]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/skbuff.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[mirror_ubuntu-zesty-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
151 };
152
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
157 *
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
160 *
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
163 */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166
167
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
172 };
173
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
177
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
180
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
183
184 SKB_GSO_TCPV6 = 1 << 4,
185 };
186
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @ndisc_nodetype: router type (from link layer)
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
249 * @vlan_tci: vlan tag control information
250 */
251
252 struct sk_buff {
253 /* These two members must be first. */
254 struct sk_buff *next;
255 struct sk_buff *prev;
256
257 struct sock *sk;
258 ktime_t tstamp;
259 struct net_device *dev;
260
261 union {
262 struct dst_entry *dst;
263 struct rtable *rtable;
264 };
265 struct sec_path *sp;
266
267 /*
268 * This is the control buffer. It is free to use for every
269 * layer. Please put your private variables there. If you
270 * want to keep them across layers you have to do a skb_clone()
271 * first. This is owned by whoever has the skb queued ATM.
272 */
273 char cb[48];
274
275 unsigned int len,
276 data_len;
277 __u16 mac_len,
278 hdr_len;
279 union {
280 __wsum csum;
281 struct {
282 __u16 csum_start;
283 __u16 csum_offset;
284 };
285 };
286 __u32 priority;
287 __u8 local_df:1,
288 cloned:1,
289 ip_summed:2,
290 nohdr:1,
291 nfctinfo:3;
292 __u8 pkt_type:3,
293 fclone:2,
294 ipvs_property:1,
295 peeked:1,
296 nf_trace:1;
297 __be16 protocol;
298
299 void (*destructor)(struct sk_buff *skb);
300 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
301 struct nf_conntrack *nfct;
302 struct sk_buff *nfct_reasm;
303 #endif
304 #ifdef CONFIG_BRIDGE_NETFILTER
305 struct nf_bridge_info *nf_bridge;
306 #endif
307
308 int iif;
309 __u16 queue_mapping;
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd; /* traffic control verdict */
314 #endif
315 #endif
316 #ifdef CONFIG_IPV6_NDISC_NODETYPE
317 __u8 ndisc_nodetype:2;
318 #endif
319 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
320 __u8 do_not_encrypt:1;
321 #endif
322 /* 0/13/14 bit hole */
323
324 #ifdef CONFIG_NET_DMA
325 dma_cookie_t dma_cookie;
326 #endif
327 #ifdef CONFIG_NETWORK_SECMARK
328 __u32 secmark;
329 #endif
330
331 __u32 mark;
332
333 __u16 vlan_tci;
334
335 sk_buff_data_t transport_header;
336 sk_buff_data_t network_header;
337 sk_buff_data_t mac_header;
338 /* These elements must be at the end, see alloc_skb() for details. */
339 sk_buff_data_t tail;
340 sk_buff_data_t end;
341 unsigned char *head,
342 *data;
343 unsigned int truesize;
344 atomic_t users;
345 };
346
347 #ifdef __KERNEL__
348 /*
349 * Handling routines are only of interest to the kernel
350 */
351 #include <linux/slab.h>
352
353 #include <asm/system.h>
354
355 extern void kfree_skb(struct sk_buff *skb);
356 extern void __kfree_skb(struct sk_buff *skb);
357 extern struct sk_buff *__alloc_skb(unsigned int size,
358 gfp_t priority, int fclone, int node);
359 static inline struct sk_buff *alloc_skb(unsigned int size,
360 gfp_t priority)
361 {
362 return __alloc_skb(size, priority, 0, -1);
363 }
364
365 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
366 gfp_t priority)
367 {
368 return __alloc_skb(size, priority, 1, -1);
369 }
370
371 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
372 extern struct sk_buff *skb_clone(struct sk_buff *skb,
373 gfp_t priority);
374 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
375 gfp_t priority);
376 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
377 gfp_t gfp_mask);
378 extern int pskb_expand_head(struct sk_buff *skb,
379 int nhead, int ntail,
380 gfp_t gfp_mask);
381 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
382 unsigned int headroom);
383 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
384 int newheadroom, int newtailroom,
385 gfp_t priority);
386 extern int skb_to_sgvec(struct sk_buff *skb,
387 struct scatterlist *sg, int offset,
388 int len);
389 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
390 struct sk_buff **trailer);
391 extern int skb_pad(struct sk_buff *skb, int pad);
392 #define dev_kfree_skb(a) kfree_skb(a)
393 extern void skb_over_panic(struct sk_buff *skb, int len,
394 void *here);
395 extern void skb_under_panic(struct sk_buff *skb, int len,
396 void *here);
397 extern void skb_truesize_bug(struct sk_buff *skb);
398
399 static inline void skb_truesize_check(struct sk_buff *skb)
400 {
401 int len = sizeof(struct sk_buff) + skb->len;
402
403 if (unlikely((int)skb->truesize < len))
404 skb_truesize_bug(skb);
405 }
406
407 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
408 int getfrag(void *from, char *to, int offset,
409 int len,int odd, struct sk_buff *skb),
410 void *from, int length);
411
412 struct skb_seq_state
413 {
414 __u32 lower_offset;
415 __u32 upper_offset;
416 __u32 frag_idx;
417 __u32 stepped_offset;
418 struct sk_buff *root_skb;
419 struct sk_buff *cur_skb;
420 __u8 *frag_data;
421 };
422
423 extern void skb_prepare_seq_read(struct sk_buff *skb,
424 unsigned int from, unsigned int to,
425 struct skb_seq_state *st);
426 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
427 struct skb_seq_state *st);
428 extern void skb_abort_seq_read(struct skb_seq_state *st);
429
430 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
431 unsigned int to, struct ts_config *config,
432 struct ts_state *state);
433
434 #ifdef NET_SKBUFF_DATA_USES_OFFSET
435 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
436 {
437 return skb->head + skb->end;
438 }
439 #else
440 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
441 {
442 return skb->end;
443 }
444 #endif
445
446 /* Internal */
447 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
448
449 /**
450 * skb_queue_empty - check if a queue is empty
451 * @list: queue head
452 *
453 * Returns true if the queue is empty, false otherwise.
454 */
455 static inline int skb_queue_empty(const struct sk_buff_head *list)
456 {
457 return list->next == (struct sk_buff *)list;
458 }
459
460 /**
461 * skb_get - reference buffer
462 * @skb: buffer to reference
463 *
464 * Makes another reference to a socket buffer and returns a pointer
465 * to the buffer.
466 */
467 static inline struct sk_buff *skb_get(struct sk_buff *skb)
468 {
469 atomic_inc(&skb->users);
470 return skb;
471 }
472
473 /*
474 * If users == 1, we are the only owner and are can avoid redundant
475 * atomic change.
476 */
477
478 /**
479 * skb_cloned - is the buffer a clone
480 * @skb: buffer to check
481 *
482 * Returns true if the buffer was generated with skb_clone() and is
483 * one of multiple shared copies of the buffer. Cloned buffers are
484 * shared data so must not be written to under normal circumstances.
485 */
486 static inline int skb_cloned(const struct sk_buff *skb)
487 {
488 return skb->cloned &&
489 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
490 }
491
492 /**
493 * skb_header_cloned - is the header a clone
494 * @skb: buffer to check
495 *
496 * Returns true if modifying the header part of the buffer requires
497 * the data to be copied.
498 */
499 static inline int skb_header_cloned(const struct sk_buff *skb)
500 {
501 int dataref;
502
503 if (!skb->cloned)
504 return 0;
505
506 dataref = atomic_read(&skb_shinfo(skb)->dataref);
507 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
508 return dataref != 1;
509 }
510
511 /**
512 * skb_header_release - release reference to header
513 * @skb: buffer to operate on
514 *
515 * Drop a reference to the header part of the buffer. This is done
516 * by acquiring a payload reference. You must not read from the header
517 * part of skb->data after this.
518 */
519 static inline void skb_header_release(struct sk_buff *skb)
520 {
521 BUG_ON(skb->nohdr);
522 skb->nohdr = 1;
523 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
524 }
525
526 /**
527 * skb_shared - is the buffer shared
528 * @skb: buffer to check
529 *
530 * Returns true if more than one person has a reference to this
531 * buffer.
532 */
533 static inline int skb_shared(const struct sk_buff *skb)
534 {
535 return atomic_read(&skb->users) != 1;
536 }
537
538 /**
539 * skb_share_check - check if buffer is shared and if so clone it
540 * @skb: buffer to check
541 * @pri: priority for memory allocation
542 *
543 * If the buffer is shared the buffer is cloned and the old copy
544 * drops a reference. A new clone with a single reference is returned.
545 * If the buffer is not shared the original buffer is returned. When
546 * being called from interrupt status or with spinlocks held pri must
547 * be GFP_ATOMIC.
548 *
549 * NULL is returned on a memory allocation failure.
550 */
551 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
552 gfp_t pri)
553 {
554 might_sleep_if(pri & __GFP_WAIT);
555 if (skb_shared(skb)) {
556 struct sk_buff *nskb = skb_clone(skb, pri);
557 kfree_skb(skb);
558 skb = nskb;
559 }
560 return skb;
561 }
562
563 /*
564 * Copy shared buffers into a new sk_buff. We effectively do COW on
565 * packets to handle cases where we have a local reader and forward
566 * and a couple of other messy ones. The normal one is tcpdumping
567 * a packet thats being forwarded.
568 */
569
570 /**
571 * skb_unshare - make a copy of a shared buffer
572 * @skb: buffer to check
573 * @pri: priority for memory allocation
574 *
575 * If the socket buffer is a clone then this function creates a new
576 * copy of the data, drops a reference count on the old copy and returns
577 * the new copy with the reference count at 1. If the buffer is not a clone
578 * the original buffer is returned. When called with a spinlock held or
579 * from interrupt state @pri must be %GFP_ATOMIC
580 *
581 * %NULL is returned on a memory allocation failure.
582 */
583 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
584 gfp_t pri)
585 {
586 might_sleep_if(pri & __GFP_WAIT);
587 if (skb_cloned(skb)) {
588 struct sk_buff *nskb = skb_copy(skb, pri);
589 kfree_skb(skb); /* Free our shared copy */
590 skb = nskb;
591 }
592 return skb;
593 }
594
595 /**
596 * skb_peek
597 * @list_: list to peek at
598 *
599 * Peek an &sk_buff. Unlike most other operations you _MUST_
600 * be careful with this one. A peek leaves the buffer on the
601 * list and someone else may run off with it. You must hold
602 * the appropriate locks or have a private queue to do this.
603 *
604 * Returns %NULL for an empty list or a pointer to the head element.
605 * The reference count is not incremented and the reference is therefore
606 * volatile. Use with caution.
607 */
608 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
609 {
610 struct sk_buff *list = ((struct sk_buff *)list_)->next;
611 if (list == (struct sk_buff *)list_)
612 list = NULL;
613 return list;
614 }
615
616 /**
617 * skb_peek_tail
618 * @list_: list to peek at
619 *
620 * Peek an &sk_buff. Unlike most other operations you _MUST_
621 * be careful with this one. A peek leaves the buffer on the
622 * list and someone else may run off with it. You must hold
623 * the appropriate locks or have a private queue to do this.
624 *
625 * Returns %NULL for an empty list or a pointer to the tail element.
626 * The reference count is not incremented and the reference is therefore
627 * volatile. Use with caution.
628 */
629 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
630 {
631 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
632 if (list == (struct sk_buff *)list_)
633 list = NULL;
634 return list;
635 }
636
637 /**
638 * skb_queue_len - get queue length
639 * @list_: list to measure
640 *
641 * Return the length of an &sk_buff queue.
642 */
643 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
644 {
645 return list_->qlen;
646 }
647
648 /*
649 * This function creates a split out lock class for each invocation;
650 * this is needed for now since a whole lot of users of the skb-queue
651 * infrastructure in drivers have different locking usage (in hardirq)
652 * than the networking core (in softirq only). In the long run either the
653 * network layer or drivers should need annotation to consolidate the
654 * main types of usage into 3 classes.
655 */
656 static inline void skb_queue_head_init(struct sk_buff_head *list)
657 {
658 spin_lock_init(&list->lock);
659 list->prev = list->next = (struct sk_buff *)list;
660 list->qlen = 0;
661 }
662
663 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
664 struct lock_class_key *class)
665 {
666 skb_queue_head_init(list);
667 lockdep_set_class(&list->lock, class);
668 }
669
670 /*
671 * Insert an sk_buff on a list.
672 *
673 * The "__skb_xxxx()" functions are the non-atomic ones that
674 * can only be called with interrupts disabled.
675 */
676 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
677 static inline void __skb_insert(struct sk_buff *newsk,
678 struct sk_buff *prev, struct sk_buff *next,
679 struct sk_buff_head *list)
680 {
681 newsk->next = next;
682 newsk->prev = prev;
683 next->prev = prev->next = newsk;
684 list->qlen++;
685 }
686
687 /**
688 * __skb_queue_after - queue a buffer at the list head
689 * @list: list to use
690 * @prev: place after this buffer
691 * @newsk: buffer to queue
692 *
693 * Queue a buffer int the middle of a list. This function takes no locks
694 * and you must therefore hold required locks before calling it.
695 *
696 * A buffer cannot be placed on two lists at the same time.
697 */
698 static inline void __skb_queue_after(struct sk_buff_head *list,
699 struct sk_buff *prev,
700 struct sk_buff *newsk)
701 {
702 __skb_insert(newsk, prev, prev->next, list);
703 }
704
705 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
706 struct sk_buff_head *list);
707
708 static inline void __skb_queue_before(struct sk_buff_head *list,
709 struct sk_buff *next,
710 struct sk_buff *newsk)
711 {
712 __skb_insert(newsk, next->prev, next, list);
713 }
714
715 /**
716 * __skb_queue_head - queue a buffer at the list head
717 * @list: list to use
718 * @newsk: buffer to queue
719 *
720 * Queue a buffer at the start of a list. This function takes no locks
721 * and you must therefore hold required locks before calling it.
722 *
723 * A buffer cannot be placed on two lists at the same time.
724 */
725 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
726 static inline void __skb_queue_head(struct sk_buff_head *list,
727 struct sk_buff *newsk)
728 {
729 __skb_queue_after(list, (struct sk_buff *)list, newsk);
730 }
731
732 /**
733 * __skb_queue_tail - queue a buffer at the list tail
734 * @list: list to use
735 * @newsk: buffer to queue
736 *
737 * Queue a buffer at the end of a list. This function takes no locks
738 * and you must therefore hold required locks before calling it.
739 *
740 * A buffer cannot be placed on two lists at the same time.
741 */
742 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
743 static inline void __skb_queue_tail(struct sk_buff_head *list,
744 struct sk_buff *newsk)
745 {
746 __skb_queue_before(list, (struct sk_buff *)list, newsk);
747 }
748
749 /*
750 * remove sk_buff from list. _Must_ be called atomically, and with
751 * the list known..
752 */
753 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
754 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
755 {
756 struct sk_buff *next, *prev;
757
758 list->qlen--;
759 next = skb->next;
760 prev = skb->prev;
761 skb->next = skb->prev = NULL;
762 next->prev = prev;
763 prev->next = next;
764 }
765
766 /**
767 * __skb_dequeue - remove from the head of the queue
768 * @list: list to dequeue from
769 *
770 * Remove the head of the list. This function does not take any locks
771 * so must be used with appropriate locks held only. The head item is
772 * returned or %NULL if the list is empty.
773 */
774 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
775 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
776 {
777 struct sk_buff *skb = skb_peek(list);
778 if (skb)
779 __skb_unlink(skb, list);
780 return skb;
781 }
782
783 /**
784 * __skb_dequeue_tail - remove from the tail of the queue
785 * @list: list to dequeue from
786 *
787 * Remove the tail of the list. This function does not take any locks
788 * so must be used with appropriate locks held only. The tail item is
789 * returned or %NULL if the list is empty.
790 */
791 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
792 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
793 {
794 struct sk_buff *skb = skb_peek_tail(list);
795 if (skb)
796 __skb_unlink(skb, list);
797 return skb;
798 }
799
800
801 static inline int skb_is_nonlinear(const struct sk_buff *skb)
802 {
803 return skb->data_len;
804 }
805
806 static inline unsigned int skb_headlen(const struct sk_buff *skb)
807 {
808 return skb->len - skb->data_len;
809 }
810
811 static inline int skb_pagelen(const struct sk_buff *skb)
812 {
813 int i, len = 0;
814
815 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
816 len += skb_shinfo(skb)->frags[i].size;
817 return len + skb_headlen(skb);
818 }
819
820 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
821 struct page *page, int off, int size)
822 {
823 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
824
825 frag->page = page;
826 frag->page_offset = off;
827 frag->size = size;
828 skb_shinfo(skb)->nr_frags = i + 1;
829 }
830
831 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
832 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
833 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
834
835 #ifdef NET_SKBUFF_DATA_USES_OFFSET
836 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
837 {
838 return skb->head + skb->tail;
839 }
840
841 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
842 {
843 skb->tail = skb->data - skb->head;
844 }
845
846 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
847 {
848 skb_reset_tail_pointer(skb);
849 skb->tail += offset;
850 }
851 #else /* NET_SKBUFF_DATA_USES_OFFSET */
852 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
853 {
854 return skb->tail;
855 }
856
857 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
858 {
859 skb->tail = skb->data;
860 }
861
862 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
863 {
864 skb->tail = skb->data + offset;
865 }
866
867 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
868
869 /*
870 * Add data to an sk_buff
871 */
872 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
873 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
874 {
875 unsigned char *tmp = skb_tail_pointer(skb);
876 SKB_LINEAR_ASSERT(skb);
877 skb->tail += len;
878 skb->len += len;
879 return tmp;
880 }
881
882 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
883 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
884 {
885 skb->data -= len;
886 skb->len += len;
887 return skb->data;
888 }
889
890 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
891 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
892 {
893 skb->len -= len;
894 BUG_ON(skb->len < skb->data_len);
895 return skb->data += len;
896 }
897
898 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
899
900 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
901 {
902 if (len > skb_headlen(skb) &&
903 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
904 return NULL;
905 skb->len -= len;
906 return skb->data += len;
907 }
908
909 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
910 {
911 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
912 }
913
914 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
915 {
916 if (likely(len <= skb_headlen(skb)))
917 return 1;
918 if (unlikely(len > skb->len))
919 return 0;
920 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
921 }
922
923 /**
924 * skb_headroom - bytes at buffer head
925 * @skb: buffer to check
926 *
927 * Return the number of bytes of free space at the head of an &sk_buff.
928 */
929 static inline unsigned int skb_headroom(const struct sk_buff *skb)
930 {
931 return skb->data - skb->head;
932 }
933
934 /**
935 * skb_tailroom - bytes at buffer end
936 * @skb: buffer to check
937 *
938 * Return the number of bytes of free space at the tail of an sk_buff
939 */
940 static inline int skb_tailroom(const struct sk_buff *skb)
941 {
942 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
943 }
944
945 /**
946 * skb_reserve - adjust headroom
947 * @skb: buffer to alter
948 * @len: bytes to move
949 *
950 * Increase the headroom of an empty &sk_buff by reducing the tail
951 * room. This is only allowed for an empty buffer.
952 */
953 static inline void skb_reserve(struct sk_buff *skb, int len)
954 {
955 skb->data += len;
956 skb->tail += len;
957 }
958
959 #ifdef NET_SKBUFF_DATA_USES_OFFSET
960 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
961 {
962 return skb->head + skb->transport_header;
963 }
964
965 static inline void skb_reset_transport_header(struct sk_buff *skb)
966 {
967 skb->transport_header = skb->data - skb->head;
968 }
969
970 static inline void skb_set_transport_header(struct sk_buff *skb,
971 const int offset)
972 {
973 skb_reset_transport_header(skb);
974 skb->transport_header += offset;
975 }
976
977 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
978 {
979 return skb->head + skb->network_header;
980 }
981
982 static inline void skb_reset_network_header(struct sk_buff *skb)
983 {
984 skb->network_header = skb->data - skb->head;
985 }
986
987 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
988 {
989 skb_reset_network_header(skb);
990 skb->network_header += offset;
991 }
992
993 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
994 {
995 return skb->head + skb->mac_header;
996 }
997
998 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
999 {
1000 return skb->mac_header != ~0U;
1001 }
1002
1003 static inline void skb_reset_mac_header(struct sk_buff *skb)
1004 {
1005 skb->mac_header = skb->data - skb->head;
1006 }
1007
1008 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1009 {
1010 skb_reset_mac_header(skb);
1011 skb->mac_header += offset;
1012 }
1013
1014 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1015
1016 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1017 {
1018 return skb->transport_header;
1019 }
1020
1021 static inline void skb_reset_transport_header(struct sk_buff *skb)
1022 {
1023 skb->transport_header = skb->data;
1024 }
1025
1026 static inline void skb_set_transport_header(struct sk_buff *skb,
1027 const int offset)
1028 {
1029 skb->transport_header = skb->data + offset;
1030 }
1031
1032 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1033 {
1034 return skb->network_header;
1035 }
1036
1037 static inline void skb_reset_network_header(struct sk_buff *skb)
1038 {
1039 skb->network_header = skb->data;
1040 }
1041
1042 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1043 {
1044 skb->network_header = skb->data + offset;
1045 }
1046
1047 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1048 {
1049 return skb->mac_header;
1050 }
1051
1052 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1053 {
1054 return skb->mac_header != NULL;
1055 }
1056
1057 static inline void skb_reset_mac_header(struct sk_buff *skb)
1058 {
1059 skb->mac_header = skb->data;
1060 }
1061
1062 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1063 {
1064 skb->mac_header = skb->data + offset;
1065 }
1066 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1067
1068 static inline int skb_transport_offset(const struct sk_buff *skb)
1069 {
1070 return skb_transport_header(skb) - skb->data;
1071 }
1072
1073 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1074 {
1075 return skb->transport_header - skb->network_header;
1076 }
1077
1078 static inline int skb_network_offset(const struct sk_buff *skb)
1079 {
1080 return skb_network_header(skb) - skb->data;
1081 }
1082
1083 /*
1084 * CPUs often take a performance hit when accessing unaligned memory
1085 * locations. The actual performance hit varies, it can be small if the
1086 * hardware handles it or large if we have to take an exception and fix it
1087 * in software.
1088 *
1089 * Since an ethernet header is 14 bytes network drivers often end up with
1090 * the IP header at an unaligned offset. The IP header can be aligned by
1091 * shifting the start of the packet by 2 bytes. Drivers should do this
1092 * with:
1093 *
1094 * skb_reserve(NET_IP_ALIGN);
1095 *
1096 * The downside to this alignment of the IP header is that the DMA is now
1097 * unaligned. On some architectures the cost of an unaligned DMA is high
1098 * and this cost outweighs the gains made by aligning the IP header.
1099 *
1100 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1101 * to be overridden.
1102 */
1103 #ifndef NET_IP_ALIGN
1104 #define NET_IP_ALIGN 2
1105 #endif
1106
1107 /*
1108 * The networking layer reserves some headroom in skb data (via
1109 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1110 * the header has to grow. In the default case, if the header has to grow
1111 * 16 bytes or less we avoid the reallocation.
1112 *
1113 * Unfortunately this headroom changes the DMA alignment of the resulting
1114 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1115 * on some architectures. An architecture can override this value,
1116 * perhaps setting it to a cacheline in size (since that will maintain
1117 * cacheline alignment of the DMA). It must be a power of 2.
1118 *
1119 * Various parts of the networking layer expect at least 16 bytes of
1120 * headroom, you should not reduce this.
1121 */
1122 #ifndef NET_SKB_PAD
1123 #define NET_SKB_PAD 16
1124 #endif
1125
1126 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1127
1128 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1129 {
1130 if (unlikely(skb->data_len)) {
1131 WARN_ON(1);
1132 return;
1133 }
1134 skb->len = len;
1135 skb_set_tail_pointer(skb, len);
1136 }
1137
1138 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1139
1140 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1141 {
1142 if (skb->data_len)
1143 return ___pskb_trim(skb, len);
1144 __skb_trim(skb, len);
1145 return 0;
1146 }
1147
1148 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1149 {
1150 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1151 }
1152
1153 /**
1154 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1155 * @skb: buffer to alter
1156 * @len: new length
1157 *
1158 * This is identical to pskb_trim except that the caller knows that
1159 * the skb is not cloned so we should never get an error due to out-
1160 * of-memory.
1161 */
1162 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1163 {
1164 int err = pskb_trim(skb, len);
1165 BUG_ON(err);
1166 }
1167
1168 /**
1169 * skb_orphan - orphan a buffer
1170 * @skb: buffer to orphan
1171 *
1172 * If a buffer currently has an owner then we call the owner's
1173 * destructor function and make the @skb unowned. The buffer continues
1174 * to exist but is no longer charged to its former owner.
1175 */
1176 static inline void skb_orphan(struct sk_buff *skb)
1177 {
1178 if (skb->destructor)
1179 skb->destructor(skb);
1180 skb->destructor = NULL;
1181 skb->sk = NULL;
1182 }
1183
1184 /**
1185 * __skb_queue_purge - empty a list
1186 * @list: list to empty
1187 *
1188 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1189 * the list and one reference dropped. This function does not take the
1190 * list lock and the caller must hold the relevant locks to use it.
1191 */
1192 extern void skb_queue_purge(struct sk_buff_head *list);
1193 static inline void __skb_queue_purge(struct sk_buff_head *list)
1194 {
1195 struct sk_buff *skb;
1196 while ((skb = __skb_dequeue(list)) != NULL)
1197 kfree_skb(skb);
1198 }
1199
1200 /**
1201 * __dev_alloc_skb - allocate an skbuff for receiving
1202 * @length: length to allocate
1203 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1204 *
1205 * Allocate a new &sk_buff and assign it a usage count of one. The
1206 * buffer has unspecified headroom built in. Users should allocate
1207 * the headroom they think they need without accounting for the
1208 * built in space. The built in space is used for optimisations.
1209 *
1210 * %NULL is returned if there is no free memory.
1211 */
1212 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1213 gfp_t gfp_mask)
1214 {
1215 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1216 if (likely(skb))
1217 skb_reserve(skb, NET_SKB_PAD);
1218 return skb;
1219 }
1220
1221 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1222
1223 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1224 unsigned int length, gfp_t gfp_mask);
1225
1226 /**
1227 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1228 * @dev: network device to receive on
1229 * @length: length to allocate
1230 *
1231 * Allocate a new &sk_buff and assign it a usage count of one. The
1232 * buffer has unspecified headroom built in. Users should allocate
1233 * the headroom they think they need without accounting for the
1234 * built in space. The built in space is used for optimisations.
1235 *
1236 * %NULL is returned if there is no free memory. Although this function
1237 * allocates memory it can be called from an interrupt.
1238 */
1239 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1240 unsigned int length)
1241 {
1242 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1243 }
1244
1245 /**
1246 * skb_clone_writable - is the header of a clone writable
1247 * @skb: buffer to check
1248 * @len: length up to which to write
1249 *
1250 * Returns true if modifying the header part of the cloned buffer
1251 * does not requires the data to be copied.
1252 */
1253 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1254 {
1255 return !skb_header_cloned(skb) &&
1256 skb_headroom(skb) + len <= skb->hdr_len;
1257 }
1258
1259 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1260 int cloned)
1261 {
1262 int delta = 0;
1263
1264 if (headroom < NET_SKB_PAD)
1265 headroom = NET_SKB_PAD;
1266 if (headroom > skb_headroom(skb))
1267 delta = headroom - skb_headroom(skb);
1268
1269 if (delta || cloned)
1270 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1271 GFP_ATOMIC);
1272 return 0;
1273 }
1274
1275 /**
1276 * skb_cow - copy header of skb when it is required
1277 * @skb: buffer to cow
1278 * @headroom: needed headroom
1279 *
1280 * If the skb passed lacks sufficient headroom or its data part
1281 * is shared, data is reallocated. If reallocation fails, an error
1282 * is returned and original skb is not changed.
1283 *
1284 * The result is skb with writable area skb->head...skb->tail
1285 * and at least @headroom of space at head.
1286 */
1287 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1288 {
1289 return __skb_cow(skb, headroom, skb_cloned(skb));
1290 }
1291
1292 /**
1293 * skb_cow_head - skb_cow but only making the head writable
1294 * @skb: buffer to cow
1295 * @headroom: needed headroom
1296 *
1297 * This function is identical to skb_cow except that we replace the
1298 * skb_cloned check by skb_header_cloned. It should be used when
1299 * you only need to push on some header and do not need to modify
1300 * the data.
1301 */
1302 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1303 {
1304 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1305 }
1306
1307 /**
1308 * skb_padto - pad an skbuff up to a minimal size
1309 * @skb: buffer to pad
1310 * @len: minimal length
1311 *
1312 * Pads up a buffer to ensure the trailing bytes exist and are
1313 * blanked. If the buffer already contains sufficient data it
1314 * is untouched. Otherwise it is extended. Returns zero on
1315 * success. The skb is freed on error.
1316 */
1317
1318 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1319 {
1320 unsigned int size = skb->len;
1321 if (likely(size >= len))
1322 return 0;
1323 return skb_pad(skb, len-size);
1324 }
1325
1326 static inline int skb_add_data(struct sk_buff *skb,
1327 char __user *from, int copy)
1328 {
1329 const int off = skb->len;
1330
1331 if (skb->ip_summed == CHECKSUM_NONE) {
1332 int err = 0;
1333 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1334 copy, 0, &err);
1335 if (!err) {
1336 skb->csum = csum_block_add(skb->csum, csum, off);
1337 return 0;
1338 }
1339 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1340 return 0;
1341
1342 __skb_trim(skb, off);
1343 return -EFAULT;
1344 }
1345
1346 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1347 struct page *page, int off)
1348 {
1349 if (i) {
1350 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1351
1352 return page == frag->page &&
1353 off == frag->page_offset + frag->size;
1354 }
1355 return 0;
1356 }
1357
1358 static inline int __skb_linearize(struct sk_buff *skb)
1359 {
1360 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1361 }
1362
1363 /**
1364 * skb_linearize - convert paged skb to linear one
1365 * @skb: buffer to linarize
1366 *
1367 * If there is no free memory -ENOMEM is returned, otherwise zero
1368 * is returned and the old skb data released.
1369 */
1370 static inline int skb_linearize(struct sk_buff *skb)
1371 {
1372 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1373 }
1374
1375 /**
1376 * skb_linearize_cow - make sure skb is linear and writable
1377 * @skb: buffer to process
1378 *
1379 * If there is no free memory -ENOMEM is returned, otherwise zero
1380 * is returned and the old skb data released.
1381 */
1382 static inline int skb_linearize_cow(struct sk_buff *skb)
1383 {
1384 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1385 __skb_linearize(skb) : 0;
1386 }
1387
1388 /**
1389 * skb_postpull_rcsum - update checksum for received skb after pull
1390 * @skb: buffer to update
1391 * @start: start of data before pull
1392 * @len: length of data pulled
1393 *
1394 * After doing a pull on a received packet, you need to call this to
1395 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1396 * CHECKSUM_NONE so that it can be recomputed from scratch.
1397 */
1398
1399 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1400 const void *start, unsigned int len)
1401 {
1402 if (skb->ip_summed == CHECKSUM_COMPLETE)
1403 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1404 }
1405
1406 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1407
1408 /**
1409 * pskb_trim_rcsum - trim received skb and update checksum
1410 * @skb: buffer to trim
1411 * @len: new length
1412 *
1413 * This is exactly the same as pskb_trim except that it ensures the
1414 * checksum of received packets are still valid after the operation.
1415 */
1416
1417 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1418 {
1419 if (likely(len >= skb->len))
1420 return 0;
1421 if (skb->ip_summed == CHECKSUM_COMPLETE)
1422 skb->ip_summed = CHECKSUM_NONE;
1423 return __pskb_trim(skb, len);
1424 }
1425
1426 #define skb_queue_walk(queue, skb) \
1427 for (skb = (queue)->next; \
1428 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1429 skb = skb->next)
1430
1431 #define skb_queue_walk_safe(queue, skb, tmp) \
1432 for (skb = (queue)->next, tmp = skb->next; \
1433 skb != (struct sk_buff *)(queue); \
1434 skb = tmp, tmp = skb->next)
1435
1436 #define skb_queue_reverse_walk(queue, skb) \
1437 for (skb = (queue)->prev; \
1438 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1439 skb = skb->prev)
1440
1441
1442 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1443 int *peeked, int *err);
1444 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1445 int noblock, int *err);
1446 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1447 struct poll_table_struct *wait);
1448 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1449 int offset, struct iovec *to,
1450 int size);
1451 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1452 int hlen,
1453 struct iovec *iov);
1454 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1455 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1456 unsigned int flags);
1457 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1458 int len, __wsum csum);
1459 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1460 void *to, int len);
1461 extern int skb_store_bits(struct sk_buff *skb, int offset,
1462 const void *from, int len);
1463 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1464 int offset, u8 *to, int len,
1465 __wsum csum);
1466 extern int skb_splice_bits(struct sk_buff *skb,
1467 unsigned int offset,
1468 struct pipe_inode_info *pipe,
1469 unsigned int len,
1470 unsigned int flags);
1471 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1472 extern void skb_split(struct sk_buff *skb,
1473 struct sk_buff *skb1, const u32 len);
1474
1475 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1476
1477 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1478 int len, void *buffer)
1479 {
1480 int hlen = skb_headlen(skb);
1481
1482 if (hlen - offset >= len)
1483 return skb->data + offset;
1484
1485 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1486 return NULL;
1487
1488 return buffer;
1489 }
1490
1491 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1492 void *to,
1493 const unsigned int len)
1494 {
1495 memcpy(to, skb->data, len);
1496 }
1497
1498 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1499 const int offset, void *to,
1500 const unsigned int len)
1501 {
1502 memcpy(to, skb->data + offset, len);
1503 }
1504
1505 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1506 const void *from,
1507 const unsigned int len)
1508 {
1509 memcpy(skb->data, from, len);
1510 }
1511
1512 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1513 const int offset,
1514 const void *from,
1515 const unsigned int len)
1516 {
1517 memcpy(skb->data + offset, from, len);
1518 }
1519
1520 extern void skb_init(void);
1521
1522 /**
1523 * skb_get_timestamp - get timestamp from a skb
1524 * @skb: skb to get stamp from
1525 * @stamp: pointer to struct timeval to store stamp in
1526 *
1527 * Timestamps are stored in the skb as offsets to a base timestamp.
1528 * This function converts the offset back to a struct timeval and stores
1529 * it in stamp.
1530 */
1531 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1532 {
1533 *stamp = ktime_to_timeval(skb->tstamp);
1534 }
1535
1536 static inline void __net_timestamp(struct sk_buff *skb)
1537 {
1538 skb->tstamp = ktime_get_real();
1539 }
1540
1541 static inline ktime_t net_timedelta(ktime_t t)
1542 {
1543 return ktime_sub(ktime_get_real(), t);
1544 }
1545
1546 static inline ktime_t net_invalid_timestamp(void)
1547 {
1548 return ktime_set(0, 0);
1549 }
1550
1551 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1552 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1553
1554 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1555 {
1556 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1557 }
1558
1559 /**
1560 * skb_checksum_complete - Calculate checksum of an entire packet
1561 * @skb: packet to process
1562 *
1563 * This function calculates the checksum over the entire packet plus
1564 * the value of skb->csum. The latter can be used to supply the
1565 * checksum of a pseudo header as used by TCP/UDP. It returns the
1566 * checksum.
1567 *
1568 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1569 * this function can be used to verify that checksum on received
1570 * packets. In that case the function should return zero if the
1571 * checksum is correct. In particular, this function will return zero
1572 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1573 * hardware has already verified the correctness of the checksum.
1574 */
1575 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1576 {
1577 return skb_csum_unnecessary(skb) ?
1578 0 : __skb_checksum_complete(skb);
1579 }
1580
1581 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1582 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1583 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1584 {
1585 if (nfct && atomic_dec_and_test(&nfct->use))
1586 nf_conntrack_destroy(nfct);
1587 }
1588 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1589 {
1590 if (nfct)
1591 atomic_inc(&nfct->use);
1592 }
1593 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1594 {
1595 if (skb)
1596 atomic_inc(&skb->users);
1597 }
1598 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1599 {
1600 if (skb)
1601 kfree_skb(skb);
1602 }
1603 #endif
1604 #ifdef CONFIG_BRIDGE_NETFILTER
1605 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1606 {
1607 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1608 kfree(nf_bridge);
1609 }
1610 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1611 {
1612 if (nf_bridge)
1613 atomic_inc(&nf_bridge->use);
1614 }
1615 #endif /* CONFIG_BRIDGE_NETFILTER */
1616 static inline void nf_reset(struct sk_buff *skb)
1617 {
1618 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1619 nf_conntrack_put(skb->nfct);
1620 skb->nfct = NULL;
1621 nf_conntrack_put_reasm(skb->nfct_reasm);
1622 skb->nfct_reasm = NULL;
1623 #endif
1624 #ifdef CONFIG_BRIDGE_NETFILTER
1625 nf_bridge_put(skb->nf_bridge);
1626 skb->nf_bridge = NULL;
1627 #endif
1628 }
1629
1630 /* Note: This doesn't put any conntrack and bridge info in dst. */
1631 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1632 {
1633 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1634 dst->nfct = src->nfct;
1635 nf_conntrack_get(src->nfct);
1636 dst->nfctinfo = src->nfctinfo;
1637 dst->nfct_reasm = src->nfct_reasm;
1638 nf_conntrack_get_reasm(src->nfct_reasm);
1639 #endif
1640 #ifdef CONFIG_BRIDGE_NETFILTER
1641 dst->nf_bridge = src->nf_bridge;
1642 nf_bridge_get(src->nf_bridge);
1643 #endif
1644 }
1645
1646 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1647 {
1648 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1649 nf_conntrack_put(dst->nfct);
1650 nf_conntrack_put_reasm(dst->nfct_reasm);
1651 #endif
1652 #ifdef CONFIG_BRIDGE_NETFILTER
1653 nf_bridge_put(dst->nf_bridge);
1654 #endif
1655 __nf_copy(dst, src);
1656 }
1657
1658 #ifdef CONFIG_NETWORK_SECMARK
1659 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1660 {
1661 to->secmark = from->secmark;
1662 }
1663
1664 static inline void skb_init_secmark(struct sk_buff *skb)
1665 {
1666 skb->secmark = 0;
1667 }
1668 #else
1669 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1670 { }
1671
1672 static inline void skb_init_secmark(struct sk_buff *skb)
1673 { }
1674 #endif
1675
1676 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1677 {
1678 skb->queue_mapping = queue_mapping;
1679 }
1680
1681 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1682 {
1683 return skb->queue_mapping;
1684 }
1685
1686 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1687 {
1688 to->queue_mapping = from->queue_mapping;
1689 }
1690
1691 static inline int skb_is_gso(const struct sk_buff *skb)
1692 {
1693 return skb_shinfo(skb)->gso_size;
1694 }
1695
1696 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1697 {
1698 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1699 }
1700
1701 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1702
1703 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1704 {
1705 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1706 * wanted then gso_type will be set. */
1707 struct skb_shared_info *shinfo = skb_shinfo(skb);
1708 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1709 __skb_warn_lro_forwarding(skb);
1710 return true;
1711 }
1712 return false;
1713 }
1714
1715 static inline void skb_forward_csum(struct sk_buff *skb)
1716 {
1717 /* Unfortunately we don't support this one. Any brave souls? */
1718 if (skb->ip_summed == CHECKSUM_COMPLETE)
1719 skb->ip_summed = CHECKSUM_NONE;
1720 }
1721
1722 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1723 #endif /* __KERNEL__ */
1724 #endif /* _LINUX_SKBUFF_H */