]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/skbuff.h
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-kernels.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 atomic_t use;
253 };
254 #endif
255
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 enum {
259 BRNF_PROTO_UNCHANGED,
260 BRNF_PROTO_8021Q,
261 BRNF_PROTO_PPPOE
262 } orig_proto:8;
263 u8 pkt_otherhost:1;
264 u8 in_prerouting:1;
265 u8 bridged_dnat:1;
266 __u16 frag_max_size;
267 struct net_device *physindev;
268
269 /* always valid & non-NULL from FORWARD on, for physdev match */
270 struct net_device *physoutdev;
271 union {
272 /* prerouting: detect dnat in orig/reply direction */
273 __be32 ipv4_daddr;
274 struct in6_addr ipv6_daddr;
275
276 /* after prerouting + nat detected: store original source
277 * mac since neigh resolution overwrites it, only used while
278 * skb is out in neigh layer.
279 */
280 char neigh_header[8];
281 };
282 };
283 #endif
284
285 struct sk_buff_head {
286 /* These two members must be first. */
287 struct sk_buff *next;
288 struct sk_buff *prev;
289
290 __u32 qlen;
291 spinlock_t lock;
292 };
293
294 struct sk_buff;
295
296 /* To allow 64K frame to be packed as single skb without frag_list we
297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298 * buffers which do not start on a page boundary.
299 *
300 * Since GRO uses frags we allocate at least 16 regardless of page
301 * size.
302 */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311 * segment using its current segmentation instead.
312 */
313 #define GSO_BY_FRAGS 0xFFFF
314
315 typedef struct skb_frag_struct skb_frag_t;
316
317 struct skb_frag_struct {
318 struct {
319 struct page *p;
320 } page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 __u32 page_offset;
323 __u32 size;
324 #else
325 __u16 page_offset;
326 __u16 size;
327 #endif
328 };
329
330 /**
331 * skb_frag_size - Returns the size of a skb fragment
332 * @frag: skb fragment
333 */
334 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
335 {
336 return frag->size;
337 }
338
339 /**
340 * skb_frag_size_set - Sets the size of a skb fragment
341 * @frag: skb fragment
342 * @size: size of fragment
343 */
344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
345 {
346 frag->size = size;
347 }
348
349 /**
350 * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
351 * @frag: skb fragment
352 * @delta: value to add
353 */
354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
355 {
356 frag->size += delta;
357 }
358
359 /**
360 * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
361 * @frag: skb fragment
362 * @delta: value to subtract
363 */
364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
365 {
366 frag->size -= delta;
367 }
368
369 /**
370 * skb_frag_must_loop - Test if %p is a high memory page
371 * @p: fragment's page
372 */
373 static inline bool skb_frag_must_loop(struct page *p)
374 {
375 #if defined(CONFIG_HIGHMEM)
376 if (PageHighMem(p))
377 return true;
378 #endif
379 return false;
380 }
381
382 /**
383 * skb_frag_foreach_page - loop over pages in a fragment
384 *
385 * @f: skb frag to operate on
386 * @f_off: offset from start of f->page.p
387 * @f_len: length from f_off to loop over
388 * @p: (temp var) current page
389 * @p_off: (temp var) offset from start of current page,
390 * non-zero only on first page.
391 * @p_len: (temp var) length in current page,
392 * < PAGE_SIZE only on first and last page.
393 * @copied: (temp var) length so far, excluding current p_len.
394 *
395 * A fragment can hold a compound page, in which case per-page
396 * operations, notably kmap_atomic, must be called for each
397 * regular page.
398 */
399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
400 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
401 p_off = (f_off) & (PAGE_SIZE - 1), \
402 p_len = skb_frag_must_loop(p) ? \
403 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
404 copied = 0; \
405 copied < f_len; \
406 copied += p_len, p++, p_off = 0, \
407 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
408
409 #define HAVE_HW_TIME_STAMP
410
411 /**
412 * struct skb_shared_hwtstamps - hardware time stamps
413 * @hwtstamp: hardware time stamp transformed into duration
414 * since arbitrary point in time
415 *
416 * Software time stamps generated by ktime_get_real() are stored in
417 * skb->tstamp.
418 *
419 * hwtstamps can only be compared against other hwtstamps from
420 * the same device.
421 *
422 * This structure is attached to packets as part of the
423 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
424 */
425 struct skb_shared_hwtstamps {
426 ktime_t hwtstamp;
427 };
428
429 /* Definitions for tx_flags in struct skb_shared_info */
430 enum {
431 /* generate hardware time stamp */
432 SKBTX_HW_TSTAMP = 1 << 0,
433
434 /* generate software time stamp when queueing packet to NIC */
435 SKBTX_SW_TSTAMP = 1 << 1,
436
437 /* device driver is going to provide hardware time stamp */
438 SKBTX_IN_PROGRESS = 1 << 2,
439
440 /* device driver supports TX zero-copy buffers */
441 SKBTX_DEV_ZEROCOPY = 1 << 3,
442
443 /* generate wifi status information (where possible) */
444 SKBTX_WIFI_STATUS = 1 << 4,
445
446 /* This indicates at least one fragment might be overwritten
447 * (as in vmsplice(), sendfile() ...)
448 * If we need to compute a TX checksum, we'll need to copy
449 * all frags to avoid possible bad checksum
450 */
451 SKBTX_SHARED_FRAG = 1 << 5,
452
453 /* generate software time stamp when entering packet scheduling */
454 SKBTX_SCHED_TSTAMP = 1 << 6,
455 };
456
457 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
458 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
459 SKBTX_SCHED_TSTAMP)
460 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
461
462 /*
463 * The callback notifies userspace to release buffers when skb DMA is done in
464 * lower device, the skb last reference should be 0 when calling this.
465 * The zerocopy_success argument is true if zero copy transmit occurred,
466 * false on data copy or out of memory error caused by data copy attempt.
467 * The ctx field is used to track device context.
468 * The desc field is used to track userspace buffer index.
469 */
470 struct ubuf_info {
471 void (*callback)(struct ubuf_info *, bool zerocopy_success);
472 union {
473 struct {
474 unsigned long desc;
475 void *ctx;
476 };
477 struct {
478 u32 id;
479 u16 len;
480 u16 zerocopy:1;
481 u32 bytelen;
482 };
483 };
484 refcount_t refcnt;
485
486 struct mmpin {
487 struct user_struct *user;
488 unsigned int num_pg;
489 } mmp;
490 };
491
492 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
493
494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
495 void mm_unaccount_pinned_pages(struct mmpin *mmp);
496
497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
499 struct ubuf_info *uarg);
500
501 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
502 {
503 refcount_inc(&uarg->refcnt);
504 }
505
506 void sock_zerocopy_put(struct ubuf_info *uarg);
507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
508
509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
510
511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
513 struct msghdr *msg, int len,
514 struct ubuf_info *uarg);
515
516 /* This data is invariant across clones and lives at
517 * the end of the header data, ie. at skb->end.
518 */
519 struct skb_shared_info {
520 __u8 __unused;
521 __u8 meta_len;
522 __u8 nr_frags;
523 __u8 tx_flags;
524 unsigned short gso_size;
525 /* Warning: this field is not always filled in (UFO)! */
526 unsigned short gso_segs;
527 struct sk_buff *frag_list;
528 struct skb_shared_hwtstamps hwtstamps;
529 unsigned int gso_type;
530 u32 tskey;
531
532 /*
533 * Warning : all fields before dataref are cleared in __alloc_skb()
534 */
535 atomic_t dataref;
536
537 /* Intermediate layers must ensure that destructor_arg
538 * remains valid until skb destructor */
539 void * destructor_arg;
540
541 /* must be last field, see pskb_expand_head() */
542 skb_frag_t frags[MAX_SKB_FRAGS];
543 };
544
545 /* We divide dataref into two halves. The higher 16 bits hold references
546 * to the payload part of skb->data. The lower 16 bits hold references to
547 * the entire skb->data. A clone of a headerless skb holds the length of
548 * the header in skb->hdr_len.
549 *
550 * All users must obey the rule that the skb->data reference count must be
551 * greater than or equal to the payload reference count.
552 *
553 * Holding a reference to the payload part means that the user does not
554 * care about modifications to the header part of skb->data.
555 */
556 #define SKB_DATAREF_SHIFT 16
557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
558
559
560 enum {
561 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
562 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
563 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
564 };
565
566 enum {
567 SKB_GSO_TCPV4 = 1 << 0,
568
569 /* This indicates the skb is from an untrusted source. */
570 SKB_GSO_DODGY = 1 << 1,
571
572 /* This indicates the tcp segment has CWR set. */
573 SKB_GSO_TCP_ECN = 1 << 2,
574
575 SKB_GSO_TCP_FIXEDID = 1 << 3,
576
577 SKB_GSO_TCPV6 = 1 << 4,
578
579 SKB_GSO_FCOE = 1 << 5,
580
581 SKB_GSO_GRE = 1 << 6,
582
583 SKB_GSO_GRE_CSUM = 1 << 7,
584
585 SKB_GSO_IPXIP4 = 1 << 8,
586
587 SKB_GSO_IPXIP6 = 1 << 9,
588
589 SKB_GSO_UDP_TUNNEL = 1 << 10,
590
591 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
592
593 SKB_GSO_PARTIAL = 1 << 12,
594
595 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
596
597 SKB_GSO_SCTP = 1 << 14,
598
599 SKB_GSO_ESP = 1 << 15,
600
601 SKB_GSO_UDP = 1 << 16,
602
603 SKB_GSO_UDP_L4 = 1 << 17,
604 };
605
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615
616 /**
617 * struct sk_buff - socket buffer
618 * @next: Next buffer in list
619 * @prev: Previous buffer in list
620 * @tstamp: Time we arrived/left
621 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
622 * @sk: Socket we are owned by
623 * @dev: Device we arrived on/are leaving by
624 * @cb: Control buffer. Free for use by every layer. Put private vars here
625 * @_skb_refdst: destination entry (with norefcount bit)
626 * @sp: the security path, used for xfrm
627 * @len: Length of actual data
628 * @data_len: Data length
629 * @mac_len: Length of link layer header
630 * @hdr_len: writable header length of cloned skb
631 * @csum: Checksum (must include start/offset pair)
632 * @csum_start: Offset from skb->head where checksumming should start
633 * @csum_offset: Offset from csum_start where checksum should be stored
634 * @priority: Packet queueing priority
635 * @ignore_df: allow local fragmentation
636 * @cloned: Head may be cloned (check refcnt to be sure)
637 * @ip_summed: Driver fed us an IP checksum
638 * @nohdr: Payload reference only, must not modify header
639 * @pkt_type: Packet class
640 * @fclone: skbuff clone status
641 * @ipvs_property: skbuff is owned by ipvs
642 * @offload_fwd_mark: Packet was L2-forwarded in hardware
643 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
644 * @tc_skip_classify: do not classify packet. set by IFB device
645 * @tc_at_ingress: used within tc_classify to distinguish in/egress
646 * @tc_redirected: packet was redirected by a tc action
647 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
648 * @peeked: this packet has been seen already, so stats have been
649 * done for it, don't do them again
650 * @nf_trace: netfilter packet trace flag
651 * @protocol: Packet protocol from driver
652 * @destructor: Destruct function
653 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
654 * @_nfct: Associated connection, if any (with nfctinfo bits)
655 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
656 * @skb_iif: ifindex of device we arrived on
657 * @tc_index: Traffic control index
658 * @hash: the packet hash
659 * @queue_mapping: Queue mapping for multiqueue devices
660 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
661 * @active_extensions: active extensions (skb_ext_id types)
662 * @ndisc_nodetype: router type (from link layer)
663 * @ooo_okay: allow the mapping of a socket to a queue to be changed
664 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
665 * ports.
666 * @sw_hash: indicates hash was computed in software stack
667 * @wifi_acked_valid: wifi_acked was set
668 * @wifi_acked: whether frame was acked on wifi or not
669 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
670 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
671 * @dst_pending_confirm: need to confirm neighbour
672 * @decrypted: Decrypted SKB
673 * @napi_id: id of the NAPI struct this skb came from
674 * @secmark: security marking
675 * @mark: Generic packet mark
676 * @vlan_proto: vlan encapsulation protocol
677 * @vlan_tci: vlan tag control information
678 * @inner_protocol: Protocol (encapsulation)
679 * @inner_transport_header: Inner transport layer header (encapsulation)
680 * @inner_network_header: Network layer header (encapsulation)
681 * @inner_mac_header: Link layer header (encapsulation)
682 * @transport_header: Transport layer header
683 * @network_header: Network layer header
684 * @mac_header: Link layer header
685 * @tail: Tail pointer
686 * @end: End pointer
687 * @head: Head of buffer
688 * @data: Data head pointer
689 * @truesize: Buffer size
690 * @users: User count - see {datagram,tcp}.c
691 * @extensions: allocated extensions, valid if active_extensions is nonzero
692 */
693
694 struct sk_buff {
695 union {
696 struct {
697 /* These two members must be first. */
698 struct sk_buff *next;
699 struct sk_buff *prev;
700
701 union {
702 struct net_device *dev;
703 /* Some protocols might use this space to store information,
704 * while device pointer would be NULL.
705 * UDP receive path is one user.
706 */
707 unsigned long dev_scratch;
708 };
709 };
710 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
711 struct list_head list;
712 };
713
714 union {
715 struct sock *sk;
716 int ip_defrag_offset;
717 };
718
719 union {
720 ktime_t tstamp;
721 u64 skb_mstamp_ns; /* earliest departure time */
722 };
723 /*
724 * This is the control buffer. It is free to use for every
725 * layer. Please put your private variables there. If you
726 * want to keep them across layers you have to do a skb_clone()
727 * first. This is owned by whoever has the skb queued ATM.
728 */
729 char cb[48] __aligned(8);
730
731 union {
732 struct {
733 unsigned long _skb_refdst;
734 void (*destructor)(struct sk_buff *skb);
735 };
736 struct list_head tcp_tsorted_anchor;
737 };
738
739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
740 unsigned long _nfct;
741 #endif
742 unsigned int len,
743 data_len;
744 __u16 mac_len,
745 hdr_len;
746
747 /* Following fields are _not_ copied in __copy_skb_header()
748 * Note that queue_mapping is here mostly to fill a hole.
749 */
750 __u16 queue_mapping;
751
752 /* if you move cloned around you also must adapt those constants */
753 #ifdef __BIG_ENDIAN_BITFIELD
754 #define CLONED_MASK (1 << 7)
755 #else
756 #define CLONED_MASK 1
757 #endif
758 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
759
760 __u8 __cloned_offset[0];
761 __u8 cloned:1,
762 nohdr:1,
763 fclone:2,
764 peeked:1,
765 head_frag:1,
766 pfmemalloc:1;
767 #ifdef CONFIG_SKB_EXTENSIONS
768 __u8 active_extensions;
769 #endif
770 /* fields enclosed in headers_start/headers_end are copied
771 * using a single memcpy() in __copy_skb_header()
772 */
773 /* private: */
774 __u32 headers_start[0];
775 /* public: */
776
777 /* if you move pkt_type around you also must adapt those constants */
778 #ifdef __BIG_ENDIAN_BITFIELD
779 #define PKT_TYPE_MAX (7 << 5)
780 #else
781 #define PKT_TYPE_MAX 7
782 #endif
783 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
784
785 __u8 __pkt_type_offset[0];
786 __u8 pkt_type:3;
787 __u8 ignore_df:1;
788 __u8 nf_trace:1;
789 __u8 ip_summed:2;
790 __u8 ooo_okay:1;
791
792 __u8 l4_hash:1;
793 __u8 sw_hash:1;
794 __u8 wifi_acked_valid:1;
795 __u8 wifi_acked:1;
796 __u8 no_fcs:1;
797 /* Indicates the inner headers are valid in the skbuff. */
798 __u8 encapsulation:1;
799 __u8 encap_hdr_csum:1;
800 __u8 csum_valid:1;
801
802 #ifdef __BIG_ENDIAN_BITFIELD
803 #define PKT_VLAN_PRESENT_BIT 7
804 #else
805 #define PKT_VLAN_PRESENT_BIT 0
806 #endif
807 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
808 __u8 __pkt_vlan_present_offset[0];
809 __u8 vlan_present:1;
810 __u8 csum_complete_sw:1;
811 __u8 csum_level:2;
812 __u8 csum_not_inet:1;
813 __u8 dst_pending_confirm:1;
814 #ifdef CONFIG_IPV6_NDISC_NODETYPE
815 __u8 ndisc_nodetype:2;
816 #endif
817
818 __u8 ipvs_property:1;
819 __u8 inner_protocol_type:1;
820 __u8 remcsum_offload:1;
821 #ifdef CONFIG_NET_SWITCHDEV
822 __u8 offload_fwd_mark:1;
823 __u8 offload_l3_fwd_mark:1;
824 #endif
825 #ifdef CONFIG_NET_CLS_ACT
826 __u8 tc_skip_classify:1;
827 __u8 tc_at_ingress:1;
828 __u8 tc_redirected:1;
829 __u8 tc_from_ingress:1;
830 #endif
831 #ifdef CONFIG_TLS_DEVICE
832 __u8 decrypted:1;
833 #endif
834
835 #ifdef CONFIG_NET_SCHED
836 __u16 tc_index; /* traffic control index */
837 #endif
838
839 union {
840 __wsum csum;
841 struct {
842 __u16 csum_start;
843 __u16 csum_offset;
844 };
845 };
846 __u32 priority;
847 int skb_iif;
848 __u32 hash;
849 __be16 vlan_proto;
850 __u16 vlan_tci;
851 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
852 union {
853 unsigned int napi_id;
854 unsigned int sender_cpu;
855 };
856 #endif
857 #ifdef CONFIG_NETWORK_SECMARK
858 __u32 secmark;
859 #endif
860
861 union {
862 __u32 mark;
863 __u32 reserved_tailroom;
864 };
865
866 union {
867 __be16 inner_protocol;
868 __u8 inner_ipproto;
869 };
870
871 __u16 inner_transport_header;
872 __u16 inner_network_header;
873 __u16 inner_mac_header;
874
875 __be16 protocol;
876 __u16 transport_header;
877 __u16 network_header;
878 __u16 mac_header;
879
880 /* private: */
881 __u32 headers_end[0];
882 /* public: */
883
884 /* These elements must be at the end, see alloc_skb() for details. */
885 sk_buff_data_t tail;
886 sk_buff_data_t end;
887 unsigned char *head,
888 *data;
889 unsigned int truesize;
890 refcount_t users;
891
892 #ifdef CONFIG_SKB_EXTENSIONS
893 /* only useable after checking ->active_extensions != 0 */
894 struct skb_ext *extensions;
895 #endif
896 };
897
898 #ifdef __KERNEL__
899 /*
900 * Handling routines are only of interest to the kernel
901 */
902
903 #define SKB_ALLOC_FCLONE 0x01
904 #define SKB_ALLOC_RX 0x02
905 #define SKB_ALLOC_NAPI 0x04
906
907 /**
908 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
909 * @skb: buffer
910 */
911 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
912 {
913 return unlikely(skb->pfmemalloc);
914 }
915
916 /*
917 * skb might have a dst pointer attached, refcounted or not.
918 * _skb_refdst low order bit is set if refcount was _not_ taken
919 */
920 #define SKB_DST_NOREF 1UL
921 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
922
923 #define SKB_NFCT_PTRMASK ~(7UL)
924 /**
925 * skb_dst - returns skb dst_entry
926 * @skb: buffer
927 *
928 * Returns skb dst_entry, regardless of reference taken or not.
929 */
930 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
931 {
932 /* If refdst was not refcounted, check we still are in a
933 * rcu_read_lock section
934 */
935 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
936 !rcu_read_lock_held() &&
937 !rcu_read_lock_bh_held());
938 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
939 }
940
941 /**
942 * skb_dst_set - sets skb dst
943 * @skb: buffer
944 * @dst: dst entry
945 *
946 * Sets skb dst, assuming a reference was taken on dst and should
947 * be released by skb_dst_drop()
948 */
949 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
950 {
951 skb->_skb_refdst = (unsigned long)dst;
952 }
953
954 /**
955 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
956 * @skb: buffer
957 * @dst: dst entry
958 *
959 * Sets skb dst, assuming a reference was not taken on dst.
960 * If dst entry is cached, we do not take reference and dst_release
961 * will be avoided by refdst_drop. If dst entry is not cached, we take
962 * reference, so that last dst_release can destroy the dst immediately.
963 */
964 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
965 {
966 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
967 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
968 }
969
970 /**
971 * skb_dst_is_noref - Test if skb dst isn't refcounted
972 * @skb: buffer
973 */
974 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
975 {
976 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
977 }
978
979 /**
980 * skb_rtable - Returns the skb &rtable
981 * @skb: buffer
982 */
983 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
984 {
985 return (struct rtable *)skb_dst(skb);
986 }
987
988 /* For mangling skb->pkt_type from user space side from applications
989 * such as nft, tc, etc, we only allow a conservative subset of
990 * possible pkt_types to be set.
991 */
992 static inline bool skb_pkt_type_ok(u32 ptype)
993 {
994 return ptype <= PACKET_OTHERHOST;
995 }
996
997 /**
998 * skb_napi_id - Returns the skb's NAPI id
999 * @skb: buffer
1000 */
1001 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1002 {
1003 #ifdef CONFIG_NET_RX_BUSY_POLL
1004 return skb->napi_id;
1005 #else
1006 return 0;
1007 #endif
1008 }
1009
1010 /**
1011 * skb_unref - decrement the skb's reference count
1012 * @skb: buffer
1013 *
1014 * Returns true if we can free the skb.
1015 */
1016 static inline bool skb_unref(struct sk_buff *skb)
1017 {
1018 if (unlikely(!skb))
1019 return false;
1020 if (likely(refcount_read(&skb->users) == 1))
1021 smp_rmb();
1022 else if (likely(!refcount_dec_and_test(&skb->users)))
1023 return false;
1024
1025 return true;
1026 }
1027
1028 void skb_release_head_state(struct sk_buff *skb);
1029 void kfree_skb(struct sk_buff *skb);
1030 void kfree_skb_list(struct sk_buff *segs);
1031 void skb_tx_error(struct sk_buff *skb);
1032 void consume_skb(struct sk_buff *skb);
1033 void __consume_stateless_skb(struct sk_buff *skb);
1034 void __kfree_skb(struct sk_buff *skb);
1035 extern struct kmem_cache *skbuff_head_cache;
1036
1037 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1038 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1039 bool *fragstolen, int *delta_truesize);
1040
1041 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1042 int node);
1043 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1044 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1045 struct sk_buff *build_skb_around(struct sk_buff *skb,
1046 void *data, unsigned int frag_size);
1047
1048 /**
1049 * alloc_skb - allocate a network buffer
1050 * @size: size to allocate
1051 * @priority: allocation mask
1052 *
1053 * This function is a convenient wrapper around __alloc_skb().
1054 */
1055 static inline struct sk_buff *alloc_skb(unsigned int size,
1056 gfp_t priority)
1057 {
1058 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1059 }
1060
1061 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1062 unsigned long data_len,
1063 int max_page_order,
1064 int *errcode,
1065 gfp_t gfp_mask);
1066
1067 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1068 struct sk_buff_fclones {
1069 struct sk_buff skb1;
1070
1071 struct sk_buff skb2;
1072
1073 refcount_t fclone_ref;
1074 };
1075
1076 /**
1077 * skb_fclone_busy - check if fclone is busy
1078 * @sk: socket
1079 * @skb: buffer
1080 *
1081 * Returns true if skb is a fast clone, and its clone is not freed.
1082 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1083 * so we also check that this didnt happen.
1084 */
1085 static inline bool skb_fclone_busy(const struct sock *sk,
1086 const struct sk_buff *skb)
1087 {
1088 const struct sk_buff_fclones *fclones;
1089
1090 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1091
1092 return skb->fclone == SKB_FCLONE_ORIG &&
1093 refcount_read(&fclones->fclone_ref) > 1 &&
1094 fclones->skb2.sk == sk;
1095 }
1096
1097 /**
1098 * alloc_skb_fclone - allocate a network buffer from fclone cache
1099 * @size: size to allocate
1100 * @priority: allocation mask
1101 *
1102 * This function is a convenient wrapper around __alloc_skb().
1103 */
1104 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1105 gfp_t priority)
1106 {
1107 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1108 }
1109
1110 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1111 void skb_headers_offset_update(struct sk_buff *skb, int off);
1112 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1113 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1114 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1115 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1116 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1117 gfp_t gfp_mask, bool fclone);
1118 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1119 gfp_t gfp_mask)
1120 {
1121 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1122 }
1123
1124 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1125 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1126 unsigned int headroom);
1127 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1128 int newtailroom, gfp_t priority);
1129 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1130 int offset, int len);
1131 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1132 int offset, int len);
1133 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1134 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1135
1136 /**
1137 * skb_pad - zero pad the tail of an skb
1138 * @skb: buffer to pad
1139 * @pad: space to pad
1140 *
1141 * Ensure that a buffer is followed by a padding area that is zero
1142 * filled. Used by network drivers which may DMA or transfer data
1143 * beyond the buffer end onto the wire.
1144 *
1145 * May return error in out of memory cases. The skb is freed on error.
1146 */
1147 static inline int skb_pad(struct sk_buff *skb, int pad)
1148 {
1149 return __skb_pad(skb, pad, true);
1150 }
1151 #define dev_kfree_skb(a) consume_skb(a)
1152
1153 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1154 int offset, size_t size);
1155
1156 struct skb_seq_state {
1157 __u32 lower_offset;
1158 __u32 upper_offset;
1159 __u32 frag_idx;
1160 __u32 stepped_offset;
1161 struct sk_buff *root_skb;
1162 struct sk_buff *cur_skb;
1163 __u8 *frag_data;
1164 };
1165
1166 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1167 unsigned int to, struct skb_seq_state *st);
1168 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1169 struct skb_seq_state *st);
1170 void skb_abort_seq_read(struct skb_seq_state *st);
1171
1172 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1173 unsigned int to, struct ts_config *config);
1174
1175 /*
1176 * Packet hash types specify the type of hash in skb_set_hash.
1177 *
1178 * Hash types refer to the protocol layer addresses which are used to
1179 * construct a packet's hash. The hashes are used to differentiate or identify
1180 * flows of the protocol layer for the hash type. Hash types are either
1181 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1182 *
1183 * Properties of hashes:
1184 *
1185 * 1) Two packets in different flows have different hash values
1186 * 2) Two packets in the same flow should have the same hash value
1187 *
1188 * A hash at a higher layer is considered to be more specific. A driver should
1189 * set the most specific hash possible.
1190 *
1191 * A driver cannot indicate a more specific hash than the layer at which a hash
1192 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1193 *
1194 * A driver may indicate a hash level which is less specific than the
1195 * actual layer the hash was computed on. For instance, a hash computed
1196 * at L4 may be considered an L3 hash. This should only be done if the
1197 * driver can't unambiguously determine that the HW computed the hash at
1198 * the higher layer. Note that the "should" in the second property above
1199 * permits this.
1200 */
1201 enum pkt_hash_types {
1202 PKT_HASH_TYPE_NONE, /* Undefined type */
1203 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1204 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1205 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1206 };
1207
1208 static inline void skb_clear_hash(struct sk_buff *skb)
1209 {
1210 skb->hash = 0;
1211 skb->sw_hash = 0;
1212 skb->l4_hash = 0;
1213 }
1214
1215 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1216 {
1217 if (!skb->l4_hash)
1218 skb_clear_hash(skb);
1219 }
1220
1221 static inline void
1222 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1223 {
1224 skb->l4_hash = is_l4;
1225 skb->sw_hash = is_sw;
1226 skb->hash = hash;
1227 }
1228
1229 static inline void
1230 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1231 {
1232 /* Used by drivers to set hash from HW */
1233 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1234 }
1235
1236 static inline void
1237 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1238 {
1239 __skb_set_hash(skb, hash, true, is_l4);
1240 }
1241
1242 void __skb_get_hash(struct sk_buff *skb);
1243 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1244 u32 skb_get_poff(const struct sk_buff *skb);
1245 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1246 const struct flow_keys_basic *keys, int hlen);
1247 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1248 void *data, int hlen_proto);
1249
1250 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1251 int thoff, u8 ip_proto)
1252 {
1253 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1254 }
1255
1256 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1257 const struct flow_dissector_key *key,
1258 unsigned int key_count);
1259
1260 #ifdef CONFIG_NET
1261 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1262 union bpf_attr __user *uattr);
1263 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1264 struct bpf_prog *prog);
1265
1266 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1267 #else
1268 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1269 union bpf_attr __user *uattr)
1270 {
1271 return -EOPNOTSUPP;
1272 }
1273
1274 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1275 struct bpf_prog *prog)
1276 {
1277 return -EOPNOTSUPP;
1278 }
1279
1280 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1281 {
1282 return -EOPNOTSUPP;
1283 }
1284 #endif
1285
1286 struct bpf_flow_dissector;
1287 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1288 __be16 proto, int nhoff, int hlen);
1289
1290 bool __skb_flow_dissect(const struct net *net,
1291 const struct sk_buff *skb,
1292 struct flow_dissector *flow_dissector,
1293 void *target_container,
1294 void *data, __be16 proto, int nhoff, int hlen,
1295 unsigned int flags);
1296
1297 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1298 struct flow_dissector *flow_dissector,
1299 void *target_container, unsigned int flags)
1300 {
1301 return __skb_flow_dissect(NULL, skb, flow_dissector,
1302 target_container, NULL, 0, 0, 0, flags);
1303 }
1304
1305 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1306 struct flow_keys *flow,
1307 unsigned int flags)
1308 {
1309 memset(flow, 0, sizeof(*flow));
1310 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1311 flow, NULL, 0, 0, 0, flags);
1312 }
1313
1314 static inline bool
1315 skb_flow_dissect_flow_keys_basic(const struct net *net,
1316 const struct sk_buff *skb,
1317 struct flow_keys_basic *flow, void *data,
1318 __be16 proto, int nhoff, int hlen,
1319 unsigned int flags)
1320 {
1321 memset(flow, 0, sizeof(*flow));
1322 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1323 data, proto, nhoff, hlen, flags);
1324 }
1325
1326 void
1327 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1328 struct flow_dissector *flow_dissector,
1329 void *target_container);
1330
1331 static inline __u32 skb_get_hash(struct sk_buff *skb)
1332 {
1333 if (!skb->l4_hash && !skb->sw_hash)
1334 __skb_get_hash(skb);
1335
1336 return skb->hash;
1337 }
1338
1339 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1340 {
1341 if (!skb->l4_hash && !skb->sw_hash) {
1342 struct flow_keys keys;
1343 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1344
1345 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1346 }
1347
1348 return skb->hash;
1349 }
1350
1351 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1352
1353 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1354 {
1355 return skb->hash;
1356 }
1357
1358 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1359 {
1360 to->hash = from->hash;
1361 to->sw_hash = from->sw_hash;
1362 to->l4_hash = from->l4_hash;
1363 };
1364
1365 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1366 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1367 {
1368 return skb->head + skb->end;
1369 }
1370
1371 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1372 {
1373 return skb->end;
1374 }
1375 #else
1376 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1377 {
1378 return skb->end;
1379 }
1380
1381 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1382 {
1383 return skb->end - skb->head;
1384 }
1385 #endif
1386
1387 /* Internal */
1388 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1389
1390 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1391 {
1392 return &skb_shinfo(skb)->hwtstamps;
1393 }
1394
1395 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1396 {
1397 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1398
1399 return is_zcopy ? skb_uarg(skb) : NULL;
1400 }
1401
1402 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1403 bool *have_ref)
1404 {
1405 if (skb && uarg && !skb_zcopy(skb)) {
1406 if (unlikely(have_ref && *have_ref))
1407 *have_ref = false;
1408 else
1409 sock_zerocopy_get(uarg);
1410 skb_shinfo(skb)->destructor_arg = uarg;
1411 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1412 }
1413 }
1414
1415 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1416 {
1417 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1418 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1419 }
1420
1421 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1422 {
1423 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1424 }
1425
1426 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1427 {
1428 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1429 }
1430
1431 /* Release a reference on a zerocopy structure */
1432 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1433 {
1434 struct ubuf_info *uarg = skb_zcopy(skb);
1435
1436 if (uarg) {
1437 if (skb_zcopy_is_nouarg(skb)) {
1438 /* no notification callback */
1439 } else if (uarg->callback == sock_zerocopy_callback) {
1440 uarg->zerocopy = uarg->zerocopy && zerocopy;
1441 sock_zerocopy_put(uarg);
1442 } else {
1443 uarg->callback(uarg, zerocopy);
1444 }
1445
1446 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1447 }
1448 }
1449
1450 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1451 static inline void skb_zcopy_abort(struct sk_buff *skb)
1452 {
1453 struct ubuf_info *uarg = skb_zcopy(skb);
1454
1455 if (uarg) {
1456 sock_zerocopy_put_abort(uarg, false);
1457 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1458 }
1459 }
1460
1461 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1462 {
1463 skb->next = NULL;
1464 }
1465
1466 static inline void skb_list_del_init(struct sk_buff *skb)
1467 {
1468 __list_del_entry(&skb->list);
1469 skb_mark_not_on_list(skb);
1470 }
1471
1472 /**
1473 * skb_queue_empty - check if a queue is empty
1474 * @list: queue head
1475 *
1476 * Returns true if the queue is empty, false otherwise.
1477 */
1478 static inline int skb_queue_empty(const struct sk_buff_head *list)
1479 {
1480 return list->next == (const struct sk_buff *) list;
1481 }
1482
1483 /**
1484 * skb_queue_is_last - check if skb is the last entry in the queue
1485 * @list: queue head
1486 * @skb: buffer
1487 *
1488 * Returns true if @skb is the last buffer on the list.
1489 */
1490 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1491 const struct sk_buff *skb)
1492 {
1493 return skb->next == (const struct sk_buff *) list;
1494 }
1495
1496 /**
1497 * skb_queue_is_first - check if skb is the first entry in the queue
1498 * @list: queue head
1499 * @skb: buffer
1500 *
1501 * Returns true if @skb is the first buffer on the list.
1502 */
1503 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1504 const struct sk_buff *skb)
1505 {
1506 return skb->prev == (const struct sk_buff *) list;
1507 }
1508
1509 /**
1510 * skb_queue_next - return the next packet in the queue
1511 * @list: queue head
1512 * @skb: current buffer
1513 *
1514 * Return the next packet in @list after @skb. It is only valid to
1515 * call this if skb_queue_is_last() evaluates to false.
1516 */
1517 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1518 const struct sk_buff *skb)
1519 {
1520 /* This BUG_ON may seem severe, but if we just return then we
1521 * are going to dereference garbage.
1522 */
1523 BUG_ON(skb_queue_is_last(list, skb));
1524 return skb->next;
1525 }
1526
1527 /**
1528 * skb_queue_prev - return the prev packet in the queue
1529 * @list: queue head
1530 * @skb: current buffer
1531 *
1532 * Return the prev packet in @list before @skb. It is only valid to
1533 * call this if skb_queue_is_first() evaluates to false.
1534 */
1535 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1536 const struct sk_buff *skb)
1537 {
1538 /* This BUG_ON may seem severe, but if we just return then we
1539 * are going to dereference garbage.
1540 */
1541 BUG_ON(skb_queue_is_first(list, skb));
1542 return skb->prev;
1543 }
1544
1545 /**
1546 * skb_get - reference buffer
1547 * @skb: buffer to reference
1548 *
1549 * Makes another reference to a socket buffer and returns a pointer
1550 * to the buffer.
1551 */
1552 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1553 {
1554 refcount_inc(&skb->users);
1555 return skb;
1556 }
1557
1558 /*
1559 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1560 */
1561
1562 /**
1563 * skb_cloned - is the buffer a clone
1564 * @skb: buffer to check
1565 *
1566 * Returns true if the buffer was generated with skb_clone() and is
1567 * one of multiple shared copies of the buffer. Cloned buffers are
1568 * shared data so must not be written to under normal circumstances.
1569 */
1570 static inline int skb_cloned(const struct sk_buff *skb)
1571 {
1572 return skb->cloned &&
1573 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1574 }
1575
1576 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1577 {
1578 might_sleep_if(gfpflags_allow_blocking(pri));
1579
1580 if (skb_cloned(skb))
1581 return pskb_expand_head(skb, 0, 0, pri);
1582
1583 return 0;
1584 }
1585
1586 /**
1587 * skb_header_cloned - is the header a clone
1588 * @skb: buffer to check
1589 *
1590 * Returns true if modifying the header part of the buffer requires
1591 * the data to be copied.
1592 */
1593 static inline int skb_header_cloned(const struct sk_buff *skb)
1594 {
1595 int dataref;
1596
1597 if (!skb->cloned)
1598 return 0;
1599
1600 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1601 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1602 return dataref != 1;
1603 }
1604
1605 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1606 {
1607 might_sleep_if(gfpflags_allow_blocking(pri));
1608
1609 if (skb_header_cloned(skb))
1610 return pskb_expand_head(skb, 0, 0, pri);
1611
1612 return 0;
1613 }
1614
1615 /**
1616 * __skb_header_release - release reference to header
1617 * @skb: buffer to operate on
1618 */
1619 static inline void __skb_header_release(struct sk_buff *skb)
1620 {
1621 skb->nohdr = 1;
1622 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1623 }
1624
1625
1626 /**
1627 * skb_shared - is the buffer shared
1628 * @skb: buffer to check
1629 *
1630 * Returns true if more than one person has a reference to this
1631 * buffer.
1632 */
1633 static inline int skb_shared(const struct sk_buff *skb)
1634 {
1635 return refcount_read(&skb->users) != 1;
1636 }
1637
1638 /**
1639 * skb_share_check - check if buffer is shared and if so clone it
1640 * @skb: buffer to check
1641 * @pri: priority for memory allocation
1642 *
1643 * If the buffer is shared the buffer is cloned and the old copy
1644 * drops a reference. A new clone with a single reference is returned.
1645 * If the buffer is not shared the original buffer is returned. When
1646 * being called from interrupt status or with spinlocks held pri must
1647 * be GFP_ATOMIC.
1648 *
1649 * NULL is returned on a memory allocation failure.
1650 */
1651 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1652 {
1653 might_sleep_if(gfpflags_allow_blocking(pri));
1654 if (skb_shared(skb)) {
1655 struct sk_buff *nskb = skb_clone(skb, pri);
1656
1657 if (likely(nskb))
1658 consume_skb(skb);
1659 else
1660 kfree_skb(skb);
1661 skb = nskb;
1662 }
1663 return skb;
1664 }
1665
1666 /*
1667 * Copy shared buffers into a new sk_buff. We effectively do COW on
1668 * packets to handle cases where we have a local reader and forward
1669 * and a couple of other messy ones. The normal one is tcpdumping
1670 * a packet thats being forwarded.
1671 */
1672
1673 /**
1674 * skb_unshare - make a copy of a shared buffer
1675 * @skb: buffer to check
1676 * @pri: priority for memory allocation
1677 *
1678 * If the socket buffer is a clone then this function creates a new
1679 * copy of the data, drops a reference count on the old copy and returns
1680 * the new copy with the reference count at 1. If the buffer is not a clone
1681 * the original buffer is returned. When called with a spinlock held or
1682 * from interrupt state @pri must be %GFP_ATOMIC
1683 *
1684 * %NULL is returned on a memory allocation failure.
1685 */
1686 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1687 gfp_t pri)
1688 {
1689 might_sleep_if(gfpflags_allow_blocking(pri));
1690 if (skb_cloned(skb)) {
1691 struct sk_buff *nskb = skb_copy(skb, pri);
1692
1693 /* Free our shared copy */
1694 if (likely(nskb))
1695 consume_skb(skb);
1696 else
1697 kfree_skb(skb);
1698 skb = nskb;
1699 }
1700 return skb;
1701 }
1702
1703 /**
1704 * skb_peek - peek at the head of an &sk_buff_head
1705 * @list_: list to peek at
1706 *
1707 * Peek an &sk_buff. Unlike most other operations you _MUST_
1708 * be careful with this one. A peek leaves the buffer on the
1709 * list and someone else may run off with it. You must hold
1710 * the appropriate locks or have a private queue to do this.
1711 *
1712 * Returns %NULL for an empty list or a pointer to the head element.
1713 * The reference count is not incremented and the reference is therefore
1714 * volatile. Use with caution.
1715 */
1716 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1717 {
1718 struct sk_buff *skb = list_->next;
1719
1720 if (skb == (struct sk_buff *)list_)
1721 skb = NULL;
1722 return skb;
1723 }
1724
1725 /**
1726 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1727 * @list_: list to peek at
1728 *
1729 * Like skb_peek(), but the caller knows that the list is not empty.
1730 */
1731 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1732 {
1733 return list_->next;
1734 }
1735
1736 /**
1737 * skb_peek_next - peek skb following the given one from a queue
1738 * @skb: skb to start from
1739 * @list_: list to peek at
1740 *
1741 * Returns %NULL when the end of the list is met or a pointer to the
1742 * next element. The reference count is not incremented and the
1743 * reference is therefore volatile. Use with caution.
1744 */
1745 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1746 const struct sk_buff_head *list_)
1747 {
1748 struct sk_buff *next = skb->next;
1749
1750 if (next == (struct sk_buff *)list_)
1751 next = NULL;
1752 return next;
1753 }
1754
1755 /**
1756 * skb_peek_tail - peek at the tail of an &sk_buff_head
1757 * @list_: list to peek at
1758 *
1759 * Peek an &sk_buff. Unlike most other operations you _MUST_
1760 * be careful with this one. A peek leaves the buffer on the
1761 * list and someone else may run off with it. You must hold
1762 * the appropriate locks or have a private queue to do this.
1763 *
1764 * Returns %NULL for an empty list or a pointer to the tail element.
1765 * The reference count is not incremented and the reference is therefore
1766 * volatile. Use with caution.
1767 */
1768 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1769 {
1770 struct sk_buff *skb = list_->prev;
1771
1772 if (skb == (struct sk_buff *)list_)
1773 skb = NULL;
1774 return skb;
1775
1776 }
1777
1778 /**
1779 * skb_queue_len - get queue length
1780 * @list_: list to measure
1781 *
1782 * Return the length of an &sk_buff queue.
1783 */
1784 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1785 {
1786 return list_->qlen;
1787 }
1788
1789 /**
1790 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1791 * @list: queue to initialize
1792 *
1793 * This initializes only the list and queue length aspects of
1794 * an sk_buff_head object. This allows to initialize the list
1795 * aspects of an sk_buff_head without reinitializing things like
1796 * the spinlock. It can also be used for on-stack sk_buff_head
1797 * objects where the spinlock is known to not be used.
1798 */
1799 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1800 {
1801 list->prev = list->next = (struct sk_buff *)list;
1802 list->qlen = 0;
1803 }
1804
1805 /*
1806 * This function creates a split out lock class for each invocation;
1807 * this is needed for now since a whole lot of users of the skb-queue
1808 * infrastructure in drivers have different locking usage (in hardirq)
1809 * than the networking core (in softirq only). In the long run either the
1810 * network layer or drivers should need annotation to consolidate the
1811 * main types of usage into 3 classes.
1812 */
1813 static inline void skb_queue_head_init(struct sk_buff_head *list)
1814 {
1815 spin_lock_init(&list->lock);
1816 __skb_queue_head_init(list);
1817 }
1818
1819 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1820 struct lock_class_key *class)
1821 {
1822 skb_queue_head_init(list);
1823 lockdep_set_class(&list->lock, class);
1824 }
1825
1826 /*
1827 * Insert an sk_buff on a list.
1828 *
1829 * The "__skb_xxxx()" functions are the non-atomic ones that
1830 * can only be called with interrupts disabled.
1831 */
1832 static inline void __skb_insert(struct sk_buff *newsk,
1833 struct sk_buff *prev, struct sk_buff *next,
1834 struct sk_buff_head *list)
1835 {
1836 newsk->next = next;
1837 newsk->prev = prev;
1838 next->prev = prev->next = newsk;
1839 list->qlen++;
1840 }
1841
1842 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1843 struct sk_buff *prev,
1844 struct sk_buff *next)
1845 {
1846 struct sk_buff *first = list->next;
1847 struct sk_buff *last = list->prev;
1848
1849 first->prev = prev;
1850 prev->next = first;
1851
1852 last->next = next;
1853 next->prev = last;
1854 }
1855
1856 /**
1857 * skb_queue_splice - join two skb lists, this is designed for stacks
1858 * @list: the new list to add
1859 * @head: the place to add it in the first list
1860 */
1861 static inline void skb_queue_splice(const struct sk_buff_head *list,
1862 struct sk_buff_head *head)
1863 {
1864 if (!skb_queue_empty(list)) {
1865 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1866 head->qlen += list->qlen;
1867 }
1868 }
1869
1870 /**
1871 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1872 * @list: the new list to add
1873 * @head: the place to add it in the first list
1874 *
1875 * The list at @list is reinitialised
1876 */
1877 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1878 struct sk_buff_head *head)
1879 {
1880 if (!skb_queue_empty(list)) {
1881 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1882 head->qlen += list->qlen;
1883 __skb_queue_head_init(list);
1884 }
1885 }
1886
1887 /**
1888 * skb_queue_splice_tail - join two skb lists, each list being a queue
1889 * @list: the new list to add
1890 * @head: the place to add it in the first list
1891 */
1892 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1893 struct sk_buff_head *head)
1894 {
1895 if (!skb_queue_empty(list)) {
1896 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1897 head->qlen += list->qlen;
1898 }
1899 }
1900
1901 /**
1902 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1903 * @list: the new list to add
1904 * @head: the place to add it in the first list
1905 *
1906 * Each of the lists is a queue.
1907 * The list at @list is reinitialised
1908 */
1909 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1910 struct sk_buff_head *head)
1911 {
1912 if (!skb_queue_empty(list)) {
1913 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1914 head->qlen += list->qlen;
1915 __skb_queue_head_init(list);
1916 }
1917 }
1918
1919 /**
1920 * __skb_queue_after - queue a buffer at the list head
1921 * @list: list to use
1922 * @prev: place after this buffer
1923 * @newsk: buffer to queue
1924 *
1925 * Queue a buffer int the middle of a list. This function takes no locks
1926 * and you must therefore hold required locks before calling it.
1927 *
1928 * A buffer cannot be placed on two lists at the same time.
1929 */
1930 static inline void __skb_queue_after(struct sk_buff_head *list,
1931 struct sk_buff *prev,
1932 struct sk_buff *newsk)
1933 {
1934 __skb_insert(newsk, prev, prev->next, list);
1935 }
1936
1937 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1938 struct sk_buff_head *list);
1939
1940 static inline void __skb_queue_before(struct sk_buff_head *list,
1941 struct sk_buff *next,
1942 struct sk_buff *newsk)
1943 {
1944 __skb_insert(newsk, next->prev, next, list);
1945 }
1946
1947 /**
1948 * __skb_queue_head - queue a buffer at the list head
1949 * @list: list to use
1950 * @newsk: buffer to queue
1951 *
1952 * Queue a buffer at the start of a list. This function takes no locks
1953 * and you must therefore hold required locks before calling it.
1954 *
1955 * A buffer cannot be placed on two lists at the same time.
1956 */
1957 static inline void __skb_queue_head(struct sk_buff_head *list,
1958 struct sk_buff *newsk)
1959 {
1960 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1961 }
1962 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1963
1964 /**
1965 * __skb_queue_tail - queue a buffer at the list tail
1966 * @list: list to use
1967 * @newsk: buffer to queue
1968 *
1969 * Queue a buffer at the end of a list. This function takes no locks
1970 * and you must therefore hold required locks before calling it.
1971 *
1972 * A buffer cannot be placed on two lists at the same time.
1973 */
1974 static inline void __skb_queue_tail(struct sk_buff_head *list,
1975 struct sk_buff *newsk)
1976 {
1977 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1978 }
1979 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1980
1981 /*
1982 * remove sk_buff from list. _Must_ be called atomically, and with
1983 * the list known..
1984 */
1985 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1986 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1987 {
1988 struct sk_buff *next, *prev;
1989
1990 list->qlen--;
1991 next = skb->next;
1992 prev = skb->prev;
1993 skb->next = skb->prev = NULL;
1994 next->prev = prev;
1995 prev->next = next;
1996 }
1997
1998 /**
1999 * __skb_dequeue - remove from the head of the queue
2000 * @list: list to dequeue from
2001 *
2002 * Remove the head of the list. This function does not take any locks
2003 * so must be used with appropriate locks held only. The head item is
2004 * returned or %NULL if the list is empty.
2005 */
2006 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2007 {
2008 struct sk_buff *skb = skb_peek(list);
2009 if (skb)
2010 __skb_unlink(skb, list);
2011 return skb;
2012 }
2013 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2014
2015 /**
2016 * __skb_dequeue_tail - remove from the tail of the queue
2017 * @list: list to dequeue from
2018 *
2019 * Remove the tail of the list. This function does not take any locks
2020 * so must be used with appropriate locks held only. The tail item is
2021 * returned or %NULL if the list is empty.
2022 */
2023 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2024 {
2025 struct sk_buff *skb = skb_peek_tail(list);
2026 if (skb)
2027 __skb_unlink(skb, list);
2028 return skb;
2029 }
2030 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2031
2032
2033 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2034 {
2035 return skb->data_len;
2036 }
2037
2038 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2039 {
2040 return skb->len - skb->data_len;
2041 }
2042
2043 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2044 {
2045 unsigned int i, len = 0;
2046
2047 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2048 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2049 return len;
2050 }
2051
2052 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2053 {
2054 return skb_headlen(skb) + __skb_pagelen(skb);
2055 }
2056
2057 /**
2058 * __skb_fill_page_desc - initialise a paged fragment in an skb
2059 * @skb: buffer containing fragment to be initialised
2060 * @i: paged fragment index to initialise
2061 * @page: the page to use for this fragment
2062 * @off: the offset to the data with @page
2063 * @size: the length of the data
2064 *
2065 * Initialises the @i'th fragment of @skb to point to &size bytes at
2066 * offset @off within @page.
2067 *
2068 * Does not take any additional reference on the fragment.
2069 */
2070 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2071 struct page *page, int off, int size)
2072 {
2073 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2074
2075 /*
2076 * Propagate page pfmemalloc to the skb if we can. The problem is
2077 * that not all callers have unique ownership of the page but rely
2078 * on page_is_pfmemalloc doing the right thing(tm).
2079 */
2080 frag->page.p = page;
2081 frag->page_offset = off;
2082 skb_frag_size_set(frag, size);
2083
2084 page = compound_head(page);
2085 if (page_is_pfmemalloc(page))
2086 skb->pfmemalloc = true;
2087 }
2088
2089 /**
2090 * skb_fill_page_desc - initialise a paged fragment in an skb
2091 * @skb: buffer containing fragment to be initialised
2092 * @i: paged fragment index to initialise
2093 * @page: the page to use for this fragment
2094 * @off: the offset to the data with @page
2095 * @size: the length of the data
2096 *
2097 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2098 * @skb to point to @size bytes at offset @off within @page. In
2099 * addition updates @skb such that @i is the last fragment.
2100 *
2101 * Does not take any additional reference on the fragment.
2102 */
2103 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2104 struct page *page, int off, int size)
2105 {
2106 __skb_fill_page_desc(skb, i, page, off, size);
2107 skb_shinfo(skb)->nr_frags = i + 1;
2108 }
2109
2110 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2111 int size, unsigned int truesize);
2112
2113 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2114 unsigned int truesize);
2115
2116 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2117
2118 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2119 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2120 {
2121 return skb->head + skb->tail;
2122 }
2123
2124 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2125 {
2126 skb->tail = skb->data - skb->head;
2127 }
2128
2129 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2130 {
2131 skb_reset_tail_pointer(skb);
2132 skb->tail += offset;
2133 }
2134
2135 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2136 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2137 {
2138 return skb->tail;
2139 }
2140
2141 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2142 {
2143 skb->tail = skb->data;
2144 }
2145
2146 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2147 {
2148 skb->tail = skb->data + offset;
2149 }
2150
2151 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2152
2153 /*
2154 * Add data to an sk_buff
2155 */
2156 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2157 void *skb_put(struct sk_buff *skb, unsigned int len);
2158 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2159 {
2160 void *tmp = skb_tail_pointer(skb);
2161 SKB_LINEAR_ASSERT(skb);
2162 skb->tail += len;
2163 skb->len += len;
2164 return tmp;
2165 }
2166
2167 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2168 {
2169 void *tmp = __skb_put(skb, len);
2170
2171 memset(tmp, 0, len);
2172 return tmp;
2173 }
2174
2175 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2176 unsigned int len)
2177 {
2178 void *tmp = __skb_put(skb, len);
2179
2180 memcpy(tmp, data, len);
2181 return tmp;
2182 }
2183
2184 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2185 {
2186 *(u8 *)__skb_put(skb, 1) = val;
2187 }
2188
2189 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2190 {
2191 void *tmp = skb_put(skb, len);
2192
2193 memset(tmp, 0, len);
2194
2195 return tmp;
2196 }
2197
2198 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2199 unsigned int len)
2200 {
2201 void *tmp = skb_put(skb, len);
2202
2203 memcpy(tmp, data, len);
2204
2205 return tmp;
2206 }
2207
2208 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2209 {
2210 *(u8 *)skb_put(skb, 1) = val;
2211 }
2212
2213 void *skb_push(struct sk_buff *skb, unsigned int len);
2214 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2215 {
2216 skb->data -= len;
2217 skb->len += len;
2218 return skb->data;
2219 }
2220
2221 void *skb_pull(struct sk_buff *skb, unsigned int len);
2222 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2223 {
2224 skb->len -= len;
2225 BUG_ON(skb->len < skb->data_len);
2226 return skb->data += len;
2227 }
2228
2229 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2230 {
2231 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2232 }
2233
2234 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2235
2236 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2237 {
2238 if (len > skb_headlen(skb) &&
2239 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2240 return NULL;
2241 skb->len -= len;
2242 return skb->data += len;
2243 }
2244
2245 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2246 {
2247 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2248 }
2249
2250 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2251 {
2252 if (likely(len <= skb_headlen(skb)))
2253 return 1;
2254 if (unlikely(len > skb->len))
2255 return 0;
2256 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2257 }
2258
2259 void skb_condense(struct sk_buff *skb);
2260
2261 /**
2262 * skb_headroom - bytes at buffer head
2263 * @skb: buffer to check
2264 *
2265 * Return the number of bytes of free space at the head of an &sk_buff.
2266 */
2267 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2268 {
2269 return skb->data - skb->head;
2270 }
2271
2272 /**
2273 * skb_tailroom - bytes at buffer end
2274 * @skb: buffer to check
2275 *
2276 * Return the number of bytes of free space at the tail of an sk_buff
2277 */
2278 static inline int skb_tailroom(const struct sk_buff *skb)
2279 {
2280 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2281 }
2282
2283 /**
2284 * skb_availroom - bytes at buffer end
2285 * @skb: buffer to check
2286 *
2287 * Return the number of bytes of free space at the tail of an sk_buff
2288 * allocated by sk_stream_alloc()
2289 */
2290 static inline int skb_availroom(const struct sk_buff *skb)
2291 {
2292 if (skb_is_nonlinear(skb))
2293 return 0;
2294
2295 return skb->end - skb->tail - skb->reserved_tailroom;
2296 }
2297
2298 /**
2299 * skb_reserve - adjust headroom
2300 * @skb: buffer to alter
2301 * @len: bytes to move
2302 *
2303 * Increase the headroom of an empty &sk_buff by reducing the tail
2304 * room. This is only allowed for an empty buffer.
2305 */
2306 static inline void skb_reserve(struct sk_buff *skb, int len)
2307 {
2308 skb->data += len;
2309 skb->tail += len;
2310 }
2311
2312 /**
2313 * skb_tailroom_reserve - adjust reserved_tailroom
2314 * @skb: buffer to alter
2315 * @mtu: maximum amount of headlen permitted
2316 * @needed_tailroom: minimum amount of reserved_tailroom
2317 *
2318 * Set reserved_tailroom so that headlen can be as large as possible but
2319 * not larger than mtu and tailroom cannot be smaller than
2320 * needed_tailroom.
2321 * The required headroom should already have been reserved before using
2322 * this function.
2323 */
2324 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2325 unsigned int needed_tailroom)
2326 {
2327 SKB_LINEAR_ASSERT(skb);
2328 if (mtu < skb_tailroom(skb) - needed_tailroom)
2329 /* use at most mtu */
2330 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2331 else
2332 /* use up to all available space */
2333 skb->reserved_tailroom = needed_tailroom;
2334 }
2335
2336 #define ENCAP_TYPE_ETHER 0
2337 #define ENCAP_TYPE_IPPROTO 1
2338
2339 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2340 __be16 protocol)
2341 {
2342 skb->inner_protocol = protocol;
2343 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2344 }
2345
2346 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2347 __u8 ipproto)
2348 {
2349 skb->inner_ipproto = ipproto;
2350 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2351 }
2352
2353 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2354 {
2355 skb->inner_mac_header = skb->mac_header;
2356 skb->inner_network_header = skb->network_header;
2357 skb->inner_transport_header = skb->transport_header;
2358 }
2359
2360 static inline void skb_reset_mac_len(struct sk_buff *skb)
2361 {
2362 skb->mac_len = skb->network_header - skb->mac_header;
2363 }
2364
2365 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2366 *skb)
2367 {
2368 return skb->head + skb->inner_transport_header;
2369 }
2370
2371 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2372 {
2373 return skb_inner_transport_header(skb) - skb->data;
2374 }
2375
2376 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2377 {
2378 skb->inner_transport_header = skb->data - skb->head;
2379 }
2380
2381 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2382 const int offset)
2383 {
2384 skb_reset_inner_transport_header(skb);
2385 skb->inner_transport_header += offset;
2386 }
2387
2388 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2389 {
2390 return skb->head + skb->inner_network_header;
2391 }
2392
2393 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2394 {
2395 skb->inner_network_header = skb->data - skb->head;
2396 }
2397
2398 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2399 const int offset)
2400 {
2401 skb_reset_inner_network_header(skb);
2402 skb->inner_network_header += offset;
2403 }
2404
2405 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2406 {
2407 return skb->head + skb->inner_mac_header;
2408 }
2409
2410 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2411 {
2412 skb->inner_mac_header = skb->data - skb->head;
2413 }
2414
2415 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2416 const int offset)
2417 {
2418 skb_reset_inner_mac_header(skb);
2419 skb->inner_mac_header += offset;
2420 }
2421 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2422 {
2423 return skb->transport_header != (typeof(skb->transport_header))~0U;
2424 }
2425
2426 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2427 {
2428 return skb->head + skb->transport_header;
2429 }
2430
2431 static inline void skb_reset_transport_header(struct sk_buff *skb)
2432 {
2433 skb->transport_header = skb->data - skb->head;
2434 }
2435
2436 static inline void skb_set_transport_header(struct sk_buff *skb,
2437 const int offset)
2438 {
2439 skb_reset_transport_header(skb);
2440 skb->transport_header += offset;
2441 }
2442
2443 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2444 {
2445 return skb->head + skb->network_header;
2446 }
2447
2448 static inline void skb_reset_network_header(struct sk_buff *skb)
2449 {
2450 skb->network_header = skb->data - skb->head;
2451 }
2452
2453 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2454 {
2455 skb_reset_network_header(skb);
2456 skb->network_header += offset;
2457 }
2458
2459 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2460 {
2461 return skb->head + skb->mac_header;
2462 }
2463
2464 static inline int skb_mac_offset(const struct sk_buff *skb)
2465 {
2466 return skb_mac_header(skb) - skb->data;
2467 }
2468
2469 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2470 {
2471 return skb->network_header - skb->mac_header;
2472 }
2473
2474 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2475 {
2476 return skb->mac_header != (typeof(skb->mac_header))~0U;
2477 }
2478
2479 static inline void skb_reset_mac_header(struct sk_buff *skb)
2480 {
2481 skb->mac_header = skb->data - skb->head;
2482 }
2483
2484 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2485 {
2486 skb_reset_mac_header(skb);
2487 skb->mac_header += offset;
2488 }
2489
2490 static inline void skb_pop_mac_header(struct sk_buff *skb)
2491 {
2492 skb->mac_header = skb->network_header;
2493 }
2494
2495 static inline void skb_probe_transport_header(struct sk_buff *skb)
2496 {
2497 struct flow_keys_basic keys;
2498
2499 if (skb_transport_header_was_set(skb))
2500 return;
2501
2502 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2503 NULL, 0, 0, 0, 0))
2504 skb_set_transport_header(skb, keys.control.thoff);
2505 }
2506
2507 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2508 {
2509 if (skb_mac_header_was_set(skb)) {
2510 const unsigned char *old_mac = skb_mac_header(skb);
2511
2512 skb_set_mac_header(skb, -skb->mac_len);
2513 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2514 }
2515 }
2516
2517 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2518 {
2519 return skb->csum_start - skb_headroom(skb);
2520 }
2521
2522 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2523 {
2524 return skb->head + skb->csum_start;
2525 }
2526
2527 static inline int skb_transport_offset(const struct sk_buff *skb)
2528 {
2529 return skb_transport_header(skb) - skb->data;
2530 }
2531
2532 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2533 {
2534 return skb->transport_header - skb->network_header;
2535 }
2536
2537 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2538 {
2539 return skb->inner_transport_header - skb->inner_network_header;
2540 }
2541
2542 static inline int skb_network_offset(const struct sk_buff *skb)
2543 {
2544 return skb_network_header(skb) - skb->data;
2545 }
2546
2547 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2548 {
2549 return skb_inner_network_header(skb) - skb->data;
2550 }
2551
2552 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2553 {
2554 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2555 }
2556
2557 /*
2558 * CPUs often take a performance hit when accessing unaligned memory
2559 * locations. The actual performance hit varies, it can be small if the
2560 * hardware handles it or large if we have to take an exception and fix it
2561 * in software.
2562 *
2563 * Since an ethernet header is 14 bytes network drivers often end up with
2564 * the IP header at an unaligned offset. The IP header can be aligned by
2565 * shifting the start of the packet by 2 bytes. Drivers should do this
2566 * with:
2567 *
2568 * skb_reserve(skb, NET_IP_ALIGN);
2569 *
2570 * The downside to this alignment of the IP header is that the DMA is now
2571 * unaligned. On some architectures the cost of an unaligned DMA is high
2572 * and this cost outweighs the gains made by aligning the IP header.
2573 *
2574 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2575 * to be overridden.
2576 */
2577 #ifndef NET_IP_ALIGN
2578 #define NET_IP_ALIGN 2
2579 #endif
2580
2581 /*
2582 * The networking layer reserves some headroom in skb data (via
2583 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2584 * the header has to grow. In the default case, if the header has to grow
2585 * 32 bytes or less we avoid the reallocation.
2586 *
2587 * Unfortunately this headroom changes the DMA alignment of the resulting
2588 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2589 * on some architectures. An architecture can override this value,
2590 * perhaps setting it to a cacheline in size (since that will maintain
2591 * cacheline alignment of the DMA). It must be a power of 2.
2592 *
2593 * Various parts of the networking layer expect at least 32 bytes of
2594 * headroom, you should not reduce this.
2595 *
2596 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2597 * to reduce average number of cache lines per packet.
2598 * get_rps_cpus() for example only access one 64 bytes aligned block :
2599 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2600 */
2601 #ifndef NET_SKB_PAD
2602 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2603 #endif
2604
2605 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2606
2607 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2608 {
2609 if (WARN_ON(skb_is_nonlinear(skb)))
2610 return;
2611 skb->len = len;
2612 skb_set_tail_pointer(skb, len);
2613 }
2614
2615 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2616 {
2617 __skb_set_length(skb, len);
2618 }
2619
2620 void skb_trim(struct sk_buff *skb, unsigned int len);
2621
2622 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2623 {
2624 if (skb->data_len)
2625 return ___pskb_trim(skb, len);
2626 __skb_trim(skb, len);
2627 return 0;
2628 }
2629
2630 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2631 {
2632 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2633 }
2634
2635 /**
2636 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2637 * @skb: buffer to alter
2638 * @len: new length
2639 *
2640 * This is identical to pskb_trim except that the caller knows that
2641 * the skb is not cloned so we should never get an error due to out-
2642 * of-memory.
2643 */
2644 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2645 {
2646 int err = pskb_trim(skb, len);
2647 BUG_ON(err);
2648 }
2649
2650 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2651 {
2652 unsigned int diff = len - skb->len;
2653
2654 if (skb_tailroom(skb) < diff) {
2655 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2656 GFP_ATOMIC);
2657 if (ret)
2658 return ret;
2659 }
2660 __skb_set_length(skb, len);
2661 return 0;
2662 }
2663
2664 /**
2665 * skb_orphan - orphan a buffer
2666 * @skb: buffer to orphan
2667 *
2668 * If a buffer currently has an owner then we call the owner's
2669 * destructor function and make the @skb unowned. The buffer continues
2670 * to exist but is no longer charged to its former owner.
2671 */
2672 static inline void skb_orphan(struct sk_buff *skb)
2673 {
2674 if (skb->destructor) {
2675 skb->destructor(skb);
2676 skb->destructor = NULL;
2677 skb->sk = NULL;
2678 } else {
2679 BUG_ON(skb->sk);
2680 }
2681 }
2682
2683 /**
2684 * skb_orphan_frags - orphan the frags contained in a buffer
2685 * @skb: buffer to orphan frags from
2686 * @gfp_mask: allocation mask for replacement pages
2687 *
2688 * For each frag in the SKB which needs a destructor (i.e. has an
2689 * owner) create a copy of that frag and release the original
2690 * page by calling the destructor.
2691 */
2692 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2693 {
2694 if (likely(!skb_zcopy(skb)))
2695 return 0;
2696 if (!skb_zcopy_is_nouarg(skb) &&
2697 skb_uarg(skb)->callback == sock_zerocopy_callback)
2698 return 0;
2699 return skb_copy_ubufs(skb, gfp_mask);
2700 }
2701
2702 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2703 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2704 {
2705 if (likely(!skb_zcopy(skb)))
2706 return 0;
2707 return skb_copy_ubufs(skb, gfp_mask);
2708 }
2709
2710 /**
2711 * __skb_queue_purge - empty a list
2712 * @list: list to empty
2713 *
2714 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2715 * the list and one reference dropped. This function does not take the
2716 * list lock and the caller must hold the relevant locks to use it.
2717 */
2718 static inline void __skb_queue_purge(struct sk_buff_head *list)
2719 {
2720 struct sk_buff *skb;
2721 while ((skb = __skb_dequeue(list)) != NULL)
2722 kfree_skb(skb);
2723 }
2724 void skb_queue_purge(struct sk_buff_head *list);
2725
2726 unsigned int skb_rbtree_purge(struct rb_root *root);
2727
2728 void *netdev_alloc_frag(unsigned int fragsz);
2729
2730 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2731 gfp_t gfp_mask);
2732
2733 /**
2734 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2735 * @dev: network device to receive on
2736 * @length: length to allocate
2737 *
2738 * Allocate a new &sk_buff and assign it a usage count of one. The
2739 * buffer has unspecified headroom built in. Users should allocate
2740 * the headroom they think they need without accounting for the
2741 * built in space. The built in space is used for optimisations.
2742 *
2743 * %NULL is returned if there is no free memory. Although this function
2744 * allocates memory it can be called from an interrupt.
2745 */
2746 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2747 unsigned int length)
2748 {
2749 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2750 }
2751
2752 /* legacy helper around __netdev_alloc_skb() */
2753 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2754 gfp_t gfp_mask)
2755 {
2756 return __netdev_alloc_skb(NULL, length, gfp_mask);
2757 }
2758
2759 /* legacy helper around netdev_alloc_skb() */
2760 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2761 {
2762 return netdev_alloc_skb(NULL, length);
2763 }
2764
2765
2766 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2767 unsigned int length, gfp_t gfp)
2768 {
2769 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2770
2771 if (NET_IP_ALIGN && skb)
2772 skb_reserve(skb, NET_IP_ALIGN);
2773 return skb;
2774 }
2775
2776 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2777 unsigned int length)
2778 {
2779 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2780 }
2781
2782 static inline void skb_free_frag(void *addr)
2783 {
2784 page_frag_free(addr);
2785 }
2786
2787 void *napi_alloc_frag(unsigned int fragsz);
2788 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2789 unsigned int length, gfp_t gfp_mask);
2790 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2791 unsigned int length)
2792 {
2793 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2794 }
2795 void napi_consume_skb(struct sk_buff *skb, int budget);
2796
2797 void __kfree_skb_flush(void);
2798 void __kfree_skb_defer(struct sk_buff *skb);
2799
2800 /**
2801 * __dev_alloc_pages - allocate page for network Rx
2802 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2803 * @order: size of the allocation
2804 *
2805 * Allocate a new page.
2806 *
2807 * %NULL is returned if there is no free memory.
2808 */
2809 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2810 unsigned int order)
2811 {
2812 /* This piece of code contains several assumptions.
2813 * 1. This is for device Rx, therefor a cold page is preferred.
2814 * 2. The expectation is the user wants a compound page.
2815 * 3. If requesting a order 0 page it will not be compound
2816 * due to the check to see if order has a value in prep_new_page
2817 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2818 * code in gfp_to_alloc_flags that should be enforcing this.
2819 */
2820 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2821
2822 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2823 }
2824
2825 static inline struct page *dev_alloc_pages(unsigned int order)
2826 {
2827 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2828 }
2829
2830 /**
2831 * __dev_alloc_page - allocate a page for network Rx
2832 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2833 *
2834 * Allocate a new page.
2835 *
2836 * %NULL is returned if there is no free memory.
2837 */
2838 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2839 {
2840 return __dev_alloc_pages(gfp_mask, 0);
2841 }
2842
2843 static inline struct page *dev_alloc_page(void)
2844 {
2845 return dev_alloc_pages(0);
2846 }
2847
2848 /**
2849 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2850 * @page: The page that was allocated from skb_alloc_page
2851 * @skb: The skb that may need pfmemalloc set
2852 */
2853 static inline void skb_propagate_pfmemalloc(struct page *page,
2854 struct sk_buff *skb)
2855 {
2856 if (page_is_pfmemalloc(page))
2857 skb->pfmemalloc = true;
2858 }
2859
2860 /**
2861 * skb_frag_page - retrieve the page referred to by a paged fragment
2862 * @frag: the paged fragment
2863 *
2864 * Returns the &struct page associated with @frag.
2865 */
2866 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2867 {
2868 return frag->page.p;
2869 }
2870
2871 /**
2872 * __skb_frag_ref - take an addition reference on a paged fragment.
2873 * @frag: the paged fragment
2874 *
2875 * Takes an additional reference on the paged fragment @frag.
2876 */
2877 static inline void __skb_frag_ref(skb_frag_t *frag)
2878 {
2879 get_page(skb_frag_page(frag));
2880 }
2881
2882 /**
2883 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2884 * @skb: the buffer
2885 * @f: the fragment offset.
2886 *
2887 * Takes an additional reference on the @f'th paged fragment of @skb.
2888 */
2889 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2890 {
2891 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2892 }
2893
2894 /**
2895 * __skb_frag_unref - release a reference on a paged fragment.
2896 * @frag: the paged fragment
2897 *
2898 * Releases a reference on the paged fragment @frag.
2899 */
2900 static inline void __skb_frag_unref(skb_frag_t *frag)
2901 {
2902 put_page(skb_frag_page(frag));
2903 }
2904
2905 /**
2906 * skb_frag_unref - release a reference on a paged fragment of an skb.
2907 * @skb: the buffer
2908 * @f: the fragment offset
2909 *
2910 * Releases a reference on the @f'th paged fragment of @skb.
2911 */
2912 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2913 {
2914 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2915 }
2916
2917 /**
2918 * skb_frag_address - gets the address of the data contained in a paged fragment
2919 * @frag: the paged fragment buffer
2920 *
2921 * Returns the address of the data within @frag. The page must already
2922 * be mapped.
2923 */
2924 static inline void *skb_frag_address(const skb_frag_t *frag)
2925 {
2926 return page_address(skb_frag_page(frag)) + frag->page_offset;
2927 }
2928
2929 /**
2930 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2931 * @frag: the paged fragment buffer
2932 *
2933 * Returns the address of the data within @frag. Checks that the page
2934 * is mapped and returns %NULL otherwise.
2935 */
2936 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2937 {
2938 void *ptr = page_address(skb_frag_page(frag));
2939 if (unlikely(!ptr))
2940 return NULL;
2941
2942 return ptr + frag->page_offset;
2943 }
2944
2945 /**
2946 * __skb_frag_set_page - sets the page contained in a paged fragment
2947 * @frag: the paged fragment
2948 * @page: the page to set
2949 *
2950 * Sets the fragment @frag to contain @page.
2951 */
2952 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2953 {
2954 frag->page.p = page;
2955 }
2956
2957 /**
2958 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2959 * @skb: the buffer
2960 * @f: the fragment offset
2961 * @page: the page to set
2962 *
2963 * Sets the @f'th fragment of @skb to contain @page.
2964 */
2965 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2966 struct page *page)
2967 {
2968 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2969 }
2970
2971 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2972
2973 /**
2974 * skb_frag_dma_map - maps a paged fragment via the DMA API
2975 * @dev: the device to map the fragment to
2976 * @frag: the paged fragment to map
2977 * @offset: the offset within the fragment (starting at the
2978 * fragment's own offset)
2979 * @size: the number of bytes to map
2980 * @dir: the direction of the mapping (``PCI_DMA_*``)
2981 *
2982 * Maps the page associated with @frag to @device.
2983 */
2984 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2985 const skb_frag_t *frag,
2986 size_t offset, size_t size,
2987 enum dma_data_direction dir)
2988 {
2989 return dma_map_page(dev, skb_frag_page(frag),
2990 frag->page_offset + offset, size, dir);
2991 }
2992
2993 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2994 gfp_t gfp_mask)
2995 {
2996 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2997 }
2998
2999
3000 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3001 gfp_t gfp_mask)
3002 {
3003 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3004 }
3005
3006
3007 /**
3008 * skb_clone_writable - is the header of a clone writable
3009 * @skb: buffer to check
3010 * @len: length up to which to write
3011 *
3012 * Returns true if modifying the header part of the cloned buffer
3013 * does not requires the data to be copied.
3014 */
3015 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3016 {
3017 return !skb_header_cloned(skb) &&
3018 skb_headroom(skb) + len <= skb->hdr_len;
3019 }
3020
3021 static inline int skb_try_make_writable(struct sk_buff *skb,
3022 unsigned int write_len)
3023 {
3024 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3025 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3026 }
3027
3028 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3029 int cloned)
3030 {
3031 int delta = 0;
3032
3033 if (headroom > skb_headroom(skb))
3034 delta = headroom - skb_headroom(skb);
3035
3036 if (delta || cloned)
3037 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3038 GFP_ATOMIC);
3039 return 0;
3040 }
3041
3042 /**
3043 * skb_cow - copy header of skb when it is required
3044 * @skb: buffer to cow
3045 * @headroom: needed headroom
3046 *
3047 * If the skb passed lacks sufficient headroom or its data part
3048 * is shared, data is reallocated. If reallocation fails, an error
3049 * is returned and original skb is not changed.
3050 *
3051 * The result is skb with writable area skb->head...skb->tail
3052 * and at least @headroom of space at head.
3053 */
3054 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3055 {
3056 return __skb_cow(skb, headroom, skb_cloned(skb));
3057 }
3058
3059 /**
3060 * skb_cow_head - skb_cow but only making the head writable
3061 * @skb: buffer to cow
3062 * @headroom: needed headroom
3063 *
3064 * This function is identical to skb_cow except that we replace the
3065 * skb_cloned check by skb_header_cloned. It should be used when
3066 * you only need to push on some header and do not need to modify
3067 * the data.
3068 */
3069 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3070 {
3071 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3072 }
3073
3074 /**
3075 * skb_padto - pad an skbuff up to a minimal size
3076 * @skb: buffer to pad
3077 * @len: minimal length
3078 *
3079 * Pads up a buffer to ensure the trailing bytes exist and are
3080 * blanked. If the buffer already contains sufficient data it
3081 * is untouched. Otherwise it is extended. Returns zero on
3082 * success. The skb is freed on error.
3083 */
3084 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3085 {
3086 unsigned int size = skb->len;
3087 if (likely(size >= len))
3088 return 0;
3089 return skb_pad(skb, len - size);
3090 }
3091
3092 /**
3093 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3094 * @skb: buffer to pad
3095 * @len: minimal length
3096 * @free_on_error: free buffer on error
3097 *
3098 * Pads up a buffer to ensure the trailing bytes exist and are
3099 * blanked. If the buffer already contains sufficient data it
3100 * is untouched. Otherwise it is extended. Returns zero on
3101 * success. The skb is freed on error if @free_on_error is true.
3102 */
3103 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3104 bool free_on_error)
3105 {
3106 unsigned int size = skb->len;
3107
3108 if (unlikely(size < len)) {
3109 len -= size;
3110 if (__skb_pad(skb, len, free_on_error))
3111 return -ENOMEM;
3112 __skb_put(skb, len);
3113 }
3114 return 0;
3115 }
3116
3117 /**
3118 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3119 * @skb: buffer to pad
3120 * @len: minimal length
3121 *
3122 * Pads up a buffer to ensure the trailing bytes exist and are
3123 * blanked. If the buffer already contains sufficient data it
3124 * is untouched. Otherwise it is extended. Returns zero on
3125 * success. The skb is freed on error.
3126 */
3127 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3128 {
3129 return __skb_put_padto(skb, len, true);
3130 }
3131
3132 static inline int skb_add_data(struct sk_buff *skb,
3133 struct iov_iter *from, int copy)
3134 {
3135 const int off = skb->len;
3136
3137 if (skb->ip_summed == CHECKSUM_NONE) {
3138 __wsum csum = 0;
3139 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3140 &csum, from)) {
3141 skb->csum = csum_block_add(skb->csum, csum, off);
3142 return 0;
3143 }
3144 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3145 return 0;
3146
3147 __skb_trim(skb, off);
3148 return -EFAULT;
3149 }
3150
3151 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3152 const struct page *page, int off)
3153 {
3154 if (skb_zcopy(skb))
3155 return false;
3156 if (i) {
3157 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3158
3159 return page == skb_frag_page(frag) &&
3160 off == frag->page_offset + skb_frag_size(frag);
3161 }
3162 return false;
3163 }
3164
3165 static inline int __skb_linearize(struct sk_buff *skb)
3166 {
3167 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3168 }
3169
3170 /**
3171 * skb_linearize - convert paged skb to linear one
3172 * @skb: buffer to linarize
3173 *
3174 * If there is no free memory -ENOMEM is returned, otherwise zero
3175 * is returned and the old skb data released.
3176 */
3177 static inline int skb_linearize(struct sk_buff *skb)
3178 {
3179 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3180 }
3181
3182 /**
3183 * skb_has_shared_frag - can any frag be overwritten
3184 * @skb: buffer to test
3185 *
3186 * Return true if the skb has at least one frag that might be modified
3187 * by an external entity (as in vmsplice()/sendfile())
3188 */
3189 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3190 {
3191 return skb_is_nonlinear(skb) &&
3192 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3193 }
3194
3195 /**
3196 * skb_linearize_cow - make sure skb is linear and writable
3197 * @skb: buffer to process
3198 *
3199 * If there is no free memory -ENOMEM is returned, otherwise zero
3200 * is returned and the old skb data released.
3201 */
3202 static inline int skb_linearize_cow(struct sk_buff *skb)
3203 {
3204 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3205 __skb_linearize(skb) : 0;
3206 }
3207
3208 static __always_inline void
3209 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3210 unsigned int off)
3211 {
3212 if (skb->ip_summed == CHECKSUM_COMPLETE)
3213 skb->csum = csum_block_sub(skb->csum,
3214 csum_partial(start, len, 0), off);
3215 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3216 skb_checksum_start_offset(skb) < 0)
3217 skb->ip_summed = CHECKSUM_NONE;
3218 }
3219
3220 /**
3221 * skb_postpull_rcsum - update checksum for received skb after pull
3222 * @skb: buffer to update
3223 * @start: start of data before pull
3224 * @len: length of data pulled
3225 *
3226 * After doing a pull on a received packet, you need to call this to
3227 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3228 * CHECKSUM_NONE so that it can be recomputed from scratch.
3229 */
3230 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3231 const void *start, unsigned int len)
3232 {
3233 __skb_postpull_rcsum(skb, start, len, 0);
3234 }
3235
3236 static __always_inline void
3237 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3238 unsigned int off)
3239 {
3240 if (skb->ip_summed == CHECKSUM_COMPLETE)
3241 skb->csum = csum_block_add(skb->csum,
3242 csum_partial(start, len, 0), off);
3243 }
3244
3245 /**
3246 * skb_postpush_rcsum - update checksum for received skb after push
3247 * @skb: buffer to update
3248 * @start: start of data after push
3249 * @len: length of data pushed
3250 *
3251 * After doing a push on a received packet, you need to call this to
3252 * update the CHECKSUM_COMPLETE checksum.
3253 */
3254 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3255 const void *start, unsigned int len)
3256 {
3257 __skb_postpush_rcsum(skb, start, len, 0);
3258 }
3259
3260 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3261
3262 /**
3263 * skb_push_rcsum - push skb and update receive checksum
3264 * @skb: buffer to update
3265 * @len: length of data pulled
3266 *
3267 * This function performs an skb_push on the packet and updates
3268 * the CHECKSUM_COMPLETE checksum. It should be used on
3269 * receive path processing instead of skb_push unless you know
3270 * that the checksum difference is zero (e.g., a valid IP header)
3271 * or you are setting ip_summed to CHECKSUM_NONE.
3272 */
3273 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3274 {
3275 skb_push(skb, len);
3276 skb_postpush_rcsum(skb, skb->data, len);
3277 return skb->data;
3278 }
3279
3280 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3281 /**
3282 * pskb_trim_rcsum - trim received skb and update checksum
3283 * @skb: buffer to trim
3284 * @len: new length
3285 *
3286 * This is exactly the same as pskb_trim except that it ensures the
3287 * checksum of received packets are still valid after the operation.
3288 * It can change skb pointers.
3289 */
3290
3291 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3292 {
3293 if (likely(len >= skb->len))
3294 return 0;
3295 return pskb_trim_rcsum_slow(skb, len);
3296 }
3297
3298 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3299 {
3300 if (skb->ip_summed == CHECKSUM_COMPLETE)
3301 skb->ip_summed = CHECKSUM_NONE;
3302 __skb_trim(skb, len);
3303 return 0;
3304 }
3305
3306 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3307 {
3308 if (skb->ip_summed == CHECKSUM_COMPLETE)
3309 skb->ip_summed = CHECKSUM_NONE;
3310 return __skb_grow(skb, len);
3311 }
3312
3313 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3314 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3315 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3316 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3317 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3318
3319 #define skb_queue_walk(queue, skb) \
3320 for (skb = (queue)->next; \
3321 skb != (struct sk_buff *)(queue); \
3322 skb = skb->next)
3323
3324 #define skb_queue_walk_safe(queue, skb, tmp) \
3325 for (skb = (queue)->next, tmp = skb->next; \
3326 skb != (struct sk_buff *)(queue); \
3327 skb = tmp, tmp = skb->next)
3328
3329 #define skb_queue_walk_from(queue, skb) \
3330 for (; skb != (struct sk_buff *)(queue); \
3331 skb = skb->next)
3332
3333 #define skb_rbtree_walk(skb, root) \
3334 for (skb = skb_rb_first(root); skb != NULL; \
3335 skb = skb_rb_next(skb))
3336
3337 #define skb_rbtree_walk_from(skb) \
3338 for (; skb != NULL; \
3339 skb = skb_rb_next(skb))
3340
3341 #define skb_rbtree_walk_from_safe(skb, tmp) \
3342 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3343 skb = tmp)
3344
3345 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3346 for (tmp = skb->next; \
3347 skb != (struct sk_buff *)(queue); \
3348 skb = tmp, tmp = skb->next)
3349
3350 #define skb_queue_reverse_walk(queue, skb) \
3351 for (skb = (queue)->prev; \
3352 skb != (struct sk_buff *)(queue); \
3353 skb = skb->prev)
3354
3355 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3356 for (skb = (queue)->prev, tmp = skb->prev; \
3357 skb != (struct sk_buff *)(queue); \
3358 skb = tmp, tmp = skb->prev)
3359
3360 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3361 for (tmp = skb->prev; \
3362 skb != (struct sk_buff *)(queue); \
3363 skb = tmp, tmp = skb->prev)
3364
3365 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3366 {
3367 return skb_shinfo(skb)->frag_list != NULL;
3368 }
3369
3370 static inline void skb_frag_list_init(struct sk_buff *skb)
3371 {
3372 skb_shinfo(skb)->frag_list = NULL;
3373 }
3374
3375 #define skb_walk_frags(skb, iter) \
3376 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3377
3378
3379 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3380 const struct sk_buff *skb);
3381 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3382 struct sk_buff_head *queue,
3383 unsigned int flags,
3384 void (*destructor)(struct sock *sk,
3385 struct sk_buff *skb),
3386 int *off, int *err,
3387 struct sk_buff **last);
3388 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3389 void (*destructor)(struct sock *sk,
3390 struct sk_buff *skb),
3391 int *off, int *err,
3392 struct sk_buff **last);
3393 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3394 void (*destructor)(struct sock *sk,
3395 struct sk_buff *skb),
3396 int *off, int *err);
3397 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3398 int *err);
3399 __poll_t datagram_poll(struct file *file, struct socket *sock,
3400 struct poll_table_struct *wait);
3401 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3402 struct iov_iter *to, int size);
3403 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3404 struct msghdr *msg, int size)
3405 {
3406 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3407 }
3408 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3409 struct msghdr *msg);
3410 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3411 struct iov_iter *to, int len,
3412 struct ahash_request *hash);
3413 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3414 struct iov_iter *from, int len);
3415 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3416 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3417 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3418 static inline void skb_free_datagram_locked(struct sock *sk,
3419 struct sk_buff *skb)
3420 {
3421 __skb_free_datagram_locked(sk, skb, 0);
3422 }
3423 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3424 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3425 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3426 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3427 int len, __wsum csum);
3428 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3429 struct pipe_inode_info *pipe, unsigned int len,
3430 unsigned int flags);
3431 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3432 int len);
3433 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3434 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3435 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3436 int len, int hlen);
3437 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3438 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3439 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3440 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3441 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3442 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3443 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3444 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3445 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3446 int skb_vlan_pop(struct sk_buff *skb);
3447 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3448 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3449 gfp_t gfp);
3450
3451 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3452 {
3453 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3454 }
3455
3456 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3457 {
3458 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3459 }
3460
3461 struct skb_checksum_ops {
3462 __wsum (*update)(const void *mem, int len, __wsum wsum);
3463 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3464 };
3465
3466 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3467
3468 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3469 __wsum csum, const struct skb_checksum_ops *ops);
3470 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3471 __wsum csum);
3472
3473 static inline void * __must_check
3474 __skb_header_pointer(const struct sk_buff *skb, int offset,
3475 int len, void *data, int hlen, void *buffer)
3476 {
3477 if (hlen - offset >= len)
3478 return data + offset;
3479
3480 if (!skb ||
3481 skb_copy_bits(skb, offset, buffer, len) < 0)
3482 return NULL;
3483
3484 return buffer;
3485 }
3486
3487 static inline void * __must_check
3488 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3489 {
3490 return __skb_header_pointer(skb, offset, len, skb->data,
3491 skb_headlen(skb), buffer);
3492 }
3493
3494 /**
3495 * skb_needs_linearize - check if we need to linearize a given skb
3496 * depending on the given device features.
3497 * @skb: socket buffer to check
3498 * @features: net device features
3499 *
3500 * Returns true if either:
3501 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3502 * 2. skb is fragmented and the device does not support SG.
3503 */
3504 static inline bool skb_needs_linearize(struct sk_buff *skb,
3505 netdev_features_t features)
3506 {
3507 return skb_is_nonlinear(skb) &&
3508 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3509 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3510 }
3511
3512 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3513 void *to,
3514 const unsigned int len)
3515 {
3516 memcpy(to, skb->data, len);
3517 }
3518
3519 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3520 const int offset, void *to,
3521 const unsigned int len)
3522 {
3523 memcpy(to, skb->data + offset, len);
3524 }
3525
3526 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3527 const void *from,
3528 const unsigned int len)
3529 {
3530 memcpy(skb->data, from, len);
3531 }
3532
3533 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3534 const int offset,
3535 const void *from,
3536 const unsigned int len)
3537 {
3538 memcpy(skb->data + offset, from, len);
3539 }
3540
3541 void skb_init(void);
3542
3543 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3544 {
3545 return skb->tstamp;
3546 }
3547
3548 /**
3549 * skb_get_timestamp - get timestamp from a skb
3550 * @skb: skb to get stamp from
3551 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3552 *
3553 * Timestamps are stored in the skb as offsets to a base timestamp.
3554 * This function converts the offset back to a struct timeval and stores
3555 * it in stamp.
3556 */
3557 static inline void skb_get_timestamp(const struct sk_buff *skb,
3558 struct __kernel_old_timeval *stamp)
3559 {
3560 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3561 }
3562
3563 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3564 struct __kernel_sock_timeval *stamp)
3565 {
3566 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3567
3568 stamp->tv_sec = ts.tv_sec;
3569 stamp->tv_usec = ts.tv_nsec / 1000;
3570 }
3571
3572 static inline void skb_get_timestampns(const struct sk_buff *skb,
3573 struct timespec *stamp)
3574 {
3575 *stamp = ktime_to_timespec(skb->tstamp);
3576 }
3577
3578 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3579 struct __kernel_timespec *stamp)
3580 {
3581 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3582
3583 stamp->tv_sec = ts.tv_sec;
3584 stamp->tv_nsec = ts.tv_nsec;
3585 }
3586
3587 static inline void __net_timestamp(struct sk_buff *skb)
3588 {
3589 skb->tstamp = ktime_get_real();
3590 }
3591
3592 static inline ktime_t net_timedelta(ktime_t t)
3593 {
3594 return ktime_sub(ktime_get_real(), t);
3595 }
3596
3597 static inline ktime_t net_invalid_timestamp(void)
3598 {
3599 return 0;
3600 }
3601
3602 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3603 {
3604 return skb_shinfo(skb)->meta_len;
3605 }
3606
3607 static inline void *skb_metadata_end(const struct sk_buff *skb)
3608 {
3609 return skb_mac_header(skb);
3610 }
3611
3612 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3613 const struct sk_buff *skb_b,
3614 u8 meta_len)
3615 {
3616 const void *a = skb_metadata_end(skb_a);
3617 const void *b = skb_metadata_end(skb_b);
3618 /* Using more efficient varaiant than plain call to memcmp(). */
3619 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3620 u64 diffs = 0;
3621
3622 switch (meta_len) {
3623 #define __it(x, op) (x -= sizeof(u##op))
3624 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3625 case 32: diffs |= __it_diff(a, b, 64);
3626 /* fall through */
3627 case 24: diffs |= __it_diff(a, b, 64);
3628 /* fall through */
3629 case 16: diffs |= __it_diff(a, b, 64);
3630 /* fall through */
3631 case 8: diffs |= __it_diff(a, b, 64);
3632 break;
3633 case 28: diffs |= __it_diff(a, b, 64);
3634 /* fall through */
3635 case 20: diffs |= __it_diff(a, b, 64);
3636 /* fall through */
3637 case 12: diffs |= __it_diff(a, b, 64);
3638 /* fall through */
3639 case 4: diffs |= __it_diff(a, b, 32);
3640 break;
3641 }
3642 return diffs;
3643 #else
3644 return memcmp(a - meta_len, b - meta_len, meta_len);
3645 #endif
3646 }
3647
3648 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3649 const struct sk_buff *skb_b)
3650 {
3651 u8 len_a = skb_metadata_len(skb_a);
3652 u8 len_b = skb_metadata_len(skb_b);
3653
3654 if (!(len_a | len_b))
3655 return false;
3656
3657 return len_a != len_b ?
3658 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3659 }
3660
3661 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3662 {
3663 skb_shinfo(skb)->meta_len = meta_len;
3664 }
3665
3666 static inline void skb_metadata_clear(struct sk_buff *skb)
3667 {
3668 skb_metadata_set(skb, 0);
3669 }
3670
3671 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3672
3673 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3674
3675 void skb_clone_tx_timestamp(struct sk_buff *skb);
3676 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3677
3678 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3679
3680 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3681 {
3682 }
3683
3684 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3685 {
3686 return false;
3687 }
3688
3689 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3690
3691 /**
3692 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3693 *
3694 * PHY drivers may accept clones of transmitted packets for
3695 * timestamping via their phy_driver.txtstamp method. These drivers
3696 * must call this function to return the skb back to the stack with a
3697 * timestamp.
3698 *
3699 * @skb: clone of the the original outgoing packet
3700 * @hwtstamps: hardware time stamps
3701 *
3702 */
3703 void skb_complete_tx_timestamp(struct sk_buff *skb,
3704 struct skb_shared_hwtstamps *hwtstamps);
3705
3706 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3707 struct skb_shared_hwtstamps *hwtstamps,
3708 struct sock *sk, int tstype);
3709
3710 /**
3711 * skb_tstamp_tx - queue clone of skb with send time stamps
3712 * @orig_skb: the original outgoing packet
3713 * @hwtstamps: hardware time stamps, may be NULL if not available
3714 *
3715 * If the skb has a socket associated, then this function clones the
3716 * skb (thus sharing the actual data and optional structures), stores
3717 * the optional hardware time stamping information (if non NULL) or
3718 * generates a software time stamp (otherwise), then queues the clone
3719 * to the error queue of the socket. Errors are silently ignored.
3720 */
3721 void skb_tstamp_tx(struct sk_buff *orig_skb,
3722 struct skb_shared_hwtstamps *hwtstamps);
3723
3724 /**
3725 * skb_tx_timestamp() - Driver hook for transmit timestamping
3726 *
3727 * Ethernet MAC Drivers should call this function in their hard_xmit()
3728 * function immediately before giving the sk_buff to the MAC hardware.
3729 *
3730 * Specifically, one should make absolutely sure that this function is
3731 * called before TX completion of this packet can trigger. Otherwise
3732 * the packet could potentially already be freed.
3733 *
3734 * @skb: A socket buffer.
3735 */
3736 static inline void skb_tx_timestamp(struct sk_buff *skb)
3737 {
3738 skb_clone_tx_timestamp(skb);
3739 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3740 skb_tstamp_tx(skb, NULL);
3741 }
3742
3743 /**
3744 * skb_complete_wifi_ack - deliver skb with wifi status
3745 *
3746 * @skb: the original outgoing packet
3747 * @acked: ack status
3748 *
3749 */
3750 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3751
3752 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3753 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3754
3755 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3756 {
3757 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3758 skb->csum_valid ||
3759 (skb->ip_summed == CHECKSUM_PARTIAL &&
3760 skb_checksum_start_offset(skb) >= 0));
3761 }
3762
3763 /**
3764 * skb_checksum_complete - Calculate checksum of an entire packet
3765 * @skb: packet to process
3766 *
3767 * This function calculates the checksum over the entire packet plus
3768 * the value of skb->csum. The latter can be used to supply the
3769 * checksum of a pseudo header as used by TCP/UDP. It returns the
3770 * checksum.
3771 *
3772 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3773 * this function can be used to verify that checksum on received
3774 * packets. In that case the function should return zero if the
3775 * checksum is correct. In particular, this function will return zero
3776 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3777 * hardware has already verified the correctness of the checksum.
3778 */
3779 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3780 {
3781 return skb_csum_unnecessary(skb) ?
3782 0 : __skb_checksum_complete(skb);
3783 }
3784
3785 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3786 {
3787 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3788 if (skb->csum_level == 0)
3789 skb->ip_summed = CHECKSUM_NONE;
3790 else
3791 skb->csum_level--;
3792 }
3793 }
3794
3795 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3796 {
3797 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3798 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3799 skb->csum_level++;
3800 } else if (skb->ip_summed == CHECKSUM_NONE) {
3801 skb->ip_summed = CHECKSUM_UNNECESSARY;
3802 skb->csum_level = 0;
3803 }
3804 }
3805
3806 /* Check if we need to perform checksum complete validation.
3807 *
3808 * Returns true if checksum complete is needed, false otherwise
3809 * (either checksum is unnecessary or zero checksum is allowed).
3810 */
3811 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3812 bool zero_okay,
3813 __sum16 check)
3814 {
3815 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3816 skb->csum_valid = 1;
3817 __skb_decr_checksum_unnecessary(skb);
3818 return false;
3819 }
3820
3821 return true;
3822 }
3823
3824 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3825 * in checksum_init.
3826 */
3827 #define CHECKSUM_BREAK 76
3828
3829 /* Unset checksum-complete
3830 *
3831 * Unset checksum complete can be done when packet is being modified
3832 * (uncompressed for instance) and checksum-complete value is
3833 * invalidated.
3834 */
3835 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3836 {
3837 if (skb->ip_summed == CHECKSUM_COMPLETE)
3838 skb->ip_summed = CHECKSUM_NONE;
3839 }
3840
3841 /* Validate (init) checksum based on checksum complete.
3842 *
3843 * Return values:
3844 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3845 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3846 * checksum is stored in skb->csum for use in __skb_checksum_complete
3847 * non-zero: value of invalid checksum
3848 *
3849 */
3850 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3851 bool complete,
3852 __wsum psum)
3853 {
3854 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3855 if (!csum_fold(csum_add(psum, skb->csum))) {
3856 skb->csum_valid = 1;
3857 return 0;
3858 }
3859 }
3860
3861 skb->csum = psum;
3862
3863 if (complete || skb->len <= CHECKSUM_BREAK) {
3864 __sum16 csum;
3865
3866 csum = __skb_checksum_complete(skb);
3867 skb->csum_valid = !csum;
3868 return csum;
3869 }
3870
3871 return 0;
3872 }
3873
3874 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3875 {
3876 return 0;
3877 }
3878
3879 /* Perform checksum validate (init). Note that this is a macro since we only
3880 * want to calculate the pseudo header which is an input function if necessary.
3881 * First we try to validate without any computation (checksum unnecessary) and
3882 * then calculate based on checksum complete calling the function to compute
3883 * pseudo header.
3884 *
3885 * Return values:
3886 * 0: checksum is validated or try to in skb_checksum_complete
3887 * non-zero: value of invalid checksum
3888 */
3889 #define __skb_checksum_validate(skb, proto, complete, \
3890 zero_okay, check, compute_pseudo) \
3891 ({ \
3892 __sum16 __ret = 0; \
3893 skb->csum_valid = 0; \
3894 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3895 __ret = __skb_checksum_validate_complete(skb, \
3896 complete, compute_pseudo(skb, proto)); \
3897 __ret; \
3898 })
3899
3900 #define skb_checksum_init(skb, proto, compute_pseudo) \
3901 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3902
3903 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3904 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3905
3906 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3907 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3908
3909 #define skb_checksum_validate_zero_check(skb, proto, check, \
3910 compute_pseudo) \
3911 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3912
3913 #define skb_checksum_simple_validate(skb) \
3914 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3915
3916 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3917 {
3918 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3919 }
3920
3921 static inline void __skb_checksum_convert(struct sk_buff *skb,
3922 __sum16 check, __wsum pseudo)
3923 {
3924 skb->csum = ~pseudo;
3925 skb->ip_summed = CHECKSUM_COMPLETE;
3926 }
3927
3928 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3929 do { \
3930 if (__skb_checksum_convert_check(skb)) \
3931 __skb_checksum_convert(skb, check, \
3932 compute_pseudo(skb, proto)); \
3933 } while (0)
3934
3935 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3936 u16 start, u16 offset)
3937 {
3938 skb->ip_summed = CHECKSUM_PARTIAL;
3939 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3940 skb->csum_offset = offset - start;
3941 }
3942
3943 /* Update skbuf and packet to reflect the remote checksum offload operation.
3944 * When called, ptr indicates the starting point for skb->csum when
3945 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3946 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3947 */
3948 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3949 int start, int offset, bool nopartial)
3950 {
3951 __wsum delta;
3952
3953 if (!nopartial) {
3954 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3955 return;
3956 }
3957
3958 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3959 __skb_checksum_complete(skb);
3960 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3961 }
3962
3963 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3964
3965 /* Adjust skb->csum since we changed the packet */
3966 skb->csum = csum_add(skb->csum, delta);
3967 }
3968
3969 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3970 {
3971 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3972 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3973 #else
3974 return NULL;
3975 #endif
3976 }
3977
3978 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3979 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3980 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3981 {
3982 if (nfct && atomic_dec_and_test(&nfct->use))
3983 nf_conntrack_destroy(nfct);
3984 }
3985 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3986 {
3987 if (nfct)
3988 atomic_inc(&nfct->use);
3989 }
3990 #endif
3991
3992 #ifdef CONFIG_SKB_EXTENSIONS
3993 enum skb_ext_id {
3994 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3995 SKB_EXT_BRIDGE_NF,
3996 #endif
3997 #ifdef CONFIG_XFRM
3998 SKB_EXT_SEC_PATH,
3999 #endif
4000 SKB_EXT_NUM, /* must be last */
4001 };
4002
4003 /**
4004 * struct skb_ext - sk_buff extensions
4005 * @refcnt: 1 on allocation, deallocated on 0
4006 * @offset: offset to add to @data to obtain extension address
4007 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4008 * @data: start of extension data, variable sized
4009 *
4010 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4011 * to use 'u8' types while allowing up to 2kb worth of extension data.
4012 */
4013 struct skb_ext {
4014 refcount_t refcnt;
4015 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4016 u8 chunks; /* same */
4017 char data[0] __aligned(8);
4018 };
4019
4020 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4021 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4022 void __skb_ext_put(struct skb_ext *ext);
4023
4024 static inline void skb_ext_put(struct sk_buff *skb)
4025 {
4026 if (skb->active_extensions)
4027 __skb_ext_put(skb->extensions);
4028 }
4029
4030 static inline void __skb_ext_copy(struct sk_buff *dst,
4031 const struct sk_buff *src)
4032 {
4033 dst->active_extensions = src->active_extensions;
4034
4035 if (src->active_extensions) {
4036 struct skb_ext *ext = src->extensions;
4037
4038 refcount_inc(&ext->refcnt);
4039 dst->extensions = ext;
4040 }
4041 }
4042
4043 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4044 {
4045 skb_ext_put(dst);
4046 __skb_ext_copy(dst, src);
4047 }
4048
4049 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4050 {
4051 return !!ext->offset[i];
4052 }
4053
4054 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4055 {
4056 return skb->active_extensions & (1 << id);
4057 }
4058
4059 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4060 {
4061 if (skb_ext_exist(skb, id))
4062 __skb_ext_del(skb, id);
4063 }
4064
4065 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4066 {
4067 if (skb_ext_exist(skb, id)) {
4068 struct skb_ext *ext = skb->extensions;
4069
4070 return (void *)ext + (ext->offset[id] << 3);
4071 }
4072
4073 return NULL;
4074 }
4075 #else
4076 static inline void skb_ext_put(struct sk_buff *skb) {}
4077 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4078 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4079 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4080 #endif /* CONFIG_SKB_EXTENSIONS */
4081
4082 static inline void nf_reset(struct sk_buff *skb)
4083 {
4084 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4085 nf_conntrack_put(skb_nfct(skb));
4086 skb->_nfct = 0;
4087 #endif
4088 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4089 skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4090 #endif
4091 }
4092
4093 static inline void nf_reset_trace(struct sk_buff *skb)
4094 {
4095 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4096 skb->nf_trace = 0;
4097 #endif
4098 }
4099
4100 static inline void ipvs_reset(struct sk_buff *skb)
4101 {
4102 #if IS_ENABLED(CONFIG_IP_VS)
4103 skb->ipvs_property = 0;
4104 #endif
4105 }
4106
4107 /* Note: This doesn't put any conntrack info in dst. */
4108 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4109 bool copy)
4110 {
4111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4112 dst->_nfct = src->_nfct;
4113 nf_conntrack_get(skb_nfct(src));
4114 #endif
4115 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4116 if (copy)
4117 dst->nf_trace = src->nf_trace;
4118 #endif
4119 }
4120
4121 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4122 {
4123 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4124 nf_conntrack_put(skb_nfct(dst));
4125 #endif
4126 __nf_copy(dst, src, true);
4127 }
4128
4129 #ifdef CONFIG_NETWORK_SECMARK
4130 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4131 {
4132 to->secmark = from->secmark;
4133 }
4134
4135 static inline void skb_init_secmark(struct sk_buff *skb)
4136 {
4137 skb->secmark = 0;
4138 }
4139 #else
4140 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4141 { }
4142
4143 static inline void skb_init_secmark(struct sk_buff *skb)
4144 { }
4145 #endif
4146
4147 static inline int secpath_exists(const struct sk_buff *skb)
4148 {
4149 #ifdef CONFIG_XFRM
4150 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4151 #else
4152 return 0;
4153 #endif
4154 }
4155
4156 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4157 {
4158 return !skb->destructor &&
4159 !secpath_exists(skb) &&
4160 !skb_nfct(skb) &&
4161 !skb->_skb_refdst &&
4162 !skb_has_frag_list(skb);
4163 }
4164
4165 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4166 {
4167 skb->queue_mapping = queue_mapping;
4168 }
4169
4170 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4171 {
4172 return skb->queue_mapping;
4173 }
4174
4175 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4176 {
4177 to->queue_mapping = from->queue_mapping;
4178 }
4179
4180 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4181 {
4182 skb->queue_mapping = rx_queue + 1;
4183 }
4184
4185 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4186 {
4187 return skb->queue_mapping - 1;
4188 }
4189
4190 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4191 {
4192 return skb->queue_mapping != 0;
4193 }
4194
4195 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4196 {
4197 skb->dst_pending_confirm = val;
4198 }
4199
4200 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4201 {
4202 return skb->dst_pending_confirm != 0;
4203 }
4204
4205 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4206 {
4207 #ifdef CONFIG_XFRM
4208 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4209 #else
4210 return NULL;
4211 #endif
4212 }
4213
4214 /* Keeps track of mac header offset relative to skb->head.
4215 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4216 * For non-tunnel skb it points to skb_mac_header() and for
4217 * tunnel skb it points to outer mac header.
4218 * Keeps track of level of encapsulation of network headers.
4219 */
4220 struct skb_gso_cb {
4221 union {
4222 int mac_offset;
4223 int data_offset;
4224 };
4225 int encap_level;
4226 __wsum csum;
4227 __u16 csum_start;
4228 };
4229 #define SKB_SGO_CB_OFFSET 32
4230 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4231
4232 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4233 {
4234 return (skb_mac_header(inner_skb) - inner_skb->head) -
4235 SKB_GSO_CB(inner_skb)->mac_offset;
4236 }
4237
4238 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4239 {
4240 int new_headroom, headroom;
4241 int ret;
4242
4243 headroom = skb_headroom(skb);
4244 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4245 if (ret)
4246 return ret;
4247
4248 new_headroom = skb_headroom(skb);
4249 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4250 return 0;
4251 }
4252
4253 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4254 {
4255 /* Do not update partial checksums if remote checksum is enabled. */
4256 if (skb->remcsum_offload)
4257 return;
4258
4259 SKB_GSO_CB(skb)->csum = res;
4260 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4261 }
4262
4263 /* Compute the checksum for a gso segment. First compute the checksum value
4264 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4265 * then add in skb->csum (checksum from csum_start to end of packet).
4266 * skb->csum and csum_start are then updated to reflect the checksum of the
4267 * resultant packet starting from the transport header-- the resultant checksum
4268 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4269 * header.
4270 */
4271 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4272 {
4273 unsigned char *csum_start = skb_transport_header(skb);
4274 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4275 __wsum partial = SKB_GSO_CB(skb)->csum;
4276
4277 SKB_GSO_CB(skb)->csum = res;
4278 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4279
4280 return csum_fold(csum_partial(csum_start, plen, partial));
4281 }
4282
4283 static inline bool skb_is_gso(const struct sk_buff *skb)
4284 {
4285 return skb_shinfo(skb)->gso_size;
4286 }
4287
4288 /* Note: Should be called only if skb_is_gso(skb) is true */
4289 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4290 {
4291 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4292 }
4293
4294 /* Note: Should be called only if skb_is_gso(skb) is true */
4295 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4296 {
4297 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4298 }
4299
4300 /* Note: Should be called only if skb_is_gso(skb) is true */
4301 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4302 {
4303 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4304 }
4305
4306 static inline void skb_gso_reset(struct sk_buff *skb)
4307 {
4308 skb_shinfo(skb)->gso_size = 0;
4309 skb_shinfo(skb)->gso_segs = 0;
4310 skb_shinfo(skb)->gso_type = 0;
4311 }
4312
4313 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4314 u16 increment)
4315 {
4316 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4317 return;
4318 shinfo->gso_size += increment;
4319 }
4320
4321 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4322 u16 decrement)
4323 {
4324 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4325 return;
4326 shinfo->gso_size -= decrement;
4327 }
4328
4329 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4330
4331 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4332 {
4333 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4334 * wanted then gso_type will be set. */
4335 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4336
4337 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4338 unlikely(shinfo->gso_type == 0)) {
4339 __skb_warn_lro_forwarding(skb);
4340 return true;
4341 }
4342 return false;
4343 }
4344
4345 static inline void skb_forward_csum(struct sk_buff *skb)
4346 {
4347 /* Unfortunately we don't support this one. Any brave souls? */
4348 if (skb->ip_summed == CHECKSUM_COMPLETE)
4349 skb->ip_summed = CHECKSUM_NONE;
4350 }
4351
4352 /**
4353 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4354 * @skb: skb to check
4355 *
4356 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4357 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4358 * use this helper, to document places where we make this assertion.
4359 */
4360 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4361 {
4362 #ifdef DEBUG
4363 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4364 #endif
4365 }
4366
4367 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4368
4369 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4370 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4371 unsigned int transport_len,
4372 __sum16(*skb_chkf)(struct sk_buff *skb));
4373
4374 /**
4375 * skb_head_is_locked - Determine if the skb->head is locked down
4376 * @skb: skb to check
4377 *
4378 * The head on skbs build around a head frag can be removed if they are
4379 * not cloned. This function returns true if the skb head is locked down
4380 * due to either being allocated via kmalloc, or by being a clone with
4381 * multiple references to the head.
4382 */
4383 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4384 {
4385 return !skb->head_frag || skb_cloned(skb);
4386 }
4387
4388 /* Local Checksum Offload.
4389 * Compute outer checksum based on the assumption that the
4390 * inner checksum will be offloaded later.
4391 * See Documentation/networking/checksum-offloads.rst for
4392 * explanation of how this works.
4393 * Fill in outer checksum adjustment (e.g. with sum of outer
4394 * pseudo-header) before calling.
4395 * Also ensure that inner checksum is in linear data area.
4396 */
4397 static inline __wsum lco_csum(struct sk_buff *skb)
4398 {
4399 unsigned char *csum_start = skb_checksum_start(skb);
4400 unsigned char *l4_hdr = skb_transport_header(skb);
4401 __wsum partial;
4402
4403 /* Start with complement of inner checksum adjustment */
4404 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4405 skb->csum_offset));
4406
4407 /* Add in checksum of our headers (incl. outer checksum
4408 * adjustment filled in by caller) and return result.
4409 */
4410 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4411 }
4412
4413 #endif /* __KERNEL__ */
4414 #endif /* _LINUX_SKBUFF_H */