]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/skbuff.h
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 atomic_t use;
250 };
251 #endif
252
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 refcount_t use;
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
260 } orig_proto:8;
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
264 __u16 frag_max_size;
265 struct net_device *physindev;
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
269 union {
270 /* prerouting: detect dnat in orig/reply direction */
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
279 };
280 };
281 #endif
282
283 struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290 };
291
292 struct sk_buff;
293
294 /* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
300 */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311 #define GSO_BY_FRAGS 0xFFFF
312
313 typedef struct skb_frag_struct skb_frag_t;
314
315 struct skb_frag_struct {
316 struct {
317 struct page *p;
318 } page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 __u32 page_offset;
321 __u32 size;
322 #else
323 __u16 page_offset;
324 __u16 size;
325 #endif
326 };
327
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 return frag->size;
331 }
332
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 frag->size = size;
336 }
337
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 frag->size += delta;
341 }
342
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 frag->size -= delta;
346 }
347
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353 #endif
354 return false;
355 }
356
357 /**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
384 #define HAVE_HW_TIME_STAMP
385
386 /**
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
392 * skb->tstamp.
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400 struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
402 };
403
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY = 1 << 3,
417
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS = 1 << 4,
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431
432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
434 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
437 /*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
444 */
445 struct ubuf_info {
446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
459 refcount_t refcnt;
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
465 };
466
467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 struct ubuf_info *uarg);
472
473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 refcount_inc(&uarg->refcnt);
476 }
477
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 struct msghdr *msg, int len,
485 struct ubuf_info *uarg);
486
487 /* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
489 */
490 struct skb_shared_info {
491 __u8 __unused;
492 __u8 meta_len;
493 __u8 nr_frags;
494 __u8 tx_flags;
495 unsigned short gso_size;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs;
498 struct sk_buff *frag_list;
499 struct skb_shared_hwtstamps hwtstamps;
500 unsigned int gso_type;
501 u32 tskey;
502
503 /*
504 * Warning : all fields before dataref are cleared in __alloc_skb()
505 */
506 atomic_t dataref;
507
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg;
511
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags[MAX_SKB_FRAGS];
514 };
515
516 /* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
520 *
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
523 *
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
526 */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529
530
531 enum {
532 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
535 };
536
537 enum {
538 SKB_GSO_TCPV4 = 1 << 0,
539
540 /* This indicates the skb is from an untrusted source. */
541 SKB_GSO_DODGY = 1 << 1,
542
543 /* This indicates the tcp segment has CWR set. */
544 SKB_GSO_TCP_ECN = 1 << 2,
545
546 SKB_GSO_TCP_FIXEDID = 1 << 3,
547
548 SKB_GSO_TCPV6 = 1 << 4,
549
550 SKB_GSO_FCOE = 1 << 5,
551
552 SKB_GSO_GRE = 1 << 6,
553
554 SKB_GSO_GRE_CSUM = 1 << 7,
555
556 SKB_GSO_IPXIP4 = 1 << 8,
557
558 SKB_GSO_IPXIP6 = 1 << 9,
559
560 SKB_GSO_UDP_TUNNEL = 1 << 10,
561
562 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563
564 SKB_GSO_PARTIAL = 1 << 12,
565
566 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567
568 SKB_GSO_SCTP = 1 << 14,
569
570 SKB_GSO_ESP = 1 << 15,
571
572 SKB_GSO_UDP = 1 << 16,
573 };
574
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
577 #endif
578
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t;
581 #else
582 typedef unsigned char *sk_buff_data_t;
583 #endif
584
585 /**
586 * struct sk_buff - socket buffer
587 * @next: Next buffer in list
588 * @prev: Previous buffer in list
589 * @tstamp: Time we arrived/left
590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
591 * @sk: Socket we are owned by
592 * @dev: Device we arrived on/are leaving by
593 * @cb: Control buffer. Free for use by every layer. Put private vars here
594 * @_skb_refdst: destination entry (with norefcount bit)
595 * @sp: the security path, used for xfrm
596 * @len: Length of actual data
597 * @data_len: Data length
598 * @mac_len: Length of link layer header
599 * @hdr_len: writable header length of cloned skb
600 * @csum: Checksum (must include start/offset pair)
601 * @csum_start: Offset from skb->head where checksumming should start
602 * @csum_offset: Offset from csum_start where checksum should be stored
603 * @priority: Packet queueing priority
604 * @ignore_df: allow local fragmentation
605 * @cloned: Head may be cloned (check refcnt to be sure)
606 * @ip_summed: Driver fed us an IP checksum
607 * @nohdr: Payload reference only, must not modify header
608 * @pkt_type: Packet class
609 * @fclone: skbuff clone status
610 * @ipvs_property: skbuff is owned by ipvs
611 * @tc_skip_classify: do not classify packet. set by IFB device
612 * @tc_at_ingress: used within tc_classify to distinguish in/egress
613 * @tc_redirected: packet was redirected by a tc action
614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615 * @peeked: this packet has been seen already, so stats have been
616 * done for it, don't do them again
617 * @nf_trace: netfilter packet trace flag
618 * @protocol: Packet protocol from driver
619 * @destructor: Destruct function
620 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
621 * @_nfct: Associated connection, if any (with nfctinfo bits)
622 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
623 * @skb_iif: ifindex of device we arrived on
624 * @tc_index: Traffic control index
625 * @hash: the packet hash
626 * @queue_mapping: Queue mapping for multiqueue devices
627 * @xmit_more: More SKBs are pending for this queue
628 * @ndisc_nodetype: router type (from link layer)
629 * @ooo_okay: allow the mapping of a socket to a queue to be changed
630 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
631 * ports.
632 * @sw_hash: indicates hash was computed in software stack
633 * @wifi_acked_valid: wifi_acked was set
634 * @wifi_acked: whether frame was acked on wifi or not
635 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
636 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
637 * @dst_pending_confirm: need to confirm neighbour
638 * @napi_id: id of the NAPI struct this skb came from
639 * @secmark: security marking
640 * @mark: Generic packet mark
641 * @vlan_proto: vlan encapsulation protocol
642 * @vlan_tci: vlan tag control information
643 * @inner_protocol: Protocol (encapsulation)
644 * @inner_transport_header: Inner transport layer header (encapsulation)
645 * @inner_network_header: Network layer header (encapsulation)
646 * @inner_mac_header: Link layer header (encapsulation)
647 * @transport_header: Transport layer header
648 * @network_header: Network layer header
649 * @mac_header: Link layer header
650 * @tail: Tail pointer
651 * @end: End pointer
652 * @head: Head of buffer
653 * @data: Data head pointer
654 * @truesize: Buffer size
655 * @users: User count - see {datagram,tcp}.c
656 */
657
658 struct sk_buff {
659 union {
660 struct {
661 /* These two members must be first. */
662 struct sk_buff *next;
663 struct sk_buff *prev;
664
665 union {
666 struct net_device *dev;
667 /* Some protocols might use this space to store information,
668 * while device pointer would be NULL.
669 * UDP receive path is one user.
670 */
671 unsigned long dev_scratch;
672 };
673 };
674 struct rb_node rbnode; /* used in netem & tcp stack */
675 };
676 struct sock *sk;
677
678 union {
679 ktime_t tstamp;
680 u64 skb_mstamp;
681 };
682 /*
683 * This is the control buffer. It is free to use for every
684 * layer. Please put your private variables there. If you
685 * want to keep them across layers you have to do a skb_clone()
686 * first. This is owned by whoever has the skb queued ATM.
687 */
688 char cb[48] __aligned(8);
689
690 union {
691 struct {
692 unsigned long _skb_refdst;
693 void (*destructor)(struct sk_buff *skb);
694 };
695 struct list_head tcp_tsorted_anchor;
696 };
697
698 #ifdef CONFIG_XFRM
699 struct sec_path *sp;
700 #endif
701 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
702 unsigned long _nfct;
703 #endif
704 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
705 struct nf_bridge_info *nf_bridge;
706 #endif
707 unsigned int len,
708 data_len;
709 __u16 mac_len,
710 hdr_len;
711
712 /* Following fields are _not_ copied in __copy_skb_header()
713 * Note that queue_mapping is here mostly to fill a hole.
714 */
715 __u16 queue_mapping;
716
717 /* if you move cloned around you also must adapt those constants */
718 #ifdef __BIG_ENDIAN_BITFIELD
719 #define CLONED_MASK (1 << 7)
720 #else
721 #define CLONED_MASK 1
722 #endif
723 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
724
725 __u8 __cloned_offset[0];
726 __u8 cloned:1,
727 nohdr:1,
728 fclone:2,
729 peeked:1,
730 head_frag:1,
731 xmit_more:1,
732 __unused:1; /* one bit hole */
733
734 /* fields enclosed in headers_start/headers_end are copied
735 * using a single memcpy() in __copy_skb_header()
736 */
737 /* private: */
738 __u32 headers_start[0];
739 /* public: */
740
741 /* if you move pkt_type around you also must adapt those constants */
742 #ifdef __BIG_ENDIAN_BITFIELD
743 #define PKT_TYPE_MAX (7 << 5)
744 #else
745 #define PKT_TYPE_MAX 7
746 #endif
747 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
748
749 __u8 __pkt_type_offset[0];
750 __u8 pkt_type:3;
751 __u8 pfmemalloc:1;
752 __u8 ignore_df:1;
753
754 __u8 nf_trace:1;
755 __u8 ip_summed:2;
756 __u8 ooo_okay:1;
757 __u8 l4_hash:1;
758 __u8 sw_hash:1;
759 __u8 wifi_acked_valid:1;
760 __u8 wifi_acked:1;
761
762 __u8 no_fcs:1;
763 /* Indicates the inner headers are valid in the skbuff. */
764 __u8 encapsulation:1;
765 __u8 encap_hdr_csum:1;
766 __u8 csum_valid:1;
767 __u8 csum_complete_sw:1;
768 __u8 csum_level:2;
769 __u8 csum_not_inet:1;
770
771 __u8 dst_pending_confirm:1;
772 #ifdef CONFIG_IPV6_NDISC_NODETYPE
773 __u8 ndisc_nodetype:2;
774 #endif
775 __u8 ipvs_property:1;
776 __u8 inner_protocol_type:1;
777 __u8 remcsum_offload:1;
778 #ifdef CONFIG_NET_SWITCHDEV
779 __u8 offload_fwd_mark:1;
780 __u8 offload_mr_fwd_mark:1;
781 #endif
782 #ifdef CONFIG_NET_CLS_ACT
783 __u8 tc_skip_classify:1;
784 __u8 tc_at_ingress:1;
785 __u8 tc_redirected:1;
786 __u8 tc_from_ingress:1;
787 #endif
788
789 #ifdef CONFIG_NET_SCHED
790 __u16 tc_index; /* traffic control index */
791 #endif
792
793 union {
794 __wsum csum;
795 struct {
796 __u16 csum_start;
797 __u16 csum_offset;
798 };
799 };
800 __u32 priority;
801 int skb_iif;
802 __u32 hash;
803 __be16 vlan_proto;
804 __u16 vlan_tci;
805 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
806 union {
807 unsigned int napi_id;
808 unsigned int sender_cpu;
809 };
810 #endif
811 #ifdef CONFIG_NETWORK_SECMARK
812 __u32 secmark;
813 #endif
814
815 union {
816 __u32 mark;
817 __u32 reserved_tailroom;
818 };
819
820 union {
821 __be16 inner_protocol;
822 __u8 inner_ipproto;
823 };
824
825 __u16 inner_transport_header;
826 __u16 inner_network_header;
827 __u16 inner_mac_header;
828
829 __be16 protocol;
830 __u16 transport_header;
831 __u16 network_header;
832 __u16 mac_header;
833
834 /* private: */
835 __u32 headers_end[0];
836 /* public: */
837
838 /* These elements must be at the end, see alloc_skb() for details. */
839 sk_buff_data_t tail;
840 sk_buff_data_t end;
841 unsigned char *head,
842 *data;
843 unsigned int truesize;
844 refcount_t users;
845 };
846
847 #ifdef __KERNEL__
848 /*
849 * Handling routines are only of interest to the kernel
850 */
851 #include <linux/slab.h>
852
853
854 #define SKB_ALLOC_FCLONE 0x01
855 #define SKB_ALLOC_RX 0x02
856 #define SKB_ALLOC_NAPI 0x04
857
858 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
859 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
860 {
861 return unlikely(skb->pfmemalloc);
862 }
863
864 /*
865 * skb might have a dst pointer attached, refcounted or not.
866 * _skb_refdst low order bit is set if refcount was _not_ taken
867 */
868 #define SKB_DST_NOREF 1UL
869 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
870
871 #define SKB_NFCT_PTRMASK ~(7UL)
872 /**
873 * skb_dst - returns skb dst_entry
874 * @skb: buffer
875 *
876 * Returns skb dst_entry, regardless of reference taken or not.
877 */
878 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
879 {
880 /* If refdst was not refcounted, check we still are in a
881 * rcu_read_lock section
882 */
883 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
884 !rcu_read_lock_held() &&
885 !rcu_read_lock_bh_held());
886 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
887 }
888
889 /**
890 * skb_dst_set - sets skb dst
891 * @skb: buffer
892 * @dst: dst entry
893 *
894 * Sets skb dst, assuming a reference was taken on dst and should
895 * be released by skb_dst_drop()
896 */
897 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
898 {
899 skb->_skb_refdst = (unsigned long)dst;
900 }
901
902 /**
903 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
904 * @skb: buffer
905 * @dst: dst entry
906 *
907 * Sets skb dst, assuming a reference was not taken on dst.
908 * If dst entry is cached, we do not take reference and dst_release
909 * will be avoided by refdst_drop. If dst entry is not cached, we take
910 * reference, so that last dst_release can destroy the dst immediately.
911 */
912 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
913 {
914 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
915 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
916 }
917
918 /**
919 * skb_dst_is_noref - Test if skb dst isn't refcounted
920 * @skb: buffer
921 */
922 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
923 {
924 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
925 }
926
927 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
928 {
929 return (struct rtable *)skb_dst(skb);
930 }
931
932 /* For mangling skb->pkt_type from user space side from applications
933 * such as nft, tc, etc, we only allow a conservative subset of
934 * possible pkt_types to be set.
935 */
936 static inline bool skb_pkt_type_ok(u32 ptype)
937 {
938 return ptype <= PACKET_OTHERHOST;
939 }
940
941 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
942 {
943 #ifdef CONFIG_NET_RX_BUSY_POLL
944 return skb->napi_id;
945 #else
946 return 0;
947 #endif
948 }
949
950 /* decrement the reference count and return true if we can free the skb */
951 static inline bool skb_unref(struct sk_buff *skb)
952 {
953 if (unlikely(!skb))
954 return false;
955 if (likely(refcount_read(&skb->users) == 1))
956 smp_rmb();
957 else if (likely(!refcount_dec_and_test(&skb->users)))
958 return false;
959
960 return true;
961 }
962
963 void skb_release_head_state(struct sk_buff *skb);
964 void kfree_skb(struct sk_buff *skb);
965 void kfree_skb_list(struct sk_buff *segs);
966 void skb_tx_error(struct sk_buff *skb);
967 void consume_skb(struct sk_buff *skb);
968 void __consume_stateless_skb(struct sk_buff *skb);
969 void __kfree_skb(struct sk_buff *skb);
970 extern struct kmem_cache *skbuff_head_cache;
971
972 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
973 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
974 bool *fragstolen, int *delta_truesize);
975
976 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
977 int node);
978 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
979 struct sk_buff *build_skb(void *data, unsigned int frag_size);
980 static inline struct sk_buff *alloc_skb(unsigned int size,
981 gfp_t priority)
982 {
983 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
984 }
985
986 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
987 unsigned long data_len,
988 int max_page_order,
989 int *errcode,
990 gfp_t gfp_mask);
991
992 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
993 struct sk_buff_fclones {
994 struct sk_buff skb1;
995
996 struct sk_buff skb2;
997
998 refcount_t fclone_ref;
999 };
1000
1001 /**
1002 * skb_fclone_busy - check if fclone is busy
1003 * @sk: socket
1004 * @skb: buffer
1005 *
1006 * Returns true if skb is a fast clone, and its clone is not freed.
1007 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1008 * so we also check that this didnt happen.
1009 */
1010 static inline bool skb_fclone_busy(const struct sock *sk,
1011 const struct sk_buff *skb)
1012 {
1013 const struct sk_buff_fclones *fclones;
1014
1015 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1016
1017 return skb->fclone == SKB_FCLONE_ORIG &&
1018 refcount_read(&fclones->fclone_ref) > 1 &&
1019 fclones->skb2.sk == sk;
1020 }
1021
1022 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1023 gfp_t priority)
1024 {
1025 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1026 }
1027
1028 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1029 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1031 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1032 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1033 gfp_t gfp_mask, bool fclone);
1034 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1035 gfp_t gfp_mask)
1036 {
1037 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1038 }
1039
1040 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1041 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1042 unsigned int headroom);
1043 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1044 int newtailroom, gfp_t priority);
1045 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1046 int offset, int len);
1047 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1048 int offset, int len);
1049 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1050 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1051
1052 /**
1053 * skb_pad - zero pad the tail of an skb
1054 * @skb: buffer to pad
1055 * @pad: space to pad
1056 *
1057 * Ensure that a buffer is followed by a padding area that is zero
1058 * filled. Used by network drivers which may DMA or transfer data
1059 * beyond the buffer end onto the wire.
1060 *
1061 * May return error in out of memory cases. The skb is freed on error.
1062 */
1063 static inline int skb_pad(struct sk_buff *skb, int pad)
1064 {
1065 return __skb_pad(skb, pad, true);
1066 }
1067 #define dev_kfree_skb(a) consume_skb(a)
1068
1069 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1070 int getfrag(void *from, char *to, int offset,
1071 int len, int odd, struct sk_buff *skb),
1072 void *from, int length);
1073
1074 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1075 int offset, size_t size);
1076
1077 struct skb_seq_state {
1078 __u32 lower_offset;
1079 __u32 upper_offset;
1080 __u32 frag_idx;
1081 __u32 stepped_offset;
1082 struct sk_buff *root_skb;
1083 struct sk_buff *cur_skb;
1084 __u8 *frag_data;
1085 };
1086
1087 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1088 unsigned int to, struct skb_seq_state *st);
1089 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1090 struct skb_seq_state *st);
1091 void skb_abort_seq_read(struct skb_seq_state *st);
1092
1093 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1094 unsigned int to, struct ts_config *config);
1095
1096 /*
1097 * Packet hash types specify the type of hash in skb_set_hash.
1098 *
1099 * Hash types refer to the protocol layer addresses which are used to
1100 * construct a packet's hash. The hashes are used to differentiate or identify
1101 * flows of the protocol layer for the hash type. Hash types are either
1102 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1103 *
1104 * Properties of hashes:
1105 *
1106 * 1) Two packets in different flows have different hash values
1107 * 2) Two packets in the same flow should have the same hash value
1108 *
1109 * A hash at a higher layer is considered to be more specific. A driver should
1110 * set the most specific hash possible.
1111 *
1112 * A driver cannot indicate a more specific hash than the layer at which a hash
1113 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1114 *
1115 * A driver may indicate a hash level which is less specific than the
1116 * actual layer the hash was computed on. For instance, a hash computed
1117 * at L4 may be considered an L3 hash. This should only be done if the
1118 * driver can't unambiguously determine that the HW computed the hash at
1119 * the higher layer. Note that the "should" in the second property above
1120 * permits this.
1121 */
1122 enum pkt_hash_types {
1123 PKT_HASH_TYPE_NONE, /* Undefined type */
1124 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1125 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1126 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1127 };
1128
1129 static inline void skb_clear_hash(struct sk_buff *skb)
1130 {
1131 skb->hash = 0;
1132 skb->sw_hash = 0;
1133 skb->l4_hash = 0;
1134 }
1135
1136 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1137 {
1138 if (!skb->l4_hash)
1139 skb_clear_hash(skb);
1140 }
1141
1142 static inline void
1143 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1144 {
1145 skb->l4_hash = is_l4;
1146 skb->sw_hash = is_sw;
1147 skb->hash = hash;
1148 }
1149
1150 static inline void
1151 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1152 {
1153 /* Used by drivers to set hash from HW */
1154 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1155 }
1156
1157 static inline void
1158 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1159 {
1160 __skb_set_hash(skb, hash, true, is_l4);
1161 }
1162
1163 void __skb_get_hash(struct sk_buff *skb);
1164 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1165 u32 skb_get_poff(const struct sk_buff *skb);
1166 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1167 const struct flow_keys *keys, int hlen);
1168 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1169 void *data, int hlen_proto);
1170
1171 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1172 int thoff, u8 ip_proto)
1173 {
1174 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1175 }
1176
1177 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1178 const struct flow_dissector_key *key,
1179 unsigned int key_count);
1180
1181 bool __skb_flow_dissect(const struct sk_buff *skb,
1182 struct flow_dissector *flow_dissector,
1183 void *target_container,
1184 void *data, __be16 proto, int nhoff, int hlen,
1185 unsigned int flags);
1186
1187 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1188 struct flow_dissector *flow_dissector,
1189 void *target_container, unsigned int flags)
1190 {
1191 return __skb_flow_dissect(skb, flow_dissector, target_container,
1192 NULL, 0, 0, 0, flags);
1193 }
1194
1195 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1196 struct flow_keys *flow,
1197 unsigned int flags)
1198 {
1199 memset(flow, 0, sizeof(*flow));
1200 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1201 NULL, 0, 0, 0, flags);
1202 }
1203
1204 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1205 void *data, __be16 proto,
1206 int nhoff, int hlen,
1207 unsigned int flags)
1208 {
1209 memset(flow, 0, sizeof(*flow));
1210 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1211 data, proto, nhoff, hlen, flags);
1212 }
1213
1214 static inline __u32 skb_get_hash(struct sk_buff *skb)
1215 {
1216 if (!skb->l4_hash && !skb->sw_hash)
1217 __skb_get_hash(skb);
1218
1219 return skb->hash;
1220 }
1221
1222 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1223 {
1224 if (!skb->l4_hash && !skb->sw_hash) {
1225 struct flow_keys keys;
1226 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1227
1228 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1229 }
1230
1231 return skb->hash;
1232 }
1233
1234 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1235
1236 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1237 {
1238 return skb->hash;
1239 }
1240
1241 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1242 {
1243 to->hash = from->hash;
1244 to->sw_hash = from->sw_hash;
1245 to->l4_hash = from->l4_hash;
1246 };
1247
1248 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1249 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1250 {
1251 return skb->head + skb->end;
1252 }
1253
1254 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1255 {
1256 return skb->end;
1257 }
1258 #else
1259 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1260 {
1261 return skb->end;
1262 }
1263
1264 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1265 {
1266 return skb->end - skb->head;
1267 }
1268 #endif
1269
1270 /* Internal */
1271 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1272
1273 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1274 {
1275 return &skb_shinfo(skb)->hwtstamps;
1276 }
1277
1278 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1279 {
1280 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1281
1282 return is_zcopy ? skb_uarg(skb) : NULL;
1283 }
1284
1285 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1286 {
1287 if (skb && uarg && !skb_zcopy(skb)) {
1288 sock_zerocopy_get(uarg);
1289 skb_shinfo(skb)->destructor_arg = uarg;
1290 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1291 }
1292 }
1293
1294 /* Release a reference on a zerocopy structure */
1295 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1296 {
1297 struct ubuf_info *uarg = skb_zcopy(skb);
1298
1299 if (uarg) {
1300 if (uarg->callback == sock_zerocopy_callback) {
1301 uarg->zerocopy = uarg->zerocopy && zerocopy;
1302 sock_zerocopy_put(uarg);
1303 } else {
1304 uarg->callback(uarg, zerocopy);
1305 }
1306
1307 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1308 }
1309 }
1310
1311 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1312 static inline void skb_zcopy_abort(struct sk_buff *skb)
1313 {
1314 struct ubuf_info *uarg = skb_zcopy(skb);
1315
1316 if (uarg) {
1317 sock_zerocopy_put_abort(uarg);
1318 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1319 }
1320 }
1321
1322 /**
1323 * skb_queue_empty - check if a queue is empty
1324 * @list: queue head
1325 *
1326 * Returns true if the queue is empty, false otherwise.
1327 */
1328 static inline int skb_queue_empty(const struct sk_buff_head *list)
1329 {
1330 return list->next == (const struct sk_buff *) list;
1331 }
1332
1333 /**
1334 * skb_queue_is_last - check if skb is the last entry in the queue
1335 * @list: queue head
1336 * @skb: buffer
1337 *
1338 * Returns true if @skb is the last buffer on the list.
1339 */
1340 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1341 const struct sk_buff *skb)
1342 {
1343 return skb->next == (const struct sk_buff *) list;
1344 }
1345
1346 /**
1347 * skb_queue_is_first - check if skb is the first entry in the queue
1348 * @list: queue head
1349 * @skb: buffer
1350 *
1351 * Returns true if @skb is the first buffer on the list.
1352 */
1353 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1354 const struct sk_buff *skb)
1355 {
1356 return skb->prev == (const struct sk_buff *) list;
1357 }
1358
1359 /**
1360 * skb_queue_next - return the next packet in the queue
1361 * @list: queue head
1362 * @skb: current buffer
1363 *
1364 * Return the next packet in @list after @skb. It is only valid to
1365 * call this if skb_queue_is_last() evaluates to false.
1366 */
1367 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1368 const struct sk_buff *skb)
1369 {
1370 /* This BUG_ON may seem severe, but if we just return then we
1371 * are going to dereference garbage.
1372 */
1373 BUG_ON(skb_queue_is_last(list, skb));
1374 return skb->next;
1375 }
1376
1377 /**
1378 * skb_queue_prev - return the prev packet in the queue
1379 * @list: queue head
1380 * @skb: current buffer
1381 *
1382 * Return the prev packet in @list before @skb. It is only valid to
1383 * call this if skb_queue_is_first() evaluates to false.
1384 */
1385 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1386 const struct sk_buff *skb)
1387 {
1388 /* This BUG_ON may seem severe, but if we just return then we
1389 * are going to dereference garbage.
1390 */
1391 BUG_ON(skb_queue_is_first(list, skb));
1392 return skb->prev;
1393 }
1394
1395 /**
1396 * skb_get - reference buffer
1397 * @skb: buffer to reference
1398 *
1399 * Makes another reference to a socket buffer and returns a pointer
1400 * to the buffer.
1401 */
1402 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1403 {
1404 refcount_inc(&skb->users);
1405 return skb;
1406 }
1407
1408 /*
1409 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1410 */
1411
1412 /**
1413 * skb_cloned - is the buffer a clone
1414 * @skb: buffer to check
1415 *
1416 * Returns true if the buffer was generated with skb_clone() and is
1417 * one of multiple shared copies of the buffer. Cloned buffers are
1418 * shared data so must not be written to under normal circumstances.
1419 */
1420 static inline int skb_cloned(const struct sk_buff *skb)
1421 {
1422 return skb->cloned &&
1423 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1424 }
1425
1426 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1427 {
1428 might_sleep_if(gfpflags_allow_blocking(pri));
1429
1430 if (skb_cloned(skb))
1431 return pskb_expand_head(skb, 0, 0, pri);
1432
1433 return 0;
1434 }
1435
1436 /**
1437 * skb_header_cloned - is the header a clone
1438 * @skb: buffer to check
1439 *
1440 * Returns true if modifying the header part of the buffer requires
1441 * the data to be copied.
1442 */
1443 static inline int skb_header_cloned(const struct sk_buff *skb)
1444 {
1445 int dataref;
1446
1447 if (!skb->cloned)
1448 return 0;
1449
1450 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1451 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1452 return dataref != 1;
1453 }
1454
1455 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1456 {
1457 might_sleep_if(gfpflags_allow_blocking(pri));
1458
1459 if (skb_header_cloned(skb))
1460 return pskb_expand_head(skb, 0, 0, pri);
1461
1462 return 0;
1463 }
1464
1465 /**
1466 * __skb_header_release - release reference to header
1467 * @skb: buffer to operate on
1468 */
1469 static inline void __skb_header_release(struct sk_buff *skb)
1470 {
1471 skb->nohdr = 1;
1472 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1473 }
1474
1475
1476 /**
1477 * skb_shared - is the buffer shared
1478 * @skb: buffer to check
1479 *
1480 * Returns true if more than one person has a reference to this
1481 * buffer.
1482 */
1483 static inline int skb_shared(const struct sk_buff *skb)
1484 {
1485 return refcount_read(&skb->users) != 1;
1486 }
1487
1488 /**
1489 * skb_share_check - check if buffer is shared and if so clone it
1490 * @skb: buffer to check
1491 * @pri: priority for memory allocation
1492 *
1493 * If the buffer is shared the buffer is cloned and the old copy
1494 * drops a reference. A new clone with a single reference is returned.
1495 * If the buffer is not shared the original buffer is returned. When
1496 * being called from interrupt status or with spinlocks held pri must
1497 * be GFP_ATOMIC.
1498 *
1499 * NULL is returned on a memory allocation failure.
1500 */
1501 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1502 {
1503 might_sleep_if(gfpflags_allow_blocking(pri));
1504 if (skb_shared(skb)) {
1505 struct sk_buff *nskb = skb_clone(skb, pri);
1506
1507 if (likely(nskb))
1508 consume_skb(skb);
1509 else
1510 kfree_skb(skb);
1511 skb = nskb;
1512 }
1513 return skb;
1514 }
1515
1516 /*
1517 * Copy shared buffers into a new sk_buff. We effectively do COW on
1518 * packets to handle cases where we have a local reader and forward
1519 * and a couple of other messy ones. The normal one is tcpdumping
1520 * a packet thats being forwarded.
1521 */
1522
1523 /**
1524 * skb_unshare - make a copy of a shared buffer
1525 * @skb: buffer to check
1526 * @pri: priority for memory allocation
1527 *
1528 * If the socket buffer is a clone then this function creates a new
1529 * copy of the data, drops a reference count on the old copy and returns
1530 * the new copy with the reference count at 1. If the buffer is not a clone
1531 * the original buffer is returned. When called with a spinlock held or
1532 * from interrupt state @pri must be %GFP_ATOMIC
1533 *
1534 * %NULL is returned on a memory allocation failure.
1535 */
1536 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1537 gfp_t pri)
1538 {
1539 might_sleep_if(gfpflags_allow_blocking(pri));
1540 if (skb_cloned(skb)) {
1541 struct sk_buff *nskb = skb_copy(skb, pri);
1542
1543 /* Free our shared copy */
1544 if (likely(nskb))
1545 consume_skb(skb);
1546 else
1547 kfree_skb(skb);
1548 skb = nskb;
1549 }
1550 return skb;
1551 }
1552
1553 /**
1554 * skb_peek - peek at the head of an &sk_buff_head
1555 * @list_: list to peek at
1556 *
1557 * Peek an &sk_buff. Unlike most other operations you _MUST_
1558 * be careful with this one. A peek leaves the buffer on the
1559 * list and someone else may run off with it. You must hold
1560 * the appropriate locks or have a private queue to do this.
1561 *
1562 * Returns %NULL for an empty list or a pointer to the head element.
1563 * The reference count is not incremented and the reference is therefore
1564 * volatile. Use with caution.
1565 */
1566 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1567 {
1568 struct sk_buff *skb = list_->next;
1569
1570 if (skb == (struct sk_buff *)list_)
1571 skb = NULL;
1572 return skb;
1573 }
1574
1575 /**
1576 * skb_peek_next - peek skb following the given one from a queue
1577 * @skb: skb to start from
1578 * @list_: list to peek at
1579 *
1580 * Returns %NULL when the end of the list is met or a pointer to the
1581 * next element. The reference count is not incremented and the
1582 * reference is therefore volatile. Use with caution.
1583 */
1584 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1585 const struct sk_buff_head *list_)
1586 {
1587 struct sk_buff *next = skb->next;
1588
1589 if (next == (struct sk_buff *)list_)
1590 next = NULL;
1591 return next;
1592 }
1593
1594 /**
1595 * skb_peek_tail - peek at the tail of an &sk_buff_head
1596 * @list_: list to peek at
1597 *
1598 * Peek an &sk_buff. Unlike most other operations you _MUST_
1599 * be careful with this one. A peek leaves the buffer on the
1600 * list and someone else may run off with it. You must hold
1601 * the appropriate locks or have a private queue to do this.
1602 *
1603 * Returns %NULL for an empty list or a pointer to the tail element.
1604 * The reference count is not incremented and the reference is therefore
1605 * volatile. Use with caution.
1606 */
1607 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1608 {
1609 struct sk_buff *skb = list_->prev;
1610
1611 if (skb == (struct sk_buff *)list_)
1612 skb = NULL;
1613 return skb;
1614
1615 }
1616
1617 /**
1618 * skb_queue_len - get queue length
1619 * @list_: list to measure
1620 *
1621 * Return the length of an &sk_buff queue.
1622 */
1623 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1624 {
1625 return list_->qlen;
1626 }
1627
1628 /**
1629 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1630 * @list: queue to initialize
1631 *
1632 * This initializes only the list and queue length aspects of
1633 * an sk_buff_head object. This allows to initialize the list
1634 * aspects of an sk_buff_head without reinitializing things like
1635 * the spinlock. It can also be used for on-stack sk_buff_head
1636 * objects where the spinlock is known to not be used.
1637 */
1638 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1639 {
1640 list->prev = list->next = (struct sk_buff *)list;
1641 list->qlen = 0;
1642 }
1643
1644 /*
1645 * This function creates a split out lock class for each invocation;
1646 * this is needed for now since a whole lot of users of the skb-queue
1647 * infrastructure in drivers have different locking usage (in hardirq)
1648 * than the networking core (in softirq only). In the long run either the
1649 * network layer or drivers should need annotation to consolidate the
1650 * main types of usage into 3 classes.
1651 */
1652 static inline void skb_queue_head_init(struct sk_buff_head *list)
1653 {
1654 spin_lock_init(&list->lock);
1655 __skb_queue_head_init(list);
1656 }
1657
1658 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1659 struct lock_class_key *class)
1660 {
1661 skb_queue_head_init(list);
1662 lockdep_set_class(&list->lock, class);
1663 }
1664
1665 /*
1666 * Insert an sk_buff on a list.
1667 *
1668 * The "__skb_xxxx()" functions are the non-atomic ones that
1669 * can only be called with interrupts disabled.
1670 */
1671 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1672 struct sk_buff_head *list);
1673 static inline void __skb_insert(struct sk_buff *newsk,
1674 struct sk_buff *prev, struct sk_buff *next,
1675 struct sk_buff_head *list)
1676 {
1677 newsk->next = next;
1678 newsk->prev = prev;
1679 next->prev = prev->next = newsk;
1680 list->qlen++;
1681 }
1682
1683 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1684 struct sk_buff *prev,
1685 struct sk_buff *next)
1686 {
1687 struct sk_buff *first = list->next;
1688 struct sk_buff *last = list->prev;
1689
1690 first->prev = prev;
1691 prev->next = first;
1692
1693 last->next = next;
1694 next->prev = last;
1695 }
1696
1697 /**
1698 * skb_queue_splice - join two skb lists, this is designed for stacks
1699 * @list: the new list to add
1700 * @head: the place to add it in the first list
1701 */
1702 static inline void skb_queue_splice(const struct sk_buff_head *list,
1703 struct sk_buff_head *head)
1704 {
1705 if (!skb_queue_empty(list)) {
1706 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1707 head->qlen += list->qlen;
1708 }
1709 }
1710
1711 /**
1712 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1713 * @list: the new list to add
1714 * @head: the place to add it in the first list
1715 *
1716 * The list at @list is reinitialised
1717 */
1718 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1719 struct sk_buff_head *head)
1720 {
1721 if (!skb_queue_empty(list)) {
1722 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1723 head->qlen += list->qlen;
1724 __skb_queue_head_init(list);
1725 }
1726 }
1727
1728 /**
1729 * skb_queue_splice_tail - join two skb lists, each list being a queue
1730 * @list: the new list to add
1731 * @head: the place to add it in the first list
1732 */
1733 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1734 struct sk_buff_head *head)
1735 {
1736 if (!skb_queue_empty(list)) {
1737 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1738 head->qlen += list->qlen;
1739 }
1740 }
1741
1742 /**
1743 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1744 * @list: the new list to add
1745 * @head: the place to add it in the first list
1746 *
1747 * Each of the lists is a queue.
1748 * The list at @list is reinitialised
1749 */
1750 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1751 struct sk_buff_head *head)
1752 {
1753 if (!skb_queue_empty(list)) {
1754 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1755 head->qlen += list->qlen;
1756 __skb_queue_head_init(list);
1757 }
1758 }
1759
1760 /**
1761 * __skb_queue_after - queue a buffer at the list head
1762 * @list: list to use
1763 * @prev: place after this buffer
1764 * @newsk: buffer to queue
1765 *
1766 * Queue a buffer int the middle of a list. This function takes no locks
1767 * and you must therefore hold required locks before calling it.
1768 *
1769 * A buffer cannot be placed on two lists at the same time.
1770 */
1771 static inline void __skb_queue_after(struct sk_buff_head *list,
1772 struct sk_buff *prev,
1773 struct sk_buff *newsk)
1774 {
1775 __skb_insert(newsk, prev, prev->next, list);
1776 }
1777
1778 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1779 struct sk_buff_head *list);
1780
1781 static inline void __skb_queue_before(struct sk_buff_head *list,
1782 struct sk_buff *next,
1783 struct sk_buff *newsk)
1784 {
1785 __skb_insert(newsk, next->prev, next, list);
1786 }
1787
1788 /**
1789 * __skb_queue_head - queue a buffer at the list head
1790 * @list: list to use
1791 * @newsk: buffer to queue
1792 *
1793 * Queue a buffer at the start of a list. This function takes no locks
1794 * and you must therefore hold required locks before calling it.
1795 *
1796 * A buffer cannot be placed on two lists at the same time.
1797 */
1798 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1799 static inline void __skb_queue_head(struct sk_buff_head *list,
1800 struct sk_buff *newsk)
1801 {
1802 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1803 }
1804
1805 /**
1806 * __skb_queue_tail - queue a buffer at the list tail
1807 * @list: list to use
1808 * @newsk: buffer to queue
1809 *
1810 * Queue a buffer at the end of a list. This function takes no locks
1811 * and you must therefore hold required locks before calling it.
1812 *
1813 * A buffer cannot be placed on two lists at the same time.
1814 */
1815 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1816 static inline void __skb_queue_tail(struct sk_buff_head *list,
1817 struct sk_buff *newsk)
1818 {
1819 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1820 }
1821
1822 /*
1823 * remove sk_buff from list. _Must_ be called atomically, and with
1824 * the list known..
1825 */
1826 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1827 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1828 {
1829 struct sk_buff *next, *prev;
1830
1831 list->qlen--;
1832 next = skb->next;
1833 prev = skb->prev;
1834 skb->next = skb->prev = NULL;
1835 next->prev = prev;
1836 prev->next = next;
1837 }
1838
1839 /**
1840 * __skb_dequeue - remove from the head of the queue
1841 * @list: list to dequeue from
1842 *
1843 * Remove the head of the list. This function does not take any locks
1844 * so must be used with appropriate locks held only. The head item is
1845 * returned or %NULL if the list is empty.
1846 */
1847 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1848 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1849 {
1850 struct sk_buff *skb = skb_peek(list);
1851 if (skb)
1852 __skb_unlink(skb, list);
1853 return skb;
1854 }
1855
1856 /**
1857 * __skb_dequeue_tail - remove from the tail of the queue
1858 * @list: list to dequeue from
1859 *
1860 * Remove the tail of the list. This function does not take any locks
1861 * so must be used with appropriate locks held only. The tail item is
1862 * returned or %NULL if the list is empty.
1863 */
1864 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1865 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1866 {
1867 struct sk_buff *skb = skb_peek_tail(list);
1868 if (skb)
1869 __skb_unlink(skb, list);
1870 return skb;
1871 }
1872
1873
1874 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1875 {
1876 return skb->data_len;
1877 }
1878
1879 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1880 {
1881 return skb->len - skb->data_len;
1882 }
1883
1884 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1885 {
1886 unsigned int i, len = 0;
1887
1888 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1889 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1890 return len;
1891 }
1892
1893 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1894 {
1895 return skb_headlen(skb) + __skb_pagelen(skb);
1896 }
1897
1898 /**
1899 * __skb_fill_page_desc - initialise a paged fragment in an skb
1900 * @skb: buffer containing fragment to be initialised
1901 * @i: paged fragment index to initialise
1902 * @page: the page to use for this fragment
1903 * @off: the offset to the data with @page
1904 * @size: the length of the data
1905 *
1906 * Initialises the @i'th fragment of @skb to point to &size bytes at
1907 * offset @off within @page.
1908 *
1909 * Does not take any additional reference on the fragment.
1910 */
1911 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1912 struct page *page, int off, int size)
1913 {
1914 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1915
1916 /*
1917 * Propagate page pfmemalloc to the skb if we can. The problem is
1918 * that not all callers have unique ownership of the page but rely
1919 * on page_is_pfmemalloc doing the right thing(tm).
1920 */
1921 frag->page.p = page;
1922 frag->page_offset = off;
1923 skb_frag_size_set(frag, size);
1924
1925 page = compound_head(page);
1926 if (page_is_pfmemalloc(page))
1927 skb->pfmemalloc = true;
1928 }
1929
1930 /**
1931 * skb_fill_page_desc - initialise a paged fragment in an skb
1932 * @skb: buffer containing fragment to be initialised
1933 * @i: paged fragment index to initialise
1934 * @page: the page to use for this fragment
1935 * @off: the offset to the data with @page
1936 * @size: the length of the data
1937 *
1938 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1939 * @skb to point to @size bytes at offset @off within @page. In
1940 * addition updates @skb such that @i is the last fragment.
1941 *
1942 * Does not take any additional reference on the fragment.
1943 */
1944 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1945 struct page *page, int off, int size)
1946 {
1947 __skb_fill_page_desc(skb, i, page, off, size);
1948 skb_shinfo(skb)->nr_frags = i + 1;
1949 }
1950
1951 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1952 int size, unsigned int truesize);
1953
1954 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1955 unsigned int truesize);
1956
1957 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1958 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1959 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1960
1961 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1962 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1963 {
1964 return skb->head + skb->tail;
1965 }
1966
1967 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1968 {
1969 skb->tail = skb->data - skb->head;
1970 }
1971
1972 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1973 {
1974 skb_reset_tail_pointer(skb);
1975 skb->tail += offset;
1976 }
1977
1978 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1979 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1980 {
1981 return skb->tail;
1982 }
1983
1984 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1985 {
1986 skb->tail = skb->data;
1987 }
1988
1989 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1990 {
1991 skb->tail = skb->data + offset;
1992 }
1993
1994 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1995
1996 /*
1997 * Add data to an sk_buff
1998 */
1999 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2000 void *skb_put(struct sk_buff *skb, unsigned int len);
2001 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2002 {
2003 void *tmp = skb_tail_pointer(skb);
2004 SKB_LINEAR_ASSERT(skb);
2005 skb->tail += len;
2006 skb->len += len;
2007 return tmp;
2008 }
2009
2010 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2011 {
2012 void *tmp = __skb_put(skb, len);
2013
2014 memset(tmp, 0, len);
2015 return tmp;
2016 }
2017
2018 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2019 unsigned int len)
2020 {
2021 void *tmp = __skb_put(skb, len);
2022
2023 memcpy(tmp, data, len);
2024 return tmp;
2025 }
2026
2027 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2028 {
2029 *(u8 *)__skb_put(skb, 1) = val;
2030 }
2031
2032 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2033 {
2034 void *tmp = skb_put(skb, len);
2035
2036 memset(tmp, 0, len);
2037
2038 return tmp;
2039 }
2040
2041 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2042 unsigned int len)
2043 {
2044 void *tmp = skb_put(skb, len);
2045
2046 memcpy(tmp, data, len);
2047
2048 return tmp;
2049 }
2050
2051 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2052 {
2053 *(u8 *)skb_put(skb, 1) = val;
2054 }
2055
2056 void *skb_push(struct sk_buff *skb, unsigned int len);
2057 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2058 {
2059 skb->data -= len;
2060 skb->len += len;
2061 return skb->data;
2062 }
2063
2064 void *skb_pull(struct sk_buff *skb, unsigned int len);
2065 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2066 {
2067 skb->len -= len;
2068 BUG_ON(skb->len < skb->data_len);
2069 return skb->data += len;
2070 }
2071
2072 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2073 {
2074 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2075 }
2076
2077 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2078
2079 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2080 {
2081 if (len > skb_headlen(skb) &&
2082 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2083 return NULL;
2084 skb->len -= len;
2085 return skb->data += len;
2086 }
2087
2088 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2089 {
2090 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2091 }
2092
2093 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2094 {
2095 if (likely(len <= skb_headlen(skb)))
2096 return 1;
2097 if (unlikely(len > skb->len))
2098 return 0;
2099 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2100 }
2101
2102 void skb_condense(struct sk_buff *skb);
2103
2104 /**
2105 * skb_headroom - bytes at buffer head
2106 * @skb: buffer to check
2107 *
2108 * Return the number of bytes of free space at the head of an &sk_buff.
2109 */
2110 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2111 {
2112 return skb->data - skb->head;
2113 }
2114
2115 /**
2116 * skb_tailroom - bytes at buffer end
2117 * @skb: buffer to check
2118 *
2119 * Return the number of bytes of free space at the tail of an sk_buff
2120 */
2121 static inline int skb_tailroom(const struct sk_buff *skb)
2122 {
2123 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2124 }
2125
2126 /**
2127 * skb_availroom - bytes at buffer end
2128 * @skb: buffer to check
2129 *
2130 * Return the number of bytes of free space at the tail of an sk_buff
2131 * allocated by sk_stream_alloc()
2132 */
2133 static inline int skb_availroom(const struct sk_buff *skb)
2134 {
2135 if (skb_is_nonlinear(skb))
2136 return 0;
2137
2138 return skb->end - skb->tail - skb->reserved_tailroom;
2139 }
2140
2141 /**
2142 * skb_reserve - adjust headroom
2143 * @skb: buffer to alter
2144 * @len: bytes to move
2145 *
2146 * Increase the headroom of an empty &sk_buff by reducing the tail
2147 * room. This is only allowed for an empty buffer.
2148 */
2149 static inline void skb_reserve(struct sk_buff *skb, int len)
2150 {
2151 skb->data += len;
2152 skb->tail += len;
2153 }
2154
2155 /**
2156 * skb_tailroom_reserve - adjust reserved_tailroom
2157 * @skb: buffer to alter
2158 * @mtu: maximum amount of headlen permitted
2159 * @needed_tailroom: minimum amount of reserved_tailroom
2160 *
2161 * Set reserved_tailroom so that headlen can be as large as possible but
2162 * not larger than mtu and tailroom cannot be smaller than
2163 * needed_tailroom.
2164 * The required headroom should already have been reserved before using
2165 * this function.
2166 */
2167 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2168 unsigned int needed_tailroom)
2169 {
2170 SKB_LINEAR_ASSERT(skb);
2171 if (mtu < skb_tailroom(skb) - needed_tailroom)
2172 /* use at most mtu */
2173 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2174 else
2175 /* use up to all available space */
2176 skb->reserved_tailroom = needed_tailroom;
2177 }
2178
2179 #define ENCAP_TYPE_ETHER 0
2180 #define ENCAP_TYPE_IPPROTO 1
2181
2182 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2183 __be16 protocol)
2184 {
2185 skb->inner_protocol = protocol;
2186 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2187 }
2188
2189 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2190 __u8 ipproto)
2191 {
2192 skb->inner_ipproto = ipproto;
2193 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2194 }
2195
2196 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2197 {
2198 skb->inner_mac_header = skb->mac_header;
2199 skb->inner_network_header = skb->network_header;
2200 skb->inner_transport_header = skb->transport_header;
2201 }
2202
2203 static inline void skb_reset_mac_len(struct sk_buff *skb)
2204 {
2205 skb->mac_len = skb->network_header - skb->mac_header;
2206 }
2207
2208 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2209 *skb)
2210 {
2211 return skb->head + skb->inner_transport_header;
2212 }
2213
2214 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2215 {
2216 return skb_inner_transport_header(skb) - skb->data;
2217 }
2218
2219 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2220 {
2221 skb->inner_transport_header = skb->data - skb->head;
2222 }
2223
2224 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2225 const int offset)
2226 {
2227 skb_reset_inner_transport_header(skb);
2228 skb->inner_transport_header += offset;
2229 }
2230
2231 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2232 {
2233 return skb->head + skb->inner_network_header;
2234 }
2235
2236 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2237 {
2238 skb->inner_network_header = skb->data - skb->head;
2239 }
2240
2241 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2242 const int offset)
2243 {
2244 skb_reset_inner_network_header(skb);
2245 skb->inner_network_header += offset;
2246 }
2247
2248 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2249 {
2250 return skb->head + skb->inner_mac_header;
2251 }
2252
2253 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2254 {
2255 skb->inner_mac_header = skb->data - skb->head;
2256 }
2257
2258 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2259 const int offset)
2260 {
2261 skb_reset_inner_mac_header(skb);
2262 skb->inner_mac_header += offset;
2263 }
2264 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2265 {
2266 return skb->transport_header != (typeof(skb->transport_header))~0U;
2267 }
2268
2269 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2270 {
2271 return skb->head + skb->transport_header;
2272 }
2273
2274 static inline void skb_reset_transport_header(struct sk_buff *skb)
2275 {
2276 skb->transport_header = skb->data - skb->head;
2277 }
2278
2279 static inline void skb_set_transport_header(struct sk_buff *skb,
2280 const int offset)
2281 {
2282 skb_reset_transport_header(skb);
2283 skb->transport_header += offset;
2284 }
2285
2286 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2287 {
2288 return skb->head + skb->network_header;
2289 }
2290
2291 static inline void skb_reset_network_header(struct sk_buff *skb)
2292 {
2293 skb->network_header = skb->data - skb->head;
2294 }
2295
2296 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2297 {
2298 skb_reset_network_header(skb);
2299 skb->network_header += offset;
2300 }
2301
2302 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2303 {
2304 return skb->head + skb->mac_header;
2305 }
2306
2307 static inline int skb_mac_offset(const struct sk_buff *skb)
2308 {
2309 return skb_mac_header(skb) - skb->data;
2310 }
2311
2312 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2313 {
2314 return skb->network_header - skb->mac_header;
2315 }
2316
2317 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2318 {
2319 return skb->mac_header != (typeof(skb->mac_header))~0U;
2320 }
2321
2322 static inline void skb_reset_mac_header(struct sk_buff *skb)
2323 {
2324 skb->mac_header = skb->data - skb->head;
2325 }
2326
2327 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2328 {
2329 skb_reset_mac_header(skb);
2330 skb->mac_header += offset;
2331 }
2332
2333 static inline void skb_pop_mac_header(struct sk_buff *skb)
2334 {
2335 skb->mac_header = skb->network_header;
2336 }
2337
2338 static inline void skb_probe_transport_header(struct sk_buff *skb,
2339 const int offset_hint)
2340 {
2341 struct flow_keys keys;
2342
2343 if (skb_transport_header_was_set(skb))
2344 return;
2345 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2346 skb_set_transport_header(skb, keys.control.thoff);
2347 else
2348 skb_set_transport_header(skb, offset_hint);
2349 }
2350
2351 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2352 {
2353 if (skb_mac_header_was_set(skb)) {
2354 const unsigned char *old_mac = skb_mac_header(skb);
2355
2356 skb_set_mac_header(skb, -skb->mac_len);
2357 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2358 }
2359 }
2360
2361 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2362 {
2363 return skb->csum_start - skb_headroom(skb);
2364 }
2365
2366 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2367 {
2368 return skb->head + skb->csum_start;
2369 }
2370
2371 static inline int skb_transport_offset(const struct sk_buff *skb)
2372 {
2373 return skb_transport_header(skb) - skb->data;
2374 }
2375
2376 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2377 {
2378 return skb->transport_header - skb->network_header;
2379 }
2380
2381 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2382 {
2383 return skb->inner_transport_header - skb->inner_network_header;
2384 }
2385
2386 static inline int skb_network_offset(const struct sk_buff *skb)
2387 {
2388 return skb_network_header(skb) - skb->data;
2389 }
2390
2391 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2392 {
2393 return skb_inner_network_header(skb) - skb->data;
2394 }
2395
2396 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2397 {
2398 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2399 }
2400
2401 /*
2402 * CPUs often take a performance hit when accessing unaligned memory
2403 * locations. The actual performance hit varies, it can be small if the
2404 * hardware handles it or large if we have to take an exception and fix it
2405 * in software.
2406 *
2407 * Since an ethernet header is 14 bytes network drivers often end up with
2408 * the IP header at an unaligned offset. The IP header can be aligned by
2409 * shifting the start of the packet by 2 bytes. Drivers should do this
2410 * with:
2411 *
2412 * skb_reserve(skb, NET_IP_ALIGN);
2413 *
2414 * The downside to this alignment of the IP header is that the DMA is now
2415 * unaligned. On some architectures the cost of an unaligned DMA is high
2416 * and this cost outweighs the gains made by aligning the IP header.
2417 *
2418 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2419 * to be overridden.
2420 */
2421 #ifndef NET_IP_ALIGN
2422 #define NET_IP_ALIGN 2
2423 #endif
2424
2425 /*
2426 * The networking layer reserves some headroom in skb data (via
2427 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2428 * the header has to grow. In the default case, if the header has to grow
2429 * 32 bytes or less we avoid the reallocation.
2430 *
2431 * Unfortunately this headroom changes the DMA alignment of the resulting
2432 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2433 * on some architectures. An architecture can override this value,
2434 * perhaps setting it to a cacheline in size (since that will maintain
2435 * cacheline alignment of the DMA). It must be a power of 2.
2436 *
2437 * Various parts of the networking layer expect at least 32 bytes of
2438 * headroom, you should not reduce this.
2439 *
2440 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2441 * to reduce average number of cache lines per packet.
2442 * get_rps_cpus() for example only access one 64 bytes aligned block :
2443 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2444 */
2445 #ifndef NET_SKB_PAD
2446 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2447 #endif
2448
2449 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2450
2451 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2452 {
2453 if (unlikely(skb_is_nonlinear(skb))) {
2454 WARN_ON(1);
2455 return;
2456 }
2457 skb->len = len;
2458 skb_set_tail_pointer(skb, len);
2459 }
2460
2461 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2462 {
2463 __skb_set_length(skb, len);
2464 }
2465
2466 void skb_trim(struct sk_buff *skb, unsigned int len);
2467
2468 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2469 {
2470 if (skb->data_len)
2471 return ___pskb_trim(skb, len);
2472 __skb_trim(skb, len);
2473 return 0;
2474 }
2475
2476 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2477 {
2478 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2479 }
2480
2481 /**
2482 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2483 * @skb: buffer to alter
2484 * @len: new length
2485 *
2486 * This is identical to pskb_trim except that the caller knows that
2487 * the skb is not cloned so we should never get an error due to out-
2488 * of-memory.
2489 */
2490 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2491 {
2492 int err = pskb_trim(skb, len);
2493 BUG_ON(err);
2494 }
2495
2496 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2497 {
2498 unsigned int diff = len - skb->len;
2499
2500 if (skb_tailroom(skb) < diff) {
2501 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2502 GFP_ATOMIC);
2503 if (ret)
2504 return ret;
2505 }
2506 __skb_set_length(skb, len);
2507 return 0;
2508 }
2509
2510 /**
2511 * skb_orphan - orphan a buffer
2512 * @skb: buffer to orphan
2513 *
2514 * If a buffer currently has an owner then we call the owner's
2515 * destructor function and make the @skb unowned. The buffer continues
2516 * to exist but is no longer charged to its former owner.
2517 */
2518 static inline void skb_orphan(struct sk_buff *skb)
2519 {
2520 if (skb->destructor) {
2521 skb->destructor(skb);
2522 skb->destructor = NULL;
2523 skb->sk = NULL;
2524 } else {
2525 BUG_ON(skb->sk);
2526 }
2527 }
2528
2529 /**
2530 * skb_orphan_frags - orphan the frags contained in a buffer
2531 * @skb: buffer to orphan frags from
2532 * @gfp_mask: allocation mask for replacement pages
2533 *
2534 * For each frag in the SKB which needs a destructor (i.e. has an
2535 * owner) create a copy of that frag and release the original
2536 * page by calling the destructor.
2537 */
2538 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2539 {
2540 if (likely(!skb_zcopy(skb)))
2541 return 0;
2542 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2543 return 0;
2544 return skb_copy_ubufs(skb, gfp_mask);
2545 }
2546
2547 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2548 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2549 {
2550 if (likely(!skb_zcopy(skb)))
2551 return 0;
2552 return skb_copy_ubufs(skb, gfp_mask);
2553 }
2554
2555 /**
2556 * __skb_queue_purge - empty a list
2557 * @list: list to empty
2558 *
2559 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2560 * the list and one reference dropped. This function does not take the
2561 * list lock and the caller must hold the relevant locks to use it.
2562 */
2563 void skb_queue_purge(struct sk_buff_head *list);
2564 static inline void __skb_queue_purge(struct sk_buff_head *list)
2565 {
2566 struct sk_buff *skb;
2567 while ((skb = __skb_dequeue(list)) != NULL)
2568 kfree_skb(skb);
2569 }
2570
2571 void skb_rbtree_purge(struct rb_root *root);
2572
2573 void *netdev_alloc_frag(unsigned int fragsz);
2574
2575 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2576 gfp_t gfp_mask);
2577
2578 /**
2579 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2580 * @dev: network device to receive on
2581 * @length: length to allocate
2582 *
2583 * Allocate a new &sk_buff and assign it a usage count of one. The
2584 * buffer has unspecified headroom built in. Users should allocate
2585 * the headroom they think they need without accounting for the
2586 * built in space. The built in space is used for optimisations.
2587 *
2588 * %NULL is returned if there is no free memory. Although this function
2589 * allocates memory it can be called from an interrupt.
2590 */
2591 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2592 unsigned int length)
2593 {
2594 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2595 }
2596
2597 /* legacy helper around __netdev_alloc_skb() */
2598 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2599 gfp_t gfp_mask)
2600 {
2601 return __netdev_alloc_skb(NULL, length, gfp_mask);
2602 }
2603
2604 /* legacy helper around netdev_alloc_skb() */
2605 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2606 {
2607 return netdev_alloc_skb(NULL, length);
2608 }
2609
2610
2611 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2612 unsigned int length, gfp_t gfp)
2613 {
2614 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2615
2616 if (NET_IP_ALIGN && skb)
2617 skb_reserve(skb, NET_IP_ALIGN);
2618 return skb;
2619 }
2620
2621 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2622 unsigned int length)
2623 {
2624 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2625 }
2626
2627 static inline void skb_free_frag(void *addr)
2628 {
2629 page_frag_free(addr);
2630 }
2631
2632 void *napi_alloc_frag(unsigned int fragsz);
2633 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2634 unsigned int length, gfp_t gfp_mask);
2635 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2636 unsigned int length)
2637 {
2638 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2639 }
2640 void napi_consume_skb(struct sk_buff *skb, int budget);
2641
2642 void __kfree_skb_flush(void);
2643 void __kfree_skb_defer(struct sk_buff *skb);
2644
2645 /**
2646 * __dev_alloc_pages - allocate page for network Rx
2647 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2648 * @order: size of the allocation
2649 *
2650 * Allocate a new page.
2651 *
2652 * %NULL is returned if there is no free memory.
2653 */
2654 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2655 unsigned int order)
2656 {
2657 /* This piece of code contains several assumptions.
2658 * 1. This is for device Rx, therefor a cold page is preferred.
2659 * 2. The expectation is the user wants a compound page.
2660 * 3. If requesting a order 0 page it will not be compound
2661 * due to the check to see if order has a value in prep_new_page
2662 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2663 * code in gfp_to_alloc_flags that should be enforcing this.
2664 */
2665 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2666
2667 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2668 }
2669
2670 static inline struct page *dev_alloc_pages(unsigned int order)
2671 {
2672 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2673 }
2674
2675 /**
2676 * __dev_alloc_page - allocate a page for network Rx
2677 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2678 *
2679 * Allocate a new page.
2680 *
2681 * %NULL is returned if there is no free memory.
2682 */
2683 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2684 {
2685 return __dev_alloc_pages(gfp_mask, 0);
2686 }
2687
2688 static inline struct page *dev_alloc_page(void)
2689 {
2690 return dev_alloc_pages(0);
2691 }
2692
2693 /**
2694 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2695 * @page: The page that was allocated from skb_alloc_page
2696 * @skb: The skb that may need pfmemalloc set
2697 */
2698 static inline void skb_propagate_pfmemalloc(struct page *page,
2699 struct sk_buff *skb)
2700 {
2701 if (page_is_pfmemalloc(page))
2702 skb->pfmemalloc = true;
2703 }
2704
2705 /**
2706 * skb_frag_page - retrieve the page referred to by a paged fragment
2707 * @frag: the paged fragment
2708 *
2709 * Returns the &struct page associated with @frag.
2710 */
2711 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2712 {
2713 return frag->page.p;
2714 }
2715
2716 /**
2717 * __skb_frag_ref - take an addition reference on a paged fragment.
2718 * @frag: the paged fragment
2719 *
2720 * Takes an additional reference on the paged fragment @frag.
2721 */
2722 static inline void __skb_frag_ref(skb_frag_t *frag)
2723 {
2724 get_page(skb_frag_page(frag));
2725 }
2726
2727 /**
2728 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2729 * @skb: the buffer
2730 * @f: the fragment offset.
2731 *
2732 * Takes an additional reference on the @f'th paged fragment of @skb.
2733 */
2734 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2735 {
2736 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2737 }
2738
2739 /**
2740 * __skb_frag_unref - release a reference on a paged fragment.
2741 * @frag: the paged fragment
2742 *
2743 * Releases a reference on the paged fragment @frag.
2744 */
2745 static inline void __skb_frag_unref(skb_frag_t *frag)
2746 {
2747 put_page(skb_frag_page(frag));
2748 }
2749
2750 /**
2751 * skb_frag_unref - release a reference on a paged fragment of an skb.
2752 * @skb: the buffer
2753 * @f: the fragment offset
2754 *
2755 * Releases a reference on the @f'th paged fragment of @skb.
2756 */
2757 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2758 {
2759 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2760 }
2761
2762 /**
2763 * skb_frag_address - gets the address of the data contained in a paged fragment
2764 * @frag: the paged fragment buffer
2765 *
2766 * Returns the address of the data within @frag. The page must already
2767 * be mapped.
2768 */
2769 static inline void *skb_frag_address(const skb_frag_t *frag)
2770 {
2771 return page_address(skb_frag_page(frag)) + frag->page_offset;
2772 }
2773
2774 /**
2775 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2776 * @frag: the paged fragment buffer
2777 *
2778 * Returns the address of the data within @frag. Checks that the page
2779 * is mapped and returns %NULL otherwise.
2780 */
2781 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2782 {
2783 void *ptr = page_address(skb_frag_page(frag));
2784 if (unlikely(!ptr))
2785 return NULL;
2786
2787 return ptr + frag->page_offset;
2788 }
2789
2790 /**
2791 * __skb_frag_set_page - sets the page contained in a paged fragment
2792 * @frag: the paged fragment
2793 * @page: the page to set
2794 *
2795 * Sets the fragment @frag to contain @page.
2796 */
2797 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2798 {
2799 frag->page.p = page;
2800 }
2801
2802 /**
2803 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2804 * @skb: the buffer
2805 * @f: the fragment offset
2806 * @page: the page to set
2807 *
2808 * Sets the @f'th fragment of @skb to contain @page.
2809 */
2810 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2811 struct page *page)
2812 {
2813 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2814 }
2815
2816 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2817
2818 /**
2819 * skb_frag_dma_map - maps a paged fragment via the DMA API
2820 * @dev: the device to map the fragment to
2821 * @frag: the paged fragment to map
2822 * @offset: the offset within the fragment (starting at the
2823 * fragment's own offset)
2824 * @size: the number of bytes to map
2825 * @dir: the direction of the mapping (``PCI_DMA_*``)
2826 *
2827 * Maps the page associated with @frag to @device.
2828 */
2829 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2830 const skb_frag_t *frag,
2831 size_t offset, size_t size,
2832 enum dma_data_direction dir)
2833 {
2834 return dma_map_page(dev, skb_frag_page(frag),
2835 frag->page_offset + offset, size, dir);
2836 }
2837
2838 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2839 gfp_t gfp_mask)
2840 {
2841 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2842 }
2843
2844
2845 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2846 gfp_t gfp_mask)
2847 {
2848 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2849 }
2850
2851
2852 /**
2853 * skb_clone_writable - is the header of a clone writable
2854 * @skb: buffer to check
2855 * @len: length up to which to write
2856 *
2857 * Returns true if modifying the header part of the cloned buffer
2858 * does not requires the data to be copied.
2859 */
2860 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2861 {
2862 return !skb_header_cloned(skb) &&
2863 skb_headroom(skb) + len <= skb->hdr_len;
2864 }
2865
2866 static inline int skb_try_make_writable(struct sk_buff *skb,
2867 unsigned int write_len)
2868 {
2869 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2870 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2871 }
2872
2873 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2874 int cloned)
2875 {
2876 int delta = 0;
2877
2878 if (headroom > skb_headroom(skb))
2879 delta = headroom - skb_headroom(skb);
2880
2881 if (delta || cloned)
2882 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2883 GFP_ATOMIC);
2884 return 0;
2885 }
2886
2887 /**
2888 * skb_cow - copy header of skb when it is required
2889 * @skb: buffer to cow
2890 * @headroom: needed headroom
2891 *
2892 * If the skb passed lacks sufficient headroom or its data part
2893 * is shared, data is reallocated. If reallocation fails, an error
2894 * is returned and original skb is not changed.
2895 *
2896 * The result is skb with writable area skb->head...skb->tail
2897 * and at least @headroom of space at head.
2898 */
2899 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2900 {
2901 return __skb_cow(skb, headroom, skb_cloned(skb));
2902 }
2903
2904 /**
2905 * skb_cow_head - skb_cow but only making the head writable
2906 * @skb: buffer to cow
2907 * @headroom: needed headroom
2908 *
2909 * This function is identical to skb_cow except that we replace the
2910 * skb_cloned check by skb_header_cloned. It should be used when
2911 * you only need to push on some header and do not need to modify
2912 * the data.
2913 */
2914 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2915 {
2916 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2917 }
2918
2919 /**
2920 * skb_padto - pad an skbuff up to a minimal size
2921 * @skb: buffer to pad
2922 * @len: minimal length
2923 *
2924 * Pads up a buffer to ensure the trailing bytes exist and are
2925 * blanked. If the buffer already contains sufficient data it
2926 * is untouched. Otherwise it is extended. Returns zero on
2927 * success. The skb is freed on error.
2928 */
2929 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2930 {
2931 unsigned int size = skb->len;
2932 if (likely(size >= len))
2933 return 0;
2934 return skb_pad(skb, len - size);
2935 }
2936
2937 /**
2938 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2939 * @skb: buffer to pad
2940 * @len: minimal length
2941 * @free_on_error: free buffer on error
2942 *
2943 * Pads up a buffer to ensure the trailing bytes exist and are
2944 * blanked. If the buffer already contains sufficient data it
2945 * is untouched. Otherwise it is extended. Returns zero on
2946 * success. The skb is freed on error if @free_on_error is true.
2947 */
2948 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2949 bool free_on_error)
2950 {
2951 unsigned int size = skb->len;
2952
2953 if (unlikely(size < len)) {
2954 len -= size;
2955 if (__skb_pad(skb, len, free_on_error))
2956 return -ENOMEM;
2957 __skb_put(skb, len);
2958 }
2959 return 0;
2960 }
2961
2962 /**
2963 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2964 * @skb: buffer to pad
2965 * @len: minimal length
2966 *
2967 * Pads up a buffer to ensure the trailing bytes exist and are
2968 * blanked. If the buffer already contains sufficient data it
2969 * is untouched. Otherwise it is extended. Returns zero on
2970 * success. The skb is freed on error.
2971 */
2972 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2973 {
2974 return __skb_put_padto(skb, len, true);
2975 }
2976
2977 static inline int skb_add_data(struct sk_buff *skb,
2978 struct iov_iter *from, int copy)
2979 {
2980 const int off = skb->len;
2981
2982 if (skb->ip_summed == CHECKSUM_NONE) {
2983 __wsum csum = 0;
2984 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2985 &csum, from)) {
2986 skb->csum = csum_block_add(skb->csum, csum, off);
2987 return 0;
2988 }
2989 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2990 return 0;
2991
2992 __skb_trim(skb, off);
2993 return -EFAULT;
2994 }
2995
2996 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2997 const struct page *page, int off)
2998 {
2999 if (skb_zcopy(skb))
3000 return false;
3001 if (i) {
3002 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3003
3004 return page == skb_frag_page(frag) &&
3005 off == frag->page_offset + skb_frag_size(frag);
3006 }
3007 return false;
3008 }
3009
3010 static inline int __skb_linearize(struct sk_buff *skb)
3011 {
3012 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3013 }
3014
3015 /**
3016 * skb_linearize - convert paged skb to linear one
3017 * @skb: buffer to linarize
3018 *
3019 * If there is no free memory -ENOMEM is returned, otherwise zero
3020 * is returned and the old skb data released.
3021 */
3022 static inline int skb_linearize(struct sk_buff *skb)
3023 {
3024 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3025 }
3026
3027 /**
3028 * skb_has_shared_frag - can any frag be overwritten
3029 * @skb: buffer to test
3030 *
3031 * Return true if the skb has at least one frag that might be modified
3032 * by an external entity (as in vmsplice()/sendfile())
3033 */
3034 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3035 {
3036 return skb_is_nonlinear(skb) &&
3037 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3038 }
3039
3040 /**
3041 * skb_linearize_cow - make sure skb is linear and writable
3042 * @skb: buffer to process
3043 *
3044 * If there is no free memory -ENOMEM is returned, otherwise zero
3045 * is returned and the old skb data released.
3046 */
3047 static inline int skb_linearize_cow(struct sk_buff *skb)
3048 {
3049 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3050 __skb_linearize(skb) : 0;
3051 }
3052
3053 static __always_inline void
3054 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3055 unsigned int off)
3056 {
3057 if (skb->ip_summed == CHECKSUM_COMPLETE)
3058 skb->csum = csum_block_sub(skb->csum,
3059 csum_partial(start, len, 0), off);
3060 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3061 skb_checksum_start_offset(skb) < 0)
3062 skb->ip_summed = CHECKSUM_NONE;
3063 }
3064
3065 /**
3066 * skb_postpull_rcsum - update checksum for received skb after pull
3067 * @skb: buffer to update
3068 * @start: start of data before pull
3069 * @len: length of data pulled
3070 *
3071 * After doing a pull on a received packet, you need to call this to
3072 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3073 * CHECKSUM_NONE so that it can be recomputed from scratch.
3074 */
3075 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3076 const void *start, unsigned int len)
3077 {
3078 __skb_postpull_rcsum(skb, start, len, 0);
3079 }
3080
3081 static __always_inline void
3082 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3083 unsigned int off)
3084 {
3085 if (skb->ip_summed == CHECKSUM_COMPLETE)
3086 skb->csum = csum_block_add(skb->csum,
3087 csum_partial(start, len, 0), off);
3088 }
3089
3090 /**
3091 * skb_postpush_rcsum - update checksum for received skb after push
3092 * @skb: buffer to update
3093 * @start: start of data after push
3094 * @len: length of data pushed
3095 *
3096 * After doing a push on a received packet, you need to call this to
3097 * update the CHECKSUM_COMPLETE checksum.
3098 */
3099 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3100 const void *start, unsigned int len)
3101 {
3102 __skb_postpush_rcsum(skb, start, len, 0);
3103 }
3104
3105 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3106
3107 /**
3108 * skb_push_rcsum - push skb and update receive checksum
3109 * @skb: buffer to update
3110 * @len: length of data pulled
3111 *
3112 * This function performs an skb_push on the packet and updates
3113 * the CHECKSUM_COMPLETE checksum. It should be used on
3114 * receive path processing instead of skb_push unless you know
3115 * that the checksum difference is zero (e.g., a valid IP header)
3116 * or you are setting ip_summed to CHECKSUM_NONE.
3117 */
3118 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3119 {
3120 skb_push(skb, len);
3121 skb_postpush_rcsum(skb, skb->data, len);
3122 return skb->data;
3123 }
3124
3125 /**
3126 * pskb_trim_rcsum - trim received skb and update checksum
3127 * @skb: buffer to trim
3128 * @len: new length
3129 *
3130 * This is exactly the same as pskb_trim except that it ensures the
3131 * checksum of received packets are still valid after the operation.
3132 */
3133
3134 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3135 {
3136 if (likely(len >= skb->len))
3137 return 0;
3138 if (skb->ip_summed == CHECKSUM_COMPLETE)
3139 skb->ip_summed = CHECKSUM_NONE;
3140 return __pskb_trim(skb, len);
3141 }
3142
3143 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3144 {
3145 if (skb->ip_summed == CHECKSUM_COMPLETE)
3146 skb->ip_summed = CHECKSUM_NONE;
3147 __skb_trim(skb, len);
3148 return 0;
3149 }
3150
3151 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3152 {
3153 if (skb->ip_summed == CHECKSUM_COMPLETE)
3154 skb->ip_summed = CHECKSUM_NONE;
3155 return __skb_grow(skb, len);
3156 }
3157
3158 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3159 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3160 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3161 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3162 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3163
3164 #define skb_queue_walk(queue, skb) \
3165 for (skb = (queue)->next; \
3166 skb != (struct sk_buff *)(queue); \
3167 skb = skb->next)
3168
3169 #define skb_queue_walk_safe(queue, skb, tmp) \
3170 for (skb = (queue)->next, tmp = skb->next; \
3171 skb != (struct sk_buff *)(queue); \
3172 skb = tmp, tmp = skb->next)
3173
3174 #define skb_queue_walk_from(queue, skb) \
3175 for (; skb != (struct sk_buff *)(queue); \
3176 skb = skb->next)
3177
3178 #define skb_rbtree_walk(skb, root) \
3179 for (skb = skb_rb_first(root); skb != NULL; \
3180 skb = skb_rb_next(skb))
3181
3182 #define skb_rbtree_walk_from(skb) \
3183 for (; skb != NULL; \
3184 skb = skb_rb_next(skb))
3185
3186 #define skb_rbtree_walk_from_safe(skb, tmp) \
3187 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3188 skb = tmp)
3189
3190 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3191 for (tmp = skb->next; \
3192 skb != (struct sk_buff *)(queue); \
3193 skb = tmp, tmp = skb->next)
3194
3195 #define skb_queue_reverse_walk(queue, skb) \
3196 for (skb = (queue)->prev; \
3197 skb != (struct sk_buff *)(queue); \
3198 skb = skb->prev)
3199
3200 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3201 for (skb = (queue)->prev, tmp = skb->prev; \
3202 skb != (struct sk_buff *)(queue); \
3203 skb = tmp, tmp = skb->prev)
3204
3205 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3206 for (tmp = skb->prev; \
3207 skb != (struct sk_buff *)(queue); \
3208 skb = tmp, tmp = skb->prev)
3209
3210 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3211 {
3212 return skb_shinfo(skb)->frag_list != NULL;
3213 }
3214
3215 static inline void skb_frag_list_init(struct sk_buff *skb)
3216 {
3217 skb_shinfo(skb)->frag_list = NULL;
3218 }
3219
3220 #define skb_walk_frags(skb, iter) \
3221 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3222
3223
3224 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3225 const struct sk_buff *skb);
3226 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3227 struct sk_buff_head *queue,
3228 unsigned int flags,
3229 void (*destructor)(struct sock *sk,
3230 struct sk_buff *skb),
3231 int *peeked, int *off, int *err,
3232 struct sk_buff **last);
3233 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3234 void (*destructor)(struct sock *sk,
3235 struct sk_buff *skb),
3236 int *peeked, int *off, int *err,
3237 struct sk_buff **last);
3238 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3239 void (*destructor)(struct sock *sk,
3240 struct sk_buff *skb),
3241 int *peeked, int *off, int *err);
3242 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3243 int *err);
3244 unsigned int datagram_poll(struct file *file, struct socket *sock,
3245 struct poll_table_struct *wait);
3246 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3247 struct iov_iter *to, int size);
3248 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3249 struct msghdr *msg, int size)
3250 {
3251 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3252 }
3253 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3254 struct msghdr *msg);
3255 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3256 struct iov_iter *from, int len);
3257 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3258 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3259 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3260 static inline void skb_free_datagram_locked(struct sock *sk,
3261 struct sk_buff *skb)
3262 {
3263 __skb_free_datagram_locked(sk, skb, 0);
3264 }
3265 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3266 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3267 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3268 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3269 int len, __wsum csum);
3270 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3271 struct pipe_inode_info *pipe, unsigned int len,
3272 unsigned int flags);
3273 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3274 int len);
3275 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3276 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3277 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3278 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3279 int len, int hlen);
3280 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3281 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3282 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3283 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3284 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3285 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3286 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3287 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3288 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3289 int skb_vlan_pop(struct sk_buff *skb);
3290 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3291 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3292 gfp_t gfp);
3293
3294 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3295 {
3296 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3297 }
3298
3299 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3300 {
3301 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3302 }
3303
3304 struct skb_checksum_ops {
3305 __wsum (*update)(const void *mem, int len, __wsum wsum);
3306 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3307 };
3308
3309 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3310
3311 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3312 __wsum csum, const struct skb_checksum_ops *ops);
3313 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3314 __wsum csum);
3315
3316 static inline void * __must_check
3317 __skb_header_pointer(const struct sk_buff *skb, int offset,
3318 int len, void *data, int hlen, void *buffer)
3319 {
3320 if (hlen - offset >= len)
3321 return data + offset;
3322
3323 if (!skb ||
3324 skb_copy_bits(skb, offset, buffer, len) < 0)
3325 return NULL;
3326
3327 return buffer;
3328 }
3329
3330 static inline void * __must_check
3331 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3332 {
3333 return __skb_header_pointer(skb, offset, len, skb->data,
3334 skb_headlen(skb), buffer);
3335 }
3336
3337 /**
3338 * skb_needs_linearize - check if we need to linearize a given skb
3339 * depending on the given device features.
3340 * @skb: socket buffer to check
3341 * @features: net device features
3342 *
3343 * Returns true if either:
3344 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3345 * 2. skb is fragmented and the device does not support SG.
3346 */
3347 static inline bool skb_needs_linearize(struct sk_buff *skb,
3348 netdev_features_t features)
3349 {
3350 return skb_is_nonlinear(skb) &&
3351 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3352 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3353 }
3354
3355 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3356 void *to,
3357 const unsigned int len)
3358 {
3359 memcpy(to, skb->data, len);
3360 }
3361
3362 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3363 const int offset, void *to,
3364 const unsigned int len)
3365 {
3366 memcpy(to, skb->data + offset, len);
3367 }
3368
3369 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3370 const void *from,
3371 const unsigned int len)
3372 {
3373 memcpy(skb->data, from, len);
3374 }
3375
3376 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3377 const int offset,
3378 const void *from,
3379 const unsigned int len)
3380 {
3381 memcpy(skb->data + offset, from, len);
3382 }
3383
3384 void skb_init(void);
3385
3386 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3387 {
3388 return skb->tstamp;
3389 }
3390
3391 /**
3392 * skb_get_timestamp - get timestamp from a skb
3393 * @skb: skb to get stamp from
3394 * @stamp: pointer to struct timeval to store stamp in
3395 *
3396 * Timestamps are stored in the skb as offsets to a base timestamp.
3397 * This function converts the offset back to a struct timeval and stores
3398 * it in stamp.
3399 */
3400 static inline void skb_get_timestamp(const struct sk_buff *skb,
3401 struct timeval *stamp)
3402 {
3403 *stamp = ktime_to_timeval(skb->tstamp);
3404 }
3405
3406 static inline void skb_get_timestampns(const struct sk_buff *skb,
3407 struct timespec *stamp)
3408 {
3409 *stamp = ktime_to_timespec(skb->tstamp);
3410 }
3411
3412 static inline void __net_timestamp(struct sk_buff *skb)
3413 {
3414 skb->tstamp = ktime_get_real();
3415 }
3416
3417 static inline ktime_t net_timedelta(ktime_t t)
3418 {
3419 return ktime_sub(ktime_get_real(), t);
3420 }
3421
3422 static inline ktime_t net_invalid_timestamp(void)
3423 {
3424 return 0;
3425 }
3426
3427 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3428 {
3429 return skb_shinfo(skb)->meta_len;
3430 }
3431
3432 static inline void *skb_metadata_end(const struct sk_buff *skb)
3433 {
3434 return skb_mac_header(skb);
3435 }
3436
3437 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3438 const struct sk_buff *skb_b,
3439 u8 meta_len)
3440 {
3441 const void *a = skb_metadata_end(skb_a);
3442 const void *b = skb_metadata_end(skb_b);
3443 /* Using more efficient varaiant than plain call to memcmp(). */
3444 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3445 u64 diffs = 0;
3446
3447 switch (meta_len) {
3448 #define __it(x, op) (x -= sizeof(u##op))
3449 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3450 case 32: diffs |= __it_diff(a, b, 64);
3451 case 24: diffs |= __it_diff(a, b, 64);
3452 case 16: diffs |= __it_diff(a, b, 64);
3453 case 8: diffs |= __it_diff(a, b, 64);
3454 break;
3455 case 28: diffs |= __it_diff(a, b, 64);
3456 case 20: diffs |= __it_diff(a, b, 64);
3457 case 12: diffs |= __it_diff(a, b, 64);
3458 case 4: diffs |= __it_diff(a, b, 32);
3459 break;
3460 }
3461 return diffs;
3462 #else
3463 return memcmp(a - meta_len, b - meta_len, meta_len);
3464 #endif
3465 }
3466
3467 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3468 const struct sk_buff *skb_b)
3469 {
3470 u8 len_a = skb_metadata_len(skb_a);
3471 u8 len_b = skb_metadata_len(skb_b);
3472
3473 if (!(len_a | len_b))
3474 return false;
3475
3476 return len_a != len_b ?
3477 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3478 }
3479
3480 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3481 {
3482 skb_shinfo(skb)->meta_len = meta_len;
3483 }
3484
3485 static inline void skb_metadata_clear(struct sk_buff *skb)
3486 {
3487 skb_metadata_set(skb, 0);
3488 }
3489
3490 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3491
3492 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3493
3494 void skb_clone_tx_timestamp(struct sk_buff *skb);
3495 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3496
3497 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3498
3499 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3500 {
3501 }
3502
3503 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3504 {
3505 return false;
3506 }
3507
3508 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3509
3510 /**
3511 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3512 *
3513 * PHY drivers may accept clones of transmitted packets for
3514 * timestamping via their phy_driver.txtstamp method. These drivers
3515 * must call this function to return the skb back to the stack with a
3516 * timestamp.
3517 *
3518 * @skb: clone of the the original outgoing packet
3519 * @hwtstamps: hardware time stamps
3520 *
3521 */
3522 void skb_complete_tx_timestamp(struct sk_buff *skb,
3523 struct skb_shared_hwtstamps *hwtstamps);
3524
3525 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3526 struct skb_shared_hwtstamps *hwtstamps,
3527 struct sock *sk, int tstype);
3528
3529 /**
3530 * skb_tstamp_tx - queue clone of skb with send time stamps
3531 * @orig_skb: the original outgoing packet
3532 * @hwtstamps: hardware time stamps, may be NULL if not available
3533 *
3534 * If the skb has a socket associated, then this function clones the
3535 * skb (thus sharing the actual data and optional structures), stores
3536 * the optional hardware time stamping information (if non NULL) or
3537 * generates a software time stamp (otherwise), then queues the clone
3538 * to the error queue of the socket. Errors are silently ignored.
3539 */
3540 void skb_tstamp_tx(struct sk_buff *orig_skb,
3541 struct skb_shared_hwtstamps *hwtstamps);
3542
3543 /**
3544 * skb_tx_timestamp() - Driver hook for transmit timestamping
3545 *
3546 * Ethernet MAC Drivers should call this function in their hard_xmit()
3547 * function immediately before giving the sk_buff to the MAC hardware.
3548 *
3549 * Specifically, one should make absolutely sure that this function is
3550 * called before TX completion of this packet can trigger. Otherwise
3551 * the packet could potentially already be freed.
3552 *
3553 * @skb: A socket buffer.
3554 */
3555 static inline void skb_tx_timestamp(struct sk_buff *skb)
3556 {
3557 skb_clone_tx_timestamp(skb);
3558 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3559 skb_tstamp_tx(skb, NULL);
3560 }
3561
3562 /**
3563 * skb_complete_wifi_ack - deliver skb with wifi status
3564 *
3565 * @skb: the original outgoing packet
3566 * @acked: ack status
3567 *
3568 */
3569 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3570
3571 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3572 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3573
3574 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3575 {
3576 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3577 skb->csum_valid ||
3578 (skb->ip_summed == CHECKSUM_PARTIAL &&
3579 skb_checksum_start_offset(skb) >= 0));
3580 }
3581
3582 /**
3583 * skb_checksum_complete - Calculate checksum of an entire packet
3584 * @skb: packet to process
3585 *
3586 * This function calculates the checksum over the entire packet plus
3587 * the value of skb->csum. The latter can be used to supply the
3588 * checksum of a pseudo header as used by TCP/UDP. It returns the
3589 * checksum.
3590 *
3591 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3592 * this function can be used to verify that checksum on received
3593 * packets. In that case the function should return zero if the
3594 * checksum is correct. In particular, this function will return zero
3595 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3596 * hardware has already verified the correctness of the checksum.
3597 */
3598 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3599 {
3600 return skb_csum_unnecessary(skb) ?
3601 0 : __skb_checksum_complete(skb);
3602 }
3603
3604 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3605 {
3606 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3607 if (skb->csum_level == 0)
3608 skb->ip_summed = CHECKSUM_NONE;
3609 else
3610 skb->csum_level--;
3611 }
3612 }
3613
3614 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3615 {
3616 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3617 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3618 skb->csum_level++;
3619 } else if (skb->ip_summed == CHECKSUM_NONE) {
3620 skb->ip_summed = CHECKSUM_UNNECESSARY;
3621 skb->csum_level = 0;
3622 }
3623 }
3624
3625 /* Check if we need to perform checksum complete validation.
3626 *
3627 * Returns true if checksum complete is needed, false otherwise
3628 * (either checksum is unnecessary or zero checksum is allowed).
3629 */
3630 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3631 bool zero_okay,
3632 __sum16 check)
3633 {
3634 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3635 skb->csum_valid = 1;
3636 __skb_decr_checksum_unnecessary(skb);
3637 return false;
3638 }
3639
3640 return true;
3641 }
3642
3643 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3644 * in checksum_init.
3645 */
3646 #define CHECKSUM_BREAK 76
3647
3648 /* Unset checksum-complete
3649 *
3650 * Unset checksum complete can be done when packet is being modified
3651 * (uncompressed for instance) and checksum-complete value is
3652 * invalidated.
3653 */
3654 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3655 {
3656 if (skb->ip_summed == CHECKSUM_COMPLETE)
3657 skb->ip_summed = CHECKSUM_NONE;
3658 }
3659
3660 /* Validate (init) checksum based on checksum complete.
3661 *
3662 * Return values:
3663 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3664 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3665 * checksum is stored in skb->csum for use in __skb_checksum_complete
3666 * non-zero: value of invalid checksum
3667 *
3668 */
3669 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3670 bool complete,
3671 __wsum psum)
3672 {
3673 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3674 if (!csum_fold(csum_add(psum, skb->csum))) {
3675 skb->csum_valid = 1;
3676 return 0;
3677 }
3678 }
3679
3680 skb->csum = psum;
3681
3682 if (complete || skb->len <= CHECKSUM_BREAK) {
3683 __sum16 csum;
3684
3685 csum = __skb_checksum_complete(skb);
3686 skb->csum_valid = !csum;
3687 return csum;
3688 }
3689
3690 return 0;
3691 }
3692
3693 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3694 {
3695 return 0;
3696 }
3697
3698 /* Perform checksum validate (init). Note that this is a macro since we only
3699 * want to calculate the pseudo header which is an input function if necessary.
3700 * First we try to validate without any computation (checksum unnecessary) and
3701 * then calculate based on checksum complete calling the function to compute
3702 * pseudo header.
3703 *
3704 * Return values:
3705 * 0: checksum is validated or try to in skb_checksum_complete
3706 * non-zero: value of invalid checksum
3707 */
3708 #define __skb_checksum_validate(skb, proto, complete, \
3709 zero_okay, check, compute_pseudo) \
3710 ({ \
3711 __sum16 __ret = 0; \
3712 skb->csum_valid = 0; \
3713 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3714 __ret = __skb_checksum_validate_complete(skb, \
3715 complete, compute_pseudo(skb, proto)); \
3716 __ret; \
3717 })
3718
3719 #define skb_checksum_init(skb, proto, compute_pseudo) \
3720 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3721
3722 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3723 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3724
3725 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3726 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3727
3728 #define skb_checksum_validate_zero_check(skb, proto, check, \
3729 compute_pseudo) \
3730 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3731
3732 #define skb_checksum_simple_validate(skb) \
3733 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3734
3735 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3736 {
3737 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3738 }
3739
3740 static inline void __skb_checksum_convert(struct sk_buff *skb,
3741 __sum16 check, __wsum pseudo)
3742 {
3743 skb->csum = ~pseudo;
3744 skb->ip_summed = CHECKSUM_COMPLETE;
3745 }
3746
3747 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3748 do { \
3749 if (__skb_checksum_convert_check(skb)) \
3750 __skb_checksum_convert(skb, check, \
3751 compute_pseudo(skb, proto)); \
3752 } while (0)
3753
3754 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3755 u16 start, u16 offset)
3756 {
3757 skb->ip_summed = CHECKSUM_PARTIAL;
3758 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3759 skb->csum_offset = offset - start;
3760 }
3761
3762 /* Update skbuf and packet to reflect the remote checksum offload operation.
3763 * When called, ptr indicates the starting point for skb->csum when
3764 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3765 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3766 */
3767 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3768 int start, int offset, bool nopartial)
3769 {
3770 __wsum delta;
3771
3772 if (!nopartial) {
3773 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3774 return;
3775 }
3776
3777 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3778 __skb_checksum_complete(skb);
3779 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3780 }
3781
3782 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3783
3784 /* Adjust skb->csum since we changed the packet */
3785 skb->csum = csum_add(skb->csum, delta);
3786 }
3787
3788 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3789 {
3790 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3791 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3792 #else
3793 return NULL;
3794 #endif
3795 }
3796
3797 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3798 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3799 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3800 {
3801 if (nfct && atomic_dec_and_test(&nfct->use))
3802 nf_conntrack_destroy(nfct);
3803 }
3804 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3805 {
3806 if (nfct)
3807 atomic_inc(&nfct->use);
3808 }
3809 #endif
3810 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3811 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3812 {
3813 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3814 kfree(nf_bridge);
3815 }
3816 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3817 {
3818 if (nf_bridge)
3819 refcount_inc(&nf_bridge->use);
3820 }
3821 #endif /* CONFIG_BRIDGE_NETFILTER */
3822 static inline void nf_reset(struct sk_buff *skb)
3823 {
3824 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3825 nf_conntrack_put(skb_nfct(skb));
3826 skb->_nfct = 0;
3827 #endif
3828 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3829 nf_bridge_put(skb->nf_bridge);
3830 skb->nf_bridge = NULL;
3831 #endif
3832 }
3833
3834 static inline void nf_reset_trace(struct sk_buff *skb)
3835 {
3836 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3837 skb->nf_trace = 0;
3838 #endif
3839 }
3840
3841 static inline void ipvs_reset(struct sk_buff *skb)
3842 {
3843 #if IS_ENABLED(CONFIG_IP_VS)
3844 skb->ipvs_property = 0;
3845 #endif
3846 }
3847
3848 /* Note: This doesn't put any conntrack and bridge info in dst. */
3849 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3850 bool copy)
3851 {
3852 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3853 dst->_nfct = src->_nfct;
3854 nf_conntrack_get(skb_nfct(src));
3855 #endif
3856 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3857 dst->nf_bridge = src->nf_bridge;
3858 nf_bridge_get(src->nf_bridge);
3859 #endif
3860 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3861 if (copy)
3862 dst->nf_trace = src->nf_trace;
3863 #endif
3864 }
3865
3866 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3867 {
3868 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3869 nf_conntrack_put(skb_nfct(dst));
3870 #endif
3871 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3872 nf_bridge_put(dst->nf_bridge);
3873 #endif
3874 __nf_copy(dst, src, true);
3875 }
3876
3877 #ifdef CONFIG_NETWORK_SECMARK
3878 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3879 {
3880 to->secmark = from->secmark;
3881 }
3882
3883 static inline void skb_init_secmark(struct sk_buff *skb)
3884 {
3885 skb->secmark = 0;
3886 }
3887 #else
3888 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3889 { }
3890
3891 static inline void skb_init_secmark(struct sk_buff *skb)
3892 { }
3893 #endif
3894
3895 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3896 {
3897 return !skb->destructor &&
3898 #if IS_ENABLED(CONFIG_XFRM)
3899 !skb->sp &&
3900 #endif
3901 !skb_nfct(skb) &&
3902 !skb->_skb_refdst &&
3903 !skb_has_frag_list(skb);
3904 }
3905
3906 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3907 {
3908 skb->queue_mapping = queue_mapping;
3909 }
3910
3911 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3912 {
3913 return skb->queue_mapping;
3914 }
3915
3916 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3917 {
3918 to->queue_mapping = from->queue_mapping;
3919 }
3920
3921 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3922 {
3923 skb->queue_mapping = rx_queue + 1;
3924 }
3925
3926 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3927 {
3928 return skb->queue_mapping - 1;
3929 }
3930
3931 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3932 {
3933 return skb->queue_mapping != 0;
3934 }
3935
3936 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3937 {
3938 skb->dst_pending_confirm = val;
3939 }
3940
3941 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3942 {
3943 return skb->dst_pending_confirm != 0;
3944 }
3945
3946 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3947 {
3948 #ifdef CONFIG_XFRM
3949 return skb->sp;
3950 #else
3951 return NULL;
3952 #endif
3953 }
3954
3955 /* Keeps track of mac header offset relative to skb->head.
3956 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3957 * For non-tunnel skb it points to skb_mac_header() and for
3958 * tunnel skb it points to outer mac header.
3959 * Keeps track of level of encapsulation of network headers.
3960 */
3961 struct skb_gso_cb {
3962 union {
3963 int mac_offset;
3964 int data_offset;
3965 };
3966 int encap_level;
3967 __wsum csum;
3968 __u16 csum_start;
3969 };
3970 #define SKB_SGO_CB_OFFSET 32
3971 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3972
3973 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3974 {
3975 return (skb_mac_header(inner_skb) - inner_skb->head) -
3976 SKB_GSO_CB(inner_skb)->mac_offset;
3977 }
3978
3979 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3980 {
3981 int new_headroom, headroom;
3982 int ret;
3983
3984 headroom = skb_headroom(skb);
3985 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3986 if (ret)
3987 return ret;
3988
3989 new_headroom = skb_headroom(skb);
3990 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3991 return 0;
3992 }
3993
3994 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3995 {
3996 /* Do not update partial checksums if remote checksum is enabled. */
3997 if (skb->remcsum_offload)
3998 return;
3999
4000 SKB_GSO_CB(skb)->csum = res;
4001 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4002 }
4003
4004 /* Compute the checksum for a gso segment. First compute the checksum value
4005 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4006 * then add in skb->csum (checksum from csum_start to end of packet).
4007 * skb->csum and csum_start are then updated to reflect the checksum of the
4008 * resultant packet starting from the transport header-- the resultant checksum
4009 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4010 * header.
4011 */
4012 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4013 {
4014 unsigned char *csum_start = skb_transport_header(skb);
4015 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4016 __wsum partial = SKB_GSO_CB(skb)->csum;
4017
4018 SKB_GSO_CB(skb)->csum = res;
4019 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4020
4021 return csum_fold(csum_partial(csum_start, plen, partial));
4022 }
4023
4024 static inline bool skb_is_gso(const struct sk_buff *skb)
4025 {
4026 return skb_shinfo(skb)->gso_size;
4027 }
4028
4029 /* Note: Should be called only if skb_is_gso(skb) is true */
4030 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4031 {
4032 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4033 }
4034
4035 static inline void skb_gso_reset(struct sk_buff *skb)
4036 {
4037 skb_shinfo(skb)->gso_size = 0;
4038 skb_shinfo(skb)->gso_segs = 0;
4039 skb_shinfo(skb)->gso_type = 0;
4040 }
4041
4042 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4043
4044 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4045 {
4046 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4047 * wanted then gso_type will be set. */
4048 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4049
4050 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4051 unlikely(shinfo->gso_type == 0)) {
4052 __skb_warn_lro_forwarding(skb);
4053 return true;
4054 }
4055 return false;
4056 }
4057
4058 static inline void skb_forward_csum(struct sk_buff *skb)
4059 {
4060 /* Unfortunately we don't support this one. Any brave souls? */
4061 if (skb->ip_summed == CHECKSUM_COMPLETE)
4062 skb->ip_summed = CHECKSUM_NONE;
4063 }
4064
4065 /**
4066 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4067 * @skb: skb to check
4068 *
4069 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4070 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4071 * use this helper, to document places where we make this assertion.
4072 */
4073 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4074 {
4075 #ifdef DEBUG
4076 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4077 #endif
4078 }
4079
4080 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4081
4082 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4083 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4084 unsigned int transport_len,
4085 __sum16(*skb_chkf)(struct sk_buff *skb));
4086
4087 /**
4088 * skb_head_is_locked - Determine if the skb->head is locked down
4089 * @skb: skb to check
4090 *
4091 * The head on skbs build around a head frag can be removed if they are
4092 * not cloned. This function returns true if the skb head is locked down
4093 * due to either being allocated via kmalloc, or by being a clone with
4094 * multiple references to the head.
4095 */
4096 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4097 {
4098 return !skb->head_frag || skb_cloned(skb);
4099 }
4100
4101 /**
4102 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4103 *
4104 * @skb: GSO skb
4105 *
4106 * skb_gso_network_seglen is used to determine the real size of the
4107 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4108 *
4109 * The MAC/L2 header is not accounted for.
4110 */
4111 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4112 {
4113 unsigned int hdr_len = skb_transport_header(skb) -
4114 skb_network_header(skb);
4115 return hdr_len + skb_gso_transport_seglen(skb);
4116 }
4117
4118 /* Local Checksum Offload.
4119 * Compute outer checksum based on the assumption that the
4120 * inner checksum will be offloaded later.
4121 * See Documentation/networking/checksum-offloads.txt for
4122 * explanation of how this works.
4123 * Fill in outer checksum adjustment (e.g. with sum of outer
4124 * pseudo-header) before calling.
4125 * Also ensure that inner checksum is in linear data area.
4126 */
4127 static inline __wsum lco_csum(struct sk_buff *skb)
4128 {
4129 unsigned char *csum_start = skb_checksum_start(skb);
4130 unsigned char *l4_hdr = skb_transport_header(skb);
4131 __wsum partial;
4132
4133 /* Start with complement of inner checksum adjustment */
4134 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4135 skb->csum_offset));
4136
4137 /* Add in checksum of our headers (incl. outer checksum
4138 * adjustment filled in by caller) and return result.
4139 */
4140 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4141 }
4142
4143 #endif /* __KERNEL__ */
4144 #endif /* _LINUX_SKBUFF_H */