]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/skbuff.h
mm/hotplug: invalid PFNs from pfn_to_online_page()
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 atomic_t use;
250 };
251 #endif
252
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 refcount_t use;
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
260 } orig_proto:8;
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
264 __u16 frag_max_size;
265 struct net_device *physindev;
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
269 union {
270 /* prerouting: detect dnat in orig/reply direction */
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
279 };
280 };
281 #endif
282
283 struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290 };
291
292 struct sk_buff;
293
294 /* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
300 */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311 #define GSO_BY_FRAGS 0xFFFF
312
313 typedef struct skb_frag_struct skb_frag_t;
314
315 struct skb_frag_struct {
316 struct {
317 struct page *p;
318 } page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 __u32 page_offset;
321 __u32 size;
322 #else
323 __u16 page_offset;
324 __u16 size;
325 #endif
326 };
327
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 return frag->size;
331 }
332
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 frag->size = size;
336 }
337
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 frag->size += delta;
341 }
342
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 frag->size -= delta;
346 }
347
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353 #endif
354 return false;
355 }
356
357 /**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
384 #define HAVE_HW_TIME_STAMP
385
386 /**
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
392 * skb->tstamp.
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400 struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
402 };
403
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY = 1 << 3,
417
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS = 1 << 4,
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431
432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
434 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
437 /*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
444 */
445 struct ubuf_info {
446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
459 refcount_t refcnt;
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
465 };
466
467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 struct ubuf_info *uarg);
472
473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 refcount_inc(&uarg->refcnt);
476 }
477
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 struct msghdr *msg, int len,
485 struct ubuf_info *uarg);
486
487 /* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
489 */
490 struct skb_shared_info {
491 __u8 __unused;
492 __u8 meta_len;
493 __u8 nr_frags;
494 __u8 tx_flags;
495 unsigned short gso_size;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs;
498 struct sk_buff *frag_list;
499 struct skb_shared_hwtstamps hwtstamps;
500 unsigned int gso_type;
501 u32 tskey;
502
503 /*
504 * Warning : all fields before dataref are cleared in __alloc_skb()
505 */
506 atomic_t dataref;
507
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg;
511
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags[MAX_SKB_FRAGS];
514 };
515
516 /* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
520 *
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
523 *
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
526 */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529
530
531 enum {
532 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
535 };
536
537 enum {
538 SKB_GSO_TCPV4 = 1 << 0,
539
540 /* This indicates the skb is from an untrusted source. */
541 SKB_GSO_DODGY = 1 << 1,
542
543 /* This indicates the tcp segment has CWR set. */
544 SKB_GSO_TCP_ECN = 1 << 2,
545
546 SKB_GSO_TCP_FIXEDID = 1 << 3,
547
548 SKB_GSO_TCPV6 = 1 << 4,
549
550 SKB_GSO_FCOE = 1 << 5,
551
552 SKB_GSO_GRE = 1 << 6,
553
554 SKB_GSO_GRE_CSUM = 1 << 7,
555
556 SKB_GSO_IPXIP4 = 1 << 8,
557
558 SKB_GSO_IPXIP6 = 1 << 9,
559
560 SKB_GSO_UDP_TUNNEL = 1 << 10,
561
562 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563
564 SKB_GSO_PARTIAL = 1 << 12,
565
566 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567
568 SKB_GSO_SCTP = 1 << 14,
569
570 SKB_GSO_ESP = 1 << 15,
571
572 SKB_GSO_UDP = 1 << 16,
573 };
574
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
577 #endif
578
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t;
581 #else
582 typedef unsigned char *sk_buff_data_t;
583 #endif
584
585 /**
586 * struct sk_buff - socket buffer
587 * @next: Next buffer in list
588 * @prev: Previous buffer in list
589 * @tstamp: Time we arrived/left
590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
591 * @sk: Socket we are owned by
592 * @dev: Device we arrived on/are leaving by
593 * @cb: Control buffer. Free for use by every layer. Put private vars here
594 * @_skb_refdst: destination entry (with norefcount bit)
595 * @sp: the security path, used for xfrm
596 * @len: Length of actual data
597 * @data_len: Data length
598 * @mac_len: Length of link layer header
599 * @hdr_len: writable header length of cloned skb
600 * @csum: Checksum (must include start/offset pair)
601 * @csum_start: Offset from skb->head where checksumming should start
602 * @csum_offset: Offset from csum_start where checksum should be stored
603 * @priority: Packet queueing priority
604 * @ignore_df: allow local fragmentation
605 * @cloned: Head may be cloned (check refcnt to be sure)
606 * @ip_summed: Driver fed us an IP checksum
607 * @nohdr: Payload reference only, must not modify header
608 * @pkt_type: Packet class
609 * @fclone: skbuff clone status
610 * @ipvs_property: skbuff is owned by ipvs
611 * @tc_skip_classify: do not classify packet. set by IFB device
612 * @tc_at_ingress: used within tc_classify to distinguish in/egress
613 * @tc_redirected: packet was redirected by a tc action
614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615 * @peeked: this packet has been seen already, so stats have been
616 * done for it, don't do them again
617 * @nf_trace: netfilter packet trace flag
618 * @protocol: Packet protocol from driver
619 * @destructor: Destruct function
620 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
621 * @_nfct: Associated connection, if any (with nfctinfo bits)
622 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
623 * @skb_iif: ifindex of device we arrived on
624 * @tc_index: Traffic control index
625 * @hash: the packet hash
626 * @queue_mapping: Queue mapping for multiqueue devices
627 * @xmit_more: More SKBs are pending for this queue
628 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
629 * @ndisc_nodetype: router type (from link layer)
630 * @ooo_okay: allow the mapping of a socket to a queue to be changed
631 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
632 * ports.
633 * @sw_hash: indicates hash was computed in software stack
634 * @wifi_acked_valid: wifi_acked was set
635 * @wifi_acked: whether frame was acked on wifi or not
636 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
637 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
638 * @dst_pending_confirm: need to confirm neighbour
639 * @napi_id: id of the NAPI struct this skb came from
640 * @secmark: security marking
641 * @mark: Generic packet mark
642 * @vlan_proto: vlan encapsulation protocol
643 * @vlan_tci: vlan tag control information
644 * @inner_protocol: Protocol (encapsulation)
645 * @inner_transport_header: Inner transport layer header (encapsulation)
646 * @inner_network_header: Network layer header (encapsulation)
647 * @inner_mac_header: Link layer header (encapsulation)
648 * @transport_header: Transport layer header
649 * @network_header: Network layer header
650 * @mac_header: Link layer header
651 * @tail: Tail pointer
652 * @end: End pointer
653 * @head: Head of buffer
654 * @data: Data head pointer
655 * @truesize: Buffer size
656 * @users: User count - see {datagram,tcp}.c
657 */
658
659 struct sk_buff {
660 union {
661 struct {
662 /* These two members must be first. */
663 struct sk_buff *next;
664 struct sk_buff *prev;
665
666 union {
667 struct net_device *dev;
668 /* Some protocols might use this space to store information,
669 * while device pointer would be NULL.
670 * UDP receive path is one user.
671 */
672 unsigned long dev_scratch;
673 };
674 };
675 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
676 struct list_head list;
677 };
678
679 union {
680 struct sock *sk;
681 int ip_defrag_offset;
682 };
683
684 union {
685 ktime_t tstamp;
686 u64 skb_mstamp;
687 };
688 /*
689 * This is the control buffer. It is free to use for every
690 * layer. Please put your private variables there. If you
691 * want to keep them across layers you have to do a skb_clone()
692 * first. This is owned by whoever has the skb queued ATM.
693 */
694 char cb[48] __aligned(8);
695
696 union {
697 struct {
698 unsigned long _skb_refdst;
699 void (*destructor)(struct sk_buff *skb);
700 };
701 struct list_head tcp_tsorted_anchor;
702 };
703
704 #ifdef CONFIG_XFRM
705 struct sec_path *sp;
706 #endif
707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
708 unsigned long _nfct;
709 #endif
710 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
711 struct nf_bridge_info *nf_bridge;
712 #endif
713 unsigned int len,
714 data_len;
715 __u16 mac_len,
716 hdr_len;
717
718 /* Following fields are _not_ copied in __copy_skb_header()
719 * Note that queue_mapping is here mostly to fill a hole.
720 */
721 __u16 queue_mapping;
722
723 /* if you move cloned around you also must adapt those constants */
724 #ifdef __BIG_ENDIAN_BITFIELD
725 #define CLONED_MASK (1 << 7)
726 #else
727 #define CLONED_MASK 1
728 #endif
729 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
730
731 __u8 __cloned_offset[0];
732 __u8 cloned:1,
733 nohdr:1,
734 fclone:2,
735 peeked:1,
736 head_frag:1,
737 xmit_more:1,
738 pfmemalloc:1;
739
740 /* fields enclosed in headers_start/headers_end are copied
741 * using a single memcpy() in __copy_skb_header()
742 */
743 /* private: */
744 __u32 headers_start[0];
745 /* public: */
746
747 /* if you move pkt_type around you also must adapt those constants */
748 #ifdef __BIG_ENDIAN_BITFIELD
749 #define PKT_TYPE_MAX (7 << 5)
750 #else
751 #define PKT_TYPE_MAX 7
752 #endif
753 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
754
755 __u8 __pkt_type_offset[0];
756 __u8 pkt_type:3;
757 __u8 ignore_df:1;
758 __u8 nf_trace:1;
759 __u8 ip_summed:2;
760 __u8 ooo_okay:1;
761
762 __u8 l4_hash:1;
763 __u8 sw_hash:1;
764 __u8 wifi_acked_valid:1;
765 __u8 wifi_acked:1;
766 __u8 no_fcs:1;
767 /* Indicates the inner headers are valid in the skbuff. */
768 __u8 encapsulation:1;
769 __u8 encap_hdr_csum:1;
770 __u8 csum_valid:1;
771
772 __u8 csum_complete_sw:1;
773 __u8 csum_level:2;
774 __u8 csum_not_inet:1;
775 __u8 dst_pending_confirm:1;
776 #ifdef CONFIG_IPV6_NDISC_NODETYPE
777 __u8 ndisc_nodetype:2;
778 #endif
779 __u8 ipvs_property:1;
780
781 __u8 inner_protocol_type:1;
782 __u8 remcsum_offload:1;
783 #ifdef CONFIG_NET_SWITCHDEV
784 __u8 offload_fwd_mark:1;
785 __u8 offload_mr_fwd_mark:1;
786 #endif
787 #ifdef CONFIG_NET_CLS_ACT
788 __u8 tc_skip_classify:1;
789 __u8 tc_at_ingress:1;
790 __u8 tc_redirected:1;
791 __u8 tc_from_ingress:1;
792 #endif
793
794 #ifdef CONFIG_NET_SCHED
795 __u16 tc_index; /* traffic control index */
796 #endif
797
798 union {
799 __wsum csum;
800 struct {
801 __u16 csum_start;
802 __u16 csum_offset;
803 };
804 };
805 __u32 priority;
806 int skb_iif;
807 __u32 hash;
808 __be16 vlan_proto;
809 __u16 vlan_tci;
810 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
811 union {
812 unsigned int napi_id;
813 unsigned int sender_cpu;
814 };
815 #endif
816 #ifdef CONFIG_NETWORK_SECMARK
817 __u32 secmark;
818 #endif
819
820 union {
821 __u32 mark;
822 __u32 reserved_tailroom;
823 };
824
825 union {
826 __be16 inner_protocol;
827 __u8 inner_ipproto;
828 };
829
830 __u16 inner_transport_header;
831 __u16 inner_network_header;
832 __u16 inner_mac_header;
833
834 __be16 protocol;
835 __u16 transport_header;
836 __u16 network_header;
837 __u16 mac_header;
838
839 /* private: */
840 __u32 headers_end[0];
841 /* public: */
842
843 /* These elements must be at the end, see alloc_skb() for details. */
844 sk_buff_data_t tail;
845 sk_buff_data_t end;
846 unsigned char *head,
847 *data;
848 unsigned int truesize;
849 refcount_t users;
850 };
851
852 #ifdef __KERNEL__
853 /*
854 * Handling routines are only of interest to the kernel
855 */
856 #include <linux/slab.h>
857
858
859 #define SKB_ALLOC_FCLONE 0x01
860 #define SKB_ALLOC_RX 0x02
861 #define SKB_ALLOC_NAPI 0x04
862
863 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
864 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
865 {
866 return unlikely(skb->pfmemalloc);
867 }
868
869 /*
870 * skb might have a dst pointer attached, refcounted or not.
871 * _skb_refdst low order bit is set if refcount was _not_ taken
872 */
873 #define SKB_DST_NOREF 1UL
874 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
875
876 #define SKB_NFCT_PTRMASK ~(7UL)
877 /**
878 * skb_dst - returns skb dst_entry
879 * @skb: buffer
880 *
881 * Returns skb dst_entry, regardless of reference taken or not.
882 */
883 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
884 {
885 /* If refdst was not refcounted, check we still are in a
886 * rcu_read_lock section
887 */
888 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
889 !rcu_read_lock_held() &&
890 !rcu_read_lock_bh_held());
891 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
892 }
893
894 /**
895 * skb_dst_set - sets skb dst
896 * @skb: buffer
897 * @dst: dst entry
898 *
899 * Sets skb dst, assuming a reference was taken on dst and should
900 * be released by skb_dst_drop()
901 */
902 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
903 {
904 skb->_skb_refdst = (unsigned long)dst;
905 }
906
907 /**
908 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
909 * @skb: buffer
910 * @dst: dst entry
911 *
912 * Sets skb dst, assuming a reference was not taken on dst.
913 * If dst entry is cached, we do not take reference and dst_release
914 * will be avoided by refdst_drop. If dst entry is not cached, we take
915 * reference, so that last dst_release can destroy the dst immediately.
916 */
917 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
918 {
919 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
920 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
921 }
922
923 /**
924 * skb_dst_is_noref - Test if skb dst isn't refcounted
925 * @skb: buffer
926 */
927 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
928 {
929 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
930 }
931
932 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
933 {
934 return (struct rtable *)skb_dst(skb);
935 }
936
937 /* For mangling skb->pkt_type from user space side from applications
938 * such as nft, tc, etc, we only allow a conservative subset of
939 * possible pkt_types to be set.
940 */
941 static inline bool skb_pkt_type_ok(u32 ptype)
942 {
943 return ptype <= PACKET_OTHERHOST;
944 }
945
946 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
947 {
948 #ifdef CONFIG_NET_RX_BUSY_POLL
949 return skb->napi_id;
950 #else
951 return 0;
952 #endif
953 }
954
955 /* decrement the reference count and return true if we can free the skb */
956 static inline bool skb_unref(struct sk_buff *skb)
957 {
958 if (unlikely(!skb))
959 return false;
960 if (likely(refcount_read(&skb->users) == 1))
961 smp_rmb();
962 else if (likely(!refcount_dec_and_test(&skb->users)))
963 return false;
964
965 return true;
966 }
967
968 void skb_release_head_state(struct sk_buff *skb);
969 void kfree_skb(struct sk_buff *skb);
970 void kfree_skb_list(struct sk_buff *segs);
971 void skb_tx_error(struct sk_buff *skb);
972 void consume_skb(struct sk_buff *skb);
973 void __consume_stateless_skb(struct sk_buff *skb);
974 void __kfree_skb(struct sk_buff *skb);
975 extern struct kmem_cache *skbuff_head_cache;
976
977 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
978 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
979 bool *fragstolen, int *delta_truesize);
980
981 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
982 int node);
983 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
984 struct sk_buff *build_skb(void *data, unsigned int frag_size);
985 static inline struct sk_buff *alloc_skb(unsigned int size,
986 gfp_t priority)
987 {
988 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
989 }
990
991 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
992 unsigned long data_len,
993 int max_page_order,
994 int *errcode,
995 gfp_t gfp_mask);
996
997 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
998 struct sk_buff_fclones {
999 struct sk_buff skb1;
1000
1001 struct sk_buff skb2;
1002
1003 refcount_t fclone_ref;
1004 };
1005
1006 /**
1007 * skb_fclone_busy - check if fclone is busy
1008 * @sk: socket
1009 * @skb: buffer
1010 *
1011 * Returns true if skb is a fast clone, and its clone is not freed.
1012 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1013 * so we also check that this didnt happen.
1014 */
1015 static inline bool skb_fclone_busy(const struct sock *sk,
1016 const struct sk_buff *skb)
1017 {
1018 const struct sk_buff_fclones *fclones;
1019
1020 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021
1022 return skb->fclone == SKB_FCLONE_ORIG &&
1023 refcount_read(&fclones->fclone_ref) > 1 &&
1024 fclones->skb2.sk == sk;
1025 }
1026
1027 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1028 gfp_t priority)
1029 {
1030 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1031 }
1032
1033 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1034 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1035 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1036 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1037 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1038 gfp_t gfp_mask, bool fclone);
1039 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1040 gfp_t gfp_mask)
1041 {
1042 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1043 }
1044
1045 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1046 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1047 unsigned int headroom);
1048 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1049 int newtailroom, gfp_t priority);
1050 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1051 int offset, int len);
1052 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1053 int offset, int len);
1054 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1055 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1056
1057 /**
1058 * skb_pad - zero pad the tail of an skb
1059 * @skb: buffer to pad
1060 * @pad: space to pad
1061 *
1062 * Ensure that a buffer is followed by a padding area that is zero
1063 * filled. Used by network drivers which may DMA or transfer data
1064 * beyond the buffer end onto the wire.
1065 *
1066 * May return error in out of memory cases. The skb is freed on error.
1067 */
1068 static inline int skb_pad(struct sk_buff *skb, int pad)
1069 {
1070 return __skb_pad(skb, pad, true);
1071 }
1072 #define dev_kfree_skb(a) consume_skb(a)
1073
1074 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1075 int getfrag(void *from, char *to, int offset,
1076 int len, int odd, struct sk_buff *skb),
1077 void *from, int length);
1078
1079 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1080 int offset, size_t size);
1081
1082 struct skb_seq_state {
1083 __u32 lower_offset;
1084 __u32 upper_offset;
1085 __u32 frag_idx;
1086 __u32 stepped_offset;
1087 struct sk_buff *root_skb;
1088 struct sk_buff *cur_skb;
1089 __u8 *frag_data;
1090 };
1091
1092 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1093 unsigned int to, struct skb_seq_state *st);
1094 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1095 struct skb_seq_state *st);
1096 void skb_abort_seq_read(struct skb_seq_state *st);
1097
1098 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1099 unsigned int to, struct ts_config *config);
1100
1101 /*
1102 * Packet hash types specify the type of hash in skb_set_hash.
1103 *
1104 * Hash types refer to the protocol layer addresses which are used to
1105 * construct a packet's hash. The hashes are used to differentiate or identify
1106 * flows of the protocol layer for the hash type. Hash types are either
1107 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1108 *
1109 * Properties of hashes:
1110 *
1111 * 1) Two packets in different flows have different hash values
1112 * 2) Two packets in the same flow should have the same hash value
1113 *
1114 * A hash at a higher layer is considered to be more specific. A driver should
1115 * set the most specific hash possible.
1116 *
1117 * A driver cannot indicate a more specific hash than the layer at which a hash
1118 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1119 *
1120 * A driver may indicate a hash level which is less specific than the
1121 * actual layer the hash was computed on. For instance, a hash computed
1122 * at L4 may be considered an L3 hash. This should only be done if the
1123 * driver can't unambiguously determine that the HW computed the hash at
1124 * the higher layer. Note that the "should" in the second property above
1125 * permits this.
1126 */
1127 enum pkt_hash_types {
1128 PKT_HASH_TYPE_NONE, /* Undefined type */
1129 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1130 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1131 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1132 };
1133
1134 static inline void skb_clear_hash(struct sk_buff *skb)
1135 {
1136 skb->hash = 0;
1137 skb->sw_hash = 0;
1138 skb->l4_hash = 0;
1139 }
1140
1141 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1142 {
1143 if (!skb->l4_hash)
1144 skb_clear_hash(skb);
1145 }
1146
1147 static inline void
1148 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1149 {
1150 skb->l4_hash = is_l4;
1151 skb->sw_hash = is_sw;
1152 skb->hash = hash;
1153 }
1154
1155 static inline void
1156 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1157 {
1158 /* Used by drivers to set hash from HW */
1159 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1160 }
1161
1162 static inline void
1163 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1164 {
1165 __skb_set_hash(skb, hash, true, is_l4);
1166 }
1167
1168 void __skb_get_hash(struct sk_buff *skb);
1169 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1170 u32 skb_get_poff(const struct sk_buff *skb);
1171 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1172 const struct flow_keys *keys, int hlen);
1173 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1174 void *data, int hlen_proto);
1175
1176 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1177 int thoff, u8 ip_proto)
1178 {
1179 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1180 }
1181
1182 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1183 const struct flow_dissector_key *key,
1184 unsigned int key_count);
1185
1186 bool __skb_flow_dissect(const struct sk_buff *skb,
1187 struct flow_dissector *flow_dissector,
1188 void *target_container,
1189 void *data, __be16 proto, int nhoff, int hlen,
1190 unsigned int flags);
1191
1192 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1193 struct flow_dissector *flow_dissector,
1194 void *target_container, unsigned int flags)
1195 {
1196 return __skb_flow_dissect(skb, flow_dissector, target_container,
1197 NULL, 0, 0, 0, flags);
1198 }
1199
1200 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1201 struct flow_keys *flow,
1202 unsigned int flags)
1203 {
1204 memset(flow, 0, sizeof(*flow));
1205 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1206 NULL, 0, 0, 0, flags);
1207 }
1208
1209 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1210 void *data, __be16 proto,
1211 int nhoff, int hlen,
1212 unsigned int flags)
1213 {
1214 memset(flow, 0, sizeof(*flow));
1215 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1216 data, proto, nhoff, hlen, flags);
1217 }
1218
1219 static inline __u32 skb_get_hash(struct sk_buff *skb)
1220 {
1221 if (!skb->l4_hash && !skb->sw_hash)
1222 __skb_get_hash(skb);
1223
1224 return skb->hash;
1225 }
1226
1227 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1228 {
1229 if (!skb->l4_hash && !skb->sw_hash) {
1230 struct flow_keys keys;
1231 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1232
1233 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1234 }
1235
1236 return skb->hash;
1237 }
1238
1239 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1240 const siphash_key_t *perturb);
1241
1242 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1243 {
1244 return skb->hash;
1245 }
1246
1247 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1248 {
1249 to->hash = from->hash;
1250 to->sw_hash = from->sw_hash;
1251 to->l4_hash = from->l4_hash;
1252 };
1253
1254 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1255 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1256 {
1257 return skb->head + skb->end;
1258 }
1259
1260 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1261 {
1262 return skb->end;
1263 }
1264 #else
1265 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1266 {
1267 return skb->end;
1268 }
1269
1270 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1271 {
1272 return skb->end - skb->head;
1273 }
1274 #endif
1275
1276 /* Internal */
1277 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1278
1279 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1280 {
1281 return &skb_shinfo(skb)->hwtstamps;
1282 }
1283
1284 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1285 {
1286 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1287
1288 return is_zcopy ? skb_uarg(skb) : NULL;
1289 }
1290
1291 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1292 {
1293 if (skb && uarg && !skb_zcopy(skb)) {
1294 sock_zerocopy_get(uarg);
1295 skb_shinfo(skb)->destructor_arg = uarg;
1296 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1297 }
1298 }
1299
1300 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1301 {
1302 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1303 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1304 }
1305
1306 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1307 {
1308 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1309 }
1310
1311 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1312 {
1313 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1314 }
1315
1316 /* Release a reference on a zerocopy structure */
1317 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1318 {
1319 struct ubuf_info *uarg = skb_zcopy(skb);
1320
1321 if (uarg) {
1322 if (skb_zcopy_is_nouarg(skb)) {
1323 /* no notification callback */
1324 } else if (uarg->callback == sock_zerocopy_callback) {
1325 uarg->zerocopy = uarg->zerocopy && zerocopy;
1326 sock_zerocopy_put(uarg);
1327 } else {
1328 uarg->callback(uarg, zerocopy);
1329 }
1330
1331 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1332 }
1333 }
1334
1335 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1336 static inline void skb_zcopy_abort(struct sk_buff *skb)
1337 {
1338 struct ubuf_info *uarg = skb_zcopy(skb);
1339
1340 if (uarg) {
1341 sock_zerocopy_put_abort(uarg);
1342 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1343 }
1344 }
1345
1346 /**
1347 * skb_queue_empty - check if a queue is empty
1348 * @list: queue head
1349 *
1350 * Returns true if the queue is empty, false otherwise.
1351 */
1352 static inline int skb_queue_empty(const struct sk_buff_head *list)
1353 {
1354 return list->next == (const struct sk_buff *) list;
1355 }
1356
1357 /**
1358 * skb_queue_empty_lockless - check if a queue is empty
1359 * @list: queue head
1360 *
1361 * Returns true if the queue is empty, false otherwise.
1362 * This variant can be used in lockless contexts.
1363 */
1364 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1365 {
1366 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1367 }
1368
1369
1370 /**
1371 * skb_queue_is_last - check if skb is the last entry in the queue
1372 * @list: queue head
1373 * @skb: buffer
1374 *
1375 * Returns true if @skb is the last buffer on the list.
1376 */
1377 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1378 const struct sk_buff *skb)
1379 {
1380 return skb->next == (const struct sk_buff *) list;
1381 }
1382
1383 /**
1384 * skb_queue_is_first - check if skb is the first entry in the queue
1385 * @list: queue head
1386 * @skb: buffer
1387 *
1388 * Returns true if @skb is the first buffer on the list.
1389 */
1390 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1391 const struct sk_buff *skb)
1392 {
1393 return skb->prev == (const struct sk_buff *) list;
1394 }
1395
1396 /**
1397 * skb_queue_next - return the next packet in the queue
1398 * @list: queue head
1399 * @skb: current buffer
1400 *
1401 * Return the next packet in @list after @skb. It is only valid to
1402 * call this if skb_queue_is_last() evaluates to false.
1403 */
1404 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1405 const struct sk_buff *skb)
1406 {
1407 /* This BUG_ON may seem severe, but if we just return then we
1408 * are going to dereference garbage.
1409 */
1410 BUG_ON(skb_queue_is_last(list, skb));
1411 return skb->next;
1412 }
1413
1414 /**
1415 * skb_queue_prev - return the prev packet in the queue
1416 * @list: queue head
1417 * @skb: current buffer
1418 *
1419 * Return the prev packet in @list before @skb. It is only valid to
1420 * call this if skb_queue_is_first() evaluates to false.
1421 */
1422 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1423 const struct sk_buff *skb)
1424 {
1425 /* This BUG_ON may seem severe, but if we just return then we
1426 * are going to dereference garbage.
1427 */
1428 BUG_ON(skb_queue_is_first(list, skb));
1429 return skb->prev;
1430 }
1431
1432 /**
1433 * skb_get - reference buffer
1434 * @skb: buffer to reference
1435 *
1436 * Makes another reference to a socket buffer and returns a pointer
1437 * to the buffer.
1438 */
1439 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1440 {
1441 refcount_inc(&skb->users);
1442 return skb;
1443 }
1444
1445 /*
1446 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1447 */
1448
1449 /**
1450 * skb_cloned - is the buffer a clone
1451 * @skb: buffer to check
1452 *
1453 * Returns true if the buffer was generated with skb_clone() and is
1454 * one of multiple shared copies of the buffer. Cloned buffers are
1455 * shared data so must not be written to under normal circumstances.
1456 */
1457 static inline int skb_cloned(const struct sk_buff *skb)
1458 {
1459 return skb->cloned &&
1460 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1461 }
1462
1463 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1464 {
1465 might_sleep_if(gfpflags_allow_blocking(pri));
1466
1467 if (skb_cloned(skb))
1468 return pskb_expand_head(skb, 0, 0, pri);
1469
1470 return 0;
1471 }
1472
1473 /**
1474 * skb_header_cloned - is the header a clone
1475 * @skb: buffer to check
1476 *
1477 * Returns true if modifying the header part of the buffer requires
1478 * the data to be copied.
1479 */
1480 static inline int skb_header_cloned(const struct sk_buff *skb)
1481 {
1482 int dataref;
1483
1484 if (!skb->cloned)
1485 return 0;
1486
1487 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1488 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1489 return dataref != 1;
1490 }
1491
1492 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1493 {
1494 might_sleep_if(gfpflags_allow_blocking(pri));
1495
1496 if (skb_header_cloned(skb))
1497 return pskb_expand_head(skb, 0, 0, pri);
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * __skb_header_release - release reference to header
1504 * @skb: buffer to operate on
1505 */
1506 static inline void __skb_header_release(struct sk_buff *skb)
1507 {
1508 skb->nohdr = 1;
1509 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1510 }
1511
1512
1513 /**
1514 * skb_shared - is the buffer shared
1515 * @skb: buffer to check
1516 *
1517 * Returns true if more than one person has a reference to this
1518 * buffer.
1519 */
1520 static inline int skb_shared(const struct sk_buff *skb)
1521 {
1522 return refcount_read(&skb->users) != 1;
1523 }
1524
1525 /**
1526 * skb_share_check - check if buffer is shared and if so clone it
1527 * @skb: buffer to check
1528 * @pri: priority for memory allocation
1529 *
1530 * If the buffer is shared the buffer is cloned and the old copy
1531 * drops a reference. A new clone with a single reference is returned.
1532 * If the buffer is not shared the original buffer is returned. When
1533 * being called from interrupt status or with spinlocks held pri must
1534 * be GFP_ATOMIC.
1535 *
1536 * NULL is returned on a memory allocation failure.
1537 */
1538 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1539 {
1540 might_sleep_if(gfpflags_allow_blocking(pri));
1541 if (skb_shared(skb)) {
1542 struct sk_buff *nskb = skb_clone(skb, pri);
1543
1544 if (likely(nskb))
1545 consume_skb(skb);
1546 else
1547 kfree_skb(skb);
1548 skb = nskb;
1549 }
1550 return skb;
1551 }
1552
1553 /*
1554 * Copy shared buffers into a new sk_buff. We effectively do COW on
1555 * packets to handle cases where we have a local reader and forward
1556 * and a couple of other messy ones. The normal one is tcpdumping
1557 * a packet thats being forwarded.
1558 */
1559
1560 /**
1561 * skb_unshare - make a copy of a shared buffer
1562 * @skb: buffer to check
1563 * @pri: priority for memory allocation
1564 *
1565 * If the socket buffer is a clone then this function creates a new
1566 * copy of the data, drops a reference count on the old copy and returns
1567 * the new copy with the reference count at 1. If the buffer is not a clone
1568 * the original buffer is returned. When called with a spinlock held or
1569 * from interrupt state @pri must be %GFP_ATOMIC
1570 *
1571 * %NULL is returned on a memory allocation failure.
1572 */
1573 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1574 gfp_t pri)
1575 {
1576 might_sleep_if(gfpflags_allow_blocking(pri));
1577 if (skb_cloned(skb)) {
1578 struct sk_buff *nskb = skb_copy(skb, pri);
1579
1580 /* Free our shared copy */
1581 if (likely(nskb))
1582 consume_skb(skb);
1583 else
1584 kfree_skb(skb);
1585 skb = nskb;
1586 }
1587 return skb;
1588 }
1589
1590 /**
1591 * skb_peek - peek at the head of an &sk_buff_head
1592 * @list_: list to peek at
1593 *
1594 * Peek an &sk_buff. Unlike most other operations you _MUST_
1595 * be careful with this one. A peek leaves the buffer on the
1596 * list and someone else may run off with it. You must hold
1597 * the appropriate locks or have a private queue to do this.
1598 *
1599 * Returns %NULL for an empty list or a pointer to the head element.
1600 * The reference count is not incremented and the reference is therefore
1601 * volatile. Use with caution.
1602 */
1603 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1604 {
1605 struct sk_buff *skb = list_->next;
1606
1607 if (skb == (struct sk_buff *)list_)
1608 skb = NULL;
1609 return skb;
1610 }
1611
1612 /**
1613 * skb_peek_next - peek skb following the given one from a queue
1614 * @skb: skb to start from
1615 * @list_: list to peek at
1616 *
1617 * Returns %NULL when the end of the list is met or a pointer to the
1618 * next element. The reference count is not incremented and the
1619 * reference is therefore volatile. Use with caution.
1620 */
1621 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1622 const struct sk_buff_head *list_)
1623 {
1624 struct sk_buff *next = skb->next;
1625
1626 if (next == (struct sk_buff *)list_)
1627 next = NULL;
1628 return next;
1629 }
1630
1631 /**
1632 * skb_peek_tail - peek at the tail of an &sk_buff_head
1633 * @list_: list to peek at
1634 *
1635 * Peek an &sk_buff. Unlike most other operations you _MUST_
1636 * be careful with this one. A peek leaves the buffer on the
1637 * list and someone else may run off with it. You must hold
1638 * the appropriate locks or have a private queue to do this.
1639 *
1640 * Returns %NULL for an empty list or a pointer to the tail element.
1641 * The reference count is not incremented and the reference is therefore
1642 * volatile. Use with caution.
1643 */
1644 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1645 {
1646 struct sk_buff *skb = list_->prev;
1647
1648 if (skb == (struct sk_buff *)list_)
1649 skb = NULL;
1650 return skb;
1651
1652 }
1653
1654 /**
1655 * skb_queue_len - get queue length
1656 * @list_: list to measure
1657 *
1658 * Return the length of an &sk_buff queue.
1659 */
1660 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1661 {
1662 return list_->qlen;
1663 }
1664
1665 /**
1666 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1667 * @list: queue to initialize
1668 *
1669 * This initializes only the list and queue length aspects of
1670 * an sk_buff_head object. This allows to initialize the list
1671 * aspects of an sk_buff_head without reinitializing things like
1672 * the spinlock. It can also be used for on-stack sk_buff_head
1673 * objects where the spinlock is known to not be used.
1674 */
1675 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1676 {
1677 list->prev = list->next = (struct sk_buff *)list;
1678 list->qlen = 0;
1679 }
1680
1681 /*
1682 * This function creates a split out lock class for each invocation;
1683 * this is needed for now since a whole lot of users of the skb-queue
1684 * infrastructure in drivers have different locking usage (in hardirq)
1685 * than the networking core (in softirq only). In the long run either the
1686 * network layer or drivers should need annotation to consolidate the
1687 * main types of usage into 3 classes.
1688 */
1689 static inline void skb_queue_head_init(struct sk_buff_head *list)
1690 {
1691 spin_lock_init(&list->lock);
1692 __skb_queue_head_init(list);
1693 }
1694
1695 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1696 struct lock_class_key *class)
1697 {
1698 skb_queue_head_init(list);
1699 lockdep_set_class(&list->lock, class);
1700 }
1701
1702 /*
1703 * Insert an sk_buff on a list.
1704 *
1705 * The "__skb_xxxx()" functions are the non-atomic ones that
1706 * can only be called with interrupts disabled.
1707 */
1708 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1709 struct sk_buff_head *list);
1710 static inline void __skb_insert(struct sk_buff *newsk,
1711 struct sk_buff *prev, struct sk_buff *next,
1712 struct sk_buff_head *list)
1713 {
1714 /* see skb_queue_empty_lockless() for the opposite READ_ONCE() */
1715 WRITE_ONCE(newsk->next, next);
1716 WRITE_ONCE(newsk->prev, prev);
1717 WRITE_ONCE(next->prev, newsk);
1718 WRITE_ONCE(prev->next, newsk);
1719 list->qlen++;
1720 }
1721
1722 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1723 struct sk_buff *prev,
1724 struct sk_buff *next)
1725 {
1726 struct sk_buff *first = list->next;
1727 struct sk_buff *last = list->prev;
1728
1729 WRITE_ONCE(first->prev, prev);
1730 WRITE_ONCE(prev->next, first);
1731
1732 WRITE_ONCE(last->next, next);
1733 WRITE_ONCE(next->prev, last);
1734 }
1735
1736 /**
1737 * skb_queue_splice - join two skb lists, this is designed for stacks
1738 * @list: the new list to add
1739 * @head: the place to add it in the first list
1740 */
1741 static inline void skb_queue_splice(const struct sk_buff_head *list,
1742 struct sk_buff_head *head)
1743 {
1744 if (!skb_queue_empty(list)) {
1745 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1746 head->qlen += list->qlen;
1747 }
1748 }
1749
1750 /**
1751 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1752 * @list: the new list to add
1753 * @head: the place to add it in the first list
1754 *
1755 * The list at @list is reinitialised
1756 */
1757 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1758 struct sk_buff_head *head)
1759 {
1760 if (!skb_queue_empty(list)) {
1761 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1762 head->qlen += list->qlen;
1763 __skb_queue_head_init(list);
1764 }
1765 }
1766
1767 /**
1768 * skb_queue_splice_tail - join two skb lists, each list being a queue
1769 * @list: the new list to add
1770 * @head: the place to add it in the first list
1771 */
1772 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1773 struct sk_buff_head *head)
1774 {
1775 if (!skb_queue_empty(list)) {
1776 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1777 head->qlen += list->qlen;
1778 }
1779 }
1780
1781 /**
1782 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1783 * @list: the new list to add
1784 * @head: the place to add it in the first list
1785 *
1786 * Each of the lists is a queue.
1787 * The list at @list is reinitialised
1788 */
1789 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1790 struct sk_buff_head *head)
1791 {
1792 if (!skb_queue_empty(list)) {
1793 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1794 head->qlen += list->qlen;
1795 __skb_queue_head_init(list);
1796 }
1797 }
1798
1799 /**
1800 * __skb_queue_after - queue a buffer at the list head
1801 * @list: list to use
1802 * @prev: place after this buffer
1803 * @newsk: buffer to queue
1804 *
1805 * Queue a buffer int the middle of a list. This function takes no locks
1806 * and you must therefore hold required locks before calling it.
1807 *
1808 * A buffer cannot be placed on two lists at the same time.
1809 */
1810 static inline void __skb_queue_after(struct sk_buff_head *list,
1811 struct sk_buff *prev,
1812 struct sk_buff *newsk)
1813 {
1814 __skb_insert(newsk, prev, prev->next, list);
1815 }
1816
1817 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1818 struct sk_buff_head *list);
1819
1820 static inline void __skb_queue_before(struct sk_buff_head *list,
1821 struct sk_buff *next,
1822 struct sk_buff *newsk)
1823 {
1824 __skb_insert(newsk, next->prev, next, list);
1825 }
1826
1827 /**
1828 * __skb_queue_head - queue a buffer at the list head
1829 * @list: list to use
1830 * @newsk: buffer to queue
1831 *
1832 * Queue a buffer at the start of a list. This function takes no locks
1833 * and you must therefore hold required locks before calling it.
1834 *
1835 * A buffer cannot be placed on two lists at the same time.
1836 */
1837 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1838 static inline void __skb_queue_head(struct sk_buff_head *list,
1839 struct sk_buff *newsk)
1840 {
1841 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1842 }
1843
1844 /**
1845 * __skb_queue_tail - queue a buffer at the list tail
1846 * @list: list to use
1847 * @newsk: buffer to queue
1848 *
1849 * Queue a buffer at the end of a list. This function takes no locks
1850 * and you must therefore hold required locks before calling it.
1851 *
1852 * A buffer cannot be placed on two lists at the same time.
1853 */
1854 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1855 static inline void __skb_queue_tail(struct sk_buff_head *list,
1856 struct sk_buff *newsk)
1857 {
1858 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1859 }
1860
1861 /*
1862 * remove sk_buff from list. _Must_ be called atomically, and with
1863 * the list known..
1864 */
1865 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1866 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1867 {
1868 struct sk_buff *next, *prev;
1869
1870 list->qlen--;
1871 next = skb->next;
1872 prev = skb->prev;
1873 skb->next = skb->prev = NULL;
1874 WRITE_ONCE(next->prev, prev);
1875 WRITE_ONCE(prev->next, next);
1876 }
1877
1878 /**
1879 * __skb_dequeue - remove from the head of the queue
1880 * @list: list to dequeue from
1881 *
1882 * Remove the head of the list. This function does not take any locks
1883 * so must be used with appropriate locks held only. The head item is
1884 * returned or %NULL if the list is empty.
1885 */
1886 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1887 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1888 {
1889 struct sk_buff *skb = skb_peek(list);
1890 if (skb)
1891 __skb_unlink(skb, list);
1892 return skb;
1893 }
1894
1895 /**
1896 * __skb_dequeue_tail - remove from the tail of the queue
1897 * @list: list to dequeue from
1898 *
1899 * Remove the tail of the list. This function does not take any locks
1900 * so must be used with appropriate locks held only. The tail item is
1901 * returned or %NULL if the list is empty.
1902 */
1903 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1904 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1905 {
1906 struct sk_buff *skb = skb_peek_tail(list);
1907 if (skb)
1908 __skb_unlink(skb, list);
1909 return skb;
1910 }
1911
1912
1913 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1914 {
1915 return skb->data_len;
1916 }
1917
1918 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1919 {
1920 return skb->len - skb->data_len;
1921 }
1922
1923 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1924 {
1925 unsigned int i, len = 0;
1926
1927 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1928 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1929 return len;
1930 }
1931
1932 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1933 {
1934 return skb_headlen(skb) + __skb_pagelen(skb);
1935 }
1936
1937 /**
1938 * __skb_fill_page_desc - initialise a paged fragment in an skb
1939 * @skb: buffer containing fragment to be initialised
1940 * @i: paged fragment index to initialise
1941 * @page: the page to use for this fragment
1942 * @off: the offset to the data with @page
1943 * @size: the length of the data
1944 *
1945 * Initialises the @i'th fragment of @skb to point to &size bytes at
1946 * offset @off within @page.
1947 *
1948 * Does not take any additional reference on the fragment.
1949 */
1950 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1951 struct page *page, int off, int size)
1952 {
1953 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1954
1955 /*
1956 * Propagate page pfmemalloc to the skb if we can. The problem is
1957 * that not all callers have unique ownership of the page but rely
1958 * on page_is_pfmemalloc doing the right thing(tm).
1959 */
1960 frag->page.p = page;
1961 frag->page_offset = off;
1962 skb_frag_size_set(frag, size);
1963
1964 page = compound_head(page);
1965 if (page_is_pfmemalloc(page))
1966 skb->pfmemalloc = true;
1967 }
1968
1969 /**
1970 * skb_fill_page_desc - initialise a paged fragment in an skb
1971 * @skb: buffer containing fragment to be initialised
1972 * @i: paged fragment index to initialise
1973 * @page: the page to use for this fragment
1974 * @off: the offset to the data with @page
1975 * @size: the length of the data
1976 *
1977 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1978 * @skb to point to @size bytes at offset @off within @page. In
1979 * addition updates @skb such that @i is the last fragment.
1980 *
1981 * Does not take any additional reference on the fragment.
1982 */
1983 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1984 struct page *page, int off, int size)
1985 {
1986 __skb_fill_page_desc(skb, i, page, off, size);
1987 skb_shinfo(skb)->nr_frags = i + 1;
1988 }
1989
1990 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1991 int size, unsigned int truesize);
1992
1993 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1994 unsigned int truesize);
1995
1996 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1997 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1998 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1999
2000 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2001 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2002 {
2003 return skb->head + skb->tail;
2004 }
2005
2006 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2007 {
2008 skb->tail = skb->data - skb->head;
2009 }
2010
2011 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2012 {
2013 skb_reset_tail_pointer(skb);
2014 skb->tail += offset;
2015 }
2016
2017 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2018 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2019 {
2020 return skb->tail;
2021 }
2022
2023 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2024 {
2025 skb->tail = skb->data;
2026 }
2027
2028 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2029 {
2030 skb->tail = skb->data + offset;
2031 }
2032
2033 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2034
2035 /*
2036 * Add data to an sk_buff
2037 */
2038 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2039 void *skb_put(struct sk_buff *skb, unsigned int len);
2040 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2041 {
2042 void *tmp = skb_tail_pointer(skb);
2043 SKB_LINEAR_ASSERT(skb);
2044 skb->tail += len;
2045 skb->len += len;
2046 return tmp;
2047 }
2048
2049 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2050 {
2051 void *tmp = __skb_put(skb, len);
2052
2053 memset(tmp, 0, len);
2054 return tmp;
2055 }
2056
2057 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2058 unsigned int len)
2059 {
2060 void *tmp = __skb_put(skb, len);
2061
2062 memcpy(tmp, data, len);
2063 return tmp;
2064 }
2065
2066 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2067 {
2068 *(u8 *)__skb_put(skb, 1) = val;
2069 }
2070
2071 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2072 {
2073 void *tmp = skb_put(skb, len);
2074
2075 memset(tmp, 0, len);
2076
2077 return tmp;
2078 }
2079
2080 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2081 unsigned int len)
2082 {
2083 void *tmp = skb_put(skb, len);
2084
2085 memcpy(tmp, data, len);
2086
2087 return tmp;
2088 }
2089
2090 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2091 {
2092 *(u8 *)skb_put(skb, 1) = val;
2093 }
2094
2095 void *skb_push(struct sk_buff *skb, unsigned int len);
2096 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2097 {
2098 skb->data -= len;
2099 skb->len += len;
2100 return skb->data;
2101 }
2102
2103 void *skb_pull(struct sk_buff *skb, unsigned int len);
2104 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2105 {
2106 skb->len -= len;
2107 BUG_ON(skb->len < skb->data_len);
2108 return skb->data += len;
2109 }
2110
2111 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2112 {
2113 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2114 }
2115
2116 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2117
2118 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2119 {
2120 if (len > skb_headlen(skb) &&
2121 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2122 return NULL;
2123 skb->len -= len;
2124 return skb->data += len;
2125 }
2126
2127 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2128 {
2129 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2130 }
2131
2132 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2133 {
2134 if (likely(len <= skb_headlen(skb)))
2135 return 1;
2136 if (unlikely(len > skb->len))
2137 return 0;
2138 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2139 }
2140
2141 void skb_condense(struct sk_buff *skb);
2142
2143 /**
2144 * skb_headroom - bytes at buffer head
2145 * @skb: buffer to check
2146 *
2147 * Return the number of bytes of free space at the head of an &sk_buff.
2148 */
2149 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2150 {
2151 return skb->data - skb->head;
2152 }
2153
2154 /**
2155 * skb_tailroom - bytes at buffer end
2156 * @skb: buffer to check
2157 *
2158 * Return the number of bytes of free space at the tail of an sk_buff
2159 */
2160 static inline int skb_tailroom(const struct sk_buff *skb)
2161 {
2162 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2163 }
2164
2165 /**
2166 * skb_availroom - bytes at buffer end
2167 * @skb: buffer to check
2168 *
2169 * Return the number of bytes of free space at the tail of an sk_buff
2170 * allocated by sk_stream_alloc()
2171 */
2172 static inline int skb_availroom(const struct sk_buff *skb)
2173 {
2174 if (skb_is_nonlinear(skb))
2175 return 0;
2176
2177 return skb->end - skb->tail - skb->reserved_tailroom;
2178 }
2179
2180 /**
2181 * skb_reserve - adjust headroom
2182 * @skb: buffer to alter
2183 * @len: bytes to move
2184 *
2185 * Increase the headroom of an empty &sk_buff by reducing the tail
2186 * room. This is only allowed for an empty buffer.
2187 */
2188 static inline void skb_reserve(struct sk_buff *skb, int len)
2189 {
2190 skb->data += len;
2191 skb->tail += len;
2192 }
2193
2194 /**
2195 * skb_tailroom_reserve - adjust reserved_tailroom
2196 * @skb: buffer to alter
2197 * @mtu: maximum amount of headlen permitted
2198 * @needed_tailroom: minimum amount of reserved_tailroom
2199 *
2200 * Set reserved_tailroom so that headlen can be as large as possible but
2201 * not larger than mtu and tailroom cannot be smaller than
2202 * needed_tailroom.
2203 * The required headroom should already have been reserved before using
2204 * this function.
2205 */
2206 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2207 unsigned int needed_tailroom)
2208 {
2209 SKB_LINEAR_ASSERT(skb);
2210 if (mtu < skb_tailroom(skb) - needed_tailroom)
2211 /* use at most mtu */
2212 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2213 else
2214 /* use up to all available space */
2215 skb->reserved_tailroom = needed_tailroom;
2216 }
2217
2218 #define ENCAP_TYPE_ETHER 0
2219 #define ENCAP_TYPE_IPPROTO 1
2220
2221 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2222 __be16 protocol)
2223 {
2224 skb->inner_protocol = protocol;
2225 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2226 }
2227
2228 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2229 __u8 ipproto)
2230 {
2231 skb->inner_ipproto = ipproto;
2232 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2233 }
2234
2235 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2236 {
2237 skb->inner_mac_header = skb->mac_header;
2238 skb->inner_network_header = skb->network_header;
2239 skb->inner_transport_header = skb->transport_header;
2240 }
2241
2242 static inline void skb_reset_mac_len(struct sk_buff *skb)
2243 {
2244 skb->mac_len = skb->network_header - skb->mac_header;
2245 }
2246
2247 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2248 *skb)
2249 {
2250 return skb->head + skb->inner_transport_header;
2251 }
2252
2253 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2254 {
2255 return skb_inner_transport_header(skb) - skb->data;
2256 }
2257
2258 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2259 {
2260 skb->inner_transport_header = skb->data - skb->head;
2261 }
2262
2263 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2264 const int offset)
2265 {
2266 skb_reset_inner_transport_header(skb);
2267 skb->inner_transport_header += offset;
2268 }
2269
2270 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2271 {
2272 return skb->head + skb->inner_network_header;
2273 }
2274
2275 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2276 {
2277 skb->inner_network_header = skb->data - skb->head;
2278 }
2279
2280 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2281 const int offset)
2282 {
2283 skb_reset_inner_network_header(skb);
2284 skb->inner_network_header += offset;
2285 }
2286
2287 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2288 {
2289 return skb->head + skb->inner_mac_header;
2290 }
2291
2292 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2293 {
2294 skb->inner_mac_header = skb->data - skb->head;
2295 }
2296
2297 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2298 const int offset)
2299 {
2300 skb_reset_inner_mac_header(skb);
2301 skb->inner_mac_header += offset;
2302 }
2303 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2304 {
2305 return skb->transport_header != (typeof(skb->transport_header))~0U;
2306 }
2307
2308 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2309 {
2310 return skb->head + skb->transport_header;
2311 }
2312
2313 static inline void skb_reset_transport_header(struct sk_buff *skb)
2314 {
2315 skb->transport_header = skb->data - skb->head;
2316 }
2317
2318 static inline void skb_set_transport_header(struct sk_buff *skb,
2319 const int offset)
2320 {
2321 skb_reset_transport_header(skb);
2322 skb->transport_header += offset;
2323 }
2324
2325 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2326 {
2327 return skb->head + skb->network_header;
2328 }
2329
2330 static inline void skb_reset_network_header(struct sk_buff *skb)
2331 {
2332 skb->network_header = skb->data - skb->head;
2333 }
2334
2335 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2336 {
2337 skb_reset_network_header(skb);
2338 skb->network_header += offset;
2339 }
2340
2341 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2342 {
2343 return skb->head + skb->mac_header;
2344 }
2345
2346 static inline int skb_mac_offset(const struct sk_buff *skb)
2347 {
2348 return skb_mac_header(skb) - skb->data;
2349 }
2350
2351 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2352 {
2353 return skb->network_header - skb->mac_header;
2354 }
2355
2356 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2357 {
2358 return skb->mac_header != (typeof(skb->mac_header))~0U;
2359 }
2360
2361 static inline void skb_reset_mac_header(struct sk_buff *skb)
2362 {
2363 skb->mac_header = skb->data - skb->head;
2364 }
2365
2366 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2367 {
2368 skb_reset_mac_header(skb);
2369 skb->mac_header += offset;
2370 }
2371
2372 static inline void skb_pop_mac_header(struct sk_buff *skb)
2373 {
2374 skb->mac_header = skb->network_header;
2375 }
2376
2377 static inline void skb_probe_transport_header(struct sk_buff *skb,
2378 const int offset_hint)
2379 {
2380 struct flow_keys keys;
2381
2382 if (skb_transport_header_was_set(skb))
2383 return;
2384 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2385 skb_set_transport_header(skb, keys.control.thoff);
2386 else if (offset_hint >= 0)
2387 skb_set_transport_header(skb, offset_hint);
2388 }
2389
2390 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2391 {
2392 if (skb_mac_header_was_set(skb)) {
2393 const unsigned char *old_mac = skb_mac_header(skb);
2394
2395 skb_set_mac_header(skb, -skb->mac_len);
2396 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2397 }
2398 }
2399
2400 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2401 {
2402 return skb->csum_start - skb_headroom(skb);
2403 }
2404
2405 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2406 {
2407 return skb->head + skb->csum_start;
2408 }
2409
2410 static inline int skb_transport_offset(const struct sk_buff *skb)
2411 {
2412 return skb_transport_header(skb) - skb->data;
2413 }
2414
2415 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2416 {
2417 return skb->transport_header - skb->network_header;
2418 }
2419
2420 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2421 {
2422 return skb->inner_transport_header - skb->inner_network_header;
2423 }
2424
2425 static inline int skb_network_offset(const struct sk_buff *skb)
2426 {
2427 return skb_network_header(skb) - skb->data;
2428 }
2429
2430 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2431 {
2432 return skb_inner_network_header(skb) - skb->data;
2433 }
2434
2435 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2436 {
2437 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2438 }
2439
2440 /*
2441 * CPUs often take a performance hit when accessing unaligned memory
2442 * locations. The actual performance hit varies, it can be small if the
2443 * hardware handles it or large if we have to take an exception and fix it
2444 * in software.
2445 *
2446 * Since an ethernet header is 14 bytes network drivers often end up with
2447 * the IP header at an unaligned offset. The IP header can be aligned by
2448 * shifting the start of the packet by 2 bytes. Drivers should do this
2449 * with:
2450 *
2451 * skb_reserve(skb, NET_IP_ALIGN);
2452 *
2453 * The downside to this alignment of the IP header is that the DMA is now
2454 * unaligned. On some architectures the cost of an unaligned DMA is high
2455 * and this cost outweighs the gains made by aligning the IP header.
2456 *
2457 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2458 * to be overridden.
2459 */
2460 #ifndef NET_IP_ALIGN
2461 #define NET_IP_ALIGN 2
2462 #endif
2463
2464 /*
2465 * The networking layer reserves some headroom in skb data (via
2466 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2467 * the header has to grow. In the default case, if the header has to grow
2468 * 32 bytes or less we avoid the reallocation.
2469 *
2470 * Unfortunately this headroom changes the DMA alignment of the resulting
2471 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2472 * on some architectures. An architecture can override this value,
2473 * perhaps setting it to a cacheline in size (since that will maintain
2474 * cacheline alignment of the DMA). It must be a power of 2.
2475 *
2476 * Various parts of the networking layer expect at least 32 bytes of
2477 * headroom, you should not reduce this.
2478 *
2479 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2480 * to reduce average number of cache lines per packet.
2481 * get_rps_cpus() for example only access one 64 bytes aligned block :
2482 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2483 */
2484 #ifndef NET_SKB_PAD
2485 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2486 #endif
2487
2488 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2489
2490 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2491 {
2492 if (unlikely(skb_is_nonlinear(skb))) {
2493 WARN_ON(1);
2494 return;
2495 }
2496 skb->len = len;
2497 skb_set_tail_pointer(skb, len);
2498 }
2499
2500 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2501 {
2502 __skb_set_length(skb, len);
2503 }
2504
2505 void skb_trim(struct sk_buff *skb, unsigned int len);
2506
2507 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2508 {
2509 if (skb->data_len)
2510 return ___pskb_trim(skb, len);
2511 __skb_trim(skb, len);
2512 return 0;
2513 }
2514
2515 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2516 {
2517 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2518 }
2519
2520 /**
2521 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2522 * @skb: buffer to alter
2523 * @len: new length
2524 *
2525 * This is identical to pskb_trim except that the caller knows that
2526 * the skb is not cloned so we should never get an error due to out-
2527 * of-memory.
2528 */
2529 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2530 {
2531 int err = pskb_trim(skb, len);
2532 BUG_ON(err);
2533 }
2534
2535 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2536 {
2537 unsigned int diff = len - skb->len;
2538
2539 if (skb_tailroom(skb) < diff) {
2540 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2541 GFP_ATOMIC);
2542 if (ret)
2543 return ret;
2544 }
2545 __skb_set_length(skb, len);
2546 return 0;
2547 }
2548
2549 /**
2550 * skb_orphan - orphan a buffer
2551 * @skb: buffer to orphan
2552 *
2553 * If a buffer currently has an owner then we call the owner's
2554 * destructor function and make the @skb unowned. The buffer continues
2555 * to exist but is no longer charged to its former owner.
2556 */
2557 static inline void skb_orphan(struct sk_buff *skb)
2558 {
2559 if (skb->destructor) {
2560 skb->destructor(skb);
2561 skb->destructor = NULL;
2562 skb->sk = NULL;
2563 } else {
2564 BUG_ON(skb->sk);
2565 }
2566 }
2567
2568 /**
2569 * skb_orphan_frags - orphan the frags contained in a buffer
2570 * @skb: buffer to orphan frags from
2571 * @gfp_mask: allocation mask for replacement pages
2572 *
2573 * For each frag in the SKB which needs a destructor (i.e. has an
2574 * owner) create a copy of that frag and release the original
2575 * page by calling the destructor.
2576 */
2577 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2578 {
2579 if (likely(!skb_zcopy(skb)))
2580 return 0;
2581 if (!skb_zcopy_is_nouarg(skb) &&
2582 skb_uarg(skb)->callback == sock_zerocopy_callback)
2583 return 0;
2584 return skb_copy_ubufs(skb, gfp_mask);
2585 }
2586
2587 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2588 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2589 {
2590 if (likely(!skb_zcopy(skb)))
2591 return 0;
2592 return skb_copy_ubufs(skb, gfp_mask);
2593 }
2594
2595 /**
2596 * __skb_queue_purge - empty a list
2597 * @list: list to empty
2598 *
2599 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2600 * the list and one reference dropped. This function does not take the
2601 * list lock and the caller must hold the relevant locks to use it.
2602 */
2603 void skb_queue_purge(struct sk_buff_head *list);
2604 static inline void __skb_queue_purge(struct sk_buff_head *list)
2605 {
2606 struct sk_buff *skb;
2607 while ((skb = __skb_dequeue(list)) != NULL)
2608 kfree_skb(skb);
2609 }
2610
2611 unsigned int skb_rbtree_purge(struct rb_root *root);
2612
2613 void *netdev_alloc_frag(unsigned int fragsz);
2614
2615 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2616 gfp_t gfp_mask);
2617
2618 /**
2619 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2620 * @dev: network device to receive on
2621 * @length: length to allocate
2622 *
2623 * Allocate a new &sk_buff and assign it a usage count of one. The
2624 * buffer has unspecified headroom built in. Users should allocate
2625 * the headroom they think they need without accounting for the
2626 * built in space. The built in space is used for optimisations.
2627 *
2628 * %NULL is returned if there is no free memory. Although this function
2629 * allocates memory it can be called from an interrupt.
2630 */
2631 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2632 unsigned int length)
2633 {
2634 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2635 }
2636
2637 /* legacy helper around __netdev_alloc_skb() */
2638 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2639 gfp_t gfp_mask)
2640 {
2641 return __netdev_alloc_skb(NULL, length, gfp_mask);
2642 }
2643
2644 /* legacy helper around netdev_alloc_skb() */
2645 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2646 {
2647 return netdev_alloc_skb(NULL, length);
2648 }
2649
2650
2651 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2652 unsigned int length, gfp_t gfp)
2653 {
2654 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2655
2656 if (NET_IP_ALIGN && skb)
2657 skb_reserve(skb, NET_IP_ALIGN);
2658 return skb;
2659 }
2660
2661 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2662 unsigned int length)
2663 {
2664 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2665 }
2666
2667 static inline void skb_free_frag(void *addr)
2668 {
2669 page_frag_free(addr);
2670 }
2671
2672 void *napi_alloc_frag(unsigned int fragsz);
2673 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2674 unsigned int length, gfp_t gfp_mask);
2675 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2676 unsigned int length)
2677 {
2678 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2679 }
2680 void napi_consume_skb(struct sk_buff *skb, int budget);
2681
2682 void __kfree_skb_flush(void);
2683 void __kfree_skb_defer(struct sk_buff *skb);
2684
2685 /**
2686 * __dev_alloc_pages - allocate page for network Rx
2687 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2688 * @order: size of the allocation
2689 *
2690 * Allocate a new page.
2691 *
2692 * %NULL is returned if there is no free memory.
2693 */
2694 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2695 unsigned int order)
2696 {
2697 /* This piece of code contains several assumptions.
2698 * 1. This is for device Rx, therefor a cold page is preferred.
2699 * 2. The expectation is the user wants a compound page.
2700 * 3. If requesting a order 0 page it will not be compound
2701 * due to the check to see if order has a value in prep_new_page
2702 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2703 * code in gfp_to_alloc_flags that should be enforcing this.
2704 */
2705 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2706
2707 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2708 }
2709
2710 static inline struct page *dev_alloc_pages(unsigned int order)
2711 {
2712 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2713 }
2714
2715 /**
2716 * __dev_alloc_page - allocate a page for network Rx
2717 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2718 *
2719 * Allocate a new page.
2720 *
2721 * %NULL is returned if there is no free memory.
2722 */
2723 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2724 {
2725 return __dev_alloc_pages(gfp_mask, 0);
2726 }
2727
2728 static inline struct page *dev_alloc_page(void)
2729 {
2730 return dev_alloc_pages(0);
2731 }
2732
2733 /**
2734 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2735 * @page: The page that was allocated from skb_alloc_page
2736 * @skb: The skb that may need pfmemalloc set
2737 */
2738 static inline void skb_propagate_pfmemalloc(struct page *page,
2739 struct sk_buff *skb)
2740 {
2741 if (page_is_pfmemalloc(page))
2742 skb->pfmemalloc = true;
2743 }
2744
2745 /**
2746 * skb_frag_page - retrieve the page referred to by a paged fragment
2747 * @frag: the paged fragment
2748 *
2749 * Returns the &struct page associated with @frag.
2750 */
2751 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2752 {
2753 return frag->page.p;
2754 }
2755
2756 /**
2757 * __skb_frag_ref - take an addition reference on a paged fragment.
2758 * @frag: the paged fragment
2759 *
2760 * Takes an additional reference on the paged fragment @frag.
2761 */
2762 static inline void __skb_frag_ref(skb_frag_t *frag)
2763 {
2764 get_page(skb_frag_page(frag));
2765 }
2766
2767 /**
2768 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2769 * @skb: the buffer
2770 * @f: the fragment offset.
2771 *
2772 * Takes an additional reference on the @f'th paged fragment of @skb.
2773 */
2774 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2775 {
2776 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2777 }
2778
2779 /**
2780 * __skb_frag_unref - release a reference on a paged fragment.
2781 * @frag: the paged fragment
2782 *
2783 * Releases a reference on the paged fragment @frag.
2784 */
2785 static inline void __skb_frag_unref(skb_frag_t *frag)
2786 {
2787 put_page(skb_frag_page(frag));
2788 }
2789
2790 /**
2791 * skb_frag_unref - release a reference on a paged fragment of an skb.
2792 * @skb: the buffer
2793 * @f: the fragment offset
2794 *
2795 * Releases a reference on the @f'th paged fragment of @skb.
2796 */
2797 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2798 {
2799 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2800 }
2801
2802 /**
2803 * skb_frag_address - gets the address of the data contained in a paged fragment
2804 * @frag: the paged fragment buffer
2805 *
2806 * Returns the address of the data within @frag. The page must already
2807 * be mapped.
2808 */
2809 static inline void *skb_frag_address(const skb_frag_t *frag)
2810 {
2811 return page_address(skb_frag_page(frag)) + frag->page_offset;
2812 }
2813
2814 /**
2815 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2816 * @frag: the paged fragment buffer
2817 *
2818 * Returns the address of the data within @frag. Checks that the page
2819 * is mapped and returns %NULL otherwise.
2820 */
2821 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2822 {
2823 void *ptr = page_address(skb_frag_page(frag));
2824 if (unlikely(!ptr))
2825 return NULL;
2826
2827 return ptr + frag->page_offset;
2828 }
2829
2830 /**
2831 * __skb_frag_set_page - sets the page contained in a paged fragment
2832 * @frag: the paged fragment
2833 * @page: the page to set
2834 *
2835 * Sets the fragment @frag to contain @page.
2836 */
2837 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2838 {
2839 frag->page.p = page;
2840 }
2841
2842 /**
2843 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2844 * @skb: the buffer
2845 * @f: the fragment offset
2846 * @page: the page to set
2847 *
2848 * Sets the @f'th fragment of @skb to contain @page.
2849 */
2850 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2851 struct page *page)
2852 {
2853 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2854 }
2855
2856 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2857
2858 /**
2859 * skb_frag_dma_map - maps a paged fragment via the DMA API
2860 * @dev: the device to map the fragment to
2861 * @frag: the paged fragment to map
2862 * @offset: the offset within the fragment (starting at the
2863 * fragment's own offset)
2864 * @size: the number of bytes to map
2865 * @dir: the direction of the mapping (``PCI_DMA_*``)
2866 *
2867 * Maps the page associated with @frag to @device.
2868 */
2869 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2870 const skb_frag_t *frag,
2871 size_t offset, size_t size,
2872 enum dma_data_direction dir)
2873 {
2874 return dma_map_page(dev, skb_frag_page(frag),
2875 frag->page_offset + offset, size, dir);
2876 }
2877
2878 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2879 gfp_t gfp_mask)
2880 {
2881 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2882 }
2883
2884
2885 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2886 gfp_t gfp_mask)
2887 {
2888 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2889 }
2890
2891
2892 /**
2893 * skb_clone_writable - is the header of a clone writable
2894 * @skb: buffer to check
2895 * @len: length up to which to write
2896 *
2897 * Returns true if modifying the header part of the cloned buffer
2898 * does not requires the data to be copied.
2899 */
2900 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2901 {
2902 return !skb_header_cloned(skb) &&
2903 skb_headroom(skb) + len <= skb->hdr_len;
2904 }
2905
2906 static inline int skb_try_make_writable(struct sk_buff *skb,
2907 unsigned int write_len)
2908 {
2909 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2910 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2911 }
2912
2913 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2914 int cloned)
2915 {
2916 int delta = 0;
2917
2918 if (headroom > skb_headroom(skb))
2919 delta = headroom - skb_headroom(skb);
2920
2921 if (delta || cloned)
2922 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2923 GFP_ATOMIC);
2924 return 0;
2925 }
2926
2927 /**
2928 * skb_cow - copy header of skb when it is required
2929 * @skb: buffer to cow
2930 * @headroom: needed headroom
2931 *
2932 * If the skb passed lacks sufficient headroom or its data part
2933 * is shared, data is reallocated. If reallocation fails, an error
2934 * is returned and original skb is not changed.
2935 *
2936 * The result is skb with writable area skb->head...skb->tail
2937 * and at least @headroom of space at head.
2938 */
2939 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2940 {
2941 return __skb_cow(skb, headroom, skb_cloned(skb));
2942 }
2943
2944 /**
2945 * skb_cow_head - skb_cow but only making the head writable
2946 * @skb: buffer to cow
2947 * @headroom: needed headroom
2948 *
2949 * This function is identical to skb_cow except that we replace the
2950 * skb_cloned check by skb_header_cloned. It should be used when
2951 * you only need to push on some header and do not need to modify
2952 * the data.
2953 */
2954 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2955 {
2956 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2957 }
2958
2959 /**
2960 * skb_padto - pad an skbuff up to a minimal size
2961 * @skb: buffer to pad
2962 * @len: minimal length
2963 *
2964 * Pads up a buffer to ensure the trailing bytes exist and are
2965 * blanked. If the buffer already contains sufficient data it
2966 * is untouched. Otherwise it is extended. Returns zero on
2967 * success. The skb is freed on error.
2968 */
2969 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2970 {
2971 unsigned int size = skb->len;
2972 if (likely(size >= len))
2973 return 0;
2974 return skb_pad(skb, len - size);
2975 }
2976
2977 /**
2978 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2979 * @skb: buffer to pad
2980 * @len: minimal length
2981 * @free_on_error: free buffer on error
2982 *
2983 * Pads up a buffer to ensure the trailing bytes exist and are
2984 * blanked. If the buffer already contains sufficient data it
2985 * is untouched. Otherwise it is extended. Returns zero on
2986 * success. The skb is freed on error if @free_on_error is true.
2987 */
2988 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2989 bool free_on_error)
2990 {
2991 unsigned int size = skb->len;
2992
2993 if (unlikely(size < len)) {
2994 len -= size;
2995 if (__skb_pad(skb, len, free_on_error))
2996 return -ENOMEM;
2997 __skb_put(skb, len);
2998 }
2999 return 0;
3000 }
3001
3002 /**
3003 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3004 * @skb: buffer to pad
3005 * @len: minimal length
3006 *
3007 * Pads up a buffer to ensure the trailing bytes exist and are
3008 * blanked. If the buffer already contains sufficient data it
3009 * is untouched. Otherwise it is extended. Returns zero on
3010 * success. The skb is freed on error.
3011 */
3012 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3013 {
3014 return __skb_put_padto(skb, len, true);
3015 }
3016
3017 static inline int skb_add_data(struct sk_buff *skb,
3018 struct iov_iter *from, int copy)
3019 {
3020 const int off = skb->len;
3021
3022 if (skb->ip_summed == CHECKSUM_NONE) {
3023 __wsum csum = 0;
3024 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3025 &csum, from)) {
3026 skb->csum = csum_block_add(skb->csum, csum, off);
3027 return 0;
3028 }
3029 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3030 return 0;
3031
3032 __skb_trim(skb, off);
3033 return -EFAULT;
3034 }
3035
3036 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3037 const struct page *page, int off)
3038 {
3039 if (skb_zcopy(skb))
3040 return false;
3041 if (i) {
3042 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3043
3044 return page == skb_frag_page(frag) &&
3045 off == frag->page_offset + skb_frag_size(frag);
3046 }
3047 return false;
3048 }
3049
3050 static inline int __skb_linearize(struct sk_buff *skb)
3051 {
3052 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3053 }
3054
3055 /**
3056 * skb_linearize - convert paged skb to linear one
3057 * @skb: buffer to linarize
3058 *
3059 * If there is no free memory -ENOMEM is returned, otherwise zero
3060 * is returned and the old skb data released.
3061 */
3062 static inline int skb_linearize(struct sk_buff *skb)
3063 {
3064 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3065 }
3066
3067 /**
3068 * skb_has_shared_frag - can any frag be overwritten
3069 * @skb: buffer to test
3070 *
3071 * Return true if the skb has at least one frag that might be modified
3072 * by an external entity (as in vmsplice()/sendfile())
3073 */
3074 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3075 {
3076 return skb_is_nonlinear(skb) &&
3077 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3078 }
3079
3080 /**
3081 * skb_linearize_cow - make sure skb is linear and writable
3082 * @skb: buffer to process
3083 *
3084 * If there is no free memory -ENOMEM is returned, otherwise zero
3085 * is returned and the old skb data released.
3086 */
3087 static inline int skb_linearize_cow(struct sk_buff *skb)
3088 {
3089 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3090 __skb_linearize(skb) : 0;
3091 }
3092
3093 static __always_inline void
3094 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3095 unsigned int off)
3096 {
3097 if (skb->ip_summed == CHECKSUM_COMPLETE)
3098 skb->csum = csum_block_sub(skb->csum,
3099 csum_partial(start, len, 0), off);
3100 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3101 skb_checksum_start_offset(skb) < 0)
3102 skb->ip_summed = CHECKSUM_NONE;
3103 }
3104
3105 /**
3106 * skb_postpull_rcsum - update checksum for received skb after pull
3107 * @skb: buffer to update
3108 * @start: start of data before pull
3109 * @len: length of data pulled
3110 *
3111 * After doing a pull on a received packet, you need to call this to
3112 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3113 * CHECKSUM_NONE so that it can be recomputed from scratch.
3114 */
3115 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3116 const void *start, unsigned int len)
3117 {
3118 __skb_postpull_rcsum(skb, start, len, 0);
3119 }
3120
3121 static __always_inline void
3122 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3123 unsigned int off)
3124 {
3125 if (skb->ip_summed == CHECKSUM_COMPLETE)
3126 skb->csum = csum_block_add(skb->csum,
3127 csum_partial(start, len, 0), off);
3128 }
3129
3130 /**
3131 * skb_postpush_rcsum - update checksum for received skb after push
3132 * @skb: buffer to update
3133 * @start: start of data after push
3134 * @len: length of data pushed
3135 *
3136 * After doing a push on a received packet, you need to call this to
3137 * update the CHECKSUM_COMPLETE checksum.
3138 */
3139 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3140 const void *start, unsigned int len)
3141 {
3142 __skb_postpush_rcsum(skb, start, len, 0);
3143 }
3144
3145 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3146
3147 /**
3148 * skb_push_rcsum - push skb and update receive checksum
3149 * @skb: buffer to update
3150 * @len: length of data pulled
3151 *
3152 * This function performs an skb_push on the packet and updates
3153 * the CHECKSUM_COMPLETE checksum. It should be used on
3154 * receive path processing instead of skb_push unless you know
3155 * that the checksum difference is zero (e.g., a valid IP header)
3156 * or you are setting ip_summed to CHECKSUM_NONE.
3157 */
3158 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3159 {
3160 skb_push(skb, len);
3161 skb_postpush_rcsum(skb, skb->data, len);
3162 return skb->data;
3163 }
3164
3165 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3166 /**
3167 * pskb_trim_rcsum - trim received skb and update checksum
3168 * @skb: buffer to trim
3169 * @len: new length
3170 *
3171 * This is exactly the same as pskb_trim except that it ensures the
3172 * checksum of received packets are still valid after the operation.
3173 * It can change skb pointers.
3174 */
3175
3176 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3177 {
3178 if (likely(len >= skb->len))
3179 return 0;
3180 return pskb_trim_rcsum_slow(skb, len);
3181 }
3182
3183 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3184 {
3185 if (skb->ip_summed == CHECKSUM_COMPLETE)
3186 skb->ip_summed = CHECKSUM_NONE;
3187 __skb_trim(skb, len);
3188 return 0;
3189 }
3190
3191 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3192 {
3193 if (skb->ip_summed == CHECKSUM_COMPLETE)
3194 skb->ip_summed = CHECKSUM_NONE;
3195 return __skb_grow(skb, len);
3196 }
3197
3198 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3199 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3200 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3201 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3202 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3203
3204 #define skb_queue_walk(queue, skb) \
3205 for (skb = (queue)->next; \
3206 skb != (struct sk_buff *)(queue); \
3207 skb = skb->next)
3208
3209 #define skb_queue_walk_safe(queue, skb, tmp) \
3210 for (skb = (queue)->next, tmp = skb->next; \
3211 skb != (struct sk_buff *)(queue); \
3212 skb = tmp, tmp = skb->next)
3213
3214 #define skb_queue_walk_from(queue, skb) \
3215 for (; skb != (struct sk_buff *)(queue); \
3216 skb = skb->next)
3217
3218 #define skb_rbtree_walk(skb, root) \
3219 for (skb = skb_rb_first(root); skb != NULL; \
3220 skb = skb_rb_next(skb))
3221
3222 #define skb_rbtree_walk_from(skb) \
3223 for (; skb != NULL; \
3224 skb = skb_rb_next(skb))
3225
3226 #define skb_rbtree_walk_from_safe(skb, tmp) \
3227 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3228 skb = tmp)
3229
3230 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3231 for (tmp = skb->next; \
3232 skb != (struct sk_buff *)(queue); \
3233 skb = tmp, tmp = skb->next)
3234
3235 #define skb_queue_reverse_walk(queue, skb) \
3236 for (skb = (queue)->prev; \
3237 skb != (struct sk_buff *)(queue); \
3238 skb = skb->prev)
3239
3240 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3241 for (skb = (queue)->prev, tmp = skb->prev; \
3242 skb != (struct sk_buff *)(queue); \
3243 skb = tmp, tmp = skb->prev)
3244
3245 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3246 for (tmp = skb->prev; \
3247 skb != (struct sk_buff *)(queue); \
3248 skb = tmp, tmp = skb->prev)
3249
3250 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3251 {
3252 return skb_shinfo(skb)->frag_list != NULL;
3253 }
3254
3255 static inline void skb_frag_list_init(struct sk_buff *skb)
3256 {
3257 skb_shinfo(skb)->frag_list = NULL;
3258 }
3259
3260 #define skb_walk_frags(skb, iter) \
3261 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3262
3263
3264 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3265 const struct sk_buff *skb);
3266 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3267 struct sk_buff_head *queue,
3268 unsigned int flags,
3269 void (*destructor)(struct sock *sk,
3270 struct sk_buff *skb),
3271 int *peeked, int *off, int *err,
3272 struct sk_buff **last);
3273 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3274 void (*destructor)(struct sock *sk,
3275 struct sk_buff *skb),
3276 int *peeked, int *off, int *err,
3277 struct sk_buff **last);
3278 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3279 void (*destructor)(struct sock *sk,
3280 struct sk_buff *skb),
3281 int *peeked, int *off, int *err);
3282 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3283 int *err);
3284 unsigned int datagram_poll(struct file *file, struct socket *sock,
3285 struct poll_table_struct *wait);
3286 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3287 struct iov_iter *to, int size);
3288 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3289 struct msghdr *msg, int size)
3290 {
3291 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3292 }
3293 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3294 struct msghdr *msg);
3295 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3296 struct iov_iter *from, int len);
3297 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3298 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3299 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3300 static inline void skb_free_datagram_locked(struct sock *sk,
3301 struct sk_buff *skb)
3302 {
3303 __skb_free_datagram_locked(sk, skb, 0);
3304 }
3305 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3306 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3307 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3308 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3309 int len, __wsum csum);
3310 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3311 struct pipe_inode_info *pipe, unsigned int len,
3312 unsigned int flags);
3313 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3314 int len);
3315 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3316 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3317 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3318 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3319 int len, int hlen);
3320 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3321 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3322 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3323 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3324 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3325 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3326 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3327 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3328 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3329 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3330 int skb_vlan_pop(struct sk_buff *skb);
3331 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3332 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3333 gfp_t gfp);
3334
3335 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3336 {
3337 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3338 }
3339
3340 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3341 {
3342 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3343 }
3344
3345 struct skb_checksum_ops {
3346 __wsum (*update)(const void *mem, int len, __wsum wsum);
3347 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3348 };
3349
3350 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3351
3352 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3353 __wsum csum, const struct skb_checksum_ops *ops);
3354 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3355 __wsum csum);
3356
3357 static inline void * __must_check
3358 __skb_header_pointer(const struct sk_buff *skb, int offset,
3359 int len, void *data, int hlen, void *buffer)
3360 {
3361 if (hlen - offset >= len)
3362 return data + offset;
3363
3364 if (!skb ||
3365 skb_copy_bits(skb, offset, buffer, len) < 0)
3366 return NULL;
3367
3368 return buffer;
3369 }
3370
3371 static inline void * __must_check
3372 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3373 {
3374 return __skb_header_pointer(skb, offset, len, skb->data,
3375 skb_headlen(skb), buffer);
3376 }
3377
3378 /**
3379 * skb_needs_linearize - check if we need to linearize a given skb
3380 * depending on the given device features.
3381 * @skb: socket buffer to check
3382 * @features: net device features
3383 *
3384 * Returns true if either:
3385 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3386 * 2. skb is fragmented and the device does not support SG.
3387 */
3388 static inline bool skb_needs_linearize(struct sk_buff *skb,
3389 netdev_features_t features)
3390 {
3391 return skb_is_nonlinear(skb) &&
3392 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3393 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3394 }
3395
3396 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3397 void *to,
3398 const unsigned int len)
3399 {
3400 memcpy(to, skb->data, len);
3401 }
3402
3403 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3404 const int offset, void *to,
3405 const unsigned int len)
3406 {
3407 memcpy(to, skb->data + offset, len);
3408 }
3409
3410 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3411 const void *from,
3412 const unsigned int len)
3413 {
3414 memcpy(skb->data, from, len);
3415 }
3416
3417 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3418 const int offset,
3419 const void *from,
3420 const unsigned int len)
3421 {
3422 memcpy(skb->data + offset, from, len);
3423 }
3424
3425 void skb_init(void);
3426
3427 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3428 {
3429 return skb->tstamp;
3430 }
3431
3432 /**
3433 * skb_get_timestamp - get timestamp from a skb
3434 * @skb: skb to get stamp from
3435 * @stamp: pointer to struct timeval to store stamp in
3436 *
3437 * Timestamps are stored in the skb as offsets to a base timestamp.
3438 * This function converts the offset back to a struct timeval and stores
3439 * it in stamp.
3440 */
3441 static inline void skb_get_timestamp(const struct sk_buff *skb,
3442 struct timeval *stamp)
3443 {
3444 *stamp = ktime_to_timeval(skb->tstamp);
3445 }
3446
3447 static inline void skb_get_timestampns(const struct sk_buff *skb,
3448 struct timespec *stamp)
3449 {
3450 *stamp = ktime_to_timespec(skb->tstamp);
3451 }
3452
3453 static inline void __net_timestamp(struct sk_buff *skb)
3454 {
3455 skb->tstamp = ktime_get_real();
3456 }
3457
3458 static inline ktime_t net_timedelta(ktime_t t)
3459 {
3460 return ktime_sub(ktime_get_real(), t);
3461 }
3462
3463 static inline ktime_t net_invalid_timestamp(void)
3464 {
3465 return 0;
3466 }
3467
3468 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3469 {
3470 return skb_shinfo(skb)->meta_len;
3471 }
3472
3473 static inline void *skb_metadata_end(const struct sk_buff *skb)
3474 {
3475 return skb_mac_header(skb);
3476 }
3477
3478 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3479 const struct sk_buff *skb_b,
3480 u8 meta_len)
3481 {
3482 const void *a = skb_metadata_end(skb_a);
3483 const void *b = skb_metadata_end(skb_b);
3484 /* Using more efficient varaiant than plain call to memcmp(). */
3485 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3486 u64 diffs = 0;
3487
3488 switch (meta_len) {
3489 #define __it(x, op) (x -= sizeof(u##op))
3490 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3491 case 32: diffs |= __it_diff(a, b, 64);
3492 case 24: diffs |= __it_diff(a, b, 64);
3493 case 16: diffs |= __it_diff(a, b, 64);
3494 case 8: diffs |= __it_diff(a, b, 64);
3495 break;
3496 case 28: diffs |= __it_diff(a, b, 64);
3497 case 20: diffs |= __it_diff(a, b, 64);
3498 case 12: diffs |= __it_diff(a, b, 64);
3499 case 4: diffs |= __it_diff(a, b, 32);
3500 break;
3501 }
3502 return diffs;
3503 #else
3504 return memcmp(a - meta_len, b - meta_len, meta_len);
3505 #endif
3506 }
3507
3508 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3509 const struct sk_buff *skb_b)
3510 {
3511 u8 len_a = skb_metadata_len(skb_a);
3512 u8 len_b = skb_metadata_len(skb_b);
3513
3514 if (!(len_a | len_b))
3515 return false;
3516
3517 return len_a != len_b ?
3518 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3519 }
3520
3521 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3522 {
3523 skb_shinfo(skb)->meta_len = meta_len;
3524 }
3525
3526 static inline void skb_metadata_clear(struct sk_buff *skb)
3527 {
3528 skb_metadata_set(skb, 0);
3529 }
3530
3531 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3532
3533 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3534
3535 void skb_clone_tx_timestamp(struct sk_buff *skb);
3536 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3537
3538 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3539
3540 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3541 {
3542 }
3543
3544 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3545 {
3546 return false;
3547 }
3548
3549 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3550
3551 /**
3552 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3553 *
3554 * PHY drivers may accept clones of transmitted packets for
3555 * timestamping via their phy_driver.txtstamp method. These drivers
3556 * must call this function to return the skb back to the stack with a
3557 * timestamp.
3558 *
3559 * @skb: clone of the the original outgoing packet
3560 * @hwtstamps: hardware time stamps
3561 *
3562 */
3563 void skb_complete_tx_timestamp(struct sk_buff *skb,
3564 struct skb_shared_hwtstamps *hwtstamps);
3565
3566 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3567 struct skb_shared_hwtstamps *hwtstamps,
3568 struct sock *sk, int tstype);
3569
3570 /**
3571 * skb_tstamp_tx - queue clone of skb with send time stamps
3572 * @orig_skb: the original outgoing packet
3573 * @hwtstamps: hardware time stamps, may be NULL if not available
3574 *
3575 * If the skb has a socket associated, then this function clones the
3576 * skb (thus sharing the actual data and optional structures), stores
3577 * the optional hardware time stamping information (if non NULL) or
3578 * generates a software time stamp (otherwise), then queues the clone
3579 * to the error queue of the socket. Errors are silently ignored.
3580 */
3581 void skb_tstamp_tx(struct sk_buff *orig_skb,
3582 struct skb_shared_hwtstamps *hwtstamps);
3583
3584 /**
3585 * skb_tx_timestamp() - Driver hook for transmit timestamping
3586 *
3587 * Ethernet MAC Drivers should call this function in their hard_xmit()
3588 * function immediately before giving the sk_buff to the MAC hardware.
3589 *
3590 * Specifically, one should make absolutely sure that this function is
3591 * called before TX completion of this packet can trigger. Otherwise
3592 * the packet could potentially already be freed.
3593 *
3594 * @skb: A socket buffer.
3595 */
3596 static inline void skb_tx_timestamp(struct sk_buff *skb)
3597 {
3598 skb_clone_tx_timestamp(skb);
3599 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3600 skb_tstamp_tx(skb, NULL);
3601 }
3602
3603 /**
3604 * skb_complete_wifi_ack - deliver skb with wifi status
3605 *
3606 * @skb: the original outgoing packet
3607 * @acked: ack status
3608 *
3609 */
3610 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3611
3612 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3613 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3614
3615 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3616 {
3617 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3618 skb->csum_valid ||
3619 (skb->ip_summed == CHECKSUM_PARTIAL &&
3620 skb_checksum_start_offset(skb) >= 0));
3621 }
3622
3623 /**
3624 * skb_checksum_complete - Calculate checksum of an entire packet
3625 * @skb: packet to process
3626 *
3627 * This function calculates the checksum over the entire packet plus
3628 * the value of skb->csum. The latter can be used to supply the
3629 * checksum of a pseudo header as used by TCP/UDP. It returns the
3630 * checksum.
3631 *
3632 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3633 * this function can be used to verify that checksum on received
3634 * packets. In that case the function should return zero if the
3635 * checksum is correct. In particular, this function will return zero
3636 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3637 * hardware has already verified the correctness of the checksum.
3638 */
3639 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3640 {
3641 return skb_csum_unnecessary(skb) ?
3642 0 : __skb_checksum_complete(skb);
3643 }
3644
3645 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3646 {
3647 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3648 if (skb->csum_level == 0)
3649 skb->ip_summed = CHECKSUM_NONE;
3650 else
3651 skb->csum_level--;
3652 }
3653 }
3654
3655 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3656 {
3657 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3658 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3659 skb->csum_level++;
3660 } else if (skb->ip_summed == CHECKSUM_NONE) {
3661 skb->ip_summed = CHECKSUM_UNNECESSARY;
3662 skb->csum_level = 0;
3663 }
3664 }
3665
3666 /* Check if we need to perform checksum complete validation.
3667 *
3668 * Returns true if checksum complete is needed, false otherwise
3669 * (either checksum is unnecessary or zero checksum is allowed).
3670 */
3671 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3672 bool zero_okay,
3673 __sum16 check)
3674 {
3675 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3676 skb->csum_valid = 1;
3677 __skb_decr_checksum_unnecessary(skb);
3678 return false;
3679 }
3680
3681 return true;
3682 }
3683
3684 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3685 * in checksum_init.
3686 */
3687 #define CHECKSUM_BREAK 76
3688
3689 /* Unset checksum-complete
3690 *
3691 * Unset checksum complete can be done when packet is being modified
3692 * (uncompressed for instance) and checksum-complete value is
3693 * invalidated.
3694 */
3695 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3696 {
3697 if (skb->ip_summed == CHECKSUM_COMPLETE)
3698 skb->ip_summed = CHECKSUM_NONE;
3699 }
3700
3701 /* Validate (init) checksum based on checksum complete.
3702 *
3703 * Return values:
3704 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3705 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3706 * checksum is stored in skb->csum for use in __skb_checksum_complete
3707 * non-zero: value of invalid checksum
3708 *
3709 */
3710 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3711 bool complete,
3712 __wsum psum)
3713 {
3714 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3715 if (!csum_fold(csum_add(psum, skb->csum))) {
3716 skb->csum_valid = 1;
3717 return 0;
3718 }
3719 }
3720
3721 skb->csum = psum;
3722
3723 if (complete || skb->len <= CHECKSUM_BREAK) {
3724 __sum16 csum;
3725
3726 csum = __skb_checksum_complete(skb);
3727 skb->csum_valid = !csum;
3728 return csum;
3729 }
3730
3731 return 0;
3732 }
3733
3734 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3735 {
3736 return 0;
3737 }
3738
3739 /* Perform checksum validate (init). Note that this is a macro since we only
3740 * want to calculate the pseudo header which is an input function if necessary.
3741 * First we try to validate without any computation (checksum unnecessary) and
3742 * then calculate based on checksum complete calling the function to compute
3743 * pseudo header.
3744 *
3745 * Return values:
3746 * 0: checksum is validated or try to in skb_checksum_complete
3747 * non-zero: value of invalid checksum
3748 */
3749 #define __skb_checksum_validate(skb, proto, complete, \
3750 zero_okay, check, compute_pseudo) \
3751 ({ \
3752 __sum16 __ret = 0; \
3753 skb->csum_valid = 0; \
3754 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3755 __ret = __skb_checksum_validate_complete(skb, \
3756 complete, compute_pseudo(skb, proto)); \
3757 __ret; \
3758 })
3759
3760 #define skb_checksum_init(skb, proto, compute_pseudo) \
3761 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3762
3763 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3764 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3765
3766 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3767 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3768
3769 #define skb_checksum_validate_zero_check(skb, proto, check, \
3770 compute_pseudo) \
3771 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3772
3773 #define skb_checksum_simple_validate(skb) \
3774 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3775
3776 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3777 {
3778 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3779 }
3780
3781 static inline void __skb_checksum_convert(struct sk_buff *skb,
3782 __sum16 check, __wsum pseudo)
3783 {
3784 skb->csum = ~pseudo;
3785 skb->ip_summed = CHECKSUM_COMPLETE;
3786 }
3787
3788 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3789 do { \
3790 if (__skb_checksum_convert_check(skb)) \
3791 __skb_checksum_convert(skb, check, \
3792 compute_pseudo(skb, proto)); \
3793 } while (0)
3794
3795 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3796 u16 start, u16 offset)
3797 {
3798 skb->ip_summed = CHECKSUM_PARTIAL;
3799 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3800 skb->csum_offset = offset - start;
3801 }
3802
3803 /* Update skbuf and packet to reflect the remote checksum offload operation.
3804 * When called, ptr indicates the starting point for skb->csum when
3805 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3806 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3807 */
3808 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3809 int start, int offset, bool nopartial)
3810 {
3811 __wsum delta;
3812
3813 if (!nopartial) {
3814 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3815 return;
3816 }
3817
3818 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3819 __skb_checksum_complete(skb);
3820 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3821 }
3822
3823 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3824
3825 /* Adjust skb->csum since we changed the packet */
3826 skb->csum = csum_add(skb->csum, delta);
3827 }
3828
3829 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3830 {
3831 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3832 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3833 #else
3834 return NULL;
3835 #endif
3836 }
3837
3838 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3839 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3840 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3841 {
3842 if (nfct && atomic_dec_and_test(&nfct->use))
3843 nf_conntrack_destroy(nfct);
3844 }
3845 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3846 {
3847 if (nfct)
3848 atomic_inc(&nfct->use);
3849 }
3850 #endif
3851 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3852 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3853 {
3854 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3855 kfree(nf_bridge);
3856 }
3857 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3858 {
3859 if (nf_bridge)
3860 refcount_inc(&nf_bridge->use);
3861 }
3862 #endif /* CONFIG_BRIDGE_NETFILTER */
3863 static inline void nf_reset(struct sk_buff *skb)
3864 {
3865 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3866 nf_conntrack_put(skb_nfct(skb));
3867 skb->_nfct = 0;
3868 #endif
3869 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3870 nf_bridge_put(skb->nf_bridge);
3871 skb->nf_bridge = NULL;
3872 #endif
3873 }
3874
3875 static inline void nf_reset_trace(struct sk_buff *skb)
3876 {
3877 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3878 skb->nf_trace = 0;
3879 #endif
3880 }
3881
3882 static inline void ipvs_reset(struct sk_buff *skb)
3883 {
3884 #if IS_ENABLED(CONFIG_IP_VS)
3885 skb->ipvs_property = 0;
3886 #endif
3887 }
3888
3889 /* Note: This doesn't put any conntrack and bridge info in dst. */
3890 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3891 bool copy)
3892 {
3893 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3894 dst->_nfct = src->_nfct;
3895 nf_conntrack_get(skb_nfct(src));
3896 #endif
3897 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3898 dst->nf_bridge = src->nf_bridge;
3899 nf_bridge_get(src->nf_bridge);
3900 #endif
3901 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3902 if (copy)
3903 dst->nf_trace = src->nf_trace;
3904 #endif
3905 }
3906
3907 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3908 {
3909 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3910 nf_conntrack_put(skb_nfct(dst));
3911 #endif
3912 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3913 nf_bridge_put(dst->nf_bridge);
3914 #endif
3915 __nf_copy(dst, src, true);
3916 }
3917
3918 #ifdef CONFIG_NETWORK_SECMARK
3919 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3920 {
3921 to->secmark = from->secmark;
3922 }
3923
3924 static inline void skb_init_secmark(struct sk_buff *skb)
3925 {
3926 skb->secmark = 0;
3927 }
3928 #else
3929 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3930 { }
3931
3932 static inline void skb_init_secmark(struct sk_buff *skb)
3933 { }
3934 #endif
3935
3936 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3937 {
3938 return !skb->destructor &&
3939 #if IS_ENABLED(CONFIG_XFRM)
3940 !skb->sp &&
3941 #endif
3942 !skb_nfct(skb) &&
3943 !skb->_skb_refdst &&
3944 !skb_has_frag_list(skb);
3945 }
3946
3947 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3948 {
3949 skb->queue_mapping = queue_mapping;
3950 }
3951
3952 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3953 {
3954 return skb->queue_mapping;
3955 }
3956
3957 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3958 {
3959 to->queue_mapping = from->queue_mapping;
3960 }
3961
3962 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3963 {
3964 skb->queue_mapping = rx_queue + 1;
3965 }
3966
3967 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3968 {
3969 return skb->queue_mapping - 1;
3970 }
3971
3972 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3973 {
3974 return skb->queue_mapping != 0;
3975 }
3976
3977 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3978 {
3979 skb->dst_pending_confirm = val;
3980 }
3981
3982 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3983 {
3984 return skb->dst_pending_confirm != 0;
3985 }
3986
3987 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3988 {
3989 #ifdef CONFIG_XFRM
3990 return skb->sp;
3991 #else
3992 return NULL;
3993 #endif
3994 }
3995
3996 /* Keeps track of mac header offset relative to skb->head.
3997 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3998 * For non-tunnel skb it points to skb_mac_header() and for
3999 * tunnel skb it points to outer mac header.
4000 * Keeps track of level of encapsulation of network headers.
4001 */
4002 struct skb_gso_cb {
4003 union {
4004 int mac_offset;
4005 int data_offset;
4006 };
4007 int encap_level;
4008 __wsum csum;
4009 __u16 csum_start;
4010 };
4011 #define SKB_SGO_CB_OFFSET 32
4012 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4013
4014 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4015 {
4016 return (skb_mac_header(inner_skb) - inner_skb->head) -
4017 SKB_GSO_CB(inner_skb)->mac_offset;
4018 }
4019
4020 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4021 {
4022 int new_headroom, headroom;
4023 int ret;
4024
4025 headroom = skb_headroom(skb);
4026 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4027 if (ret)
4028 return ret;
4029
4030 new_headroom = skb_headroom(skb);
4031 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4032 return 0;
4033 }
4034
4035 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4036 {
4037 /* Do not update partial checksums if remote checksum is enabled. */
4038 if (skb->remcsum_offload)
4039 return;
4040
4041 SKB_GSO_CB(skb)->csum = res;
4042 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4043 }
4044
4045 /* Compute the checksum for a gso segment. First compute the checksum value
4046 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4047 * then add in skb->csum (checksum from csum_start to end of packet).
4048 * skb->csum and csum_start are then updated to reflect the checksum of the
4049 * resultant packet starting from the transport header-- the resultant checksum
4050 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4051 * header.
4052 */
4053 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4054 {
4055 unsigned char *csum_start = skb_transport_header(skb);
4056 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4057 __wsum partial = SKB_GSO_CB(skb)->csum;
4058
4059 SKB_GSO_CB(skb)->csum = res;
4060 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4061
4062 return csum_fold(csum_partial(csum_start, plen, partial));
4063 }
4064
4065 static inline bool skb_is_gso(const struct sk_buff *skb)
4066 {
4067 return skb_shinfo(skb)->gso_size;
4068 }
4069
4070 /* Note: Should be called only if skb_is_gso(skb) is true */
4071 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4072 {
4073 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4074 }
4075
4076 static inline void skb_gso_reset(struct sk_buff *skb)
4077 {
4078 skb_shinfo(skb)->gso_size = 0;
4079 skb_shinfo(skb)->gso_segs = 0;
4080 skb_shinfo(skb)->gso_type = 0;
4081 }
4082
4083 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4084
4085 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4086 {
4087 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4088 * wanted then gso_type will be set. */
4089 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4090
4091 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4092 unlikely(shinfo->gso_type == 0)) {
4093 __skb_warn_lro_forwarding(skb);
4094 return true;
4095 }
4096 return false;
4097 }
4098
4099 static inline void skb_forward_csum(struct sk_buff *skb)
4100 {
4101 /* Unfortunately we don't support this one. Any brave souls? */
4102 if (skb->ip_summed == CHECKSUM_COMPLETE)
4103 skb->ip_summed = CHECKSUM_NONE;
4104 }
4105
4106 /**
4107 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4108 * @skb: skb to check
4109 *
4110 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4111 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4112 * use this helper, to document places where we make this assertion.
4113 */
4114 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4115 {
4116 #ifdef DEBUG
4117 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4118 #endif
4119 }
4120
4121 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4122
4123 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4124 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4125 unsigned int transport_len,
4126 __sum16(*skb_chkf)(struct sk_buff *skb));
4127
4128 /**
4129 * skb_head_is_locked - Determine if the skb->head is locked down
4130 * @skb: skb to check
4131 *
4132 * The head on skbs build around a head frag can be removed if they are
4133 * not cloned. This function returns true if the skb head is locked down
4134 * due to either being allocated via kmalloc, or by being a clone with
4135 * multiple references to the head.
4136 */
4137 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4138 {
4139 return !skb->head_frag || skb_cloned(skb);
4140 }
4141
4142 /**
4143 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4144 *
4145 * @skb: GSO skb
4146 *
4147 * skb_gso_network_seglen is used to determine the real size of the
4148 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4149 *
4150 * The MAC/L2 header is not accounted for.
4151 */
4152 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4153 {
4154 unsigned int hdr_len = skb_transport_header(skb) -
4155 skb_network_header(skb);
4156 return hdr_len + skb_gso_transport_seglen(skb);
4157 }
4158
4159 /**
4160 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4161 *
4162 * @skb: GSO skb
4163 *
4164 * skb_gso_mac_seglen is used to determine the real size of the
4165 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4166 * headers (TCP/UDP).
4167 */
4168 static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4169 {
4170 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4171 return hdr_len + skb_gso_transport_seglen(skb);
4172 }
4173
4174 /* Local Checksum Offload.
4175 * Compute outer checksum based on the assumption that the
4176 * inner checksum will be offloaded later.
4177 * See Documentation/networking/checksum-offloads.txt for
4178 * explanation of how this works.
4179 * Fill in outer checksum adjustment (e.g. with sum of outer
4180 * pseudo-header) before calling.
4181 * Also ensure that inner checksum is in linear data area.
4182 */
4183 static inline __wsum lco_csum(struct sk_buff *skb)
4184 {
4185 unsigned char *csum_start = skb_checksum_start(skb);
4186 unsigned char *l4_hdr = skb_transport_header(skb);
4187 __wsum partial;
4188
4189 /* Start with complement of inner checksum adjustment */
4190 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4191 skb->csum_offset));
4192
4193 /* Add in checksum of our headers (incl. outer checksum
4194 * adjustment filled in by caller) and return result.
4195 */
4196 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4197 }
4198
4199 #endif /* __KERNEL__ */
4200 #endif /* _LINUX_SKBUFF_H */