header_release - release reference to header
442 * @skb: buffer to operate on
443 *
444 * Drop a reference to the header part of the buffer. This is done
445 * by acquiring a payload reference. You must not read from the header
446 * part of skb->data after this.
447 */
448 static inline void skb_header_release(struct sk_buff *skb)
449 {
450 BUG_ON(skb->nohdr);
451 skb->nohdr = 1;
452 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
453 }
454
455 /**
456 * skb_shared - is the buffer shared
457 * @skb: buffer to check
458 *
459 * Returns true if more than one person has a reference to this
460 * buffer.
461 */
462 static inline int skb_shared(const struct sk_buff *skb)
463 {
464 return atomic_read(&skb->users) != 1;
465 }
466
467 /**
468 * skb_share_check - check if buffer is shared and if so clone it
469 * @skb: buffer to check
470 * @pri: priority for memory allocation
471 *
472 * If the buffer is shared the buffer is cloned and the old copy
473 * drops a reference. A new clone with a single reference is returned.
474 * If the buffer is not shared the original buffer is returned. When
475 * being called from interrupt status or with spinlocks held pri must
476 * be GFP_ATOMIC.
477 *
478 * NULL is returned on a memory allocation failure.
479 */
480 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
481 gfp_t pri)
482 {
483 might_sleep_if(pri & __GFP_WAIT);
484 if (skb_shared(skb)) {
485 struct sk_buff *nskb = skb_clone(skb, pri);
486 kfree_skb(skb);
487 skb = nskb;
488 }
489 return skb;
490 }
491
492 /*
493 * Copy shared buffers into a new sk_buff. We effectively do COW on
494 * packets to handle cases where we have a local reader and forward
495 * and a couple of other messy ones. The normal one is tcpdumping
496 * a packet thats being forwarded.
497 */
498
499 /**
500 * skb_unshare - make a copy of a shared buffer
501 * @skb: buffer to check
502 * @pri: priority for memory allocation
503 *
504 * If the socket buffer is a clone then this function creates a new
505 * copy of the data, drops a reference count on the old copy and returns
506 * the new copy with the reference count at 1. If the buffer is not a clone
507 * the original buffer is returned. When called with a spinlock held or
508 * from interrupt state @pri must be %GFP_ATOMIC
509 *
510 * %NULL is returned on a memory allocation failure.
511 */
512 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
513 gfp_t pri)
514 {
515 might_sleep_if(pri & __GFP_WAIT);
516 if (skb_cloned(skb)) {
517 struct sk_buff *nskb = skb_copy(skb, pri);
518 kfree_skb(skb); /* Free our shared copy */
519 skb = nskb;
520 }
521 return skb;
522 }
523
524 /**
525 * skb_peek
526 * @list_: list to peek at
527 *
528 * Peek an &sk_buff. Unlike most other operations you _MUST_
529 * be careful with this one. A peek leaves the buffer on the
530 * list and someone else may run off with it. You must hold
531 * the appropriate locks or have a private queue to do this.
532 *
533 * Returns %NULL for an empty list or a pointer to the head element.
534 * The reference count is not incremented and the reference is therefore
535 * volatile. Use with caution.
536 */
537 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
538 {
539 struct sk_buff *list = ((struct sk_buff *)list_)->next;
540 if (list == (struct sk_buff *)list_)
541 list = NULL;
542 return list;
543 }
544
545 /**
546 * skb_peek_tail
547 * @list_: list to peek at
548 *
549 * Peek an &sk_buff. Unlike most other operations you _MUST_
550 * be careful with this one. A peek leaves the buffer on the
551 * list and someone else may run off with it. You must hold
552 * the appropriate locks or have a private queue to do this.
553 *
554 * Returns %NULL for an empty list or a pointer to the tail element.
555 * The reference count is not incremented and the reference is therefore
556 * volatile. Use with caution.
557 */
558 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
559 {
560 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
561 if (list == (struct sk_buff *)list_)
562 list = NULL;
563 return list;
564 }
565
566 /**
567 * skb_queue_len - get queue length
568 * @list_: list to measure
569 *
570 * Return the length of an &sk_buff queue.
571 */
572 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
573 {
574 return list_->qlen;
575 }
576
577 static inline void skb_queue_head_init(struct sk_buff_head *list)
578 {
579 spin_lock_init(&list->lock);
580 list->prev = list->next = (struct sk_buff *)list;
581 list->qlen = 0;
582 }
583
584 /*
585 * Insert an sk_buff at the start of a list.
586 *
587 * The "__skb_xxxx()" functions are the non-atomic ones that
588 * can only be called with interrupts disabled.
589 */
590
591 /**
592 * __skb_queue_after - queue a buffer at the list head
593 * @list: list to use
594 * @prev: place after this buffer
595 * @newsk: buffer to queue
596 *
597 * Queue a buffer int the middle of a list. This function takes no locks
598 * and you must therefore hold required locks before calling it.
599 *
600 * A buffer cannot be placed on two lists at the same time.
601 */
602 static inline void __skb_queue_after(struct sk_buff_head *list,
603 struct sk_buff *prev,
604 struct sk_buff *newsk)
605 {
606 struct sk_buff *next;
607 list->qlen++;
608
609 next = prev->next;
610 newsk->next = next;
611 newsk->prev = prev;
612 next->prev = prev->next = newsk;
613 }
614
615 /**
616 * __skb_queue_head - queue a buffer at the list head
617 * @list: list to use
618 * @newsk: buffer to queue
619 *
620 * Queue a buffer at the start of a list. This function takes no locks
621 * and you must therefore hold required locks before calling it.
622 *
623 * A buffer cannot be placed on two lists at the same time.
624 */
625 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
626 static inline void __skb_queue_head(struct sk_buff_head *list,
627 struct sk_buff *newsk)
628 {
629 __skb_queue_after(list, (struct sk_buff *)list, newsk);
630 }
631
632 /**
633 * __skb_queue_tail - queue a buffer at the list tail
634 * @list: list to use
635 * @newsk: buffer to queue
636 *
637 * Queue a buffer at the end of a list. This function takes no locks
638 * and you must therefore hold required locks before calling it.
639 *
640 * A buffer cannot be placed on two lists at the same time.
641 */
642 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
643 static inline void __skb_queue_tail(struct sk_buff_head *list,
644 struct sk_buff *newsk)
645 {
646 struct sk_buff *prev, *next;
647
648 list->qlen++;
649 next = (struct sk_buff *)list;
650 prev = next->prev;
651 newsk->next = next;
652 newsk->prev = prev;
653 next->prev = prev->next = newsk;
654 }
655
656
657 /**
658 * __skb_dequeue - remove from the head of the queue
659 * @list: list to dequeue from
660 *
661 * Remove the head of the list. This function does not take any locks
662 * so must be used with appropriate locks held only. The head item is
663 * returned or %NULL if the list is empty.
664 */
665 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
666 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
667 {
668 struct sk_buff *next, *prev, *result;
669
670 prev = (struct sk_buff *) list;
671 next = prev->next;
672 result = NULL;
673 if (next != prev) {
674 result = next;
675 next = next->next;
676 list->qlen--;
677 next->prev = prev;
678 prev->next = next;
679 result->next = result->prev = NULL;
680 }
681 return result;
682 }
683
684
685 /*
686 * Insert a packet on a list.
687 */
688 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
689 static inline void __skb_insert(struct sk_buff *newsk,
690 struct sk_buff *prev, struct sk_buff *next,
691 struct sk_buff_head *list)
692 {
693 newsk->next = next;
694 newsk->prev = prev;
695 next->prev = prev->next = newsk;
696 list->qlen++;
697 }
698
699 /*
700 * Place a packet after a given packet in a list.
701 */
702 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
703 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
704 {
705 __skb_insert(newsk, old, old->next, list);
706 }
707
708 /*
709 * remove sk_buff from list. _Must_ be called atomically, and with
710 * the list known..
711 */
712 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
713 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
714 {
715 struct sk_buff *next, *prev;
716
717 list->qlen--;
718 next = skb->next;
719 prev = skb->prev;
720 skb->next = skb->prev = NULL;
721 next->prev = prev;
722 prev->next = next;
723 }
724
725
726 /* XXX: more streamlined implementation */
727
728 /**
729 * __skb_dequeue_tail - remove from the tail of the queue
730 * @list: list to dequeue from
731 *
732 * Remove the tail of the list. This function does not take any locks
733 * so must be used with appropriate locks held only. The tail item is
734 * returned or %NULL if the list is empty.
735 */
736 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
737 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
738 {
739 struct sk_buff *skb = skb_peek_tail(list);
740 if (skb)
741 __skb_unlink(skb, list);
742 return skb;
743 }
744
745
746 static inline int skb_is_nonlinear(const struct sk_buff *skb)
747 {
748 return skb->data_len;
749 }
750
751 static inline unsigned int skb_headlen(const struct sk_buff *skb)
752 {
753 return skb->len - skb->data_len;
754 }
755
756 static inline int skb_pagelen(const struct sk_buff *skb)
757 {
758 int i, len = 0;
759
760 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
761 len += skb_shinfo(skb)->frags[i].size;
762 return len + skb_headlen(skb);
763 }
764
765 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
766 struct page *page, int off, int size)
767 {
768 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
769
770 frag->page = page;
771 frag->page_offset = off;
772 frag->size = size;
773 skb_shinfo(skb)->nr_frags = i + 1;
774 }
775
776 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
777 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
778 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
779
780 /*
781 * Add data to an sk_buff
782 */
783 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
784 {
785 unsigned char *tmp = skb->tail;
786 SKB_LINEAR_ASSERT(skb);
787 skb->tail += len;
788 skb->len += len;
789 return tmp;
790 }
791
792 /**
793 * skb_put - add data to a buffer
794 * @skb: buffer to use
795 * @len: amount of data to add
796 *
797 * This function extends the used data area of the buffer. If this would
798 * exceed the total buffer size the kernel will panic. A pointer to the
799 * first byte of the extra data is returned.
800 */
801 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
802 {
803 unsigned char *tmp = skb->tail;
804 SKB_LINEAR_ASSERT(skb);
805 skb->tail += len;
806 skb->len += len;
807 if (unlikely(skb->tail>skb->end))
808 skb_over_panic(skb, len, current_text_addr());
809 return tmp;
810 }
811
812 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
813 {
814 skb->data -= len;
815 skb->len += len;
816 return skb->data;
817 }
818
819 /**
820 * skb_push - add data to the start of a buffer
821 * @skb: buffer to use
822 * @len: amount of data to add
823 *
824 * This function extends the used data area of the buffer at the buffer
825 * start. If this would exceed the total buffer headroom the kernel will
826 * panic. A pointer to the first byte of the extra data is returned.
827 */
828 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
829 {
830 skb->data -= len;
831 skb->len += len;
832 if (unlikely(skb->data<skb->head))
833 skb_under_panic(skb, len, current_text_addr());
834 return skb->data;
835 }
836
837 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
838 {
839 skb->len -= len;
840 BUG_ON(skb->len < skb->data_len);
841 return skb->data += len;
842 }
843
844 /**
845 * skb_pull - remove data from the start of a buffer
846 * @skb: buffer to use
847 * @len: amount of data to remove
848 *
849 * This function removes data from the start of a buffer, returning
850 * the memory to the headroom. A pointer to the next data in the buffer
851 * is returned. Once the data has been pulled future pushes will overwrite
852 * the old data.
853 */
854 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
855 {
856 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
857 }
858
859 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
860
861 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
862 {
863 if (len > skb_headlen(skb) &&
864 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
865 return NULL;
866 skb->len -= len;
867 return skb->data += len;
868 }
869
870 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
871 {
872 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
873 }
874
875 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
876 {
877 if (likely(len <= skb_headlen(skb)))
878 return 1;
879 if (unlikely(len > skb->len))
880 return 0;
881 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
882 }
883
884 /**
885 * skb_headroom - bytes at buffer head
886 * @skb: buffer to check
887 *
888 * Return the number of bytes of free space at the head of an &sk_buff.
889 */
890 static inline int skb_headroom(const struct sk_buff *skb)
891 {
892 return skb->data - skb->head;
893 }
894
895 /**
896 * skb_tailroom - bytes at buffer end
897 * @skb: buffer to check
898 *
899 * Return the number of bytes of free space at the tail of an sk_buff
900 */
901 static inline int skb_tailroom(const struct sk_buff *skb)
902 {
903 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
904 }
905
906 /**
907 * skb_reserve - adjust headroom
908 * @skb: buffer to alter
909 * @len: bytes to move
910 *
911 * Increase the headroom of an empty &sk_buff by reducing the tail
912 * room. This is only allowed for an empty buffer.
913 */
914 static inline void skb_reserve(struct sk_buff *skb, int len)
915 {
916 skb->data += len;
917 skb->tail += len;
918 }
919
920 /*
921 * CPUs often take a performance hit when accessing unaligned memory
922 * locations. The actual performance hit varies, it can be small if the
923 * hardware handles it or large if we have to take an exception and fix it
924 * in software.
925 *
926 * Since an ethernet header is 14 bytes network drivers often end up with
927 * the IP header at an unaligned offset. The IP header can be aligned by
928 * shifting the start of the packet by 2 bytes. Drivers should do this
929 * with:
930 *
931 * skb_reserve(NET_IP_ALIGN);
932 *
933 * The downside to this alignment of the IP header is that the DMA is now
934 * unaligned. On some architectures the cost of an unaligned DMA is high
935 * and this cost outweighs the gains made by aligning the IP header.
936 *
937 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
938 * to be overridden.
939 */
940 #ifndef NET_IP_ALIGN
941 #define NET_IP_ALIGN 2
942 #endif
943
944 /*
945 * The networking layer reserves some headroom in skb data (via
946 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
947 * the header has to grow. In the default case, if the header has to grow
948 * 16 bytes or less we avoid the reallocation.
949 *
950 * Unfortunately this headroom changes the DMA alignment of the resulting
951 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
952 * on some architectures. An architecture can override this value,
953 * perhaps setting it to a cacheline in size (since that will maintain
954 * cacheline alignment of the DMA). It must be a power of 2.
955 *
956 * Various parts of the networking layer expect at least 16 bytes of
957 * headroom, you should not reduce this.
958 */
959 #ifndef NET_SKB_PAD
960 #define NET_SKB_PAD 16
961 #endif
962
963 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
964
965 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
966 {
967 if (!skb->data_len) {
968 skb->len = len;
969 skb->tail = skb->data + len;
970 } else
971 ___pskb_trim(skb, len, 0);
972 }
973
974 /**
975 * skb_trim - remove end from a buffer
976 * @skb: buffer to alter
977 * @len: new length
978 *
979 * Cut the length of a buffer down by removing data from the tail. If
980 * the buffer is already under the length specified it is not modified.
981 */
982 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
983 {
984 if (skb->len > len)
985 __skb_trim(skb, len);
986 }
987
988
989 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
990 {
991 if (!skb->data_len) {
992 skb->len = len;
993 skb->tail = skb->data+len;
994 return 0;
995 }
996 return ___pskb_trim(skb, len, 1);
997 }
998
999 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1000 {
1001 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1002 }
1003
1004 /**
1005 * skb_orphan - orphan a buffer
1006 * @skb: buffer to orphan
1007 *
1008 * If a buffer currently has an owner then we call the owner's
1009 * destructor function and make the @skb unowned. The buffer continues
1010 * to exist but is no longer charged to its former owner.
1011 */
1012 static inline void skb_orphan(struct sk_buff *skb)
1013 {
1014 if (skb->destructor)
1015 skb->destructor(skb);
1016 skb->destructor = NULL;
1017 skb->sk = NULL;
1018 }
1019
1020 /**
1021 * __skb_queue_purge - empty a list
1022 * @list: list to empty
1023 *
1024 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1025 * the list and one reference dropped. This function does not take the
1026 * list lock and the caller must hold the relevant locks to use it.
1027 */
1028 extern void skb_queue_purge(struct sk_buff_head *list);
1029 static inline void __skb_queue_purge(struct sk_buff_head *list)
1030 {
1031 struct sk_buff *skb;
1032 while ((skb = __skb_dequeue(list)) != NULL)
1033 kfree_skb(skb);
1034 }
1035
1036 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1037 /**
1038 * __dev_alloc_skb - allocate an skbuff for sending
1039 * @length: length to allocate
1040 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1041 *
1042 * Allocate a new &sk_buff and assign it a usage count of one. The
1043 * buffer has unspecified headroom built in. Users should allocate
1044 * the headroom they think they need without accounting for the
1045 * built in space. The built in space is used for optimisations.
1046 *
1047 * %NULL is returned in there is no free memory.
1048 */
1049 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1050 gfp_t gfp_mask)
1051 {
1052 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1053 if (likely(skb))
1054 skb_reserve(skb, NET_SKB_PAD);
1055 return skb;
1056 }
1057 #else
1058 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1059 #endif
1060
1061 /**
1062 * dev_alloc_skb - allocate an skbuff for sending
1063 * @length: length to allocate
1064 *
1065 * Allocate a new &sk_buff and assign it a usage count of one. The
1066 * buffer has unspecified headroom built in. Users should allocate
1067 * the headroom they think they need without accounting for the
1068 * built in space. The built in space is used for optimisations.
1069 *
1070 * %NULL is returned in there is no free memory. Although this function
1071 * allocates memory it can be called from an interrupt.
1072 */
1073 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1074 {
1075 return __dev_alloc_skb(length, GFP_ATOMIC);
1076 }
1077
1078 /**
1079 * skb_cow - copy header of skb when it is required
1080 * @skb: buffer to cow
1081 * @headroom: needed headroom
1082 *
1083 * If the skb passed lacks sufficient headroom or its data part
1084 * is shared, data is reallocated. If reallocation fails, an error
1085 * is returned and original skb is not changed.
1086 *
1087 * The result is skb with writable area skb->head...skb->tail
1088 * and at least @headroom of space at head.
1089 */
1090 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1091 {
1092 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1093 skb_headroom(skb);
1094
1095 if (delta < 0)
1096 delta = 0;
1097
1098 if (delta || skb_cloned(skb))
1099 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1100 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1101 return 0;
1102 }
1103
1104 /**
1105 * skb_padto - pad an skbuff up to a minimal size
1106 * @skb: buffer to pad
1107 * @len: minimal length
1108 *
1109 * Pads up a buffer to ensure the trailing bytes exist and are
1110 * blanked. If the buffer already contains sufficient data it
1111 * is untouched. Returns the buffer, which may be a replacement
1112 * for the original, or NULL for out of memory - in which case
1113 * the original buffer is still freed.
1114 */
1115
1116 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1117 {
1118 unsigned int size = skb->len;
1119 if (likely(size >= len))
1120 return skb;
1121 return skb_pad(skb, len-size);
1122 }
1123
1124 static inline int skb_add_data(struct sk_buff *skb,
1125 char __user *from, int copy)
1126 {
1127 const int off = skb->len;
1128
1129 if (skb->ip_summed == CHECKSUM_NONE) {
1130 int err = 0;
1131 unsigned int csum = csum_and_copy_from_user(from,
1132 skb_put(skb, copy),
1133 copy, 0, &err);
1134 if (!err) {
1135 skb->csum = csum_block_add(skb->csum, csum, off);
1136 return 0;
1137 }
1138 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1139 return 0;
1140
1141 __skb_trim(skb, off);
1142 return -EFAULT;
1143 }
1144
1145 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1146 struct page *page, int off)
1147 {
1148 if (i) {
1149 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1150
1151 return page == frag->page &&
1152 off == frag->page_offset + frag->size;
1153 }
1154 return 0;
1155 }
1156
1157 /**
1158 * skb_linearize - convert paged skb to linear one
1159 * @skb: buffer to linarize
1160 * @gfp: allocation mode
1161 *
1162 * If there is no free memory -ENOMEM is returned, otherwise zero
1163 * is returned and the old skb data released.
1164 */
1165 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1166 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1167 {
1168 return __skb_linearize(skb, gfp);
1169 }
1170
1171 /**
1172 * skb_postpull_rcsum - update checksum for received skb after pull
1173 * @skb: buffer to update
1174 * @start: start of data before pull
1175 * @len: length of data pulled
1176 *
1177 * After doing a pull on a received packet, you need to call this to
1178 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1179 * so that it can be recomputed from scratch.
1180 */
1181
1182 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1183 const void *start, unsigned int len)
1184 {
1185 if (skb->ip_summed == CHECKSUM_HW)
1186 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1187 }
1188
1189 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1190
1191 /**
1192 * pskb_trim_rcsum - trim received skb and update checksum
1193 * @skb: buffer to trim
1194 * @len: new length
1195 *
1196 * This is exactly the same as pskb_trim except that it ensures the
1197 * checksum of received packets are still valid after the operation.
1198 */
1199
1200 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1201 {
1202 if (likely(len >= skb->len))
1203 return 0;
1204 if (skb->ip_summed == CHECKSUM_HW)
1205 skb->ip_summed = CHECKSUM_NONE;
1206 return __pskb_trim(skb, len);
1207 }
1208
1209 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1210 {
1211 #ifdef CONFIG_HIGHMEM
1212 BUG_ON(in_irq());
1213
1214 local_bh_disable();
1215 #endif
1216 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1217 }
1218
1219 static inline void kunmap_skb_frag(void *vaddr)
1220 {
1221 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1222 #ifdef CONFIG_HIGHMEM
1223 local_bh_enable();
1224 #endif
1225 }
1226
1227 #define skb_queue_walk(queue, skb) \
1228 for (skb = (queue)->next; \
1229 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1230 skb = skb->next)
1231
1232 #define skb_queue_reverse_walk(queue, skb) \
1233 for (skb = (queue)->prev; \
1234 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1235 skb = skb->prev)
1236
1237
1238 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1239 int noblock, int *err);
1240 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1241 struct poll_table_struct *wait);
1242 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1243 int offset, struct iovec *to,
1244 int size);
1245 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1246 int hlen,
1247 struct iovec *iov);
1248 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1249 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1250 unsigned int flags);
1251 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1252 int len, unsigned int csum);
1253 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1254 void *to, int len);
1255 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1256 void *from, int len);
1257 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1258 int offset, u8 *to, int len,
1259 unsigned int csum);
1260 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1261 extern void skb_split(struct sk_buff *skb,
1262 struct sk_buff *skb1, const u32 len);
1263
1264 extern void skb_release_data(struct sk_buff *skb);
1265
1266 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1267 int len, void *buffer)
1268 {
1269 int hlen = skb_headlen(skb);
1270
1271 if (hlen - offset >= len)
1272 return skb->data + offset;
1273
1274 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1275 return NULL;
1276
1277 return buffer;
1278 }
1279
1280 extern void skb_init(void);
1281 extern void skb_add_mtu(int mtu);
1282
1283 /**
1284 * skb_get_timestamp - get timestamp from a skb
1285 * @skb: skb to get stamp from
1286 * @stamp: pointer to struct timeval to store stamp in
1287 *
1288 * Timestamps are stored in the skb as offsets to a base timestamp.
1289 * This function converts the offset back to a struct timeval and stores
1290 * it in stamp.
1291 */
1292 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1293 {
1294 stamp->tv_sec = skb->tstamp.off_sec;
1295 stamp->tv_usec = skb->tstamp.off_usec;
1296 }
1297
1298 /**
1299 * skb_set_timestamp - set timestamp of a skb
1300 * @skb: skb to set stamp of
1301 * @stamp: pointer to struct timeval to get stamp from
1302 *
1303 * Timestamps are stored in the skb as offsets to a base timestamp.
1304 * This function converts a struct timeval to an offset and stores
1305 * it in the skb.
1306 */
1307 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1308 {
1309 skb->tstamp.off_sec = stamp->tv_sec;
1310 skb->tstamp.off_usec = stamp->tv_usec;
1311 }
1312
1313 extern void __net_timestamp(struct sk_buff *skb);
1314
1315 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1316
1317 /**
1318 * skb_checksum_complete - Calculate checksum of an entire packet
1319 * @skb: packet to process
1320 *
1321 * This function calculates the checksum over the entire packet plus
1322 * the value of skb->csum. The latter can be used to supply the
1323 * checksum of a pseudo header as used by TCP/UDP. It returns the
1324 * checksum.
1325 *
1326 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1327 * this function can be used to verify that checksum on received
1328 * packets. In that case the function should return zero if the
1329 * checksum is correct. In particular, this function will return zero
1330 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1331 * hardware has already verified the correctness of the checksum.
1332 */
1333 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1334 {
1335 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1336 __skb_checksum_complete(skb);
1337 }
1338
1339 #ifdef CONFIG_NETFILTER
1340 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1341 {
1342 if (nfct && atomic_dec_and_test(&nfct->use))
1343 nfct->destroy(nfct);
1344 }
1345 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1346 {
1347 if (nfct)
1348 atomic_inc(&nfct->use);
1349 }
1350 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1351 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1352 {
1353 if (skb)
1354 atomic_inc(&skb->users);
1355 }
1356 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1357 {
1358 if (skb)
1359 kfree_skb(skb);
1360 }
1361 #endif
1362 #ifdef CONFIG_BRIDGE_NETFILTER
1363 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1364 {
1365 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1366 kfree(nf_bridge);
1367 }
1368 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1369 {
1370 if (nf_bridge)
1371 atomic_inc(&nf_bridge->use);
1372 }
1373 #endif /* CONFIG_BRIDGE_NETFILTER */
1374 static inline void nf_reset(struct sk_buff *skb)
1375 {
1376 nf_conntrack_put(skb->nfct);
1377 skb->nfct = NULL;
1378 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1379 nf_conntrack_put_reasm(skb->nfct_reasm);
1380 skb->nfct_reasm = NULL;
1381 #endif
1382 #ifdef CONFIG_BRIDGE_NETFILTER
1383 nf_bridge_put(skb->nf_bridge);
1384 skb->nf_bridge = NULL;
1385 #endif
1386 }
1387
1388 #else /* CONFIG_NETFILTER */
1389 static inline void nf_reset(struct sk_buff *skb) {}
1390 #endif /* CONFIG_NETFILTER */
1391
1392 #endif /* __KERNEL__ */
1393 #endif /* _LINUX_SKBUFF_H */