]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
netvm: propagate page->pfmemalloc to skb
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55
56 /* A. Checksumming of received packets by device.
57 *
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
60 *
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
66 *
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
72 *
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
79 *
80 * B. Checksumming on output.
81 *
82 * NONE: skb is checksummed by protocol or csum is not required.
83 *
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
87 *
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 *
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
104 *
105 * Any questions? No questions, good. --ANK
106 */
107
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
115 };
116 #endif
117
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 unsigned int mask;
122 struct net_device *physindev;
123 struct net_device *physoutdev;
124 unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
132
133 __u32 qlen;
134 spinlock_t lock;
135 };
136
137 struct sk_buff;
138
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
142 *
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
145 */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151
152 typedef struct skb_frag_struct skb_frag_t;
153
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
165 };
166
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 return frag->size;
170 }
171
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 frag->size = size;
175 }
176
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 frag->size += delta;
180 }
181
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 frag->size -= delta;
185 }
186
187 #define HAVE_HW_TIME_STAMP
188
189 /**
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
194 *
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
198 *
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
205 *
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
208 *
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211 */
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
215 };
216
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
221
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
224
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
227
228 /* device driver supports TX zero-copy buffers */
229 SKBTX_DEV_ZEROCOPY = 1 << 3,
230
231 /* generate wifi status information (where possible) */
232 SKBTX_WIFI_STATUS = 1 << 4,
233 };
234
235 /*
236 * The callback notifies userspace to release buffers when skb DMA is done in
237 * lower device, the skb last reference should be 0 when calling this.
238 * The ctx field is used to track device context.
239 * The desc field is used to track userspace buffer index.
240 */
241 struct ubuf_info {
242 void (*callback)(struct ubuf_info *);
243 void *ctx;
244 unsigned long desc;
245 };
246
247 /* This data is invariant across clones and lives at
248 * the end of the header data, ie. at skb->end.
249 */
250 struct skb_shared_info {
251 unsigned char nr_frags;
252 __u8 tx_flags;
253 unsigned short gso_size;
254 /* Warning: this field is not always filled in (UFO)! */
255 unsigned short gso_segs;
256 unsigned short gso_type;
257 struct sk_buff *frag_list;
258 struct skb_shared_hwtstamps hwtstamps;
259 __be32 ip6_frag_id;
260
261 /*
262 * Warning : all fields before dataref are cleared in __alloc_skb()
263 */
264 atomic_t dataref;
265
266 /* Intermediate layers must ensure that destructor_arg
267 * remains valid until skb destructor */
268 void * destructor_arg;
269
270 /* must be last field, see pskb_expand_head() */
271 skb_frag_t frags[MAX_SKB_FRAGS];
272 };
273
274 /* We divide dataref into two halves. The higher 16 bits hold references
275 * to the payload part of skb->data. The lower 16 bits hold references to
276 * the entire skb->data. A clone of a headerless skb holds the length of
277 * the header in skb->hdr_len.
278 *
279 * All users must obey the rule that the skb->data reference count must be
280 * greater than or equal to the payload reference count.
281 *
282 * Holding a reference to the payload part means that the user does not
283 * care about modifications to the header part of skb->data.
284 */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287
288
289 enum {
290 SKB_FCLONE_UNAVAILABLE,
291 SKB_FCLONE_ORIG,
292 SKB_FCLONE_CLONE,
293 };
294
295 enum {
296 SKB_GSO_TCPV4 = 1 << 0,
297 SKB_GSO_UDP = 1 << 1,
298
299 /* This indicates the skb is from an untrusted source. */
300 SKB_GSO_DODGY = 1 << 2,
301
302 /* This indicates the tcp segment has CWR set. */
303 SKB_GSO_TCP_ECN = 1 << 3,
304
305 SKB_GSO_TCPV6 = 1 << 4,
306
307 SKB_GSO_FCOE = 1 << 5,
308 };
309
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324
325 /**
326 * struct sk_buff - socket buffer
327 * @next: Next buffer in list
328 * @prev: Previous buffer in list
329 * @tstamp: Time we arrived
330 * @sk: Socket we are owned by
331 * @dev: Device we arrived on/are leaving by
332 * @cb: Control buffer. Free for use by every layer. Put private vars here
333 * @_skb_refdst: destination entry (with norefcount bit)
334 * @sp: the security path, used for xfrm
335 * @len: Length of actual data
336 * @data_len: Data length
337 * @mac_len: Length of link layer header
338 * @hdr_len: writable header length of cloned skb
339 * @csum: Checksum (must include start/offset pair)
340 * @csum_start: Offset from skb->head where checksumming should start
341 * @csum_offset: Offset from csum_start where checksum should be stored
342 * @priority: Packet queueing priority
343 * @local_df: allow local fragmentation
344 * @cloned: Head may be cloned (check refcnt to be sure)
345 * @ip_summed: Driver fed us an IP checksum
346 * @nohdr: Payload reference only, must not modify header
347 * @nfctinfo: Relationship of this skb to the connection
348 * @pkt_type: Packet class
349 * @fclone: skbuff clone status
350 * @ipvs_property: skbuff is owned by ipvs
351 * @peeked: this packet has been seen already, so stats have been
352 * done for it, don't do them again
353 * @nf_trace: netfilter packet trace flag
354 * @protocol: Packet protocol from driver
355 * @destructor: Destruct function
356 * @nfct: Associated connection, if any
357 * @nfct_reasm: netfilter conntrack re-assembly pointer
358 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359 * @skb_iif: ifindex of device we arrived on
360 * @tc_index: Traffic control index
361 * @tc_verd: traffic control verdict
362 * @rxhash: the packet hash computed on receive
363 * @queue_mapping: Queue mapping for multiqueue devices
364 * @ndisc_nodetype: router type (from link layer)
365 * @ooo_okay: allow the mapping of a socket to a queue to be changed
366 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367 * ports.
368 * @wifi_acked_valid: wifi_acked was set
369 * @wifi_acked: whether frame was acked on wifi or not
370 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
371 * @dma_cookie: a cookie to one of several possible DMA operations
372 * done by skb DMA functions
373 * @secmark: security marking
374 * @mark: Generic packet mark
375 * @dropcount: total number of sk_receive_queue overflows
376 * @vlan_tci: vlan tag control information
377 * @transport_header: Transport layer header
378 * @network_header: Network layer header
379 * @mac_header: Link layer header
380 * @tail: Tail pointer
381 * @end: End pointer
382 * @head: Head of buffer
383 * @data: Data head pointer
384 * @truesize: Buffer size
385 * @users: User count - see {datagram,tcp}.c
386 */
387
388 struct sk_buff {
389 /* These two members must be first. */
390 struct sk_buff *next;
391 struct sk_buff *prev;
392
393 ktime_t tstamp;
394
395 struct sock *sk;
396 struct net_device *dev;
397
398 /*
399 * This is the control buffer. It is free to use for every
400 * layer. Please put your private variables there. If you
401 * want to keep them across layers you have to do a skb_clone()
402 * first. This is owned by whoever has the skb queued ATM.
403 */
404 char cb[48] __aligned(8);
405
406 unsigned long _skb_refdst;
407 #ifdef CONFIG_XFRM
408 struct sec_path *sp;
409 #endif
410 unsigned int len,
411 data_len;
412 __u16 mac_len,
413 hdr_len;
414 union {
415 __wsum csum;
416 struct {
417 __u16 csum_start;
418 __u16 csum_offset;
419 };
420 };
421 __u32 priority;
422 kmemcheck_bitfield_begin(flags1);
423 __u8 local_df:1,
424 cloned:1,
425 ip_summed:2,
426 nohdr:1,
427 nfctinfo:3;
428 __u8 pkt_type:3,
429 fclone:2,
430 ipvs_property:1,
431 peeked:1,
432 nf_trace:1;
433 kmemcheck_bitfield_end(flags1);
434 __be16 protocol;
435
436 void (*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 struct nf_conntrack *nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 struct sk_buff *nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 struct nf_bridge_info *nf_bridge;
445 #endif
446
447 int skb_iif;
448
449 __u32 rxhash;
450
451 __u16 vlan_tci;
452
453 #ifdef CONFIG_NET_SCHED
454 __u16 tc_index; /* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 __u16 tc_verd; /* traffic control verdict */
457 #endif
458 #endif
459
460 __u16 queue_mapping;
461 kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 __u8 ndisc_nodetype:2;
464 #endif
465 __u8 pfmemalloc:1;
466 __u8 ooo_okay:1;
467 __u8 l4_rxhash:1;
468 __u8 wifi_acked_valid:1;
469 __u8 wifi_acked:1;
470 __u8 no_fcs:1;
471 __u8 head_frag:1;
472 /* 8/10 bit hole (depending on ndisc_nodetype presence) */
473 kmemcheck_bitfield_end(flags2);
474
475 #ifdef CONFIG_NET_DMA
476 dma_cookie_t dma_cookie;
477 #endif
478 #ifdef CONFIG_NETWORK_SECMARK
479 __u32 secmark;
480 #endif
481 union {
482 __u32 mark;
483 __u32 dropcount;
484 __u32 avail_size;
485 };
486
487 sk_buff_data_t transport_header;
488 sk_buff_data_t network_header;
489 sk_buff_data_t mac_header;
490 /* These elements must be at the end, see alloc_skb() for details. */
491 sk_buff_data_t tail;
492 sk_buff_data_t end;
493 unsigned char *head,
494 *data;
495 unsigned int truesize;
496 atomic_t users;
497 };
498
499 #ifdef __KERNEL__
500 /*
501 * Handling routines are only of interest to the kernel
502 */
503 #include <linux/slab.h>
504
505
506 #define SKB_ALLOC_FCLONE 0x01
507 #define SKB_ALLOC_RX 0x02
508
509 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
510 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
511 {
512 return unlikely(skb->pfmemalloc);
513 }
514
515 /*
516 * skb might have a dst pointer attached, refcounted or not.
517 * _skb_refdst low order bit is set if refcount was _not_ taken
518 */
519 #define SKB_DST_NOREF 1UL
520 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
521
522 /**
523 * skb_dst - returns skb dst_entry
524 * @skb: buffer
525 *
526 * Returns skb dst_entry, regardless of reference taken or not.
527 */
528 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
529 {
530 /* If refdst was not refcounted, check we still are in a
531 * rcu_read_lock section
532 */
533 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
534 !rcu_read_lock_held() &&
535 !rcu_read_lock_bh_held());
536 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
537 }
538
539 /**
540 * skb_dst_set - sets skb dst
541 * @skb: buffer
542 * @dst: dst entry
543 *
544 * Sets skb dst, assuming a reference was taken on dst and should
545 * be released by skb_dst_drop()
546 */
547 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
548 {
549 skb->_skb_refdst = (unsigned long)dst;
550 }
551
552 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
553
554 /**
555 * skb_dst_is_noref - Test if skb dst isn't refcounted
556 * @skb: buffer
557 */
558 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
559 {
560 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
561 }
562
563 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
564 {
565 return (struct rtable *)skb_dst(skb);
566 }
567
568 extern void kfree_skb(struct sk_buff *skb);
569 extern void consume_skb(struct sk_buff *skb);
570 extern void __kfree_skb(struct sk_buff *skb);
571 extern struct kmem_cache *skbuff_head_cache;
572
573 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
574 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
575 bool *fragstolen, int *delta_truesize);
576
577 extern struct sk_buff *__alloc_skb(unsigned int size,
578 gfp_t priority, int flags, int node);
579 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
580 static inline struct sk_buff *alloc_skb(unsigned int size,
581 gfp_t priority)
582 {
583 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
584 }
585
586 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
587 gfp_t priority)
588 {
589 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
590 }
591
592 extern void skb_recycle(struct sk_buff *skb);
593 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
594
595 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
596 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
597 extern struct sk_buff *skb_clone(struct sk_buff *skb,
598 gfp_t priority);
599 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
600 gfp_t priority);
601 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
602 int headroom, gfp_t gfp_mask);
603
604 extern int pskb_expand_head(struct sk_buff *skb,
605 int nhead, int ntail,
606 gfp_t gfp_mask);
607 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
608 unsigned int headroom);
609 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
610 int newheadroom, int newtailroom,
611 gfp_t priority);
612 extern int skb_to_sgvec(struct sk_buff *skb,
613 struct scatterlist *sg, int offset,
614 int len);
615 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
616 struct sk_buff **trailer);
617 extern int skb_pad(struct sk_buff *skb, int pad);
618 #define dev_kfree_skb(a) consume_skb(a)
619
620 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
621 int getfrag(void *from, char *to, int offset,
622 int len,int odd, struct sk_buff *skb),
623 void *from, int length);
624
625 struct skb_seq_state {
626 __u32 lower_offset;
627 __u32 upper_offset;
628 __u32 frag_idx;
629 __u32 stepped_offset;
630 struct sk_buff *root_skb;
631 struct sk_buff *cur_skb;
632 __u8 *frag_data;
633 };
634
635 extern void skb_prepare_seq_read(struct sk_buff *skb,
636 unsigned int from, unsigned int to,
637 struct skb_seq_state *st);
638 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
639 struct skb_seq_state *st);
640 extern void skb_abort_seq_read(struct skb_seq_state *st);
641
642 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
643 unsigned int to, struct ts_config *config,
644 struct ts_state *state);
645
646 extern void __skb_get_rxhash(struct sk_buff *skb);
647 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
648 {
649 if (!skb->rxhash)
650 __skb_get_rxhash(skb);
651
652 return skb->rxhash;
653 }
654
655 #ifdef NET_SKBUFF_DATA_USES_OFFSET
656 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
657 {
658 return skb->head + skb->end;
659 }
660
661 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
662 {
663 return skb->end;
664 }
665 #else
666 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
667 {
668 return skb->end;
669 }
670
671 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
672 {
673 return skb->end - skb->head;
674 }
675 #endif
676
677 /* Internal */
678 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
679
680 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
681 {
682 return &skb_shinfo(skb)->hwtstamps;
683 }
684
685 /**
686 * skb_queue_empty - check if a queue is empty
687 * @list: queue head
688 *
689 * Returns true if the queue is empty, false otherwise.
690 */
691 static inline int skb_queue_empty(const struct sk_buff_head *list)
692 {
693 return list->next == (struct sk_buff *)list;
694 }
695
696 /**
697 * skb_queue_is_last - check if skb is the last entry in the queue
698 * @list: queue head
699 * @skb: buffer
700 *
701 * Returns true if @skb is the last buffer on the list.
702 */
703 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
704 const struct sk_buff *skb)
705 {
706 return skb->next == (struct sk_buff *)list;
707 }
708
709 /**
710 * skb_queue_is_first - check if skb is the first entry in the queue
711 * @list: queue head
712 * @skb: buffer
713 *
714 * Returns true if @skb is the first buffer on the list.
715 */
716 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
717 const struct sk_buff *skb)
718 {
719 return skb->prev == (struct sk_buff *)list;
720 }
721
722 /**
723 * skb_queue_next - return the next packet in the queue
724 * @list: queue head
725 * @skb: current buffer
726 *
727 * Return the next packet in @list after @skb. It is only valid to
728 * call this if skb_queue_is_last() evaluates to false.
729 */
730 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
731 const struct sk_buff *skb)
732 {
733 /* This BUG_ON may seem severe, but if we just return then we
734 * are going to dereference garbage.
735 */
736 BUG_ON(skb_queue_is_last(list, skb));
737 return skb->next;
738 }
739
740 /**
741 * skb_queue_prev - return the prev packet in the queue
742 * @list: queue head
743 * @skb: current buffer
744 *
745 * Return the prev packet in @list before @skb. It is only valid to
746 * call this if skb_queue_is_first() evaluates to false.
747 */
748 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
749 const struct sk_buff *skb)
750 {
751 /* This BUG_ON may seem severe, but if we just return then we
752 * are going to dereference garbage.
753 */
754 BUG_ON(skb_queue_is_first(list, skb));
755 return skb->prev;
756 }
757
758 /**
759 * skb_get - reference buffer
760 * @skb: buffer to reference
761 *
762 * Makes another reference to a socket buffer and returns a pointer
763 * to the buffer.
764 */
765 static inline struct sk_buff *skb_get(struct sk_buff *skb)
766 {
767 atomic_inc(&skb->users);
768 return skb;
769 }
770
771 /*
772 * If users == 1, we are the only owner and are can avoid redundant
773 * atomic change.
774 */
775
776 /**
777 * skb_cloned - is the buffer a clone
778 * @skb: buffer to check
779 *
780 * Returns true if the buffer was generated with skb_clone() and is
781 * one of multiple shared copies of the buffer. Cloned buffers are
782 * shared data so must not be written to under normal circumstances.
783 */
784 static inline int skb_cloned(const struct sk_buff *skb)
785 {
786 return skb->cloned &&
787 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
788 }
789
790 /**
791 * skb_header_cloned - is the header a clone
792 * @skb: buffer to check
793 *
794 * Returns true if modifying the header part of the buffer requires
795 * the data to be copied.
796 */
797 static inline int skb_header_cloned(const struct sk_buff *skb)
798 {
799 int dataref;
800
801 if (!skb->cloned)
802 return 0;
803
804 dataref = atomic_read(&skb_shinfo(skb)->dataref);
805 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
806 return dataref != 1;
807 }
808
809 /**
810 * skb_header_release - release reference to header
811 * @skb: buffer to operate on
812 *
813 * Drop a reference to the header part of the buffer. This is done
814 * by acquiring a payload reference. You must not read from the header
815 * part of skb->data after this.
816 */
817 static inline void skb_header_release(struct sk_buff *skb)
818 {
819 BUG_ON(skb->nohdr);
820 skb->nohdr = 1;
821 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
822 }
823
824 /**
825 * skb_shared - is the buffer shared
826 * @skb: buffer to check
827 *
828 * Returns true if more than one person has a reference to this
829 * buffer.
830 */
831 static inline int skb_shared(const struct sk_buff *skb)
832 {
833 return atomic_read(&skb->users) != 1;
834 }
835
836 /**
837 * skb_share_check - check if buffer is shared and if so clone it
838 * @skb: buffer to check
839 * @pri: priority for memory allocation
840 *
841 * If the buffer is shared the buffer is cloned and the old copy
842 * drops a reference. A new clone with a single reference is returned.
843 * If the buffer is not shared the original buffer is returned. When
844 * being called from interrupt status or with spinlocks held pri must
845 * be GFP_ATOMIC.
846 *
847 * NULL is returned on a memory allocation failure.
848 */
849 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
850 gfp_t pri)
851 {
852 might_sleep_if(pri & __GFP_WAIT);
853 if (skb_shared(skb)) {
854 struct sk_buff *nskb = skb_clone(skb, pri);
855 kfree_skb(skb);
856 skb = nskb;
857 }
858 return skb;
859 }
860
861 /*
862 * Copy shared buffers into a new sk_buff. We effectively do COW on
863 * packets to handle cases where we have a local reader and forward
864 * and a couple of other messy ones. The normal one is tcpdumping
865 * a packet thats being forwarded.
866 */
867
868 /**
869 * skb_unshare - make a copy of a shared buffer
870 * @skb: buffer to check
871 * @pri: priority for memory allocation
872 *
873 * If the socket buffer is a clone then this function creates a new
874 * copy of the data, drops a reference count on the old copy and returns
875 * the new copy with the reference count at 1. If the buffer is not a clone
876 * the original buffer is returned. When called with a spinlock held or
877 * from interrupt state @pri must be %GFP_ATOMIC
878 *
879 * %NULL is returned on a memory allocation failure.
880 */
881 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
882 gfp_t pri)
883 {
884 might_sleep_if(pri & __GFP_WAIT);
885 if (skb_cloned(skb)) {
886 struct sk_buff *nskb = skb_copy(skb, pri);
887 kfree_skb(skb); /* Free our shared copy */
888 skb = nskb;
889 }
890 return skb;
891 }
892
893 /**
894 * skb_peek - peek at the head of an &sk_buff_head
895 * @list_: list to peek at
896 *
897 * Peek an &sk_buff. Unlike most other operations you _MUST_
898 * be careful with this one. A peek leaves the buffer on the
899 * list and someone else may run off with it. You must hold
900 * the appropriate locks or have a private queue to do this.
901 *
902 * Returns %NULL for an empty list or a pointer to the head element.
903 * The reference count is not incremented and the reference is therefore
904 * volatile. Use with caution.
905 */
906 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
907 {
908 struct sk_buff *skb = list_->next;
909
910 if (skb == (struct sk_buff *)list_)
911 skb = NULL;
912 return skb;
913 }
914
915 /**
916 * skb_peek_next - peek skb following the given one from a queue
917 * @skb: skb to start from
918 * @list_: list to peek at
919 *
920 * Returns %NULL when the end of the list is met or a pointer to the
921 * next element. The reference count is not incremented and the
922 * reference is therefore volatile. Use with caution.
923 */
924 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
925 const struct sk_buff_head *list_)
926 {
927 struct sk_buff *next = skb->next;
928
929 if (next == (struct sk_buff *)list_)
930 next = NULL;
931 return next;
932 }
933
934 /**
935 * skb_peek_tail - peek at the tail of an &sk_buff_head
936 * @list_: list to peek at
937 *
938 * Peek an &sk_buff. Unlike most other operations you _MUST_
939 * be careful with this one. A peek leaves the buffer on the
940 * list and someone else may run off with it. You must hold
941 * the appropriate locks or have a private queue to do this.
942 *
943 * Returns %NULL for an empty list or a pointer to the tail element.
944 * The reference count is not incremented and the reference is therefore
945 * volatile. Use with caution.
946 */
947 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
948 {
949 struct sk_buff *skb = list_->prev;
950
951 if (skb == (struct sk_buff *)list_)
952 skb = NULL;
953 return skb;
954
955 }
956
957 /**
958 * skb_queue_len - get queue length
959 * @list_: list to measure
960 *
961 * Return the length of an &sk_buff queue.
962 */
963 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
964 {
965 return list_->qlen;
966 }
967
968 /**
969 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
970 * @list: queue to initialize
971 *
972 * This initializes only the list and queue length aspects of
973 * an sk_buff_head object. This allows to initialize the list
974 * aspects of an sk_buff_head without reinitializing things like
975 * the spinlock. It can also be used for on-stack sk_buff_head
976 * objects where the spinlock is known to not be used.
977 */
978 static inline void __skb_queue_head_init(struct sk_buff_head *list)
979 {
980 list->prev = list->next = (struct sk_buff *)list;
981 list->qlen = 0;
982 }
983
984 /*
985 * This function creates a split out lock class for each invocation;
986 * this is needed for now since a whole lot of users of the skb-queue
987 * infrastructure in drivers have different locking usage (in hardirq)
988 * than the networking core (in softirq only). In the long run either the
989 * network layer or drivers should need annotation to consolidate the
990 * main types of usage into 3 classes.
991 */
992 static inline void skb_queue_head_init(struct sk_buff_head *list)
993 {
994 spin_lock_init(&list->lock);
995 __skb_queue_head_init(list);
996 }
997
998 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
999 struct lock_class_key *class)
1000 {
1001 skb_queue_head_init(list);
1002 lockdep_set_class(&list->lock, class);
1003 }
1004
1005 /*
1006 * Insert an sk_buff on a list.
1007 *
1008 * The "__skb_xxxx()" functions are the non-atomic ones that
1009 * can only be called with interrupts disabled.
1010 */
1011 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1012 static inline void __skb_insert(struct sk_buff *newsk,
1013 struct sk_buff *prev, struct sk_buff *next,
1014 struct sk_buff_head *list)
1015 {
1016 newsk->next = next;
1017 newsk->prev = prev;
1018 next->prev = prev->next = newsk;
1019 list->qlen++;
1020 }
1021
1022 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1023 struct sk_buff *prev,
1024 struct sk_buff *next)
1025 {
1026 struct sk_buff *first = list->next;
1027 struct sk_buff *last = list->prev;
1028
1029 first->prev = prev;
1030 prev->next = first;
1031
1032 last->next = next;
1033 next->prev = last;
1034 }
1035
1036 /**
1037 * skb_queue_splice - join two skb lists, this is designed for stacks
1038 * @list: the new list to add
1039 * @head: the place to add it in the first list
1040 */
1041 static inline void skb_queue_splice(const struct sk_buff_head *list,
1042 struct sk_buff_head *head)
1043 {
1044 if (!skb_queue_empty(list)) {
1045 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1046 head->qlen += list->qlen;
1047 }
1048 }
1049
1050 /**
1051 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1052 * @list: the new list to add
1053 * @head: the place to add it in the first list
1054 *
1055 * The list at @list is reinitialised
1056 */
1057 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1058 struct sk_buff_head *head)
1059 {
1060 if (!skb_queue_empty(list)) {
1061 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1062 head->qlen += list->qlen;
1063 __skb_queue_head_init(list);
1064 }
1065 }
1066
1067 /**
1068 * skb_queue_splice_tail - join two skb lists, each list being a queue
1069 * @list: the new list to add
1070 * @head: the place to add it in the first list
1071 */
1072 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1073 struct sk_buff_head *head)
1074 {
1075 if (!skb_queue_empty(list)) {
1076 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1077 head->qlen += list->qlen;
1078 }
1079 }
1080
1081 /**
1082 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1083 * @list: the new list to add
1084 * @head: the place to add it in the first list
1085 *
1086 * Each of the lists is a queue.
1087 * The list at @list is reinitialised
1088 */
1089 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1090 struct sk_buff_head *head)
1091 {
1092 if (!skb_queue_empty(list)) {
1093 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1094 head->qlen += list->qlen;
1095 __skb_queue_head_init(list);
1096 }
1097 }
1098
1099 /**
1100 * __skb_queue_after - queue a buffer at the list head
1101 * @list: list to use
1102 * @prev: place after this buffer
1103 * @newsk: buffer to queue
1104 *
1105 * Queue a buffer int the middle of a list. This function takes no locks
1106 * and you must therefore hold required locks before calling it.
1107 *
1108 * A buffer cannot be placed on two lists at the same time.
1109 */
1110 static inline void __skb_queue_after(struct sk_buff_head *list,
1111 struct sk_buff *prev,
1112 struct sk_buff *newsk)
1113 {
1114 __skb_insert(newsk, prev, prev->next, list);
1115 }
1116
1117 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1118 struct sk_buff_head *list);
1119
1120 static inline void __skb_queue_before(struct sk_buff_head *list,
1121 struct sk_buff *next,
1122 struct sk_buff *newsk)
1123 {
1124 __skb_insert(newsk, next->prev, next, list);
1125 }
1126
1127 /**
1128 * __skb_queue_head - queue a buffer at the list head
1129 * @list: list to use
1130 * @newsk: buffer to queue
1131 *
1132 * Queue a buffer at the start of a list. This function takes no locks
1133 * and you must therefore hold required locks before calling it.
1134 *
1135 * A buffer cannot be placed on two lists at the same time.
1136 */
1137 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1138 static inline void __skb_queue_head(struct sk_buff_head *list,
1139 struct sk_buff *newsk)
1140 {
1141 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1142 }
1143
1144 /**
1145 * __skb_queue_tail - queue a buffer at the list tail
1146 * @list: list to use
1147 * @newsk: buffer to queue
1148 *
1149 * Queue a buffer at the end of a list. This function takes no locks
1150 * and you must therefore hold required locks before calling it.
1151 *
1152 * A buffer cannot be placed on two lists at the same time.
1153 */
1154 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1155 static inline void __skb_queue_tail(struct sk_buff_head *list,
1156 struct sk_buff *newsk)
1157 {
1158 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1159 }
1160
1161 /*
1162 * remove sk_buff from list. _Must_ be called atomically, and with
1163 * the list known..
1164 */
1165 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1166 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1167 {
1168 struct sk_buff *next, *prev;
1169
1170 list->qlen--;
1171 next = skb->next;
1172 prev = skb->prev;
1173 skb->next = skb->prev = NULL;
1174 next->prev = prev;
1175 prev->next = next;
1176 }
1177
1178 /**
1179 * __skb_dequeue - remove from the head of the queue
1180 * @list: list to dequeue from
1181 *
1182 * Remove the head of the list. This function does not take any locks
1183 * so must be used with appropriate locks held only. The head item is
1184 * returned or %NULL if the list is empty.
1185 */
1186 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1187 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1188 {
1189 struct sk_buff *skb = skb_peek(list);
1190 if (skb)
1191 __skb_unlink(skb, list);
1192 return skb;
1193 }
1194
1195 /**
1196 * __skb_dequeue_tail - remove from the tail of the queue
1197 * @list: list to dequeue from
1198 *
1199 * Remove the tail of the list. This function does not take any locks
1200 * so must be used with appropriate locks held only. The tail item is
1201 * returned or %NULL if the list is empty.
1202 */
1203 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1204 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1205 {
1206 struct sk_buff *skb = skb_peek_tail(list);
1207 if (skb)
1208 __skb_unlink(skb, list);
1209 return skb;
1210 }
1211
1212
1213 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1214 {
1215 return skb->data_len;
1216 }
1217
1218 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1219 {
1220 return skb->len - skb->data_len;
1221 }
1222
1223 static inline int skb_pagelen(const struct sk_buff *skb)
1224 {
1225 int i, len = 0;
1226
1227 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1228 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1229 return len + skb_headlen(skb);
1230 }
1231
1232 /**
1233 * __skb_fill_page_desc - initialise a paged fragment in an skb
1234 * @skb: buffer containing fragment to be initialised
1235 * @i: paged fragment index to initialise
1236 * @page: the page to use for this fragment
1237 * @off: the offset to the data with @page
1238 * @size: the length of the data
1239 *
1240 * Initialises the @i'th fragment of @skb to point to &size bytes at
1241 * offset @off within @page.
1242 *
1243 * Does not take any additional reference on the fragment.
1244 */
1245 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1246 struct page *page, int off, int size)
1247 {
1248 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1249
1250 /*
1251 * Propagate page->pfmemalloc to the skb if we can. The problem is
1252 * that not all callers have unique ownership of the page. If
1253 * pfmemalloc is set, we check the mapping as a mapping implies
1254 * page->index is set (index and pfmemalloc share space).
1255 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1256 * do not lose pfmemalloc information as the pages would not be
1257 * allocated using __GFP_MEMALLOC.
1258 */
1259 if (page->pfmemalloc && !page->mapping)
1260 skb->pfmemalloc = true;
1261 frag->page.p = page;
1262 frag->page_offset = off;
1263 skb_frag_size_set(frag, size);
1264 }
1265
1266 /**
1267 * skb_fill_page_desc - initialise a paged fragment in an skb
1268 * @skb: buffer containing fragment to be initialised
1269 * @i: paged fragment index to initialise
1270 * @page: the page to use for this fragment
1271 * @off: the offset to the data with @page
1272 * @size: the length of the data
1273 *
1274 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1275 * @skb to point to &size bytes at offset @off within @page. In
1276 * addition updates @skb such that @i is the last fragment.
1277 *
1278 * Does not take any additional reference on the fragment.
1279 */
1280 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1281 struct page *page, int off, int size)
1282 {
1283 __skb_fill_page_desc(skb, i, page, off, size);
1284 skb_shinfo(skb)->nr_frags = i + 1;
1285 }
1286
1287 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1288 int off, int size, unsigned int truesize);
1289
1290 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1291 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1292 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1293
1294 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1295 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1296 {
1297 return skb->head + skb->tail;
1298 }
1299
1300 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1301 {
1302 skb->tail = skb->data - skb->head;
1303 }
1304
1305 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1306 {
1307 skb_reset_tail_pointer(skb);
1308 skb->tail += offset;
1309 }
1310 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1311 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1312 {
1313 return skb->tail;
1314 }
1315
1316 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1317 {
1318 skb->tail = skb->data;
1319 }
1320
1321 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1322 {
1323 skb->tail = skb->data + offset;
1324 }
1325
1326 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1327
1328 /*
1329 * Add data to an sk_buff
1330 */
1331 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1332 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1333 {
1334 unsigned char *tmp = skb_tail_pointer(skb);
1335 SKB_LINEAR_ASSERT(skb);
1336 skb->tail += len;
1337 skb->len += len;
1338 return tmp;
1339 }
1340
1341 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1342 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1343 {
1344 skb->data -= len;
1345 skb->len += len;
1346 return skb->data;
1347 }
1348
1349 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1350 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1351 {
1352 skb->len -= len;
1353 BUG_ON(skb->len < skb->data_len);
1354 return skb->data += len;
1355 }
1356
1357 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1358 {
1359 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1360 }
1361
1362 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1363
1364 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1365 {
1366 if (len > skb_headlen(skb) &&
1367 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1368 return NULL;
1369 skb->len -= len;
1370 return skb->data += len;
1371 }
1372
1373 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1374 {
1375 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1376 }
1377
1378 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1379 {
1380 if (likely(len <= skb_headlen(skb)))
1381 return 1;
1382 if (unlikely(len > skb->len))
1383 return 0;
1384 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1385 }
1386
1387 /**
1388 * skb_headroom - bytes at buffer head
1389 * @skb: buffer to check
1390 *
1391 * Return the number of bytes of free space at the head of an &sk_buff.
1392 */
1393 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1394 {
1395 return skb->data - skb->head;
1396 }
1397
1398 /**
1399 * skb_tailroom - bytes at buffer end
1400 * @skb: buffer to check
1401 *
1402 * Return the number of bytes of free space at the tail of an sk_buff
1403 */
1404 static inline int skb_tailroom(const struct sk_buff *skb)
1405 {
1406 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1407 }
1408
1409 /**
1410 * skb_availroom - bytes at buffer end
1411 * @skb: buffer to check
1412 *
1413 * Return the number of bytes of free space at the tail of an sk_buff
1414 * allocated by sk_stream_alloc()
1415 */
1416 static inline int skb_availroom(const struct sk_buff *skb)
1417 {
1418 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1419 }
1420
1421 /**
1422 * skb_reserve - adjust headroom
1423 * @skb: buffer to alter
1424 * @len: bytes to move
1425 *
1426 * Increase the headroom of an empty &sk_buff by reducing the tail
1427 * room. This is only allowed for an empty buffer.
1428 */
1429 static inline void skb_reserve(struct sk_buff *skb, int len)
1430 {
1431 skb->data += len;
1432 skb->tail += len;
1433 }
1434
1435 static inline void skb_reset_mac_len(struct sk_buff *skb)
1436 {
1437 skb->mac_len = skb->network_header - skb->mac_header;
1438 }
1439
1440 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1441 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1442 {
1443 return skb->head + skb->transport_header;
1444 }
1445
1446 static inline void skb_reset_transport_header(struct sk_buff *skb)
1447 {
1448 skb->transport_header = skb->data - skb->head;
1449 }
1450
1451 static inline void skb_set_transport_header(struct sk_buff *skb,
1452 const int offset)
1453 {
1454 skb_reset_transport_header(skb);
1455 skb->transport_header += offset;
1456 }
1457
1458 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1459 {
1460 return skb->head + skb->network_header;
1461 }
1462
1463 static inline void skb_reset_network_header(struct sk_buff *skb)
1464 {
1465 skb->network_header = skb->data - skb->head;
1466 }
1467
1468 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1469 {
1470 skb_reset_network_header(skb);
1471 skb->network_header += offset;
1472 }
1473
1474 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1475 {
1476 return skb->head + skb->mac_header;
1477 }
1478
1479 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1480 {
1481 return skb->mac_header != ~0U;
1482 }
1483
1484 static inline void skb_reset_mac_header(struct sk_buff *skb)
1485 {
1486 skb->mac_header = skb->data - skb->head;
1487 }
1488
1489 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1490 {
1491 skb_reset_mac_header(skb);
1492 skb->mac_header += offset;
1493 }
1494
1495 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1496
1497 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1498 {
1499 return skb->transport_header;
1500 }
1501
1502 static inline void skb_reset_transport_header(struct sk_buff *skb)
1503 {
1504 skb->transport_header = skb->data;
1505 }
1506
1507 static inline void skb_set_transport_header(struct sk_buff *skb,
1508 const int offset)
1509 {
1510 skb->transport_header = skb->data + offset;
1511 }
1512
1513 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1514 {
1515 return skb->network_header;
1516 }
1517
1518 static inline void skb_reset_network_header(struct sk_buff *skb)
1519 {
1520 skb->network_header = skb->data;
1521 }
1522
1523 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1524 {
1525 skb->network_header = skb->data + offset;
1526 }
1527
1528 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1529 {
1530 return skb->mac_header;
1531 }
1532
1533 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1534 {
1535 return skb->mac_header != NULL;
1536 }
1537
1538 static inline void skb_reset_mac_header(struct sk_buff *skb)
1539 {
1540 skb->mac_header = skb->data;
1541 }
1542
1543 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1544 {
1545 skb->mac_header = skb->data + offset;
1546 }
1547 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1548
1549 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1550 {
1551 if (skb_mac_header_was_set(skb)) {
1552 const unsigned char *old_mac = skb_mac_header(skb);
1553
1554 skb_set_mac_header(skb, -skb->mac_len);
1555 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1556 }
1557 }
1558
1559 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1560 {
1561 return skb->csum_start - skb_headroom(skb);
1562 }
1563
1564 static inline int skb_transport_offset(const struct sk_buff *skb)
1565 {
1566 return skb_transport_header(skb) - skb->data;
1567 }
1568
1569 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1570 {
1571 return skb->transport_header - skb->network_header;
1572 }
1573
1574 static inline int skb_network_offset(const struct sk_buff *skb)
1575 {
1576 return skb_network_header(skb) - skb->data;
1577 }
1578
1579 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1580 {
1581 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1582 }
1583
1584 /*
1585 * CPUs often take a performance hit when accessing unaligned memory
1586 * locations. The actual performance hit varies, it can be small if the
1587 * hardware handles it or large if we have to take an exception and fix it
1588 * in software.
1589 *
1590 * Since an ethernet header is 14 bytes network drivers often end up with
1591 * the IP header at an unaligned offset. The IP header can be aligned by
1592 * shifting the start of the packet by 2 bytes. Drivers should do this
1593 * with:
1594 *
1595 * skb_reserve(skb, NET_IP_ALIGN);
1596 *
1597 * The downside to this alignment of the IP header is that the DMA is now
1598 * unaligned. On some architectures the cost of an unaligned DMA is high
1599 * and this cost outweighs the gains made by aligning the IP header.
1600 *
1601 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1602 * to be overridden.
1603 */
1604 #ifndef NET_IP_ALIGN
1605 #define NET_IP_ALIGN 2
1606 #endif
1607
1608 /*
1609 * The networking layer reserves some headroom in skb data (via
1610 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1611 * the header has to grow. In the default case, if the header has to grow
1612 * 32 bytes or less we avoid the reallocation.
1613 *
1614 * Unfortunately this headroom changes the DMA alignment of the resulting
1615 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1616 * on some architectures. An architecture can override this value,
1617 * perhaps setting it to a cacheline in size (since that will maintain
1618 * cacheline alignment of the DMA). It must be a power of 2.
1619 *
1620 * Various parts of the networking layer expect at least 32 bytes of
1621 * headroom, you should not reduce this.
1622 *
1623 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1624 * to reduce average number of cache lines per packet.
1625 * get_rps_cpus() for example only access one 64 bytes aligned block :
1626 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1627 */
1628 #ifndef NET_SKB_PAD
1629 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1630 #endif
1631
1632 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1633
1634 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1635 {
1636 if (unlikely(skb_is_nonlinear(skb))) {
1637 WARN_ON(1);
1638 return;
1639 }
1640 skb->len = len;
1641 skb_set_tail_pointer(skb, len);
1642 }
1643
1644 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1645
1646 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1647 {
1648 if (skb->data_len)
1649 return ___pskb_trim(skb, len);
1650 __skb_trim(skb, len);
1651 return 0;
1652 }
1653
1654 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1655 {
1656 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1657 }
1658
1659 /**
1660 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1661 * @skb: buffer to alter
1662 * @len: new length
1663 *
1664 * This is identical to pskb_trim except that the caller knows that
1665 * the skb is not cloned so we should never get an error due to out-
1666 * of-memory.
1667 */
1668 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1669 {
1670 int err = pskb_trim(skb, len);
1671 BUG_ON(err);
1672 }
1673
1674 /**
1675 * skb_orphan - orphan a buffer
1676 * @skb: buffer to orphan
1677 *
1678 * If a buffer currently has an owner then we call the owner's
1679 * destructor function and make the @skb unowned. The buffer continues
1680 * to exist but is no longer charged to its former owner.
1681 */
1682 static inline void skb_orphan(struct sk_buff *skb)
1683 {
1684 if (skb->destructor)
1685 skb->destructor(skb);
1686 skb->destructor = NULL;
1687 skb->sk = NULL;
1688 }
1689
1690 /**
1691 * skb_orphan_frags - orphan the frags contained in a buffer
1692 * @skb: buffer to orphan frags from
1693 * @gfp_mask: allocation mask for replacement pages
1694 *
1695 * For each frag in the SKB which needs a destructor (i.e. has an
1696 * owner) create a copy of that frag and release the original
1697 * page by calling the destructor.
1698 */
1699 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1700 {
1701 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1702 return 0;
1703 return skb_copy_ubufs(skb, gfp_mask);
1704 }
1705
1706 /**
1707 * __skb_queue_purge - empty a list
1708 * @list: list to empty
1709 *
1710 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1711 * the list and one reference dropped. This function does not take the
1712 * list lock and the caller must hold the relevant locks to use it.
1713 */
1714 extern void skb_queue_purge(struct sk_buff_head *list);
1715 static inline void __skb_queue_purge(struct sk_buff_head *list)
1716 {
1717 struct sk_buff *skb;
1718 while ((skb = __skb_dequeue(list)) != NULL)
1719 kfree_skb(skb);
1720 }
1721
1722 extern void *netdev_alloc_frag(unsigned int fragsz);
1723
1724 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1725 unsigned int length,
1726 gfp_t gfp_mask);
1727
1728 /**
1729 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1730 * @dev: network device to receive on
1731 * @length: length to allocate
1732 *
1733 * Allocate a new &sk_buff and assign it a usage count of one. The
1734 * buffer has unspecified headroom built in. Users should allocate
1735 * the headroom they think they need without accounting for the
1736 * built in space. The built in space is used for optimisations.
1737 *
1738 * %NULL is returned if there is no free memory. Although this function
1739 * allocates memory it can be called from an interrupt.
1740 */
1741 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1742 unsigned int length)
1743 {
1744 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1745 }
1746
1747 /* legacy helper around __netdev_alloc_skb() */
1748 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1749 gfp_t gfp_mask)
1750 {
1751 return __netdev_alloc_skb(NULL, length, gfp_mask);
1752 }
1753
1754 /* legacy helper around netdev_alloc_skb() */
1755 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1756 {
1757 return netdev_alloc_skb(NULL, length);
1758 }
1759
1760
1761 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1762 unsigned int length, gfp_t gfp)
1763 {
1764 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1765
1766 if (NET_IP_ALIGN && skb)
1767 skb_reserve(skb, NET_IP_ALIGN);
1768 return skb;
1769 }
1770
1771 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1772 unsigned int length)
1773 {
1774 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1775 }
1776
1777 /**
1778 * skb_frag_page - retrieve the page refered to by a paged fragment
1779 * @frag: the paged fragment
1780 *
1781 * Returns the &struct page associated with @frag.
1782 */
1783 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1784 {
1785 return frag->page.p;
1786 }
1787
1788 /**
1789 * __skb_frag_ref - take an addition reference on a paged fragment.
1790 * @frag: the paged fragment
1791 *
1792 * Takes an additional reference on the paged fragment @frag.
1793 */
1794 static inline void __skb_frag_ref(skb_frag_t *frag)
1795 {
1796 get_page(skb_frag_page(frag));
1797 }
1798
1799 /**
1800 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1801 * @skb: the buffer
1802 * @f: the fragment offset.
1803 *
1804 * Takes an additional reference on the @f'th paged fragment of @skb.
1805 */
1806 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1807 {
1808 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1809 }
1810
1811 /**
1812 * __skb_frag_unref - release a reference on a paged fragment.
1813 * @frag: the paged fragment
1814 *
1815 * Releases a reference on the paged fragment @frag.
1816 */
1817 static inline void __skb_frag_unref(skb_frag_t *frag)
1818 {
1819 put_page(skb_frag_page(frag));
1820 }
1821
1822 /**
1823 * skb_frag_unref - release a reference on a paged fragment of an skb.
1824 * @skb: the buffer
1825 * @f: the fragment offset
1826 *
1827 * Releases a reference on the @f'th paged fragment of @skb.
1828 */
1829 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1830 {
1831 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1832 }
1833
1834 /**
1835 * skb_frag_address - gets the address of the data contained in a paged fragment
1836 * @frag: the paged fragment buffer
1837 *
1838 * Returns the address of the data within @frag. The page must already
1839 * be mapped.
1840 */
1841 static inline void *skb_frag_address(const skb_frag_t *frag)
1842 {
1843 return page_address(skb_frag_page(frag)) + frag->page_offset;
1844 }
1845
1846 /**
1847 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1848 * @frag: the paged fragment buffer
1849 *
1850 * Returns the address of the data within @frag. Checks that the page
1851 * is mapped and returns %NULL otherwise.
1852 */
1853 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1854 {
1855 void *ptr = page_address(skb_frag_page(frag));
1856 if (unlikely(!ptr))
1857 return NULL;
1858
1859 return ptr + frag->page_offset;
1860 }
1861
1862 /**
1863 * __skb_frag_set_page - sets the page contained in a paged fragment
1864 * @frag: the paged fragment
1865 * @page: the page to set
1866 *
1867 * Sets the fragment @frag to contain @page.
1868 */
1869 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1870 {
1871 frag->page.p = page;
1872 }
1873
1874 /**
1875 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1876 * @skb: the buffer
1877 * @f: the fragment offset
1878 * @page: the page to set
1879 *
1880 * Sets the @f'th fragment of @skb to contain @page.
1881 */
1882 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1883 struct page *page)
1884 {
1885 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1886 }
1887
1888 /**
1889 * skb_frag_dma_map - maps a paged fragment via the DMA API
1890 * @dev: the device to map the fragment to
1891 * @frag: the paged fragment to map
1892 * @offset: the offset within the fragment (starting at the
1893 * fragment's own offset)
1894 * @size: the number of bytes to map
1895 * @dir: the direction of the mapping (%PCI_DMA_*)
1896 *
1897 * Maps the page associated with @frag to @device.
1898 */
1899 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1900 const skb_frag_t *frag,
1901 size_t offset, size_t size,
1902 enum dma_data_direction dir)
1903 {
1904 return dma_map_page(dev, skb_frag_page(frag),
1905 frag->page_offset + offset, size, dir);
1906 }
1907
1908 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1909 gfp_t gfp_mask)
1910 {
1911 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1912 }
1913
1914 /**
1915 * skb_clone_writable - is the header of a clone writable
1916 * @skb: buffer to check
1917 * @len: length up to which to write
1918 *
1919 * Returns true if modifying the header part of the cloned buffer
1920 * does not requires the data to be copied.
1921 */
1922 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1923 {
1924 return !skb_header_cloned(skb) &&
1925 skb_headroom(skb) + len <= skb->hdr_len;
1926 }
1927
1928 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1929 int cloned)
1930 {
1931 int delta = 0;
1932
1933 if (headroom > skb_headroom(skb))
1934 delta = headroom - skb_headroom(skb);
1935
1936 if (delta || cloned)
1937 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1938 GFP_ATOMIC);
1939 return 0;
1940 }
1941
1942 /**
1943 * skb_cow - copy header of skb when it is required
1944 * @skb: buffer to cow
1945 * @headroom: needed headroom
1946 *
1947 * If the skb passed lacks sufficient headroom or its data part
1948 * is shared, data is reallocated. If reallocation fails, an error
1949 * is returned and original skb is not changed.
1950 *
1951 * The result is skb with writable area skb->head...skb->tail
1952 * and at least @headroom of space at head.
1953 */
1954 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1955 {
1956 return __skb_cow(skb, headroom, skb_cloned(skb));
1957 }
1958
1959 /**
1960 * skb_cow_head - skb_cow but only making the head writable
1961 * @skb: buffer to cow
1962 * @headroom: needed headroom
1963 *
1964 * This function is identical to skb_cow except that we replace the
1965 * skb_cloned check by skb_header_cloned. It should be used when
1966 * you only need to push on some header and do not need to modify
1967 * the data.
1968 */
1969 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1970 {
1971 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1972 }
1973
1974 /**
1975 * skb_padto - pad an skbuff up to a minimal size
1976 * @skb: buffer to pad
1977 * @len: minimal length
1978 *
1979 * Pads up a buffer to ensure the trailing bytes exist and are
1980 * blanked. If the buffer already contains sufficient data it
1981 * is untouched. Otherwise it is extended. Returns zero on
1982 * success. The skb is freed on error.
1983 */
1984
1985 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1986 {
1987 unsigned int size = skb->len;
1988 if (likely(size >= len))
1989 return 0;
1990 return skb_pad(skb, len - size);
1991 }
1992
1993 static inline int skb_add_data(struct sk_buff *skb,
1994 char __user *from, int copy)
1995 {
1996 const int off = skb->len;
1997
1998 if (skb->ip_summed == CHECKSUM_NONE) {
1999 int err = 0;
2000 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2001 copy, 0, &err);
2002 if (!err) {
2003 skb->csum = csum_block_add(skb->csum, csum, off);
2004 return 0;
2005 }
2006 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2007 return 0;
2008
2009 __skb_trim(skb, off);
2010 return -EFAULT;
2011 }
2012
2013 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2014 const struct page *page, int off)
2015 {
2016 if (i) {
2017 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2018
2019 return page == skb_frag_page(frag) &&
2020 off == frag->page_offset + skb_frag_size(frag);
2021 }
2022 return false;
2023 }
2024
2025 static inline int __skb_linearize(struct sk_buff *skb)
2026 {
2027 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2028 }
2029
2030 /**
2031 * skb_linearize - convert paged skb to linear one
2032 * @skb: buffer to linarize
2033 *
2034 * If there is no free memory -ENOMEM is returned, otherwise zero
2035 * is returned and the old skb data released.
2036 */
2037 static inline int skb_linearize(struct sk_buff *skb)
2038 {
2039 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2040 }
2041
2042 /**
2043 * skb_linearize_cow - make sure skb is linear and writable
2044 * @skb: buffer to process
2045 *
2046 * If there is no free memory -ENOMEM is returned, otherwise zero
2047 * is returned and the old skb data released.
2048 */
2049 static inline int skb_linearize_cow(struct sk_buff *skb)
2050 {
2051 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2052 __skb_linearize(skb) : 0;
2053 }
2054
2055 /**
2056 * skb_postpull_rcsum - update checksum for received skb after pull
2057 * @skb: buffer to update
2058 * @start: start of data before pull
2059 * @len: length of data pulled
2060 *
2061 * After doing a pull on a received packet, you need to call this to
2062 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2063 * CHECKSUM_NONE so that it can be recomputed from scratch.
2064 */
2065
2066 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2067 const void *start, unsigned int len)
2068 {
2069 if (skb->ip_summed == CHECKSUM_COMPLETE)
2070 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2071 }
2072
2073 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2074
2075 /**
2076 * pskb_trim_rcsum - trim received skb and update checksum
2077 * @skb: buffer to trim
2078 * @len: new length
2079 *
2080 * This is exactly the same as pskb_trim except that it ensures the
2081 * checksum of received packets are still valid after the operation.
2082 */
2083
2084 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2085 {
2086 if (likely(len >= skb->len))
2087 return 0;
2088 if (skb->ip_summed == CHECKSUM_COMPLETE)
2089 skb->ip_summed = CHECKSUM_NONE;
2090 return __pskb_trim(skb, len);
2091 }
2092
2093 #define skb_queue_walk(queue, skb) \
2094 for (skb = (queue)->next; \
2095 skb != (struct sk_buff *)(queue); \
2096 skb = skb->next)
2097
2098 #define skb_queue_walk_safe(queue, skb, tmp) \
2099 for (skb = (queue)->next, tmp = skb->next; \
2100 skb != (struct sk_buff *)(queue); \
2101 skb = tmp, tmp = skb->next)
2102
2103 #define skb_queue_walk_from(queue, skb) \
2104 for (; skb != (struct sk_buff *)(queue); \
2105 skb = skb->next)
2106
2107 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2108 for (tmp = skb->next; \
2109 skb != (struct sk_buff *)(queue); \
2110 skb = tmp, tmp = skb->next)
2111
2112 #define skb_queue_reverse_walk(queue, skb) \
2113 for (skb = (queue)->prev; \
2114 skb != (struct sk_buff *)(queue); \
2115 skb = skb->prev)
2116
2117 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2118 for (skb = (queue)->prev, tmp = skb->prev; \
2119 skb != (struct sk_buff *)(queue); \
2120 skb = tmp, tmp = skb->prev)
2121
2122 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2123 for (tmp = skb->prev; \
2124 skb != (struct sk_buff *)(queue); \
2125 skb = tmp, tmp = skb->prev)
2126
2127 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2128 {
2129 return skb_shinfo(skb)->frag_list != NULL;
2130 }
2131
2132 static inline void skb_frag_list_init(struct sk_buff *skb)
2133 {
2134 skb_shinfo(skb)->frag_list = NULL;
2135 }
2136
2137 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2138 {
2139 frag->next = skb_shinfo(skb)->frag_list;
2140 skb_shinfo(skb)->frag_list = frag;
2141 }
2142
2143 #define skb_walk_frags(skb, iter) \
2144 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2145
2146 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2147 int *peeked, int *off, int *err);
2148 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2149 int noblock, int *err);
2150 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2151 struct poll_table_struct *wait);
2152 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2153 int offset, struct iovec *to,
2154 int size);
2155 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2156 int hlen,
2157 struct iovec *iov);
2158 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2159 int offset,
2160 const struct iovec *from,
2161 int from_offset,
2162 int len);
2163 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2164 int offset,
2165 const struct iovec *to,
2166 int to_offset,
2167 int size);
2168 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2169 extern void skb_free_datagram_locked(struct sock *sk,
2170 struct sk_buff *skb);
2171 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2172 unsigned int flags);
2173 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2174 int len, __wsum csum);
2175 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2176 void *to, int len);
2177 extern int skb_store_bits(struct sk_buff *skb, int offset,
2178 const void *from, int len);
2179 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2180 int offset, u8 *to, int len,
2181 __wsum csum);
2182 extern int skb_splice_bits(struct sk_buff *skb,
2183 unsigned int offset,
2184 struct pipe_inode_info *pipe,
2185 unsigned int len,
2186 unsigned int flags);
2187 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2188 extern void skb_split(struct sk_buff *skb,
2189 struct sk_buff *skb1, const u32 len);
2190 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2191 int shiftlen);
2192
2193 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2194 netdev_features_t features);
2195
2196 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2197 int len, void *buffer)
2198 {
2199 int hlen = skb_headlen(skb);
2200
2201 if (hlen - offset >= len)
2202 return skb->data + offset;
2203
2204 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2205 return NULL;
2206
2207 return buffer;
2208 }
2209
2210 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2211 void *to,
2212 const unsigned int len)
2213 {
2214 memcpy(to, skb->data, len);
2215 }
2216
2217 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2218 const int offset, void *to,
2219 const unsigned int len)
2220 {
2221 memcpy(to, skb->data + offset, len);
2222 }
2223
2224 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2225 const void *from,
2226 const unsigned int len)
2227 {
2228 memcpy(skb->data, from, len);
2229 }
2230
2231 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2232 const int offset,
2233 const void *from,
2234 const unsigned int len)
2235 {
2236 memcpy(skb->data + offset, from, len);
2237 }
2238
2239 extern void skb_init(void);
2240
2241 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2242 {
2243 return skb->tstamp;
2244 }
2245
2246 /**
2247 * skb_get_timestamp - get timestamp from a skb
2248 * @skb: skb to get stamp from
2249 * @stamp: pointer to struct timeval to store stamp in
2250 *
2251 * Timestamps are stored in the skb as offsets to a base timestamp.
2252 * This function converts the offset back to a struct timeval and stores
2253 * it in stamp.
2254 */
2255 static inline void skb_get_timestamp(const struct sk_buff *skb,
2256 struct timeval *stamp)
2257 {
2258 *stamp = ktime_to_timeval(skb->tstamp);
2259 }
2260
2261 static inline void skb_get_timestampns(const struct sk_buff *skb,
2262 struct timespec *stamp)
2263 {
2264 *stamp = ktime_to_timespec(skb->tstamp);
2265 }
2266
2267 static inline void __net_timestamp(struct sk_buff *skb)
2268 {
2269 skb->tstamp = ktime_get_real();
2270 }
2271
2272 static inline ktime_t net_timedelta(ktime_t t)
2273 {
2274 return ktime_sub(ktime_get_real(), t);
2275 }
2276
2277 static inline ktime_t net_invalid_timestamp(void)
2278 {
2279 return ktime_set(0, 0);
2280 }
2281
2282 extern void skb_timestamping_init(void);
2283
2284 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2285
2286 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2287 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2288
2289 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2290
2291 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2292 {
2293 }
2294
2295 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2296 {
2297 return false;
2298 }
2299
2300 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2301
2302 /**
2303 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2304 *
2305 * PHY drivers may accept clones of transmitted packets for
2306 * timestamping via their phy_driver.txtstamp method. These drivers
2307 * must call this function to return the skb back to the stack, with
2308 * or without a timestamp.
2309 *
2310 * @skb: clone of the the original outgoing packet
2311 * @hwtstamps: hardware time stamps, may be NULL if not available
2312 *
2313 */
2314 void skb_complete_tx_timestamp(struct sk_buff *skb,
2315 struct skb_shared_hwtstamps *hwtstamps);
2316
2317 /**
2318 * skb_tstamp_tx - queue clone of skb with send time stamps
2319 * @orig_skb: the original outgoing packet
2320 * @hwtstamps: hardware time stamps, may be NULL if not available
2321 *
2322 * If the skb has a socket associated, then this function clones the
2323 * skb (thus sharing the actual data and optional structures), stores
2324 * the optional hardware time stamping information (if non NULL) or
2325 * generates a software time stamp (otherwise), then queues the clone
2326 * to the error queue of the socket. Errors are silently ignored.
2327 */
2328 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2329 struct skb_shared_hwtstamps *hwtstamps);
2330
2331 static inline void sw_tx_timestamp(struct sk_buff *skb)
2332 {
2333 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2334 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2335 skb_tstamp_tx(skb, NULL);
2336 }
2337
2338 /**
2339 * skb_tx_timestamp() - Driver hook for transmit timestamping
2340 *
2341 * Ethernet MAC Drivers should call this function in their hard_xmit()
2342 * function immediately before giving the sk_buff to the MAC hardware.
2343 *
2344 * @skb: A socket buffer.
2345 */
2346 static inline void skb_tx_timestamp(struct sk_buff *skb)
2347 {
2348 skb_clone_tx_timestamp(skb);
2349 sw_tx_timestamp(skb);
2350 }
2351
2352 /**
2353 * skb_complete_wifi_ack - deliver skb with wifi status
2354 *
2355 * @skb: the original outgoing packet
2356 * @acked: ack status
2357 *
2358 */
2359 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2360
2361 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2362 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2363
2364 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2365 {
2366 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2367 }
2368
2369 /**
2370 * skb_checksum_complete - Calculate checksum of an entire packet
2371 * @skb: packet to process
2372 *
2373 * This function calculates the checksum over the entire packet plus
2374 * the value of skb->csum. The latter can be used to supply the
2375 * checksum of a pseudo header as used by TCP/UDP. It returns the
2376 * checksum.
2377 *
2378 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2379 * this function can be used to verify that checksum on received
2380 * packets. In that case the function should return zero if the
2381 * checksum is correct. In particular, this function will return zero
2382 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2383 * hardware has already verified the correctness of the checksum.
2384 */
2385 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2386 {
2387 return skb_csum_unnecessary(skb) ?
2388 0 : __skb_checksum_complete(skb);
2389 }
2390
2391 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2392 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2393 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2394 {
2395 if (nfct && atomic_dec_and_test(&nfct->use))
2396 nf_conntrack_destroy(nfct);
2397 }
2398 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2399 {
2400 if (nfct)
2401 atomic_inc(&nfct->use);
2402 }
2403 #endif
2404 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2405 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2406 {
2407 if (skb)
2408 atomic_inc(&skb->users);
2409 }
2410 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2411 {
2412 if (skb)
2413 kfree_skb(skb);
2414 }
2415 #endif
2416 #ifdef CONFIG_BRIDGE_NETFILTER
2417 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2418 {
2419 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2420 kfree(nf_bridge);
2421 }
2422 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2423 {
2424 if (nf_bridge)
2425 atomic_inc(&nf_bridge->use);
2426 }
2427 #endif /* CONFIG_BRIDGE_NETFILTER */
2428 static inline void nf_reset(struct sk_buff *skb)
2429 {
2430 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2431 nf_conntrack_put(skb->nfct);
2432 skb->nfct = NULL;
2433 #endif
2434 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2435 nf_conntrack_put_reasm(skb->nfct_reasm);
2436 skb->nfct_reasm = NULL;
2437 #endif
2438 #ifdef CONFIG_BRIDGE_NETFILTER
2439 nf_bridge_put(skb->nf_bridge);
2440 skb->nf_bridge = NULL;
2441 #endif
2442 }
2443
2444 /* Note: This doesn't put any conntrack and bridge info in dst. */
2445 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2446 {
2447 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2448 dst->nfct = src->nfct;
2449 nf_conntrack_get(src->nfct);
2450 dst->nfctinfo = src->nfctinfo;
2451 #endif
2452 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2453 dst->nfct_reasm = src->nfct_reasm;
2454 nf_conntrack_get_reasm(src->nfct_reasm);
2455 #endif
2456 #ifdef CONFIG_BRIDGE_NETFILTER
2457 dst->nf_bridge = src->nf_bridge;
2458 nf_bridge_get(src->nf_bridge);
2459 #endif
2460 }
2461
2462 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2463 {
2464 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2465 nf_conntrack_put(dst->nfct);
2466 #endif
2467 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2468 nf_conntrack_put_reasm(dst->nfct_reasm);
2469 #endif
2470 #ifdef CONFIG_BRIDGE_NETFILTER
2471 nf_bridge_put(dst->nf_bridge);
2472 #endif
2473 __nf_copy(dst, src);
2474 }
2475
2476 #ifdef CONFIG_NETWORK_SECMARK
2477 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2478 {
2479 to->secmark = from->secmark;
2480 }
2481
2482 static inline void skb_init_secmark(struct sk_buff *skb)
2483 {
2484 skb->secmark = 0;
2485 }
2486 #else
2487 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2488 { }
2489
2490 static inline void skb_init_secmark(struct sk_buff *skb)
2491 { }
2492 #endif
2493
2494 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2495 {
2496 skb->queue_mapping = queue_mapping;
2497 }
2498
2499 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2500 {
2501 return skb->queue_mapping;
2502 }
2503
2504 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2505 {
2506 to->queue_mapping = from->queue_mapping;
2507 }
2508
2509 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2510 {
2511 skb->queue_mapping = rx_queue + 1;
2512 }
2513
2514 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2515 {
2516 return skb->queue_mapping - 1;
2517 }
2518
2519 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2520 {
2521 return skb->queue_mapping != 0;
2522 }
2523
2524 extern u16 __skb_tx_hash(const struct net_device *dev,
2525 const struct sk_buff *skb,
2526 unsigned int num_tx_queues);
2527
2528 #ifdef CONFIG_XFRM
2529 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2530 {
2531 return skb->sp;
2532 }
2533 #else
2534 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2535 {
2536 return NULL;
2537 }
2538 #endif
2539
2540 static inline bool skb_is_gso(const struct sk_buff *skb)
2541 {
2542 return skb_shinfo(skb)->gso_size;
2543 }
2544
2545 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2546 {
2547 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2548 }
2549
2550 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2551
2552 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2553 {
2554 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2555 * wanted then gso_type will be set. */
2556 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2557
2558 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2559 unlikely(shinfo->gso_type == 0)) {
2560 __skb_warn_lro_forwarding(skb);
2561 return true;
2562 }
2563 return false;
2564 }
2565
2566 static inline void skb_forward_csum(struct sk_buff *skb)
2567 {
2568 /* Unfortunately we don't support this one. Any brave souls? */
2569 if (skb->ip_summed == CHECKSUM_COMPLETE)
2570 skb->ip_summed = CHECKSUM_NONE;
2571 }
2572
2573 /**
2574 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2575 * @skb: skb to check
2576 *
2577 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2578 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2579 * use this helper, to document places where we make this assertion.
2580 */
2581 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2582 {
2583 #ifdef DEBUG
2584 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2585 #endif
2586 }
2587
2588 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2589
2590 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2591 {
2592 if (irqs_disabled())
2593 return false;
2594
2595 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2596 return false;
2597
2598 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2599 return false;
2600
2601 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2602 if (skb_end_offset(skb) < skb_size)
2603 return false;
2604
2605 if (skb_shared(skb) || skb_cloned(skb))
2606 return false;
2607
2608 return true;
2609 }
2610
2611 /**
2612 * skb_head_is_locked - Determine if the skb->head is locked down
2613 * @skb: skb to check
2614 *
2615 * The head on skbs build around a head frag can be removed if they are
2616 * not cloned. This function returns true if the skb head is locked down
2617 * due to either being allocated via kmalloc, or by being a clone with
2618 * multiple references to the head.
2619 */
2620 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2621 {
2622 return !skb->head_frag || skb_cloned(skb);
2623 }
2624 #endif /* __KERNEL__ */
2625 #endif /* _LINUX_SKBUFF_H */