]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49 /* return minimum truesize of one skb containing X bytes of data */
50 #define SKB_TRUESIZE(X) ((X) + \
51 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
52 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
53
54 /* A. Checksumming of received packets by device.
55 *
56 * NONE: device failed to checksum this packet.
57 * skb->csum is undefined.
58 *
59 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
60 * skb->csum is undefined.
61 * It is bad option, but, unfortunately, many of vendors do this.
62 * Apparently with secret goal to sell you new device, when you
63 * will add new protocol to your host. F.e. IPv6. 8)
64 *
65 * COMPLETE: the most generic way. Device supplied checksum of _all_
66 * the packet as seen by netif_rx in skb->csum.
67 * NOTE: Even if device supports only some protocols, but
68 * is able to produce some skb->csum, it MUST use COMPLETE,
69 * not UNNECESSARY.
70 *
71 * PARTIAL: identical to the case for output below. This may occur
72 * on a packet received directly from another Linux OS, e.g.,
73 * a virtualised Linux kernel on the same host. The packet can
74 * be treated in the same way as UNNECESSARY except that on
75 * output (i.e., forwarding) the checksum must be filled in
76 * by the OS or the hardware.
77 *
78 * B. Checksumming on output.
79 *
80 * NONE: skb is checksummed by protocol or csum is not required.
81 *
82 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
83 * from skb->csum_start to the end and to record the checksum
84 * at skb->csum_start + skb->csum_offset.
85 *
86 * Device must show its capabilities in dev->features, set
87 * at device setup time.
88 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
89 * everything.
90 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92 * TCP/UDP over IPv4. Sigh. Vendors like this
93 * way by an unknown reason. Though, see comment above
94 * about CHECKSUM_UNNECESSARY. 8)
95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
96 *
97 * Any questions? No questions, good. --ANK
98 */
99
100 struct net_device;
101 struct scatterlist;
102 struct pipe_inode_info;
103
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack {
106 atomic_t use;
107 };
108 #endif
109
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info {
112 atomic_t use;
113 struct net_device *physindev;
114 struct net_device *physoutdev;
115 unsigned int mask;
116 unsigned long data[32 / sizeof(unsigned long)];
117 };
118 #endif
119
120 struct sk_buff_head {
121 /* These two members must be first. */
122 struct sk_buff *next;
123 struct sk_buff *prev;
124
125 __u32 qlen;
126 spinlock_t lock;
127 };
128
129 struct sk_buff;
130
131 /* To allow 64K frame to be packed as single skb without frag_list. Since
132 * GRO uses frags we allocate at least 16 regardless of page size.
133 */
134 #if (65536/PAGE_SIZE + 2) < 16
135 #define MAX_SKB_FRAGS 16UL
136 #else
137 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
138 #endif
139
140 typedef struct skb_frag_struct skb_frag_t;
141
142 struct skb_frag_struct {
143 struct {
144 struct page *p;
145 } page;
146 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
147 __u32 page_offset;
148 __u32 size;
149 #else
150 __u16 page_offset;
151 __u16 size;
152 #endif
153 };
154
155 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
156 {
157 return frag->size;
158 }
159
160 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
161 {
162 frag->size = size;
163 }
164
165 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
166 {
167 frag->size += delta;
168 }
169
170 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
171 {
172 frag->size -= delta;
173 }
174
175 #define HAVE_HW_TIME_STAMP
176
177 /**
178 * struct skb_shared_hwtstamps - hardware time stamps
179 * @hwtstamp: hardware time stamp transformed into duration
180 * since arbitrary point in time
181 * @syststamp: hwtstamp transformed to system time base
182 *
183 * Software time stamps generated by ktime_get_real() are stored in
184 * skb->tstamp. The relation between the different kinds of time
185 * stamps is as follows:
186 *
187 * syststamp and tstamp can be compared against each other in
188 * arbitrary combinations. The accuracy of a
189 * syststamp/tstamp/"syststamp from other device" comparison is
190 * limited by the accuracy of the transformation into system time
191 * base. This depends on the device driver and its underlying
192 * hardware.
193 *
194 * hwtstamps can only be compared against other hwtstamps from
195 * the same device.
196 *
197 * This structure is attached to packets as part of the
198 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
199 */
200 struct skb_shared_hwtstamps {
201 ktime_t hwtstamp;
202 ktime_t syststamp;
203 };
204
205 /* Definitions for tx_flags in struct skb_shared_info */
206 enum {
207 /* generate hardware time stamp */
208 SKBTX_HW_TSTAMP = 1 << 0,
209
210 /* generate software time stamp */
211 SKBTX_SW_TSTAMP = 1 << 1,
212
213 /* device driver is going to provide hardware time stamp */
214 SKBTX_IN_PROGRESS = 1 << 2,
215
216 /* ensure the originating sk reference is available on driver level */
217 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
218
219 /* device driver supports TX zero-copy buffers */
220 SKBTX_DEV_ZEROCOPY = 1 << 4,
221
222 /* generate wifi status information (where possible) */
223 SKBTX_WIFI_STATUS = 1 << 5,
224 };
225
226 /*
227 * The callback notifies userspace to release buffers when skb DMA is done in
228 * lower device, the skb last reference should be 0 when calling this.
229 * The desc is used to track userspace buffer index.
230 */
231 struct ubuf_info {
232 void (*callback)(void *);
233 void *arg;
234 unsigned long desc;
235 };
236
237 /* This data is invariant across clones and lives at
238 * the end of the header data, ie. at skb->end.
239 */
240 struct skb_shared_info {
241 unsigned short nr_frags;
242 unsigned short gso_size;
243 /* Warning: this field is not always filled in (UFO)! */
244 unsigned short gso_segs;
245 unsigned short gso_type;
246 __be32 ip6_frag_id;
247 __u8 tx_flags;
248 struct sk_buff *frag_list;
249 struct skb_shared_hwtstamps hwtstamps;
250
251 /*
252 * Warning : all fields before dataref are cleared in __alloc_skb()
253 */
254 atomic_t dataref;
255
256 /* Intermediate layers must ensure that destructor_arg
257 * remains valid until skb destructor */
258 void * destructor_arg;
259
260 /* must be last field, see pskb_expand_head() */
261 skb_frag_t frags[MAX_SKB_FRAGS];
262 };
263
264 /* We divide dataref into two halves. The higher 16 bits hold references
265 * to the payload part of skb->data. The lower 16 bits hold references to
266 * the entire skb->data. A clone of a headerless skb holds the length of
267 * the header in skb->hdr_len.
268 *
269 * All users must obey the rule that the skb->data reference count must be
270 * greater than or equal to the payload reference count.
271 *
272 * Holding a reference to the payload part means that the user does not
273 * care about modifications to the header part of skb->data.
274 */
275 #define SKB_DATAREF_SHIFT 16
276 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
277
278
279 enum {
280 SKB_FCLONE_UNAVAILABLE,
281 SKB_FCLONE_ORIG,
282 SKB_FCLONE_CLONE,
283 };
284
285 enum {
286 SKB_GSO_TCPV4 = 1 << 0,
287 SKB_GSO_UDP = 1 << 1,
288
289 /* This indicates the skb is from an untrusted source. */
290 SKB_GSO_DODGY = 1 << 2,
291
292 /* This indicates the tcp segment has CWR set. */
293 SKB_GSO_TCP_ECN = 1 << 3,
294
295 SKB_GSO_TCPV6 = 1 << 4,
296
297 SKB_GSO_FCOE = 1 << 5,
298 };
299
300 #if BITS_PER_LONG > 32
301 #define NET_SKBUFF_DATA_USES_OFFSET 1
302 #endif
303
304 #ifdef NET_SKBUFF_DATA_USES_OFFSET
305 typedef unsigned int sk_buff_data_t;
306 #else
307 typedef unsigned char *sk_buff_data_t;
308 #endif
309
310 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
311 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
312 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
313 #endif
314
315 /**
316 * struct sk_buff - socket buffer
317 * @next: Next buffer in list
318 * @prev: Previous buffer in list
319 * @tstamp: Time we arrived
320 * @sk: Socket we are owned by
321 * @dev: Device we arrived on/are leaving by
322 * @cb: Control buffer. Free for use by every layer. Put private vars here
323 * @_skb_refdst: destination entry (with norefcount bit)
324 * @sp: the security path, used for xfrm
325 * @len: Length of actual data
326 * @data_len: Data length
327 * @mac_len: Length of link layer header
328 * @hdr_len: writable header length of cloned skb
329 * @csum: Checksum (must include start/offset pair)
330 * @csum_start: Offset from skb->head where checksumming should start
331 * @csum_offset: Offset from csum_start where checksum should be stored
332 * @priority: Packet queueing priority
333 * @local_df: allow local fragmentation
334 * @cloned: Head may be cloned (check refcnt to be sure)
335 * @ip_summed: Driver fed us an IP checksum
336 * @nohdr: Payload reference only, must not modify header
337 * @nfctinfo: Relationship of this skb to the connection
338 * @pkt_type: Packet class
339 * @fclone: skbuff clone status
340 * @ipvs_property: skbuff is owned by ipvs
341 * @peeked: this packet has been seen already, so stats have been
342 * done for it, don't do them again
343 * @nf_trace: netfilter packet trace flag
344 * @protocol: Packet protocol from driver
345 * @destructor: Destruct function
346 * @nfct: Associated connection, if any
347 * @nfct_reasm: netfilter conntrack re-assembly pointer
348 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
349 * @skb_iif: ifindex of device we arrived on
350 * @tc_index: Traffic control index
351 * @tc_verd: traffic control verdict
352 * @rxhash: the packet hash computed on receive
353 * @queue_mapping: Queue mapping for multiqueue devices
354 * @ndisc_nodetype: router type (from link layer)
355 * @ooo_okay: allow the mapping of a socket to a queue to be changed
356 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
357 * ports.
358 * @wifi_acked_valid: wifi_acked was set
359 * @wifi_acked: whether frame was acked on wifi or not
360 * @dma_cookie: a cookie to one of several possible DMA operations
361 * done by skb DMA functions
362 * @secmark: security marking
363 * @mark: Generic packet mark
364 * @dropcount: total number of sk_receive_queue overflows
365 * @vlan_tci: vlan tag control information
366 * @transport_header: Transport layer header
367 * @network_header: Network layer header
368 * @mac_header: Link layer header
369 * @tail: Tail pointer
370 * @end: End pointer
371 * @head: Head of buffer
372 * @data: Data head pointer
373 * @truesize: Buffer size
374 * @users: User count - see {datagram,tcp}.c
375 */
376
377 struct sk_buff {
378 /* These two members must be first. */
379 struct sk_buff *next;
380 struct sk_buff *prev;
381
382 ktime_t tstamp;
383
384 struct sock *sk;
385 struct net_device *dev;
386
387 /*
388 * This is the control buffer. It is free to use for every
389 * layer. Please put your private variables there. If you
390 * want to keep them across layers you have to do a skb_clone()
391 * first. This is owned by whoever has the skb queued ATM.
392 */
393 char cb[48] __aligned(8);
394
395 unsigned long _skb_refdst;
396 #ifdef CONFIG_XFRM
397 struct sec_path *sp;
398 #endif
399 unsigned int len,
400 data_len;
401 __u16 mac_len,
402 hdr_len;
403 union {
404 __wsum csum;
405 struct {
406 __u16 csum_start;
407 __u16 csum_offset;
408 };
409 };
410 __u32 priority;
411 kmemcheck_bitfield_begin(flags1);
412 __u8 local_df:1,
413 cloned:1,
414 ip_summed:2,
415 nohdr:1,
416 nfctinfo:3;
417 __u8 pkt_type:3,
418 fclone:2,
419 ipvs_property:1,
420 peeked:1,
421 nf_trace:1;
422 kmemcheck_bitfield_end(flags1);
423 __be16 protocol;
424
425 void (*destructor)(struct sk_buff *skb);
426 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
427 struct nf_conntrack *nfct;
428 #endif
429 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
430 struct sk_buff *nfct_reasm;
431 #endif
432 #ifdef CONFIG_BRIDGE_NETFILTER
433 struct nf_bridge_info *nf_bridge;
434 #endif
435
436 int skb_iif;
437 #ifdef CONFIG_NET_SCHED
438 __u16 tc_index; /* traffic control index */
439 #ifdef CONFIG_NET_CLS_ACT
440 __u16 tc_verd; /* traffic control verdict */
441 #endif
442 #endif
443
444 __u32 rxhash;
445
446 __u16 queue_mapping;
447 kmemcheck_bitfield_begin(flags2);
448 #ifdef CONFIG_IPV6_NDISC_NODETYPE
449 __u8 ndisc_nodetype:2;
450 #endif
451 __u8 ooo_okay:1;
452 __u8 l4_rxhash:1;
453 __u8 wifi_acked_valid:1;
454 __u8 wifi_acked:1;
455 /* 10/12 bit hole (depending on ndisc_nodetype presence) */
456 kmemcheck_bitfield_end(flags2);
457
458 #ifdef CONFIG_NET_DMA
459 dma_cookie_t dma_cookie;
460 #endif
461 #ifdef CONFIG_NETWORK_SECMARK
462 __u32 secmark;
463 #endif
464 union {
465 __u32 mark;
466 __u32 dropcount;
467 };
468
469 __u16 vlan_tci;
470
471 sk_buff_data_t transport_header;
472 sk_buff_data_t network_header;
473 sk_buff_data_t mac_header;
474 /* These elements must be at the end, see alloc_skb() for details. */
475 sk_buff_data_t tail;
476 sk_buff_data_t end;
477 unsigned char *head,
478 *data;
479 unsigned int truesize;
480 atomic_t users;
481 };
482
483 #ifdef __KERNEL__
484 /*
485 * Handling routines are only of interest to the kernel
486 */
487 #include <linux/slab.h>
488
489 #include <asm/system.h>
490
491 /*
492 * skb might have a dst pointer attached, refcounted or not.
493 * _skb_refdst low order bit is set if refcount was _not_ taken
494 */
495 #define SKB_DST_NOREF 1UL
496 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
497
498 /**
499 * skb_dst - returns skb dst_entry
500 * @skb: buffer
501 *
502 * Returns skb dst_entry, regardless of reference taken or not.
503 */
504 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
505 {
506 /* If refdst was not refcounted, check we still are in a
507 * rcu_read_lock section
508 */
509 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
510 !rcu_read_lock_held() &&
511 !rcu_read_lock_bh_held());
512 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
513 }
514
515 /**
516 * skb_dst_set - sets skb dst
517 * @skb: buffer
518 * @dst: dst entry
519 *
520 * Sets skb dst, assuming a reference was taken on dst and should
521 * be released by skb_dst_drop()
522 */
523 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
524 {
525 skb->_skb_refdst = (unsigned long)dst;
526 }
527
528 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
529
530 /**
531 * skb_dst_is_noref - Test if skb dst isn't refcounted
532 * @skb: buffer
533 */
534 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
535 {
536 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
537 }
538
539 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
540 {
541 return (struct rtable *)skb_dst(skb);
542 }
543
544 extern void kfree_skb(struct sk_buff *skb);
545 extern void consume_skb(struct sk_buff *skb);
546 extern void __kfree_skb(struct sk_buff *skb);
547 extern struct sk_buff *__alloc_skb(unsigned int size,
548 gfp_t priority, int fclone, int node);
549 static inline struct sk_buff *alloc_skb(unsigned int size,
550 gfp_t priority)
551 {
552 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
553 }
554
555 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
556 gfp_t priority)
557 {
558 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
559 }
560
561 extern void skb_recycle(struct sk_buff *skb);
562 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
563
564 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
565 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
566 extern struct sk_buff *skb_clone(struct sk_buff *skb,
567 gfp_t priority);
568 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
569 gfp_t priority);
570 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
571 gfp_t gfp_mask);
572 extern int pskb_expand_head(struct sk_buff *skb,
573 int nhead, int ntail,
574 gfp_t gfp_mask);
575 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
576 unsigned int headroom);
577 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
578 int newheadroom, int newtailroom,
579 gfp_t priority);
580 extern int skb_to_sgvec(struct sk_buff *skb,
581 struct scatterlist *sg, int offset,
582 int len);
583 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
584 struct sk_buff **trailer);
585 extern int skb_pad(struct sk_buff *skb, int pad);
586 #define dev_kfree_skb(a) consume_skb(a)
587
588 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
589 int getfrag(void *from, char *to, int offset,
590 int len,int odd, struct sk_buff *skb),
591 void *from, int length);
592
593 struct skb_seq_state {
594 __u32 lower_offset;
595 __u32 upper_offset;
596 __u32 frag_idx;
597 __u32 stepped_offset;
598 struct sk_buff *root_skb;
599 struct sk_buff *cur_skb;
600 __u8 *frag_data;
601 };
602
603 extern void skb_prepare_seq_read(struct sk_buff *skb,
604 unsigned int from, unsigned int to,
605 struct skb_seq_state *st);
606 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
607 struct skb_seq_state *st);
608 extern void skb_abort_seq_read(struct skb_seq_state *st);
609
610 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
611 unsigned int to, struct ts_config *config,
612 struct ts_state *state);
613
614 extern void __skb_get_rxhash(struct sk_buff *skb);
615 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
616 {
617 if (!skb->rxhash)
618 __skb_get_rxhash(skb);
619
620 return skb->rxhash;
621 }
622
623 #ifdef NET_SKBUFF_DATA_USES_OFFSET
624 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
625 {
626 return skb->head + skb->end;
627 }
628 #else
629 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
630 {
631 return skb->end;
632 }
633 #endif
634
635 /* Internal */
636 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
637
638 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
639 {
640 return &skb_shinfo(skb)->hwtstamps;
641 }
642
643 /**
644 * skb_queue_empty - check if a queue is empty
645 * @list: queue head
646 *
647 * Returns true if the queue is empty, false otherwise.
648 */
649 static inline int skb_queue_empty(const struct sk_buff_head *list)
650 {
651 return list->next == (struct sk_buff *)list;
652 }
653
654 /**
655 * skb_queue_is_last - check if skb is the last entry in the queue
656 * @list: queue head
657 * @skb: buffer
658 *
659 * Returns true if @skb is the last buffer on the list.
660 */
661 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
662 const struct sk_buff *skb)
663 {
664 return skb->next == (struct sk_buff *)list;
665 }
666
667 /**
668 * skb_queue_is_first - check if skb is the first entry in the queue
669 * @list: queue head
670 * @skb: buffer
671 *
672 * Returns true if @skb is the first buffer on the list.
673 */
674 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
675 const struct sk_buff *skb)
676 {
677 return skb->prev == (struct sk_buff *)list;
678 }
679
680 /**
681 * skb_queue_next - return the next packet in the queue
682 * @list: queue head
683 * @skb: current buffer
684 *
685 * Return the next packet in @list after @skb. It is only valid to
686 * call this if skb_queue_is_last() evaluates to false.
687 */
688 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
689 const struct sk_buff *skb)
690 {
691 /* This BUG_ON may seem severe, but if we just return then we
692 * are going to dereference garbage.
693 */
694 BUG_ON(skb_queue_is_last(list, skb));
695 return skb->next;
696 }
697
698 /**
699 * skb_queue_prev - return the prev packet in the queue
700 * @list: queue head
701 * @skb: current buffer
702 *
703 * Return the prev packet in @list before @skb. It is only valid to
704 * call this if skb_queue_is_first() evaluates to false.
705 */
706 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
707 const struct sk_buff *skb)
708 {
709 /* This BUG_ON may seem severe, but if we just return then we
710 * are going to dereference garbage.
711 */
712 BUG_ON(skb_queue_is_first(list, skb));
713 return skb->prev;
714 }
715
716 /**
717 * skb_get - reference buffer
718 * @skb: buffer to reference
719 *
720 * Makes another reference to a socket buffer and returns a pointer
721 * to the buffer.
722 */
723 static inline struct sk_buff *skb_get(struct sk_buff *skb)
724 {
725 atomic_inc(&skb->users);
726 return skb;
727 }
728
729 /*
730 * If users == 1, we are the only owner and are can avoid redundant
731 * atomic change.
732 */
733
734 /**
735 * skb_cloned - is the buffer a clone
736 * @skb: buffer to check
737 *
738 * Returns true if the buffer was generated with skb_clone() and is
739 * one of multiple shared copies of the buffer. Cloned buffers are
740 * shared data so must not be written to under normal circumstances.
741 */
742 static inline int skb_cloned(const struct sk_buff *skb)
743 {
744 return skb->cloned &&
745 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
746 }
747
748 /**
749 * skb_header_cloned - is the header a clone
750 * @skb: buffer to check
751 *
752 * Returns true if modifying the header part of the buffer requires
753 * the data to be copied.
754 */
755 static inline int skb_header_cloned(const struct sk_buff *skb)
756 {
757 int dataref;
758
759 if (!skb->cloned)
760 return 0;
761
762 dataref = atomic_read(&skb_shinfo(skb)->dataref);
763 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
764 return dataref != 1;
765 }
766
767 /**
768 * skb_header_release - release reference to header
769 * @skb: buffer to operate on
770 *
771 * Drop a reference to the header part of the buffer. This is done
772 * by acquiring a payload reference. You must not read from the header
773 * part of skb->data after this.
774 */
775 static inline void skb_header_release(struct sk_buff *skb)
776 {
777 BUG_ON(skb->nohdr);
778 skb->nohdr = 1;
779 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
780 }
781
782 /**
783 * skb_shared - is the buffer shared
784 * @skb: buffer to check
785 *
786 * Returns true if more than one person has a reference to this
787 * buffer.
788 */
789 static inline int skb_shared(const struct sk_buff *skb)
790 {
791 return atomic_read(&skb->users) != 1;
792 }
793
794 /**
795 * skb_share_check - check if buffer is shared and if so clone it
796 * @skb: buffer to check
797 * @pri: priority for memory allocation
798 *
799 * If the buffer is shared the buffer is cloned and the old copy
800 * drops a reference. A new clone with a single reference is returned.
801 * If the buffer is not shared the original buffer is returned. When
802 * being called from interrupt status or with spinlocks held pri must
803 * be GFP_ATOMIC.
804 *
805 * NULL is returned on a memory allocation failure.
806 */
807 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
808 gfp_t pri)
809 {
810 might_sleep_if(pri & __GFP_WAIT);
811 if (skb_shared(skb)) {
812 struct sk_buff *nskb = skb_clone(skb, pri);
813 kfree_skb(skb);
814 skb = nskb;
815 }
816 return skb;
817 }
818
819 /*
820 * Copy shared buffers into a new sk_buff. We effectively do COW on
821 * packets to handle cases where we have a local reader and forward
822 * and a couple of other messy ones. The normal one is tcpdumping
823 * a packet thats being forwarded.
824 */
825
826 /**
827 * skb_unshare - make a copy of a shared buffer
828 * @skb: buffer to check
829 * @pri: priority for memory allocation
830 *
831 * If the socket buffer is a clone then this function creates a new
832 * copy of the data, drops a reference count on the old copy and returns
833 * the new copy with the reference count at 1. If the buffer is not a clone
834 * the original buffer is returned. When called with a spinlock held or
835 * from interrupt state @pri must be %GFP_ATOMIC
836 *
837 * %NULL is returned on a memory allocation failure.
838 */
839 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
840 gfp_t pri)
841 {
842 might_sleep_if(pri & __GFP_WAIT);
843 if (skb_cloned(skb)) {
844 struct sk_buff *nskb = skb_copy(skb, pri);
845 kfree_skb(skb); /* Free our shared copy */
846 skb = nskb;
847 }
848 return skb;
849 }
850
851 /**
852 * skb_peek - peek at the head of an &sk_buff_head
853 * @list_: list to peek at
854 *
855 * Peek an &sk_buff. Unlike most other operations you _MUST_
856 * be careful with this one. A peek leaves the buffer on the
857 * list and someone else may run off with it. You must hold
858 * the appropriate locks or have a private queue to do this.
859 *
860 * Returns %NULL for an empty list or a pointer to the head element.
861 * The reference count is not incremented and the reference is therefore
862 * volatile. Use with caution.
863 */
864 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
865 {
866 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
867 if (list == (struct sk_buff *)list_)
868 list = NULL;
869 return list;
870 }
871
872 /**
873 * skb_peek_tail - peek at the tail of an &sk_buff_head
874 * @list_: list to peek at
875 *
876 * Peek an &sk_buff. Unlike most other operations you _MUST_
877 * be careful with this one. A peek leaves the buffer on the
878 * list and someone else may run off with it. You must hold
879 * the appropriate locks or have a private queue to do this.
880 *
881 * Returns %NULL for an empty list or a pointer to the tail element.
882 * The reference count is not incremented and the reference is therefore
883 * volatile. Use with caution.
884 */
885 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
886 {
887 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
888 if (list == (struct sk_buff *)list_)
889 list = NULL;
890 return list;
891 }
892
893 /**
894 * skb_queue_len - get queue length
895 * @list_: list to measure
896 *
897 * Return the length of an &sk_buff queue.
898 */
899 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
900 {
901 return list_->qlen;
902 }
903
904 /**
905 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
906 * @list: queue to initialize
907 *
908 * This initializes only the list and queue length aspects of
909 * an sk_buff_head object. This allows to initialize the list
910 * aspects of an sk_buff_head without reinitializing things like
911 * the spinlock. It can also be used for on-stack sk_buff_head
912 * objects where the spinlock is known to not be used.
913 */
914 static inline void __skb_queue_head_init(struct sk_buff_head *list)
915 {
916 list->prev = list->next = (struct sk_buff *)list;
917 list->qlen = 0;
918 }
919
920 /*
921 * This function creates a split out lock class for each invocation;
922 * this is needed for now since a whole lot of users of the skb-queue
923 * infrastructure in drivers have different locking usage (in hardirq)
924 * than the networking core (in softirq only). In the long run either the
925 * network layer or drivers should need annotation to consolidate the
926 * main types of usage into 3 classes.
927 */
928 static inline void skb_queue_head_init(struct sk_buff_head *list)
929 {
930 spin_lock_init(&list->lock);
931 __skb_queue_head_init(list);
932 }
933
934 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
935 struct lock_class_key *class)
936 {
937 skb_queue_head_init(list);
938 lockdep_set_class(&list->lock, class);
939 }
940
941 /*
942 * Insert an sk_buff on a list.
943 *
944 * The "__skb_xxxx()" functions are the non-atomic ones that
945 * can only be called with interrupts disabled.
946 */
947 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
948 static inline void __skb_insert(struct sk_buff *newsk,
949 struct sk_buff *prev, struct sk_buff *next,
950 struct sk_buff_head *list)
951 {
952 newsk->next = next;
953 newsk->prev = prev;
954 next->prev = prev->next = newsk;
955 list->qlen++;
956 }
957
958 static inline void __skb_queue_splice(const struct sk_buff_head *list,
959 struct sk_buff *prev,
960 struct sk_buff *next)
961 {
962 struct sk_buff *first = list->next;
963 struct sk_buff *last = list->prev;
964
965 first->prev = prev;
966 prev->next = first;
967
968 last->next = next;
969 next->prev = last;
970 }
971
972 /**
973 * skb_queue_splice - join two skb lists, this is designed for stacks
974 * @list: the new list to add
975 * @head: the place to add it in the first list
976 */
977 static inline void skb_queue_splice(const struct sk_buff_head *list,
978 struct sk_buff_head *head)
979 {
980 if (!skb_queue_empty(list)) {
981 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
982 head->qlen += list->qlen;
983 }
984 }
985
986 /**
987 * skb_queue_splice - join two skb lists and reinitialise the emptied list
988 * @list: the new list to add
989 * @head: the place to add it in the first list
990 *
991 * The list at @list is reinitialised
992 */
993 static inline void skb_queue_splice_init(struct sk_buff_head *list,
994 struct sk_buff_head *head)
995 {
996 if (!skb_queue_empty(list)) {
997 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
998 head->qlen += list->qlen;
999 __skb_queue_head_init(list);
1000 }
1001 }
1002
1003 /**
1004 * skb_queue_splice_tail - join two skb lists, each list being a queue
1005 * @list: the new list to add
1006 * @head: the place to add it in the first list
1007 */
1008 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1009 struct sk_buff_head *head)
1010 {
1011 if (!skb_queue_empty(list)) {
1012 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1013 head->qlen += list->qlen;
1014 }
1015 }
1016
1017 /**
1018 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1019 * @list: the new list to add
1020 * @head: the place to add it in the first list
1021 *
1022 * Each of the lists is a queue.
1023 * The list at @list is reinitialised
1024 */
1025 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1026 struct sk_buff_head *head)
1027 {
1028 if (!skb_queue_empty(list)) {
1029 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1030 head->qlen += list->qlen;
1031 __skb_queue_head_init(list);
1032 }
1033 }
1034
1035 /**
1036 * __skb_queue_after - queue a buffer at the list head
1037 * @list: list to use
1038 * @prev: place after this buffer
1039 * @newsk: buffer to queue
1040 *
1041 * Queue a buffer int the middle of a list. This function takes no locks
1042 * and you must therefore hold required locks before calling it.
1043 *
1044 * A buffer cannot be placed on two lists at the same time.
1045 */
1046 static inline void __skb_queue_after(struct sk_buff_head *list,
1047 struct sk_buff *prev,
1048 struct sk_buff *newsk)
1049 {
1050 __skb_insert(newsk, prev, prev->next, list);
1051 }
1052
1053 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1054 struct sk_buff_head *list);
1055
1056 static inline void __skb_queue_before(struct sk_buff_head *list,
1057 struct sk_buff *next,
1058 struct sk_buff *newsk)
1059 {
1060 __skb_insert(newsk, next->prev, next, list);
1061 }
1062
1063 /**
1064 * __skb_queue_head - queue a buffer at the list head
1065 * @list: list to use
1066 * @newsk: buffer to queue
1067 *
1068 * Queue a buffer at the start of a list. This function takes no locks
1069 * and you must therefore hold required locks before calling it.
1070 *
1071 * A buffer cannot be placed on two lists at the same time.
1072 */
1073 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1074 static inline void __skb_queue_head(struct sk_buff_head *list,
1075 struct sk_buff *newsk)
1076 {
1077 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1078 }
1079
1080 /**
1081 * __skb_queue_tail - queue a buffer at the list tail
1082 * @list: list to use
1083 * @newsk: buffer to queue
1084 *
1085 * Queue a buffer at the end of a list. This function takes no locks
1086 * and you must therefore hold required locks before calling it.
1087 *
1088 * A buffer cannot be placed on two lists at the same time.
1089 */
1090 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1091 static inline void __skb_queue_tail(struct sk_buff_head *list,
1092 struct sk_buff *newsk)
1093 {
1094 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1095 }
1096
1097 /*
1098 * remove sk_buff from list. _Must_ be called atomically, and with
1099 * the list known..
1100 */
1101 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1102 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1103 {
1104 struct sk_buff *next, *prev;
1105
1106 list->qlen--;
1107 next = skb->next;
1108 prev = skb->prev;
1109 skb->next = skb->prev = NULL;
1110 next->prev = prev;
1111 prev->next = next;
1112 }
1113
1114 /**
1115 * __skb_dequeue - remove from the head of the queue
1116 * @list: list to dequeue from
1117 *
1118 * Remove the head of the list. This function does not take any locks
1119 * so must be used with appropriate locks held only. The head item is
1120 * returned or %NULL if the list is empty.
1121 */
1122 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1123 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1124 {
1125 struct sk_buff *skb = skb_peek(list);
1126 if (skb)
1127 __skb_unlink(skb, list);
1128 return skb;
1129 }
1130
1131 /**
1132 * __skb_dequeue_tail - remove from the tail of the queue
1133 * @list: list to dequeue from
1134 *
1135 * Remove the tail of the list. This function does not take any locks
1136 * so must be used with appropriate locks held only. The tail item is
1137 * returned or %NULL if the list is empty.
1138 */
1139 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1140 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1141 {
1142 struct sk_buff *skb = skb_peek_tail(list);
1143 if (skb)
1144 __skb_unlink(skb, list);
1145 return skb;
1146 }
1147
1148
1149 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1150 {
1151 return skb->data_len;
1152 }
1153
1154 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1155 {
1156 return skb->len - skb->data_len;
1157 }
1158
1159 static inline int skb_pagelen(const struct sk_buff *skb)
1160 {
1161 int i, len = 0;
1162
1163 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1164 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1165 return len + skb_headlen(skb);
1166 }
1167
1168 /**
1169 * __skb_fill_page_desc - initialise a paged fragment in an skb
1170 * @skb: buffer containing fragment to be initialised
1171 * @i: paged fragment index to initialise
1172 * @page: the page to use for this fragment
1173 * @off: the offset to the data with @page
1174 * @size: the length of the data
1175 *
1176 * Initialises the @i'th fragment of @skb to point to &size bytes at
1177 * offset @off within @page.
1178 *
1179 * Does not take any additional reference on the fragment.
1180 */
1181 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1182 struct page *page, int off, int size)
1183 {
1184 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1185
1186 frag->page.p = page;
1187 frag->page_offset = off;
1188 skb_frag_size_set(frag, size);
1189 }
1190
1191 /**
1192 * skb_fill_page_desc - initialise a paged fragment in an skb
1193 * @skb: buffer containing fragment to be initialised
1194 * @i: paged fragment index to initialise
1195 * @page: the page to use for this fragment
1196 * @off: the offset to the data with @page
1197 * @size: the length of the data
1198 *
1199 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1200 * @skb to point to &size bytes at offset @off within @page. In
1201 * addition updates @skb such that @i is the last fragment.
1202 *
1203 * Does not take any additional reference on the fragment.
1204 */
1205 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1206 struct page *page, int off, int size)
1207 {
1208 __skb_fill_page_desc(skb, i, page, off, size);
1209 skb_shinfo(skb)->nr_frags = i + 1;
1210 }
1211
1212 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1213 int off, int size);
1214
1215 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1216 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1217 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1218
1219 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1220 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1221 {
1222 return skb->head + skb->tail;
1223 }
1224
1225 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1226 {
1227 skb->tail = skb->data - skb->head;
1228 }
1229
1230 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1231 {
1232 skb_reset_tail_pointer(skb);
1233 skb->tail += offset;
1234 }
1235 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1236 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1237 {
1238 return skb->tail;
1239 }
1240
1241 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1242 {
1243 skb->tail = skb->data;
1244 }
1245
1246 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1247 {
1248 skb->tail = skb->data + offset;
1249 }
1250
1251 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1252
1253 /*
1254 * Add data to an sk_buff
1255 */
1256 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1257 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1258 {
1259 unsigned char *tmp = skb_tail_pointer(skb);
1260 SKB_LINEAR_ASSERT(skb);
1261 skb->tail += len;
1262 skb->len += len;
1263 return tmp;
1264 }
1265
1266 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1267 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1268 {
1269 skb->data -= len;
1270 skb->len += len;
1271 return skb->data;
1272 }
1273
1274 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1275 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1276 {
1277 skb->len -= len;
1278 BUG_ON(skb->len < skb->data_len);
1279 return skb->data += len;
1280 }
1281
1282 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1283 {
1284 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1285 }
1286
1287 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1288
1289 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1290 {
1291 if (len > skb_headlen(skb) &&
1292 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1293 return NULL;
1294 skb->len -= len;
1295 return skb->data += len;
1296 }
1297
1298 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1299 {
1300 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1301 }
1302
1303 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1304 {
1305 if (likely(len <= skb_headlen(skb)))
1306 return 1;
1307 if (unlikely(len > skb->len))
1308 return 0;
1309 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1310 }
1311
1312 /**
1313 * skb_headroom - bytes at buffer head
1314 * @skb: buffer to check
1315 *
1316 * Return the number of bytes of free space at the head of an &sk_buff.
1317 */
1318 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1319 {
1320 return skb->data - skb->head;
1321 }
1322
1323 /**
1324 * skb_tailroom - bytes at buffer end
1325 * @skb: buffer to check
1326 *
1327 * Return the number of bytes of free space at the tail of an sk_buff
1328 */
1329 static inline int skb_tailroom(const struct sk_buff *skb)
1330 {
1331 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1332 }
1333
1334 /**
1335 * skb_reserve - adjust headroom
1336 * @skb: buffer to alter
1337 * @len: bytes to move
1338 *
1339 * Increase the headroom of an empty &sk_buff by reducing the tail
1340 * room. This is only allowed for an empty buffer.
1341 */
1342 static inline void skb_reserve(struct sk_buff *skb, int len)
1343 {
1344 skb->data += len;
1345 skb->tail += len;
1346 }
1347
1348 static inline void skb_reset_mac_len(struct sk_buff *skb)
1349 {
1350 skb->mac_len = skb->network_header - skb->mac_header;
1351 }
1352
1353 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1354 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1355 {
1356 return skb->head + skb->transport_header;
1357 }
1358
1359 static inline void skb_reset_transport_header(struct sk_buff *skb)
1360 {
1361 skb->transport_header = skb->data - skb->head;
1362 }
1363
1364 static inline void skb_set_transport_header(struct sk_buff *skb,
1365 const int offset)
1366 {
1367 skb_reset_transport_header(skb);
1368 skb->transport_header += offset;
1369 }
1370
1371 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1372 {
1373 return skb->head + skb->network_header;
1374 }
1375
1376 static inline void skb_reset_network_header(struct sk_buff *skb)
1377 {
1378 skb->network_header = skb->data - skb->head;
1379 }
1380
1381 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1382 {
1383 skb_reset_network_header(skb);
1384 skb->network_header += offset;
1385 }
1386
1387 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1388 {
1389 return skb->head + skb->mac_header;
1390 }
1391
1392 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1393 {
1394 return skb->mac_header != ~0U;
1395 }
1396
1397 static inline void skb_reset_mac_header(struct sk_buff *skb)
1398 {
1399 skb->mac_header = skb->data - skb->head;
1400 }
1401
1402 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1403 {
1404 skb_reset_mac_header(skb);
1405 skb->mac_header += offset;
1406 }
1407
1408 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1409
1410 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1411 {
1412 return skb->transport_header;
1413 }
1414
1415 static inline void skb_reset_transport_header(struct sk_buff *skb)
1416 {
1417 skb->transport_header = skb->data;
1418 }
1419
1420 static inline void skb_set_transport_header(struct sk_buff *skb,
1421 const int offset)
1422 {
1423 skb->transport_header = skb->data + offset;
1424 }
1425
1426 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1427 {
1428 return skb->network_header;
1429 }
1430
1431 static inline void skb_reset_network_header(struct sk_buff *skb)
1432 {
1433 skb->network_header = skb->data;
1434 }
1435
1436 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1437 {
1438 skb->network_header = skb->data + offset;
1439 }
1440
1441 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1442 {
1443 return skb->mac_header;
1444 }
1445
1446 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1447 {
1448 return skb->mac_header != NULL;
1449 }
1450
1451 static inline void skb_reset_mac_header(struct sk_buff *skb)
1452 {
1453 skb->mac_header = skb->data;
1454 }
1455
1456 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1457 {
1458 skb->mac_header = skb->data + offset;
1459 }
1460 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1461
1462 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1463 {
1464 return skb->csum_start - skb_headroom(skb);
1465 }
1466
1467 static inline int skb_transport_offset(const struct sk_buff *skb)
1468 {
1469 return skb_transport_header(skb) - skb->data;
1470 }
1471
1472 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1473 {
1474 return skb->transport_header - skb->network_header;
1475 }
1476
1477 static inline int skb_network_offset(const struct sk_buff *skb)
1478 {
1479 return skb_network_header(skb) - skb->data;
1480 }
1481
1482 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1483 {
1484 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1485 }
1486
1487 /*
1488 * CPUs often take a performance hit when accessing unaligned memory
1489 * locations. The actual performance hit varies, it can be small if the
1490 * hardware handles it or large if we have to take an exception and fix it
1491 * in software.
1492 *
1493 * Since an ethernet header is 14 bytes network drivers often end up with
1494 * the IP header at an unaligned offset. The IP header can be aligned by
1495 * shifting the start of the packet by 2 bytes. Drivers should do this
1496 * with:
1497 *
1498 * skb_reserve(skb, NET_IP_ALIGN);
1499 *
1500 * The downside to this alignment of the IP header is that the DMA is now
1501 * unaligned. On some architectures the cost of an unaligned DMA is high
1502 * and this cost outweighs the gains made by aligning the IP header.
1503 *
1504 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1505 * to be overridden.
1506 */
1507 #ifndef NET_IP_ALIGN
1508 #define NET_IP_ALIGN 2
1509 #endif
1510
1511 /*
1512 * The networking layer reserves some headroom in skb data (via
1513 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1514 * the header has to grow. In the default case, if the header has to grow
1515 * 32 bytes or less we avoid the reallocation.
1516 *
1517 * Unfortunately this headroom changes the DMA alignment of the resulting
1518 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1519 * on some architectures. An architecture can override this value,
1520 * perhaps setting it to a cacheline in size (since that will maintain
1521 * cacheline alignment of the DMA). It must be a power of 2.
1522 *
1523 * Various parts of the networking layer expect at least 32 bytes of
1524 * headroom, you should not reduce this.
1525 *
1526 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1527 * to reduce average number of cache lines per packet.
1528 * get_rps_cpus() for example only access one 64 bytes aligned block :
1529 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1530 */
1531 #ifndef NET_SKB_PAD
1532 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1533 #endif
1534
1535 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1536
1537 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1538 {
1539 if (unlikely(skb_is_nonlinear(skb))) {
1540 WARN_ON(1);
1541 return;
1542 }
1543 skb->len = len;
1544 skb_set_tail_pointer(skb, len);
1545 }
1546
1547 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1548
1549 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1550 {
1551 if (skb->data_len)
1552 return ___pskb_trim(skb, len);
1553 __skb_trim(skb, len);
1554 return 0;
1555 }
1556
1557 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1558 {
1559 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1560 }
1561
1562 /**
1563 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1564 * @skb: buffer to alter
1565 * @len: new length
1566 *
1567 * This is identical to pskb_trim except that the caller knows that
1568 * the skb is not cloned so we should never get an error due to out-
1569 * of-memory.
1570 */
1571 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1572 {
1573 int err = pskb_trim(skb, len);
1574 BUG_ON(err);
1575 }
1576
1577 /**
1578 * skb_orphan - orphan a buffer
1579 * @skb: buffer to orphan
1580 *
1581 * If a buffer currently has an owner then we call the owner's
1582 * destructor function and make the @skb unowned. The buffer continues
1583 * to exist but is no longer charged to its former owner.
1584 */
1585 static inline void skb_orphan(struct sk_buff *skb)
1586 {
1587 if (skb->destructor)
1588 skb->destructor(skb);
1589 skb->destructor = NULL;
1590 skb->sk = NULL;
1591 }
1592
1593 /**
1594 * __skb_queue_purge - empty a list
1595 * @list: list to empty
1596 *
1597 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1598 * the list and one reference dropped. This function does not take the
1599 * list lock and the caller must hold the relevant locks to use it.
1600 */
1601 extern void skb_queue_purge(struct sk_buff_head *list);
1602 static inline void __skb_queue_purge(struct sk_buff_head *list)
1603 {
1604 struct sk_buff *skb;
1605 while ((skb = __skb_dequeue(list)) != NULL)
1606 kfree_skb(skb);
1607 }
1608
1609 /**
1610 * __dev_alloc_skb - allocate an skbuff for receiving
1611 * @length: length to allocate
1612 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1613 *
1614 * Allocate a new &sk_buff and assign it a usage count of one. The
1615 * buffer has unspecified headroom built in. Users should allocate
1616 * the headroom they think they need without accounting for the
1617 * built in space. The built in space is used for optimisations.
1618 *
1619 * %NULL is returned if there is no free memory.
1620 */
1621 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1622 gfp_t gfp_mask)
1623 {
1624 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1625 if (likely(skb))
1626 skb_reserve(skb, NET_SKB_PAD);
1627 return skb;
1628 }
1629
1630 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1631
1632 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1633 unsigned int length, gfp_t gfp_mask);
1634
1635 /**
1636 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1637 * @dev: network device to receive on
1638 * @length: length to allocate
1639 *
1640 * Allocate a new &sk_buff and assign it a usage count of one. The
1641 * buffer has unspecified headroom built in. Users should allocate
1642 * the headroom they think they need without accounting for the
1643 * built in space. The built in space is used for optimisations.
1644 *
1645 * %NULL is returned if there is no free memory. Although this function
1646 * allocates memory it can be called from an interrupt.
1647 */
1648 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1649 unsigned int length)
1650 {
1651 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1652 }
1653
1654 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1655 unsigned int length, gfp_t gfp)
1656 {
1657 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1658
1659 if (NET_IP_ALIGN && skb)
1660 skb_reserve(skb, NET_IP_ALIGN);
1661 return skb;
1662 }
1663
1664 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1665 unsigned int length)
1666 {
1667 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1668 }
1669
1670 /**
1671 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1672 * @dev: network device to receive on
1673 * @gfp_mask: alloc_pages_node mask
1674 *
1675 * Allocate a new page. dev currently unused.
1676 *
1677 * %NULL is returned if there is no free memory.
1678 */
1679 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1680 {
1681 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1682 }
1683
1684 /**
1685 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1686 * @dev: network device to receive on
1687 *
1688 * Allocate a new page. dev currently unused.
1689 *
1690 * %NULL is returned if there is no free memory.
1691 */
1692 static inline struct page *netdev_alloc_page(struct net_device *dev)
1693 {
1694 return __netdev_alloc_page(dev, GFP_ATOMIC);
1695 }
1696
1697 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1698 {
1699 __free_page(page);
1700 }
1701
1702 /**
1703 * skb_frag_page - retrieve the page refered to by a paged fragment
1704 * @frag: the paged fragment
1705 *
1706 * Returns the &struct page associated with @frag.
1707 */
1708 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1709 {
1710 return frag->page.p;
1711 }
1712
1713 /**
1714 * __skb_frag_ref - take an addition reference on a paged fragment.
1715 * @frag: the paged fragment
1716 *
1717 * Takes an additional reference on the paged fragment @frag.
1718 */
1719 static inline void __skb_frag_ref(skb_frag_t *frag)
1720 {
1721 get_page(skb_frag_page(frag));
1722 }
1723
1724 /**
1725 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1726 * @skb: the buffer
1727 * @f: the fragment offset.
1728 *
1729 * Takes an additional reference on the @f'th paged fragment of @skb.
1730 */
1731 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1732 {
1733 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1734 }
1735
1736 /**
1737 * __skb_frag_unref - release a reference on a paged fragment.
1738 * @frag: the paged fragment
1739 *
1740 * Releases a reference on the paged fragment @frag.
1741 */
1742 static inline void __skb_frag_unref(skb_frag_t *frag)
1743 {
1744 put_page(skb_frag_page(frag));
1745 }
1746
1747 /**
1748 * skb_frag_unref - release a reference on a paged fragment of an skb.
1749 * @skb: the buffer
1750 * @f: the fragment offset
1751 *
1752 * Releases a reference on the @f'th paged fragment of @skb.
1753 */
1754 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1755 {
1756 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1757 }
1758
1759 /**
1760 * skb_frag_address - gets the address of the data contained in a paged fragment
1761 * @frag: the paged fragment buffer
1762 *
1763 * Returns the address of the data within @frag. The page must already
1764 * be mapped.
1765 */
1766 static inline void *skb_frag_address(const skb_frag_t *frag)
1767 {
1768 return page_address(skb_frag_page(frag)) + frag->page_offset;
1769 }
1770
1771 /**
1772 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1773 * @frag: the paged fragment buffer
1774 *
1775 * Returns the address of the data within @frag. Checks that the page
1776 * is mapped and returns %NULL otherwise.
1777 */
1778 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1779 {
1780 void *ptr = page_address(skb_frag_page(frag));
1781 if (unlikely(!ptr))
1782 return NULL;
1783
1784 return ptr + frag->page_offset;
1785 }
1786
1787 /**
1788 * __skb_frag_set_page - sets the page contained in a paged fragment
1789 * @frag: the paged fragment
1790 * @page: the page to set
1791 *
1792 * Sets the fragment @frag to contain @page.
1793 */
1794 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1795 {
1796 frag->page.p = page;
1797 }
1798
1799 /**
1800 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1801 * @skb: the buffer
1802 * @f: the fragment offset
1803 * @page: the page to set
1804 *
1805 * Sets the @f'th fragment of @skb to contain @page.
1806 */
1807 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1808 struct page *page)
1809 {
1810 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1811 }
1812
1813 /**
1814 * skb_frag_dma_map - maps a paged fragment via the DMA API
1815 * @dev: the device to map the fragment to
1816 * @frag: the paged fragment to map
1817 * @offset: the offset within the fragment (starting at the
1818 * fragment's own offset)
1819 * @size: the number of bytes to map
1820 * @dir: the direction of the mapping (%PCI_DMA_*)
1821 *
1822 * Maps the page associated with @frag to @device.
1823 */
1824 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1825 const skb_frag_t *frag,
1826 size_t offset, size_t size,
1827 enum dma_data_direction dir)
1828 {
1829 return dma_map_page(dev, skb_frag_page(frag),
1830 frag->page_offset + offset, size, dir);
1831 }
1832
1833 /**
1834 * skb_clone_writable - is the header of a clone writable
1835 * @skb: buffer to check
1836 * @len: length up to which to write
1837 *
1838 * Returns true if modifying the header part of the cloned buffer
1839 * does not requires the data to be copied.
1840 */
1841 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1842 {
1843 return !skb_header_cloned(skb) &&
1844 skb_headroom(skb) + len <= skb->hdr_len;
1845 }
1846
1847 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1848 int cloned)
1849 {
1850 int delta = 0;
1851
1852 if (headroom < NET_SKB_PAD)
1853 headroom = NET_SKB_PAD;
1854 if (headroom > skb_headroom(skb))
1855 delta = headroom - skb_headroom(skb);
1856
1857 if (delta || cloned)
1858 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1859 GFP_ATOMIC);
1860 return 0;
1861 }
1862
1863 /**
1864 * skb_cow - copy header of skb when it is required
1865 * @skb: buffer to cow
1866 * @headroom: needed headroom
1867 *
1868 * If the skb passed lacks sufficient headroom or its data part
1869 * is shared, data is reallocated. If reallocation fails, an error
1870 * is returned and original skb is not changed.
1871 *
1872 * The result is skb with writable area skb->head...skb->tail
1873 * and at least @headroom of space at head.
1874 */
1875 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1876 {
1877 return __skb_cow(skb, headroom, skb_cloned(skb));
1878 }
1879
1880 /**
1881 * skb_cow_head - skb_cow but only making the head writable
1882 * @skb: buffer to cow
1883 * @headroom: needed headroom
1884 *
1885 * This function is identical to skb_cow except that we replace the
1886 * skb_cloned check by skb_header_cloned. It should be used when
1887 * you only need to push on some header and do not need to modify
1888 * the data.
1889 */
1890 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1891 {
1892 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1893 }
1894
1895 /**
1896 * skb_padto - pad an skbuff up to a minimal size
1897 * @skb: buffer to pad
1898 * @len: minimal length
1899 *
1900 * Pads up a buffer to ensure the trailing bytes exist and are
1901 * blanked. If the buffer already contains sufficient data it
1902 * is untouched. Otherwise it is extended. Returns zero on
1903 * success. The skb is freed on error.
1904 */
1905
1906 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1907 {
1908 unsigned int size = skb->len;
1909 if (likely(size >= len))
1910 return 0;
1911 return skb_pad(skb, len - size);
1912 }
1913
1914 static inline int skb_add_data(struct sk_buff *skb,
1915 char __user *from, int copy)
1916 {
1917 const int off = skb->len;
1918
1919 if (skb->ip_summed == CHECKSUM_NONE) {
1920 int err = 0;
1921 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1922 copy, 0, &err);
1923 if (!err) {
1924 skb->csum = csum_block_add(skb->csum, csum, off);
1925 return 0;
1926 }
1927 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1928 return 0;
1929
1930 __skb_trim(skb, off);
1931 return -EFAULT;
1932 }
1933
1934 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1935 const struct page *page, int off)
1936 {
1937 if (i) {
1938 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1939
1940 return page == skb_frag_page(frag) &&
1941 off == frag->page_offset + skb_frag_size(frag);
1942 }
1943 return 0;
1944 }
1945
1946 static inline int __skb_linearize(struct sk_buff *skb)
1947 {
1948 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1949 }
1950
1951 /**
1952 * skb_linearize - convert paged skb to linear one
1953 * @skb: buffer to linarize
1954 *
1955 * If there is no free memory -ENOMEM is returned, otherwise zero
1956 * is returned and the old skb data released.
1957 */
1958 static inline int skb_linearize(struct sk_buff *skb)
1959 {
1960 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1961 }
1962
1963 /**
1964 * skb_linearize_cow - make sure skb is linear and writable
1965 * @skb: buffer to process
1966 *
1967 * If there is no free memory -ENOMEM is returned, otherwise zero
1968 * is returned and the old skb data released.
1969 */
1970 static inline int skb_linearize_cow(struct sk_buff *skb)
1971 {
1972 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1973 __skb_linearize(skb) : 0;
1974 }
1975
1976 /**
1977 * skb_postpull_rcsum - update checksum for received skb after pull
1978 * @skb: buffer to update
1979 * @start: start of data before pull
1980 * @len: length of data pulled
1981 *
1982 * After doing a pull on a received packet, you need to call this to
1983 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1984 * CHECKSUM_NONE so that it can be recomputed from scratch.
1985 */
1986
1987 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1988 const void *start, unsigned int len)
1989 {
1990 if (skb->ip_summed == CHECKSUM_COMPLETE)
1991 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1992 }
1993
1994 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1995
1996 /**
1997 * pskb_trim_rcsum - trim received skb and update checksum
1998 * @skb: buffer to trim
1999 * @len: new length
2000 *
2001 * This is exactly the same as pskb_trim except that it ensures the
2002 * checksum of received packets are still valid after the operation.
2003 */
2004
2005 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2006 {
2007 if (likely(len >= skb->len))
2008 return 0;
2009 if (skb->ip_summed == CHECKSUM_COMPLETE)
2010 skb->ip_summed = CHECKSUM_NONE;
2011 return __pskb_trim(skb, len);
2012 }
2013
2014 #define skb_queue_walk(queue, skb) \
2015 for (skb = (queue)->next; \
2016 skb != (struct sk_buff *)(queue); \
2017 skb = skb->next)
2018
2019 #define skb_queue_walk_safe(queue, skb, tmp) \
2020 for (skb = (queue)->next, tmp = skb->next; \
2021 skb != (struct sk_buff *)(queue); \
2022 skb = tmp, tmp = skb->next)
2023
2024 #define skb_queue_walk_from(queue, skb) \
2025 for (; skb != (struct sk_buff *)(queue); \
2026 skb = skb->next)
2027
2028 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2029 for (tmp = skb->next; \
2030 skb != (struct sk_buff *)(queue); \
2031 skb = tmp, tmp = skb->next)
2032
2033 #define skb_queue_reverse_walk(queue, skb) \
2034 for (skb = (queue)->prev; \
2035 skb != (struct sk_buff *)(queue); \
2036 skb = skb->prev)
2037
2038 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2039 for (skb = (queue)->prev, tmp = skb->prev; \
2040 skb != (struct sk_buff *)(queue); \
2041 skb = tmp, tmp = skb->prev)
2042
2043 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2044 for (tmp = skb->prev; \
2045 skb != (struct sk_buff *)(queue); \
2046 skb = tmp, tmp = skb->prev)
2047
2048 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2049 {
2050 return skb_shinfo(skb)->frag_list != NULL;
2051 }
2052
2053 static inline void skb_frag_list_init(struct sk_buff *skb)
2054 {
2055 skb_shinfo(skb)->frag_list = NULL;
2056 }
2057
2058 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2059 {
2060 frag->next = skb_shinfo(skb)->frag_list;
2061 skb_shinfo(skb)->frag_list = frag;
2062 }
2063
2064 #define skb_walk_frags(skb, iter) \
2065 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2066
2067 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2068 int *peeked, int *err);
2069 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2070 int noblock, int *err);
2071 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2072 struct poll_table_struct *wait);
2073 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2074 int offset, struct iovec *to,
2075 int size);
2076 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2077 int hlen,
2078 struct iovec *iov);
2079 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2080 int offset,
2081 const struct iovec *from,
2082 int from_offset,
2083 int len);
2084 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2085 int offset,
2086 const struct iovec *to,
2087 int to_offset,
2088 int size);
2089 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2090 extern void skb_free_datagram_locked(struct sock *sk,
2091 struct sk_buff *skb);
2092 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2093 unsigned int flags);
2094 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2095 int len, __wsum csum);
2096 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2097 void *to, int len);
2098 extern int skb_store_bits(struct sk_buff *skb, int offset,
2099 const void *from, int len);
2100 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2101 int offset, u8 *to, int len,
2102 __wsum csum);
2103 extern int skb_splice_bits(struct sk_buff *skb,
2104 unsigned int offset,
2105 struct pipe_inode_info *pipe,
2106 unsigned int len,
2107 unsigned int flags);
2108 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2109 extern void skb_split(struct sk_buff *skb,
2110 struct sk_buff *skb1, const u32 len);
2111 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2112 int shiftlen);
2113
2114 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
2115
2116 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2117 int len, void *buffer)
2118 {
2119 int hlen = skb_headlen(skb);
2120
2121 if (hlen - offset >= len)
2122 return skb->data + offset;
2123
2124 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2125 return NULL;
2126
2127 return buffer;
2128 }
2129
2130 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2131 void *to,
2132 const unsigned int len)
2133 {
2134 memcpy(to, skb->data, len);
2135 }
2136
2137 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2138 const int offset, void *to,
2139 const unsigned int len)
2140 {
2141 memcpy(to, skb->data + offset, len);
2142 }
2143
2144 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2145 const void *from,
2146 const unsigned int len)
2147 {
2148 memcpy(skb->data, from, len);
2149 }
2150
2151 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2152 const int offset,
2153 const void *from,
2154 const unsigned int len)
2155 {
2156 memcpy(skb->data + offset, from, len);
2157 }
2158
2159 extern void skb_init(void);
2160
2161 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2162 {
2163 return skb->tstamp;
2164 }
2165
2166 /**
2167 * skb_get_timestamp - get timestamp from a skb
2168 * @skb: skb to get stamp from
2169 * @stamp: pointer to struct timeval to store stamp in
2170 *
2171 * Timestamps are stored in the skb as offsets to a base timestamp.
2172 * This function converts the offset back to a struct timeval and stores
2173 * it in stamp.
2174 */
2175 static inline void skb_get_timestamp(const struct sk_buff *skb,
2176 struct timeval *stamp)
2177 {
2178 *stamp = ktime_to_timeval(skb->tstamp);
2179 }
2180
2181 static inline void skb_get_timestampns(const struct sk_buff *skb,
2182 struct timespec *stamp)
2183 {
2184 *stamp = ktime_to_timespec(skb->tstamp);
2185 }
2186
2187 static inline void __net_timestamp(struct sk_buff *skb)
2188 {
2189 skb->tstamp = ktime_get_real();
2190 }
2191
2192 static inline ktime_t net_timedelta(ktime_t t)
2193 {
2194 return ktime_sub(ktime_get_real(), t);
2195 }
2196
2197 static inline ktime_t net_invalid_timestamp(void)
2198 {
2199 return ktime_set(0, 0);
2200 }
2201
2202 extern void skb_timestamping_init(void);
2203
2204 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2205
2206 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2207 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2208
2209 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2210
2211 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2212 {
2213 }
2214
2215 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2216 {
2217 return false;
2218 }
2219
2220 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2221
2222 /**
2223 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2224 *
2225 * PHY drivers may accept clones of transmitted packets for
2226 * timestamping via their phy_driver.txtstamp method. These drivers
2227 * must call this function to return the skb back to the stack, with
2228 * or without a timestamp.
2229 *
2230 * @skb: clone of the the original outgoing packet
2231 * @hwtstamps: hardware time stamps, may be NULL if not available
2232 *
2233 */
2234 void skb_complete_tx_timestamp(struct sk_buff *skb,
2235 struct skb_shared_hwtstamps *hwtstamps);
2236
2237 /**
2238 * skb_tstamp_tx - queue clone of skb with send time stamps
2239 * @orig_skb: the original outgoing packet
2240 * @hwtstamps: hardware time stamps, may be NULL if not available
2241 *
2242 * If the skb has a socket associated, then this function clones the
2243 * skb (thus sharing the actual data and optional structures), stores
2244 * the optional hardware time stamping information (if non NULL) or
2245 * generates a software time stamp (otherwise), then queues the clone
2246 * to the error queue of the socket. Errors are silently ignored.
2247 */
2248 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2249 struct skb_shared_hwtstamps *hwtstamps);
2250
2251 static inline void sw_tx_timestamp(struct sk_buff *skb)
2252 {
2253 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2254 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2255 skb_tstamp_tx(skb, NULL);
2256 }
2257
2258 /**
2259 * skb_tx_timestamp() - Driver hook for transmit timestamping
2260 *
2261 * Ethernet MAC Drivers should call this function in their hard_xmit()
2262 * function immediately before giving the sk_buff to the MAC hardware.
2263 *
2264 * @skb: A socket buffer.
2265 */
2266 static inline void skb_tx_timestamp(struct sk_buff *skb)
2267 {
2268 skb_clone_tx_timestamp(skb);
2269 sw_tx_timestamp(skb);
2270 }
2271
2272 /**
2273 * skb_complete_wifi_ack - deliver skb with wifi status
2274 *
2275 * @skb: the original outgoing packet
2276 * @acked: ack status
2277 *
2278 */
2279 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2280
2281 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2282 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2283
2284 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2285 {
2286 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2287 }
2288
2289 /**
2290 * skb_checksum_complete - Calculate checksum of an entire packet
2291 * @skb: packet to process
2292 *
2293 * This function calculates the checksum over the entire packet plus
2294 * the value of skb->csum. The latter can be used to supply the
2295 * checksum of a pseudo header as used by TCP/UDP. It returns the
2296 * checksum.
2297 *
2298 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2299 * this function can be used to verify that checksum on received
2300 * packets. In that case the function should return zero if the
2301 * checksum is correct. In particular, this function will return zero
2302 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2303 * hardware has already verified the correctness of the checksum.
2304 */
2305 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2306 {
2307 return skb_csum_unnecessary(skb) ?
2308 0 : __skb_checksum_complete(skb);
2309 }
2310
2311 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2312 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2313 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2314 {
2315 if (nfct && atomic_dec_and_test(&nfct->use))
2316 nf_conntrack_destroy(nfct);
2317 }
2318 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2319 {
2320 if (nfct)
2321 atomic_inc(&nfct->use);
2322 }
2323 #endif
2324 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2325 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2326 {
2327 if (skb)
2328 atomic_inc(&skb->users);
2329 }
2330 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2331 {
2332 if (skb)
2333 kfree_skb(skb);
2334 }
2335 #endif
2336 #ifdef CONFIG_BRIDGE_NETFILTER
2337 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2338 {
2339 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2340 kfree(nf_bridge);
2341 }
2342 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2343 {
2344 if (nf_bridge)
2345 atomic_inc(&nf_bridge->use);
2346 }
2347 #endif /* CONFIG_BRIDGE_NETFILTER */
2348 static inline void nf_reset(struct sk_buff *skb)
2349 {
2350 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2351 nf_conntrack_put(skb->nfct);
2352 skb->nfct = NULL;
2353 #endif
2354 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2355 nf_conntrack_put_reasm(skb->nfct_reasm);
2356 skb->nfct_reasm = NULL;
2357 #endif
2358 #ifdef CONFIG_BRIDGE_NETFILTER
2359 nf_bridge_put(skb->nf_bridge);
2360 skb->nf_bridge = NULL;
2361 #endif
2362 }
2363
2364 /* Note: This doesn't put any conntrack and bridge info in dst. */
2365 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2366 {
2367 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2368 dst->nfct = src->nfct;
2369 nf_conntrack_get(src->nfct);
2370 dst->nfctinfo = src->nfctinfo;
2371 #endif
2372 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2373 dst->nfct_reasm = src->nfct_reasm;
2374 nf_conntrack_get_reasm(src->nfct_reasm);
2375 #endif
2376 #ifdef CONFIG_BRIDGE_NETFILTER
2377 dst->nf_bridge = src->nf_bridge;
2378 nf_bridge_get(src->nf_bridge);
2379 #endif
2380 }
2381
2382 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2383 {
2384 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2385 nf_conntrack_put(dst->nfct);
2386 #endif
2387 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2388 nf_conntrack_put_reasm(dst->nfct_reasm);
2389 #endif
2390 #ifdef CONFIG_BRIDGE_NETFILTER
2391 nf_bridge_put(dst->nf_bridge);
2392 #endif
2393 __nf_copy(dst, src);
2394 }
2395
2396 #ifdef CONFIG_NETWORK_SECMARK
2397 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2398 {
2399 to->secmark = from->secmark;
2400 }
2401
2402 static inline void skb_init_secmark(struct sk_buff *skb)
2403 {
2404 skb->secmark = 0;
2405 }
2406 #else
2407 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2408 { }
2409
2410 static inline void skb_init_secmark(struct sk_buff *skb)
2411 { }
2412 #endif
2413
2414 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2415 {
2416 skb->queue_mapping = queue_mapping;
2417 }
2418
2419 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2420 {
2421 return skb->queue_mapping;
2422 }
2423
2424 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2425 {
2426 to->queue_mapping = from->queue_mapping;
2427 }
2428
2429 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2430 {
2431 skb->queue_mapping = rx_queue + 1;
2432 }
2433
2434 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2435 {
2436 return skb->queue_mapping - 1;
2437 }
2438
2439 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2440 {
2441 return skb->queue_mapping != 0;
2442 }
2443
2444 extern u16 __skb_tx_hash(const struct net_device *dev,
2445 const struct sk_buff *skb,
2446 unsigned int num_tx_queues);
2447
2448 #ifdef CONFIG_XFRM
2449 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2450 {
2451 return skb->sp;
2452 }
2453 #else
2454 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2455 {
2456 return NULL;
2457 }
2458 #endif
2459
2460 static inline int skb_is_gso(const struct sk_buff *skb)
2461 {
2462 return skb_shinfo(skb)->gso_size;
2463 }
2464
2465 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2466 {
2467 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2468 }
2469
2470 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2471
2472 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2473 {
2474 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2475 * wanted then gso_type will be set. */
2476 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2477
2478 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2479 unlikely(shinfo->gso_type == 0)) {
2480 __skb_warn_lro_forwarding(skb);
2481 return true;
2482 }
2483 return false;
2484 }
2485
2486 static inline void skb_forward_csum(struct sk_buff *skb)
2487 {
2488 /* Unfortunately we don't support this one. Any brave souls? */
2489 if (skb->ip_summed == CHECKSUM_COMPLETE)
2490 skb->ip_summed = CHECKSUM_NONE;
2491 }
2492
2493 /**
2494 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2495 * @skb: skb to check
2496 *
2497 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2498 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2499 * use this helper, to document places where we make this assertion.
2500 */
2501 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2502 {
2503 #ifdef DEBUG
2504 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2505 #endif
2506 }
2507
2508 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2509
2510 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2511 {
2512 if (irqs_disabled())
2513 return false;
2514
2515 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2516 return false;
2517
2518 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2519 return false;
2520
2521 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2522 if (skb_end_pointer(skb) - skb->head < skb_size)
2523 return false;
2524
2525 if (skb_shared(skb) || skb_cloned(skb))
2526 return false;
2527
2528 return true;
2529 }
2530 #endif /* __KERNEL__ */
2531 #endif /* _LINUX_SKBUFF_H */