]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/skbuff.h
Merge tag 'devicetree-for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[mirror_ubuntu-artful-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
38
39 /* A. Checksumming of received packets by device.
40 *
41 * CHECKSUM_NONE:
42 *
43 * Device failed to checksum this packet e.g. due to lack of capabilities.
44 * The packet contains full (though not verified) checksum in packet but
45 * not in skb->csum. Thus, skb->csum is undefined in this case.
46 *
47 * CHECKSUM_UNNECESSARY:
48 *
49 * The hardware you're dealing with doesn't calculate the full checksum
50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52 * if their checksums are okay. skb->csum is still undefined in this case
53 * though. It is a bad option, but, unfortunately, nowadays most vendors do
54 * this. Apparently with the secret goal to sell you new devices, when you
55 * will add new protocol to your host, f.e. IPv6 8)
56 *
57 * CHECKSUM_UNNECESSARY is applicable to following protocols:
58 * TCP: IPv6 and IPv4.
59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60 * zero UDP checksum for either IPv4 or IPv6, the networking stack
61 * may perform further validation in this case.
62 * GRE: only if the checksum is present in the header.
63 * SCTP: indicates the CRC in SCTP header has been validated.
64 *
65 * skb->csum_level indicates the number of consecutive checksums found in
66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68 * and a device is able to verify the checksums for UDP (possibly zero),
69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70 * two. If the device were only able to verify the UDP checksum and not
71 * GRE, either because it doesn't support GRE checksum of because GRE
72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73 * not considered in this case).
74 *
75 * CHECKSUM_COMPLETE:
76 *
77 * This is the most generic way. The device supplied checksum of the _whole_
78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79 * hardware doesn't need to parse L3/L4 headers to implement this.
80 *
81 * Note: Even if device supports only some protocols, but is able to produce
82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83 *
84 * CHECKSUM_PARTIAL:
85 *
86 * A checksum is set up to be offloaded to a device as described in the
87 * output description for CHECKSUM_PARTIAL. This may occur on a packet
88 * received directly from another Linux OS, e.g., a virtualized Linux kernel
89 * on the same host, or it may be set in the input path in GRO or remote
90 * checksum offload. For the purposes of checksum verification, the checksum
91 * referred to by skb->csum_start + skb->csum_offset and any preceding
92 * checksums in the packet are considered verified. Any checksums in the
93 * packet that are after the checksum being offloaded are not considered to
94 * be verified.
95 *
96 * B. Checksumming on output.
97 *
98 * CHECKSUM_NONE:
99 *
100 * The skb was already checksummed by the protocol, or a checksum is not
101 * required.
102 *
103 * CHECKSUM_PARTIAL:
104 *
105 * The device is required to checksum the packet as seen by hard_start_xmit()
106 * from skb->csum_start up to the end, and to record/write the checksum at
107 * offset skb->csum_start + skb->csum_offset.
108 *
109 * The device must show its capabilities in dev->features, set up at device
110 * setup time, e.g. netdev_features.h:
111 *
112 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
113 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114 * IPv4. Sigh. Vendors like this way for an unknown reason.
115 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117 * NETIF_F_... - Well, you get the picture.
118 *
119 * CHECKSUM_UNNECESSARY:
120 *
121 * Normally, the device will do per protocol specific checksumming. Protocol
122 * implementations that do not want the NIC to perform the checksum
123 * calculation should use this flag in their outgoing skbs.
124 *
125 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126 * offload. Correspondingly, the FCoE protocol driver
127 * stack should use CHECKSUM_UNNECESSARY.
128 *
129 * Any questions? No questions, good. --ANK
130 */
131
132 /* Don't change this without changing skb_csum_unnecessary! */
133 #define CHECKSUM_NONE 0
134 #define CHECKSUM_UNNECESSARY 1
135 #define CHECKSUM_COMPLETE 2
136 #define CHECKSUM_PARTIAL 3
137
138 /* Maximum value in skb->csum_level */
139 #define SKB_MAX_CSUM_LEVEL 3
140
141 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
142 #define SKB_WITH_OVERHEAD(X) \
143 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144 #define SKB_MAX_ORDER(X, ORDER) \
145 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
147 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
148
149 /* return minimum truesize of one skb containing X bytes of data */
150 #define SKB_TRUESIZE(X) ((X) + \
151 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
152 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153
154 struct net_device;
155 struct scatterlist;
156 struct pipe_inode_info;
157 struct iov_iter;
158 struct napi_struct;
159
160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161 struct nf_conntrack {
162 atomic_t use;
163 };
164 #endif
165
166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167 struct nf_bridge_info {
168 atomic_t use;
169 enum {
170 BRNF_PROTO_UNCHANGED,
171 BRNF_PROTO_8021Q,
172 BRNF_PROTO_PPPOE
173 } orig_proto;
174 bool pkt_otherhost;
175 unsigned int mask;
176 struct net_device *physindev;
177 struct net_device *physoutdev;
178 char neigh_header[8];
179 };
180 #endif
181
182 struct sk_buff_head {
183 /* These two members must be first. */
184 struct sk_buff *next;
185 struct sk_buff *prev;
186
187 __u32 qlen;
188 spinlock_t lock;
189 };
190
191 struct sk_buff;
192
193 /* To allow 64K frame to be packed as single skb without frag_list we
194 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
195 * buffers which do not start on a page boundary.
196 *
197 * Since GRO uses frags we allocate at least 16 regardless of page
198 * size.
199 */
200 #if (65536/PAGE_SIZE + 1) < 16
201 #define MAX_SKB_FRAGS 16UL
202 #else
203 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
204 #endif
205
206 typedef struct skb_frag_struct skb_frag_t;
207
208 struct skb_frag_struct {
209 struct {
210 struct page *p;
211 } page;
212 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
213 __u32 page_offset;
214 __u32 size;
215 #else
216 __u16 page_offset;
217 __u16 size;
218 #endif
219 };
220
221 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
222 {
223 return frag->size;
224 }
225
226 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
227 {
228 frag->size = size;
229 }
230
231 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
232 {
233 frag->size += delta;
234 }
235
236 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
237 {
238 frag->size -= delta;
239 }
240
241 #define HAVE_HW_TIME_STAMP
242
243 /**
244 * struct skb_shared_hwtstamps - hardware time stamps
245 * @hwtstamp: hardware time stamp transformed into duration
246 * since arbitrary point in time
247 *
248 * Software time stamps generated by ktime_get_real() are stored in
249 * skb->tstamp.
250 *
251 * hwtstamps can only be compared against other hwtstamps from
252 * the same device.
253 *
254 * This structure is attached to packets as part of the
255 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
256 */
257 struct skb_shared_hwtstamps {
258 ktime_t hwtstamp;
259 };
260
261 /* Definitions for tx_flags in struct skb_shared_info */
262 enum {
263 /* generate hardware time stamp */
264 SKBTX_HW_TSTAMP = 1 << 0,
265
266 /* generate software time stamp when queueing packet to NIC */
267 SKBTX_SW_TSTAMP = 1 << 1,
268
269 /* device driver is going to provide hardware time stamp */
270 SKBTX_IN_PROGRESS = 1 << 2,
271
272 /* device driver supports TX zero-copy buffers */
273 SKBTX_DEV_ZEROCOPY = 1 << 3,
274
275 /* generate wifi status information (where possible) */
276 SKBTX_WIFI_STATUS = 1 << 4,
277
278 /* This indicates at least one fragment might be overwritten
279 * (as in vmsplice(), sendfile() ...)
280 * If we need to compute a TX checksum, we'll need to copy
281 * all frags to avoid possible bad checksum
282 */
283 SKBTX_SHARED_FRAG = 1 << 5,
284
285 /* generate software time stamp when entering packet scheduling */
286 SKBTX_SCHED_TSTAMP = 1 << 6,
287
288 /* generate software timestamp on peer data acknowledgment */
289 SKBTX_ACK_TSTAMP = 1 << 7,
290 };
291
292 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
293 SKBTX_SCHED_TSTAMP | \
294 SKBTX_ACK_TSTAMP)
295 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
296
297 /*
298 * The callback notifies userspace to release buffers when skb DMA is done in
299 * lower device, the skb last reference should be 0 when calling this.
300 * The zerocopy_success argument is true if zero copy transmit occurred,
301 * false on data copy or out of memory error caused by data copy attempt.
302 * The ctx field is used to track device context.
303 * The desc field is used to track userspace buffer index.
304 */
305 struct ubuf_info {
306 void (*callback)(struct ubuf_info *, bool zerocopy_success);
307 void *ctx;
308 unsigned long desc;
309 };
310
311 /* This data is invariant across clones and lives at
312 * the end of the header data, ie. at skb->end.
313 */
314 struct skb_shared_info {
315 unsigned char nr_frags;
316 __u8 tx_flags;
317 unsigned short gso_size;
318 /* Warning: this field is not always filled in (UFO)! */
319 unsigned short gso_segs;
320 unsigned short gso_type;
321 struct sk_buff *frag_list;
322 struct skb_shared_hwtstamps hwtstamps;
323 u32 tskey;
324 __be32 ip6_frag_id;
325
326 /*
327 * Warning : all fields before dataref are cleared in __alloc_skb()
328 */
329 atomic_t dataref;
330
331 /* Intermediate layers must ensure that destructor_arg
332 * remains valid until skb destructor */
333 void * destructor_arg;
334
335 /* must be last field, see pskb_expand_head() */
336 skb_frag_t frags[MAX_SKB_FRAGS];
337 };
338
339 /* We divide dataref into two halves. The higher 16 bits hold references
340 * to the payload part of skb->data. The lower 16 bits hold references to
341 * the entire skb->data. A clone of a headerless skb holds the length of
342 * the header in skb->hdr_len.
343 *
344 * All users must obey the rule that the skb->data reference count must be
345 * greater than or equal to the payload reference count.
346 *
347 * Holding a reference to the payload part means that the user does not
348 * care about modifications to the header part of skb->data.
349 */
350 #define SKB_DATAREF_SHIFT 16
351 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
352
353
354 enum {
355 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
356 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
357 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
358 };
359
360 enum {
361 SKB_GSO_TCPV4 = 1 << 0,
362 SKB_GSO_UDP = 1 << 1,
363
364 /* This indicates the skb is from an untrusted source. */
365 SKB_GSO_DODGY = 1 << 2,
366
367 /* This indicates the tcp segment has CWR set. */
368 SKB_GSO_TCP_ECN = 1 << 3,
369
370 SKB_GSO_TCPV6 = 1 << 4,
371
372 SKB_GSO_FCOE = 1 << 5,
373
374 SKB_GSO_GRE = 1 << 6,
375
376 SKB_GSO_GRE_CSUM = 1 << 7,
377
378 SKB_GSO_IPIP = 1 << 8,
379
380 SKB_GSO_SIT = 1 << 9,
381
382 SKB_GSO_UDP_TUNNEL = 1 << 10,
383
384 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
385
386 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
387 };
388
389 #if BITS_PER_LONG > 32
390 #define NET_SKBUFF_DATA_USES_OFFSET 1
391 #endif
392
393 #ifdef NET_SKBUFF_DATA_USES_OFFSET
394 typedef unsigned int sk_buff_data_t;
395 #else
396 typedef unsigned char *sk_buff_data_t;
397 #endif
398
399 /**
400 * struct skb_mstamp - multi resolution time stamps
401 * @stamp_us: timestamp in us resolution
402 * @stamp_jiffies: timestamp in jiffies
403 */
404 struct skb_mstamp {
405 union {
406 u64 v64;
407 struct {
408 u32 stamp_us;
409 u32 stamp_jiffies;
410 };
411 };
412 };
413
414 /**
415 * skb_mstamp_get - get current timestamp
416 * @cl: place to store timestamps
417 */
418 static inline void skb_mstamp_get(struct skb_mstamp *cl)
419 {
420 u64 val = local_clock();
421
422 do_div(val, NSEC_PER_USEC);
423 cl->stamp_us = (u32)val;
424 cl->stamp_jiffies = (u32)jiffies;
425 }
426
427 /**
428 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
429 * @t1: pointer to newest sample
430 * @t0: pointer to oldest sample
431 */
432 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
433 const struct skb_mstamp *t0)
434 {
435 s32 delta_us = t1->stamp_us - t0->stamp_us;
436 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
437
438 /* If delta_us is negative, this might be because interval is too big,
439 * or local_clock() drift is too big : fallback using jiffies.
440 */
441 if (delta_us <= 0 ||
442 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
443
444 delta_us = jiffies_to_usecs(delta_jiffies);
445
446 return delta_us;
447 }
448
449
450 /**
451 * struct sk_buff - socket buffer
452 * @next: Next buffer in list
453 * @prev: Previous buffer in list
454 * @tstamp: Time we arrived/left
455 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
456 * @sk: Socket we are owned by
457 * @dev: Device we arrived on/are leaving by
458 * @cb: Control buffer. Free for use by every layer. Put private vars here
459 * @_skb_refdst: destination entry (with norefcount bit)
460 * @sp: the security path, used for xfrm
461 * @len: Length of actual data
462 * @data_len: Data length
463 * @mac_len: Length of link layer header
464 * @hdr_len: writable header length of cloned skb
465 * @csum: Checksum (must include start/offset pair)
466 * @csum_start: Offset from skb->head where checksumming should start
467 * @csum_offset: Offset from csum_start where checksum should be stored
468 * @priority: Packet queueing priority
469 * @ignore_df: allow local fragmentation
470 * @cloned: Head may be cloned (check refcnt to be sure)
471 * @ip_summed: Driver fed us an IP checksum
472 * @nohdr: Payload reference only, must not modify header
473 * @nfctinfo: Relationship of this skb to the connection
474 * @pkt_type: Packet class
475 * @fclone: skbuff clone status
476 * @ipvs_property: skbuff is owned by ipvs
477 * @peeked: this packet has been seen already, so stats have been
478 * done for it, don't do them again
479 * @nf_trace: netfilter packet trace flag
480 * @protocol: Packet protocol from driver
481 * @destructor: Destruct function
482 * @nfct: Associated connection, if any
483 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
484 * @skb_iif: ifindex of device we arrived on
485 * @tc_index: Traffic control index
486 * @tc_verd: traffic control verdict
487 * @hash: the packet hash
488 * @queue_mapping: Queue mapping for multiqueue devices
489 * @xmit_more: More SKBs are pending for this queue
490 * @ndisc_nodetype: router type (from link layer)
491 * @ooo_okay: allow the mapping of a socket to a queue to be changed
492 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
493 * ports.
494 * @sw_hash: indicates hash was computed in software stack
495 * @wifi_acked_valid: wifi_acked was set
496 * @wifi_acked: whether frame was acked on wifi or not
497 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
498 * @napi_id: id of the NAPI struct this skb came from
499 * @secmark: security marking
500 * @mark: Generic packet mark
501 * @vlan_proto: vlan encapsulation protocol
502 * @vlan_tci: vlan tag control information
503 * @inner_protocol: Protocol (encapsulation)
504 * @inner_transport_header: Inner transport layer header (encapsulation)
505 * @inner_network_header: Network layer header (encapsulation)
506 * @inner_mac_header: Link layer header (encapsulation)
507 * @transport_header: Transport layer header
508 * @network_header: Network layer header
509 * @mac_header: Link layer header
510 * @tail: Tail pointer
511 * @end: End pointer
512 * @head: Head of buffer
513 * @data: Data head pointer
514 * @truesize: Buffer size
515 * @users: User count - see {datagram,tcp}.c
516 */
517
518 struct sk_buff {
519 union {
520 struct {
521 /* These two members must be first. */
522 struct sk_buff *next;
523 struct sk_buff *prev;
524
525 union {
526 ktime_t tstamp;
527 struct skb_mstamp skb_mstamp;
528 };
529 };
530 struct rb_node rbnode; /* used in netem & tcp stack */
531 };
532 struct sock *sk;
533 struct net_device *dev;
534
535 /*
536 * This is the control buffer. It is free to use for every
537 * layer. Please put your private variables there. If you
538 * want to keep them across layers you have to do a skb_clone()
539 * first. This is owned by whoever has the skb queued ATM.
540 */
541 char cb[48] __aligned(8);
542
543 unsigned long _skb_refdst;
544 void (*destructor)(struct sk_buff *skb);
545 #ifdef CONFIG_XFRM
546 struct sec_path *sp;
547 #endif
548 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
549 struct nf_conntrack *nfct;
550 #endif
551 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
552 struct nf_bridge_info *nf_bridge;
553 #endif
554 unsigned int len,
555 data_len;
556 __u16 mac_len,
557 hdr_len;
558
559 /* Following fields are _not_ copied in __copy_skb_header()
560 * Note that queue_mapping is here mostly to fill a hole.
561 */
562 kmemcheck_bitfield_begin(flags1);
563 __u16 queue_mapping;
564 __u8 cloned:1,
565 nohdr:1,
566 fclone:2,
567 peeked:1,
568 head_frag:1,
569 xmit_more:1;
570 /* one bit hole */
571 kmemcheck_bitfield_end(flags1);
572
573 /* fields enclosed in headers_start/headers_end are copied
574 * using a single memcpy() in __copy_skb_header()
575 */
576 /* private: */
577 __u32 headers_start[0];
578 /* public: */
579
580 /* if you move pkt_type around you also must adapt those constants */
581 #ifdef __BIG_ENDIAN_BITFIELD
582 #define PKT_TYPE_MAX (7 << 5)
583 #else
584 #define PKT_TYPE_MAX 7
585 #endif
586 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
587
588 __u8 __pkt_type_offset[0];
589 __u8 pkt_type:3;
590 __u8 pfmemalloc:1;
591 __u8 ignore_df:1;
592 __u8 nfctinfo:3;
593
594 __u8 nf_trace:1;
595 __u8 ip_summed:2;
596 __u8 ooo_okay:1;
597 __u8 l4_hash:1;
598 __u8 sw_hash:1;
599 __u8 wifi_acked_valid:1;
600 __u8 wifi_acked:1;
601
602 __u8 no_fcs:1;
603 /* Indicates the inner headers are valid in the skbuff. */
604 __u8 encapsulation:1;
605 __u8 encap_hdr_csum:1;
606 __u8 csum_valid:1;
607 __u8 csum_complete_sw:1;
608 __u8 csum_level:2;
609 __u8 csum_bad:1;
610
611 #ifdef CONFIG_IPV6_NDISC_NODETYPE
612 __u8 ndisc_nodetype:2;
613 #endif
614 __u8 ipvs_property:1;
615 __u8 inner_protocol_type:1;
616 __u8 remcsum_offload:1;
617 /* 3 or 5 bit hole */
618
619 #ifdef CONFIG_NET_SCHED
620 __u16 tc_index; /* traffic control index */
621 #ifdef CONFIG_NET_CLS_ACT
622 __u16 tc_verd; /* traffic control verdict */
623 #endif
624 #endif
625
626 union {
627 __wsum csum;
628 struct {
629 __u16 csum_start;
630 __u16 csum_offset;
631 };
632 };
633 __u32 priority;
634 int skb_iif;
635 __u32 hash;
636 __be16 vlan_proto;
637 __u16 vlan_tci;
638 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
639 union {
640 unsigned int napi_id;
641 unsigned int sender_cpu;
642 };
643 #endif
644 #ifdef CONFIG_NETWORK_SECMARK
645 __u32 secmark;
646 #endif
647 union {
648 __u32 mark;
649 __u32 reserved_tailroom;
650 };
651
652 union {
653 __be16 inner_protocol;
654 __u8 inner_ipproto;
655 };
656
657 __u16 inner_transport_header;
658 __u16 inner_network_header;
659 __u16 inner_mac_header;
660
661 __be16 protocol;
662 __u16 transport_header;
663 __u16 network_header;
664 __u16 mac_header;
665
666 /* private: */
667 __u32 headers_end[0];
668 /* public: */
669
670 /* These elements must be at the end, see alloc_skb() for details. */
671 sk_buff_data_t tail;
672 sk_buff_data_t end;
673 unsigned char *head,
674 *data;
675 unsigned int truesize;
676 atomic_t users;
677 };
678
679 #ifdef __KERNEL__
680 /*
681 * Handling routines are only of interest to the kernel
682 */
683 #include <linux/slab.h>
684
685
686 #define SKB_ALLOC_FCLONE 0x01
687 #define SKB_ALLOC_RX 0x02
688 #define SKB_ALLOC_NAPI 0x04
689
690 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
691 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
692 {
693 return unlikely(skb->pfmemalloc);
694 }
695
696 /*
697 * skb might have a dst pointer attached, refcounted or not.
698 * _skb_refdst low order bit is set if refcount was _not_ taken
699 */
700 #define SKB_DST_NOREF 1UL
701 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
702
703 /**
704 * skb_dst - returns skb dst_entry
705 * @skb: buffer
706 *
707 * Returns skb dst_entry, regardless of reference taken or not.
708 */
709 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
710 {
711 /* If refdst was not refcounted, check we still are in a
712 * rcu_read_lock section
713 */
714 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
715 !rcu_read_lock_held() &&
716 !rcu_read_lock_bh_held());
717 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
718 }
719
720 /**
721 * skb_dst_set - sets skb dst
722 * @skb: buffer
723 * @dst: dst entry
724 *
725 * Sets skb dst, assuming a reference was taken on dst and should
726 * be released by skb_dst_drop()
727 */
728 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
729 {
730 skb->_skb_refdst = (unsigned long)dst;
731 }
732
733 /**
734 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
735 * @skb: buffer
736 * @dst: dst entry
737 *
738 * Sets skb dst, assuming a reference was not taken on dst.
739 * If dst entry is cached, we do not take reference and dst_release
740 * will be avoided by refdst_drop. If dst entry is not cached, we take
741 * reference, so that last dst_release can destroy the dst immediately.
742 */
743 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
744 {
745 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
746 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
747 }
748
749 /**
750 * skb_dst_is_noref - Test if skb dst isn't refcounted
751 * @skb: buffer
752 */
753 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
754 {
755 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
756 }
757
758 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
759 {
760 return (struct rtable *)skb_dst(skb);
761 }
762
763 void kfree_skb(struct sk_buff *skb);
764 void kfree_skb_list(struct sk_buff *segs);
765 void skb_tx_error(struct sk_buff *skb);
766 void consume_skb(struct sk_buff *skb);
767 void __kfree_skb(struct sk_buff *skb);
768 extern struct kmem_cache *skbuff_head_cache;
769
770 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
771 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
772 bool *fragstolen, int *delta_truesize);
773
774 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
775 int node);
776 struct sk_buff *build_skb(void *data, unsigned int frag_size);
777 static inline struct sk_buff *alloc_skb(unsigned int size,
778 gfp_t priority)
779 {
780 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
781 }
782
783 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
784 unsigned long data_len,
785 int max_page_order,
786 int *errcode,
787 gfp_t gfp_mask);
788
789 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
790 struct sk_buff_fclones {
791 struct sk_buff skb1;
792
793 struct sk_buff skb2;
794
795 atomic_t fclone_ref;
796 };
797
798 /**
799 * skb_fclone_busy - check if fclone is busy
800 * @skb: buffer
801 *
802 * Returns true is skb is a fast clone, and its clone is not freed.
803 * Some drivers call skb_orphan() in their ndo_start_xmit(),
804 * so we also check that this didnt happen.
805 */
806 static inline bool skb_fclone_busy(const struct sock *sk,
807 const struct sk_buff *skb)
808 {
809 const struct sk_buff_fclones *fclones;
810
811 fclones = container_of(skb, struct sk_buff_fclones, skb1);
812
813 return skb->fclone == SKB_FCLONE_ORIG &&
814 atomic_read(&fclones->fclone_ref) > 1 &&
815 fclones->skb2.sk == sk;
816 }
817
818 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
819 gfp_t priority)
820 {
821 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
822 }
823
824 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
825 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
826 {
827 return __alloc_skb_head(priority, -1);
828 }
829
830 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
831 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
832 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
833 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
834 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
835 gfp_t gfp_mask, bool fclone);
836 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
837 gfp_t gfp_mask)
838 {
839 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
840 }
841
842 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
843 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
844 unsigned int headroom);
845 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
846 int newtailroom, gfp_t priority);
847 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
848 int offset, int len);
849 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
850 int len);
851 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
852 int skb_pad(struct sk_buff *skb, int pad);
853 #define dev_kfree_skb(a) consume_skb(a)
854
855 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
856 int getfrag(void *from, char *to, int offset,
857 int len, int odd, struct sk_buff *skb),
858 void *from, int length);
859
860 struct skb_seq_state {
861 __u32 lower_offset;
862 __u32 upper_offset;
863 __u32 frag_idx;
864 __u32 stepped_offset;
865 struct sk_buff *root_skb;
866 struct sk_buff *cur_skb;
867 __u8 *frag_data;
868 };
869
870 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
871 unsigned int to, struct skb_seq_state *st);
872 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
873 struct skb_seq_state *st);
874 void skb_abort_seq_read(struct skb_seq_state *st);
875
876 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
877 unsigned int to, struct ts_config *config);
878
879 /*
880 * Packet hash types specify the type of hash in skb_set_hash.
881 *
882 * Hash types refer to the protocol layer addresses which are used to
883 * construct a packet's hash. The hashes are used to differentiate or identify
884 * flows of the protocol layer for the hash type. Hash types are either
885 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
886 *
887 * Properties of hashes:
888 *
889 * 1) Two packets in different flows have different hash values
890 * 2) Two packets in the same flow should have the same hash value
891 *
892 * A hash at a higher layer is considered to be more specific. A driver should
893 * set the most specific hash possible.
894 *
895 * A driver cannot indicate a more specific hash than the layer at which a hash
896 * was computed. For instance an L3 hash cannot be set as an L4 hash.
897 *
898 * A driver may indicate a hash level which is less specific than the
899 * actual layer the hash was computed on. For instance, a hash computed
900 * at L4 may be considered an L3 hash. This should only be done if the
901 * driver can't unambiguously determine that the HW computed the hash at
902 * the higher layer. Note that the "should" in the second property above
903 * permits this.
904 */
905 enum pkt_hash_types {
906 PKT_HASH_TYPE_NONE, /* Undefined type */
907 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
908 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
909 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
910 };
911
912 static inline void
913 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
914 {
915 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
916 skb->sw_hash = 0;
917 skb->hash = hash;
918 }
919
920 void __skb_get_hash(struct sk_buff *skb);
921 static inline __u32 skb_get_hash(struct sk_buff *skb)
922 {
923 if (!skb->l4_hash && !skb->sw_hash)
924 __skb_get_hash(skb);
925
926 return skb->hash;
927 }
928
929 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
930 {
931 return skb->hash;
932 }
933
934 static inline void skb_clear_hash(struct sk_buff *skb)
935 {
936 skb->hash = 0;
937 skb->sw_hash = 0;
938 skb->l4_hash = 0;
939 }
940
941 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
942 {
943 if (!skb->l4_hash)
944 skb_clear_hash(skb);
945 }
946
947 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
948 {
949 to->hash = from->hash;
950 to->sw_hash = from->sw_hash;
951 to->l4_hash = from->l4_hash;
952 };
953
954 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
955 {
956 #ifdef CONFIG_XPS
957 skb->sender_cpu = 0;
958 #endif
959 }
960
961 #ifdef NET_SKBUFF_DATA_USES_OFFSET
962 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
963 {
964 return skb->head + skb->end;
965 }
966
967 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
968 {
969 return skb->end;
970 }
971 #else
972 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
973 {
974 return skb->end;
975 }
976
977 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
978 {
979 return skb->end - skb->head;
980 }
981 #endif
982
983 /* Internal */
984 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
985
986 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
987 {
988 return &skb_shinfo(skb)->hwtstamps;
989 }
990
991 /**
992 * skb_queue_empty - check if a queue is empty
993 * @list: queue head
994 *
995 * Returns true if the queue is empty, false otherwise.
996 */
997 static inline int skb_queue_empty(const struct sk_buff_head *list)
998 {
999 return list->next == (const struct sk_buff *) list;
1000 }
1001
1002 /**
1003 * skb_queue_is_last - check if skb is the last entry in the queue
1004 * @list: queue head
1005 * @skb: buffer
1006 *
1007 * Returns true if @skb is the last buffer on the list.
1008 */
1009 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1010 const struct sk_buff *skb)
1011 {
1012 return skb->next == (const struct sk_buff *) list;
1013 }
1014
1015 /**
1016 * skb_queue_is_first - check if skb is the first entry in the queue
1017 * @list: queue head
1018 * @skb: buffer
1019 *
1020 * Returns true if @skb is the first buffer on the list.
1021 */
1022 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1023 const struct sk_buff *skb)
1024 {
1025 return skb->prev == (const struct sk_buff *) list;
1026 }
1027
1028 /**
1029 * skb_queue_next - return the next packet in the queue
1030 * @list: queue head
1031 * @skb: current buffer
1032 *
1033 * Return the next packet in @list after @skb. It is only valid to
1034 * call this if skb_queue_is_last() evaluates to false.
1035 */
1036 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1037 const struct sk_buff *skb)
1038 {
1039 /* This BUG_ON may seem severe, but if we just return then we
1040 * are going to dereference garbage.
1041 */
1042 BUG_ON(skb_queue_is_last(list, skb));
1043 return skb->next;
1044 }
1045
1046 /**
1047 * skb_queue_prev - return the prev packet in the queue
1048 * @list: queue head
1049 * @skb: current buffer
1050 *
1051 * Return the prev packet in @list before @skb. It is only valid to
1052 * call this if skb_queue_is_first() evaluates to false.
1053 */
1054 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1055 const struct sk_buff *skb)
1056 {
1057 /* This BUG_ON may seem severe, but if we just return then we
1058 * are going to dereference garbage.
1059 */
1060 BUG_ON(skb_queue_is_first(list, skb));
1061 return skb->prev;
1062 }
1063
1064 /**
1065 * skb_get - reference buffer
1066 * @skb: buffer to reference
1067 *
1068 * Makes another reference to a socket buffer and returns a pointer
1069 * to the buffer.
1070 */
1071 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1072 {
1073 atomic_inc(&skb->users);
1074 return skb;
1075 }
1076
1077 /*
1078 * If users == 1, we are the only owner and are can avoid redundant
1079 * atomic change.
1080 */
1081
1082 /**
1083 * skb_cloned - is the buffer a clone
1084 * @skb: buffer to check
1085 *
1086 * Returns true if the buffer was generated with skb_clone() and is
1087 * one of multiple shared copies of the buffer. Cloned buffers are
1088 * shared data so must not be written to under normal circumstances.
1089 */
1090 static inline int skb_cloned(const struct sk_buff *skb)
1091 {
1092 return skb->cloned &&
1093 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1094 }
1095
1096 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1097 {
1098 might_sleep_if(pri & __GFP_WAIT);
1099
1100 if (skb_cloned(skb))
1101 return pskb_expand_head(skb, 0, 0, pri);
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * skb_header_cloned - is the header a clone
1108 * @skb: buffer to check
1109 *
1110 * Returns true if modifying the header part of the buffer requires
1111 * the data to be copied.
1112 */
1113 static inline int skb_header_cloned(const struct sk_buff *skb)
1114 {
1115 int dataref;
1116
1117 if (!skb->cloned)
1118 return 0;
1119
1120 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1121 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1122 return dataref != 1;
1123 }
1124
1125 /**
1126 * skb_header_release - release reference to header
1127 * @skb: buffer to operate on
1128 *
1129 * Drop a reference to the header part of the buffer. This is done
1130 * by acquiring a payload reference. You must not read from the header
1131 * part of skb->data after this.
1132 * Note : Check if you can use __skb_header_release() instead.
1133 */
1134 static inline void skb_header_release(struct sk_buff *skb)
1135 {
1136 BUG_ON(skb->nohdr);
1137 skb->nohdr = 1;
1138 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1139 }
1140
1141 /**
1142 * __skb_header_release - release reference to header
1143 * @skb: buffer to operate on
1144 *
1145 * Variant of skb_header_release() assuming skb is private to caller.
1146 * We can avoid one atomic operation.
1147 */
1148 static inline void __skb_header_release(struct sk_buff *skb)
1149 {
1150 skb->nohdr = 1;
1151 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1152 }
1153
1154
1155 /**
1156 * skb_shared - is the buffer shared
1157 * @skb: buffer to check
1158 *
1159 * Returns true if more than one person has a reference to this
1160 * buffer.
1161 */
1162 static inline int skb_shared(const struct sk_buff *skb)
1163 {
1164 return atomic_read(&skb->users) != 1;
1165 }
1166
1167 /**
1168 * skb_share_check - check if buffer is shared and if so clone it
1169 * @skb: buffer to check
1170 * @pri: priority for memory allocation
1171 *
1172 * If the buffer is shared the buffer is cloned and the old copy
1173 * drops a reference. A new clone with a single reference is returned.
1174 * If the buffer is not shared the original buffer is returned. When
1175 * being called from interrupt status or with spinlocks held pri must
1176 * be GFP_ATOMIC.
1177 *
1178 * NULL is returned on a memory allocation failure.
1179 */
1180 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1181 {
1182 might_sleep_if(pri & __GFP_WAIT);
1183 if (skb_shared(skb)) {
1184 struct sk_buff *nskb = skb_clone(skb, pri);
1185
1186 if (likely(nskb))
1187 consume_skb(skb);
1188 else
1189 kfree_skb(skb);
1190 skb = nskb;
1191 }
1192 return skb;
1193 }
1194
1195 /*
1196 * Copy shared buffers into a new sk_buff. We effectively do COW on
1197 * packets to handle cases where we have a local reader and forward
1198 * and a couple of other messy ones. The normal one is tcpdumping
1199 * a packet thats being forwarded.
1200 */
1201
1202 /**
1203 * skb_unshare - make a copy of a shared buffer
1204 * @skb: buffer to check
1205 * @pri: priority for memory allocation
1206 *
1207 * If the socket buffer is a clone then this function creates a new
1208 * copy of the data, drops a reference count on the old copy and returns
1209 * the new copy with the reference count at 1. If the buffer is not a clone
1210 * the original buffer is returned. When called with a spinlock held or
1211 * from interrupt state @pri must be %GFP_ATOMIC
1212 *
1213 * %NULL is returned on a memory allocation failure.
1214 */
1215 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1216 gfp_t pri)
1217 {
1218 might_sleep_if(pri & __GFP_WAIT);
1219 if (skb_cloned(skb)) {
1220 struct sk_buff *nskb = skb_copy(skb, pri);
1221
1222 /* Free our shared copy */
1223 if (likely(nskb))
1224 consume_skb(skb);
1225 else
1226 kfree_skb(skb);
1227 skb = nskb;
1228 }
1229 return skb;
1230 }
1231
1232 /**
1233 * skb_peek - peek at the head of an &sk_buff_head
1234 * @list_: list to peek at
1235 *
1236 * Peek an &sk_buff. Unlike most other operations you _MUST_
1237 * be careful with this one. A peek leaves the buffer on the
1238 * list and someone else may run off with it. You must hold
1239 * the appropriate locks or have a private queue to do this.
1240 *
1241 * Returns %NULL for an empty list or a pointer to the head element.
1242 * The reference count is not incremented and the reference is therefore
1243 * volatile. Use with caution.
1244 */
1245 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1246 {
1247 struct sk_buff *skb = list_->next;
1248
1249 if (skb == (struct sk_buff *)list_)
1250 skb = NULL;
1251 return skb;
1252 }
1253
1254 /**
1255 * skb_peek_next - peek skb following the given one from a queue
1256 * @skb: skb to start from
1257 * @list_: list to peek at
1258 *
1259 * Returns %NULL when the end of the list is met or a pointer to the
1260 * next element. The reference count is not incremented and the
1261 * reference is therefore volatile. Use with caution.
1262 */
1263 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1264 const struct sk_buff_head *list_)
1265 {
1266 struct sk_buff *next = skb->next;
1267
1268 if (next == (struct sk_buff *)list_)
1269 next = NULL;
1270 return next;
1271 }
1272
1273 /**
1274 * skb_peek_tail - peek at the tail of an &sk_buff_head
1275 * @list_: list to peek at
1276 *
1277 * Peek an &sk_buff. Unlike most other operations you _MUST_
1278 * be careful with this one. A peek leaves the buffer on the
1279 * list and someone else may run off with it. You must hold
1280 * the appropriate locks or have a private queue to do this.
1281 *
1282 * Returns %NULL for an empty list or a pointer to the tail element.
1283 * The reference count is not incremented and the reference is therefore
1284 * volatile. Use with caution.
1285 */
1286 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1287 {
1288 struct sk_buff *skb = list_->prev;
1289
1290 if (skb == (struct sk_buff *)list_)
1291 skb = NULL;
1292 return skb;
1293
1294 }
1295
1296 /**
1297 * skb_queue_len - get queue length
1298 * @list_: list to measure
1299 *
1300 * Return the length of an &sk_buff queue.
1301 */
1302 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1303 {
1304 return list_->qlen;
1305 }
1306
1307 /**
1308 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1309 * @list: queue to initialize
1310 *
1311 * This initializes only the list and queue length aspects of
1312 * an sk_buff_head object. This allows to initialize the list
1313 * aspects of an sk_buff_head without reinitializing things like
1314 * the spinlock. It can also be used for on-stack sk_buff_head
1315 * objects where the spinlock is known to not be used.
1316 */
1317 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1318 {
1319 list->prev = list->next = (struct sk_buff *)list;
1320 list->qlen = 0;
1321 }
1322
1323 /*
1324 * This function creates a split out lock class for each invocation;
1325 * this is needed for now since a whole lot of users of the skb-queue
1326 * infrastructure in drivers have different locking usage (in hardirq)
1327 * than the networking core (in softirq only). In the long run either the
1328 * network layer or drivers should need annotation to consolidate the
1329 * main types of usage into 3 classes.
1330 */
1331 static inline void skb_queue_head_init(struct sk_buff_head *list)
1332 {
1333 spin_lock_init(&list->lock);
1334 __skb_queue_head_init(list);
1335 }
1336
1337 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1338 struct lock_class_key *class)
1339 {
1340 skb_queue_head_init(list);
1341 lockdep_set_class(&list->lock, class);
1342 }
1343
1344 /*
1345 * Insert an sk_buff on a list.
1346 *
1347 * The "__skb_xxxx()" functions are the non-atomic ones that
1348 * can only be called with interrupts disabled.
1349 */
1350 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1351 struct sk_buff_head *list);
1352 static inline void __skb_insert(struct sk_buff *newsk,
1353 struct sk_buff *prev, struct sk_buff *next,
1354 struct sk_buff_head *list)
1355 {
1356 newsk->next = next;
1357 newsk->prev = prev;
1358 next->prev = prev->next = newsk;
1359 list->qlen++;
1360 }
1361
1362 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1363 struct sk_buff *prev,
1364 struct sk_buff *next)
1365 {
1366 struct sk_buff *first = list->next;
1367 struct sk_buff *last = list->prev;
1368
1369 first->prev = prev;
1370 prev->next = first;
1371
1372 last->next = next;
1373 next->prev = last;
1374 }
1375
1376 /**
1377 * skb_queue_splice - join two skb lists, this is designed for stacks
1378 * @list: the new list to add
1379 * @head: the place to add it in the first list
1380 */
1381 static inline void skb_queue_splice(const struct sk_buff_head *list,
1382 struct sk_buff_head *head)
1383 {
1384 if (!skb_queue_empty(list)) {
1385 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1386 head->qlen += list->qlen;
1387 }
1388 }
1389
1390 /**
1391 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1392 * @list: the new list to add
1393 * @head: the place to add it in the first list
1394 *
1395 * The list at @list is reinitialised
1396 */
1397 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1398 struct sk_buff_head *head)
1399 {
1400 if (!skb_queue_empty(list)) {
1401 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1402 head->qlen += list->qlen;
1403 __skb_queue_head_init(list);
1404 }
1405 }
1406
1407 /**
1408 * skb_queue_splice_tail - join two skb lists, each list being a queue
1409 * @list: the new list to add
1410 * @head: the place to add it in the first list
1411 */
1412 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1413 struct sk_buff_head *head)
1414 {
1415 if (!skb_queue_empty(list)) {
1416 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1417 head->qlen += list->qlen;
1418 }
1419 }
1420
1421 /**
1422 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1423 * @list: the new list to add
1424 * @head: the place to add it in the first list
1425 *
1426 * Each of the lists is a queue.
1427 * The list at @list is reinitialised
1428 */
1429 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1430 struct sk_buff_head *head)
1431 {
1432 if (!skb_queue_empty(list)) {
1433 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1434 head->qlen += list->qlen;
1435 __skb_queue_head_init(list);
1436 }
1437 }
1438
1439 /**
1440 * __skb_queue_after - queue a buffer at the list head
1441 * @list: list to use
1442 * @prev: place after this buffer
1443 * @newsk: buffer to queue
1444 *
1445 * Queue a buffer int the middle of a list. This function takes no locks
1446 * and you must therefore hold required locks before calling it.
1447 *
1448 * A buffer cannot be placed on two lists at the same time.
1449 */
1450 static inline void __skb_queue_after(struct sk_buff_head *list,
1451 struct sk_buff *prev,
1452 struct sk_buff *newsk)
1453 {
1454 __skb_insert(newsk, prev, prev->next, list);
1455 }
1456
1457 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1458 struct sk_buff_head *list);
1459
1460 static inline void __skb_queue_before(struct sk_buff_head *list,
1461 struct sk_buff *next,
1462 struct sk_buff *newsk)
1463 {
1464 __skb_insert(newsk, next->prev, next, list);
1465 }
1466
1467 /**
1468 * __skb_queue_head - queue a buffer at the list head
1469 * @list: list to use
1470 * @newsk: buffer to queue
1471 *
1472 * Queue a buffer at the start of a list. This function takes no locks
1473 * and you must therefore hold required locks before calling it.
1474 *
1475 * A buffer cannot be placed on two lists at the same time.
1476 */
1477 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1478 static inline void __skb_queue_head(struct sk_buff_head *list,
1479 struct sk_buff *newsk)
1480 {
1481 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1482 }
1483
1484 /**
1485 * __skb_queue_tail - queue a buffer at the list tail
1486 * @list: list to use
1487 * @newsk: buffer to queue
1488 *
1489 * Queue a buffer at the end of a list. This function takes no locks
1490 * and you must therefore hold required locks before calling it.
1491 *
1492 * A buffer cannot be placed on two lists at the same time.
1493 */
1494 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1495 static inline void __skb_queue_tail(struct sk_buff_head *list,
1496 struct sk_buff *newsk)
1497 {
1498 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1499 }
1500
1501 /*
1502 * remove sk_buff from list. _Must_ be called atomically, and with
1503 * the list known..
1504 */
1505 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1506 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1507 {
1508 struct sk_buff *next, *prev;
1509
1510 list->qlen--;
1511 next = skb->next;
1512 prev = skb->prev;
1513 skb->next = skb->prev = NULL;
1514 next->prev = prev;
1515 prev->next = next;
1516 }
1517
1518 /**
1519 * __skb_dequeue - remove from the head of the queue
1520 * @list: list to dequeue from
1521 *
1522 * Remove the head of the list. This function does not take any locks
1523 * so must be used with appropriate locks held only. The head item is
1524 * returned or %NULL if the list is empty.
1525 */
1526 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1527 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1528 {
1529 struct sk_buff *skb = skb_peek(list);
1530 if (skb)
1531 __skb_unlink(skb, list);
1532 return skb;
1533 }
1534
1535 /**
1536 * __skb_dequeue_tail - remove from the tail of the queue
1537 * @list: list to dequeue from
1538 *
1539 * Remove the tail of the list. This function does not take any locks
1540 * so must be used with appropriate locks held only. The tail item is
1541 * returned or %NULL if the list is empty.
1542 */
1543 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1544 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1545 {
1546 struct sk_buff *skb = skb_peek_tail(list);
1547 if (skb)
1548 __skb_unlink(skb, list);
1549 return skb;
1550 }
1551
1552
1553 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1554 {
1555 return skb->data_len;
1556 }
1557
1558 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1559 {
1560 return skb->len - skb->data_len;
1561 }
1562
1563 static inline int skb_pagelen(const struct sk_buff *skb)
1564 {
1565 int i, len = 0;
1566
1567 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1568 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1569 return len + skb_headlen(skb);
1570 }
1571
1572 /**
1573 * __skb_fill_page_desc - initialise a paged fragment in an skb
1574 * @skb: buffer containing fragment to be initialised
1575 * @i: paged fragment index to initialise
1576 * @page: the page to use for this fragment
1577 * @off: the offset to the data with @page
1578 * @size: the length of the data
1579 *
1580 * Initialises the @i'th fragment of @skb to point to &size bytes at
1581 * offset @off within @page.
1582 *
1583 * Does not take any additional reference on the fragment.
1584 */
1585 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1586 struct page *page, int off, int size)
1587 {
1588 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1589
1590 /*
1591 * Propagate page->pfmemalloc to the skb if we can. The problem is
1592 * that not all callers have unique ownership of the page. If
1593 * pfmemalloc is set, we check the mapping as a mapping implies
1594 * page->index is set (index and pfmemalloc share space).
1595 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1596 * do not lose pfmemalloc information as the pages would not be
1597 * allocated using __GFP_MEMALLOC.
1598 */
1599 frag->page.p = page;
1600 frag->page_offset = off;
1601 skb_frag_size_set(frag, size);
1602
1603 page = compound_head(page);
1604 if (page->pfmemalloc && !page->mapping)
1605 skb->pfmemalloc = true;
1606 }
1607
1608 /**
1609 * skb_fill_page_desc - initialise a paged fragment in an skb
1610 * @skb: buffer containing fragment to be initialised
1611 * @i: paged fragment index to initialise
1612 * @page: the page to use for this fragment
1613 * @off: the offset to the data with @page
1614 * @size: the length of the data
1615 *
1616 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1617 * @skb to point to @size bytes at offset @off within @page. In
1618 * addition updates @skb such that @i is the last fragment.
1619 *
1620 * Does not take any additional reference on the fragment.
1621 */
1622 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1623 struct page *page, int off, int size)
1624 {
1625 __skb_fill_page_desc(skb, i, page, off, size);
1626 skb_shinfo(skb)->nr_frags = i + 1;
1627 }
1628
1629 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1630 int size, unsigned int truesize);
1631
1632 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1633 unsigned int truesize);
1634
1635 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1636 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1637 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1638
1639 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1640 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1641 {
1642 return skb->head + skb->tail;
1643 }
1644
1645 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1646 {
1647 skb->tail = skb->data - skb->head;
1648 }
1649
1650 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1651 {
1652 skb_reset_tail_pointer(skb);
1653 skb->tail += offset;
1654 }
1655
1656 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1657 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1658 {
1659 return skb->tail;
1660 }
1661
1662 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1663 {
1664 skb->tail = skb->data;
1665 }
1666
1667 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1668 {
1669 skb->tail = skb->data + offset;
1670 }
1671
1672 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1673
1674 /*
1675 * Add data to an sk_buff
1676 */
1677 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1678 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1679 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1680 {
1681 unsigned char *tmp = skb_tail_pointer(skb);
1682 SKB_LINEAR_ASSERT(skb);
1683 skb->tail += len;
1684 skb->len += len;
1685 return tmp;
1686 }
1687
1688 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1689 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1690 {
1691 skb->data -= len;
1692 skb->len += len;
1693 return skb->data;
1694 }
1695
1696 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1697 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1698 {
1699 skb->len -= len;
1700 BUG_ON(skb->len < skb->data_len);
1701 return skb->data += len;
1702 }
1703
1704 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1705 {
1706 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1707 }
1708
1709 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1710
1711 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1712 {
1713 if (len > skb_headlen(skb) &&
1714 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1715 return NULL;
1716 skb->len -= len;
1717 return skb->data += len;
1718 }
1719
1720 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1721 {
1722 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1723 }
1724
1725 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1726 {
1727 if (likely(len <= skb_headlen(skb)))
1728 return 1;
1729 if (unlikely(len > skb->len))
1730 return 0;
1731 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1732 }
1733
1734 /**
1735 * skb_headroom - bytes at buffer head
1736 * @skb: buffer to check
1737 *
1738 * Return the number of bytes of free space at the head of an &sk_buff.
1739 */
1740 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1741 {
1742 return skb->data - skb->head;
1743 }
1744
1745 /**
1746 * skb_tailroom - bytes at buffer end
1747 * @skb: buffer to check
1748 *
1749 * Return the number of bytes of free space at the tail of an sk_buff
1750 */
1751 static inline int skb_tailroom(const struct sk_buff *skb)
1752 {
1753 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1754 }
1755
1756 /**
1757 * skb_availroom - bytes at buffer end
1758 * @skb: buffer to check
1759 *
1760 * Return the number of bytes of free space at the tail of an sk_buff
1761 * allocated by sk_stream_alloc()
1762 */
1763 static inline int skb_availroom(const struct sk_buff *skb)
1764 {
1765 if (skb_is_nonlinear(skb))
1766 return 0;
1767
1768 return skb->end - skb->tail - skb->reserved_tailroom;
1769 }
1770
1771 /**
1772 * skb_reserve - adjust headroom
1773 * @skb: buffer to alter
1774 * @len: bytes to move
1775 *
1776 * Increase the headroom of an empty &sk_buff by reducing the tail
1777 * room. This is only allowed for an empty buffer.
1778 */
1779 static inline void skb_reserve(struct sk_buff *skb, int len)
1780 {
1781 skb->data += len;
1782 skb->tail += len;
1783 }
1784
1785 #define ENCAP_TYPE_ETHER 0
1786 #define ENCAP_TYPE_IPPROTO 1
1787
1788 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1789 __be16 protocol)
1790 {
1791 skb->inner_protocol = protocol;
1792 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1793 }
1794
1795 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1796 __u8 ipproto)
1797 {
1798 skb->inner_ipproto = ipproto;
1799 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1800 }
1801
1802 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1803 {
1804 skb->inner_mac_header = skb->mac_header;
1805 skb->inner_network_header = skb->network_header;
1806 skb->inner_transport_header = skb->transport_header;
1807 }
1808
1809 static inline void skb_reset_mac_len(struct sk_buff *skb)
1810 {
1811 skb->mac_len = skb->network_header - skb->mac_header;
1812 }
1813
1814 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1815 *skb)
1816 {
1817 return skb->head + skb->inner_transport_header;
1818 }
1819
1820 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1821 {
1822 skb->inner_transport_header = skb->data - skb->head;
1823 }
1824
1825 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1826 const int offset)
1827 {
1828 skb_reset_inner_transport_header(skb);
1829 skb->inner_transport_header += offset;
1830 }
1831
1832 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1833 {
1834 return skb->head + skb->inner_network_header;
1835 }
1836
1837 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1838 {
1839 skb->inner_network_header = skb->data - skb->head;
1840 }
1841
1842 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1843 const int offset)
1844 {
1845 skb_reset_inner_network_header(skb);
1846 skb->inner_network_header += offset;
1847 }
1848
1849 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1850 {
1851 return skb->head + skb->inner_mac_header;
1852 }
1853
1854 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1855 {
1856 skb->inner_mac_header = skb->data - skb->head;
1857 }
1858
1859 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1860 const int offset)
1861 {
1862 skb_reset_inner_mac_header(skb);
1863 skb->inner_mac_header += offset;
1864 }
1865 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1866 {
1867 return skb->transport_header != (typeof(skb->transport_header))~0U;
1868 }
1869
1870 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1871 {
1872 return skb->head + skb->transport_header;
1873 }
1874
1875 static inline void skb_reset_transport_header(struct sk_buff *skb)
1876 {
1877 skb->transport_header = skb->data - skb->head;
1878 }
1879
1880 static inline void skb_set_transport_header(struct sk_buff *skb,
1881 const int offset)
1882 {
1883 skb_reset_transport_header(skb);
1884 skb->transport_header += offset;
1885 }
1886
1887 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1888 {
1889 return skb->head + skb->network_header;
1890 }
1891
1892 static inline void skb_reset_network_header(struct sk_buff *skb)
1893 {
1894 skb->network_header = skb->data - skb->head;
1895 }
1896
1897 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1898 {
1899 skb_reset_network_header(skb);
1900 skb->network_header += offset;
1901 }
1902
1903 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1904 {
1905 return skb->head + skb->mac_header;
1906 }
1907
1908 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1909 {
1910 return skb->mac_header != (typeof(skb->mac_header))~0U;
1911 }
1912
1913 static inline void skb_reset_mac_header(struct sk_buff *skb)
1914 {
1915 skb->mac_header = skb->data - skb->head;
1916 }
1917
1918 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1919 {
1920 skb_reset_mac_header(skb);
1921 skb->mac_header += offset;
1922 }
1923
1924 static inline void skb_pop_mac_header(struct sk_buff *skb)
1925 {
1926 skb->mac_header = skb->network_header;
1927 }
1928
1929 static inline void skb_probe_transport_header(struct sk_buff *skb,
1930 const int offset_hint)
1931 {
1932 struct flow_keys keys;
1933
1934 if (skb_transport_header_was_set(skb))
1935 return;
1936 else if (skb_flow_dissect(skb, &keys))
1937 skb_set_transport_header(skb, keys.thoff);
1938 else
1939 skb_set_transport_header(skb, offset_hint);
1940 }
1941
1942 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1943 {
1944 if (skb_mac_header_was_set(skb)) {
1945 const unsigned char *old_mac = skb_mac_header(skb);
1946
1947 skb_set_mac_header(skb, -skb->mac_len);
1948 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1949 }
1950 }
1951
1952 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1953 {
1954 return skb->csum_start - skb_headroom(skb);
1955 }
1956
1957 static inline int skb_transport_offset(const struct sk_buff *skb)
1958 {
1959 return skb_transport_header(skb) - skb->data;
1960 }
1961
1962 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1963 {
1964 return skb->transport_header - skb->network_header;
1965 }
1966
1967 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1968 {
1969 return skb->inner_transport_header - skb->inner_network_header;
1970 }
1971
1972 static inline int skb_network_offset(const struct sk_buff *skb)
1973 {
1974 return skb_network_header(skb) - skb->data;
1975 }
1976
1977 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1978 {
1979 return skb_inner_network_header(skb) - skb->data;
1980 }
1981
1982 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1983 {
1984 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1985 }
1986
1987 /*
1988 * CPUs often take a performance hit when accessing unaligned memory
1989 * locations. The actual performance hit varies, it can be small if the
1990 * hardware handles it or large if we have to take an exception and fix it
1991 * in software.
1992 *
1993 * Since an ethernet header is 14 bytes network drivers often end up with
1994 * the IP header at an unaligned offset. The IP header can be aligned by
1995 * shifting the start of the packet by 2 bytes. Drivers should do this
1996 * with:
1997 *
1998 * skb_reserve(skb, NET_IP_ALIGN);
1999 *
2000 * The downside to this alignment of the IP header is that the DMA is now
2001 * unaligned. On some architectures the cost of an unaligned DMA is high
2002 * and this cost outweighs the gains made by aligning the IP header.
2003 *
2004 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2005 * to be overridden.
2006 */
2007 #ifndef NET_IP_ALIGN
2008 #define NET_IP_ALIGN 2
2009 #endif
2010
2011 /*
2012 * The networking layer reserves some headroom in skb data (via
2013 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2014 * the header has to grow. In the default case, if the header has to grow
2015 * 32 bytes or less we avoid the reallocation.
2016 *
2017 * Unfortunately this headroom changes the DMA alignment of the resulting
2018 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2019 * on some architectures. An architecture can override this value,
2020 * perhaps setting it to a cacheline in size (since that will maintain
2021 * cacheline alignment of the DMA). It must be a power of 2.
2022 *
2023 * Various parts of the networking layer expect at least 32 bytes of
2024 * headroom, you should not reduce this.
2025 *
2026 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2027 * to reduce average number of cache lines per packet.
2028 * get_rps_cpus() for example only access one 64 bytes aligned block :
2029 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2030 */
2031 #ifndef NET_SKB_PAD
2032 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2033 #endif
2034
2035 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2036
2037 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2038 {
2039 if (unlikely(skb_is_nonlinear(skb))) {
2040 WARN_ON(1);
2041 return;
2042 }
2043 skb->len = len;
2044 skb_set_tail_pointer(skb, len);
2045 }
2046
2047 void skb_trim(struct sk_buff *skb, unsigned int len);
2048
2049 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2050 {
2051 if (skb->data_len)
2052 return ___pskb_trim(skb, len);
2053 __skb_trim(skb, len);
2054 return 0;
2055 }
2056
2057 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2058 {
2059 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2060 }
2061
2062 /**
2063 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2064 * @skb: buffer to alter
2065 * @len: new length
2066 *
2067 * This is identical to pskb_trim except that the caller knows that
2068 * the skb is not cloned so we should never get an error due to out-
2069 * of-memory.
2070 */
2071 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2072 {
2073 int err = pskb_trim(skb, len);
2074 BUG_ON(err);
2075 }
2076
2077 /**
2078 * skb_orphan - orphan a buffer
2079 * @skb: buffer to orphan
2080 *
2081 * If a buffer currently has an owner then we call the owner's
2082 * destructor function and make the @skb unowned. The buffer continues
2083 * to exist but is no longer charged to its former owner.
2084 */
2085 static inline void skb_orphan(struct sk_buff *skb)
2086 {
2087 if (skb->destructor) {
2088 skb->destructor(skb);
2089 skb->destructor = NULL;
2090 skb->sk = NULL;
2091 } else {
2092 BUG_ON(skb->sk);
2093 }
2094 }
2095
2096 /**
2097 * skb_orphan_frags - orphan the frags contained in a buffer
2098 * @skb: buffer to orphan frags from
2099 * @gfp_mask: allocation mask for replacement pages
2100 *
2101 * For each frag in the SKB which needs a destructor (i.e. has an
2102 * owner) create a copy of that frag and release the original
2103 * page by calling the destructor.
2104 */
2105 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2106 {
2107 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2108 return 0;
2109 return skb_copy_ubufs(skb, gfp_mask);
2110 }
2111
2112 /**
2113 * __skb_queue_purge - empty a list
2114 * @list: list to empty
2115 *
2116 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2117 * the list and one reference dropped. This function does not take the
2118 * list lock and the caller must hold the relevant locks to use it.
2119 */
2120 void skb_queue_purge(struct sk_buff_head *list);
2121 static inline void __skb_queue_purge(struct sk_buff_head *list)
2122 {
2123 struct sk_buff *skb;
2124 while ((skb = __skb_dequeue(list)) != NULL)
2125 kfree_skb(skb);
2126 }
2127
2128 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2129 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2130 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2131
2132 void *netdev_alloc_frag(unsigned int fragsz);
2133
2134 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2135 gfp_t gfp_mask);
2136
2137 /**
2138 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2139 * @dev: network device to receive on
2140 * @length: length to allocate
2141 *
2142 * Allocate a new &sk_buff and assign it a usage count of one. The
2143 * buffer has unspecified headroom built in. Users should allocate
2144 * the headroom they think they need without accounting for the
2145 * built in space. The built in space is used for optimisations.
2146 *
2147 * %NULL is returned if there is no free memory. Although this function
2148 * allocates memory it can be called from an interrupt.
2149 */
2150 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2151 unsigned int length)
2152 {
2153 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2154 }
2155
2156 /* legacy helper around __netdev_alloc_skb() */
2157 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2158 gfp_t gfp_mask)
2159 {
2160 return __netdev_alloc_skb(NULL, length, gfp_mask);
2161 }
2162
2163 /* legacy helper around netdev_alloc_skb() */
2164 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2165 {
2166 return netdev_alloc_skb(NULL, length);
2167 }
2168
2169
2170 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2171 unsigned int length, gfp_t gfp)
2172 {
2173 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2174
2175 if (NET_IP_ALIGN && skb)
2176 skb_reserve(skb, NET_IP_ALIGN);
2177 return skb;
2178 }
2179
2180 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2181 unsigned int length)
2182 {
2183 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2184 }
2185
2186 void *napi_alloc_frag(unsigned int fragsz);
2187 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2188 unsigned int length, gfp_t gfp_mask);
2189 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2190 unsigned int length)
2191 {
2192 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2193 }
2194
2195 /**
2196 * __dev_alloc_pages - allocate page for network Rx
2197 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2198 * @order: size of the allocation
2199 *
2200 * Allocate a new page.
2201 *
2202 * %NULL is returned if there is no free memory.
2203 */
2204 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2205 unsigned int order)
2206 {
2207 /* This piece of code contains several assumptions.
2208 * 1. This is for device Rx, therefor a cold page is preferred.
2209 * 2. The expectation is the user wants a compound page.
2210 * 3. If requesting a order 0 page it will not be compound
2211 * due to the check to see if order has a value in prep_new_page
2212 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2213 * code in gfp_to_alloc_flags that should be enforcing this.
2214 */
2215 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2216
2217 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2218 }
2219
2220 static inline struct page *dev_alloc_pages(unsigned int order)
2221 {
2222 return __dev_alloc_pages(GFP_ATOMIC, order);
2223 }
2224
2225 /**
2226 * __dev_alloc_page - allocate a page for network Rx
2227 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2228 *
2229 * Allocate a new page.
2230 *
2231 * %NULL is returned if there is no free memory.
2232 */
2233 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2234 {
2235 return __dev_alloc_pages(gfp_mask, 0);
2236 }
2237
2238 static inline struct page *dev_alloc_page(void)
2239 {
2240 return __dev_alloc_page(GFP_ATOMIC);
2241 }
2242
2243 /**
2244 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2245 * @page: The page that was allocated from skb_alloc_page
2246 * @skb: The skb that may need pfmemalloc set
2247 */
2248 static inline void skb_propagate_pfmemalloc(struct page *page,
2249 struct sk_buff *skb)
2250 {
2251 if (page && page->pfmemalloc)
2252 skb->pfmemalloc = true;
2253 }
2254
2255 /**
2256 * skb_frag_page - retrieve the page referred to by a paged fragment
2257 * @frag: the paged fragment
2258 *
2259 * Returns the &struct page associated with @frag.
2260 */
2261 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2262 {
2263 return frag->page.p;
2264 }
2265
2266 /**
2267 * __skb_frag_ref - take an addition reference on a paged fragment.
2268 * @frag: the paged fragment
2269 *
2270 * Takes an additional reference on the paged fragment @frag.
2271 */
2272 static inline void __skb_frag_ref(skb_frag_t *frag)
2273 {
2274 get_page(skb_frag_page(frag));
2275 }
2276
2277 /**
2278 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2279 * @skb: the buffer
2280 * @f: the fragment offset.
2281 *
2282 * Takes an additional reference on the @f'th paged fragment of @skb.
2283 */
2284 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2285 {
2286 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2287 }
2288
2289 /**
2290 * __skb_frag_unref - release a reference on a paged fragment.
2291 * @frag: the paged fragment
2292 *
2293 * Releases a reference on the paged fragment @frag.
2294 */
2295 static inline void __skb_frag_unref(skb_frag_t *frag)
2296 {
2297 put_page(skb_frag_page(frag));
2298 }
2299
2300 /**
2301 * skb_frag_unref - release a reference on a paged fragment of an skb.
2302 * @skb: the buffer
2303 * @f: the fragment offset
2304 *
2305 * Releases a reference on the @f'th paged fragment of @skb.
2306 */
2307 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2308 {
2309 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2310 }
2311
2312 /**
2313 * skb_frag_address - gets the address of the data contained in a paged fragment
2314 * @frag: the paged fragment buffer
2315 *
2316 * Returns the address of the data within @frag. The page must already
2317 * be mapped.
2318 */
2319 static inline void *skb_frag_address(const skb_frag_t *frag)
2320 {
2321 return page_address(skb_frag_page(frag)) + frag->page_offset;
2322 }
2323
2324 /**
2325 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2326 * @frag: the paged fragment buffer
2327 *
2328 * Returns the address of the data within @frag. Checks that the page
2329 * is mapped and returns %NULL otherwise.
2330 */
2331 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2332 {
2333 void *ptr = page_address(skb_frag_page(frag));
2334 if (unlikely(!ptr))
2335 return NULL;
2336
2337 return ptr + frag->page_offset;
2338 }
2339
2340 /**
2341 * __skb_frag_set_page - sets the page contained in a paged fragment
2342 * @frag: the paged fragment
2343 * @page: the page to set
2344 *
2345 * Sets the fragment @frag to contain @page.
2346 */
2347 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2348 {
2349 frag->page.p = page;
2350 }
2351
2352 /**
2353 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2354 * @skb: the buffer
2355 * @f: the fragment offset
2356 * @page: the page to set
2357 *
2358 * Sets the @f'th fragment of @skb to contain @page.
2359 */
2360 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2361 struct page *page)
2362 {
2363 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2364 }
2365
2366 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2367
2368 /**
2369 * skb_frag_dma_map - maps a paged fragment via the DMA API
2370 * @dev: the device to map the fragment to
2371 * @frag: the paged fragment to map
2372 * @offset: the offset within the fragment (starting at the
2373 * fragment's own offset)
2374 * @size: the number of bytes to map
2375 * @dir: the direction of the mapping (%PCI_DMA_*)
2376 *
2377 * Maps the page associated with @frag to @device.
2378 */
2379 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2380 const skb_frag_t *frag,
2381 size_t offset, size_t size,
2382 enum dma_data_direction dir)
2383 {
2384 return dma_map_page(dev, skb_frag_page(frag),
2385 frag->page_offset + offset, size, dir);
2386 }
2387
2388 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2389 gfp_t gfp_mask)
2390 {
2391 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2392 }
2393
2394
2395 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2396 gfp_t gfp_mask)
2397 {
2398 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2399 }
2400
2401
2402 /**
2403 * skb_clone_writable - is the header of a clone writable
2404 * @skb: buffer to check
2405 * @len: length up to which to write
2406 *
2407 * Returns true if modifying the header part of the cloned buffer
2408 * does not requires the data to be copied.
2409 */
2410 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2411 {
2412 return !skb_header_cloned(skb) &&
2413 skb_headroom(skb) + len <= skb->hdr_len;
2414 }
2415
2416 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2417 int cloned)
2418 {
2419 int delta = 0;
2420
2421 if (headroom > skb_headroom(skb))
2422 delta = headroom - skb_headroom(skb);
2423
2424 if (delta || cloned)
2425 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2426 GFP_ATOMIC);
2427 return 0;
2428 }
2429
2430 /**
2431 * skb_cow - copy header of skb when it is required
2432 * @skb: buffer to cow
2433 * @headroom: needed headroom
2434 *
2435 * If the skb passed lacks sufficient headroom or its data part
2436 * is shared, data is reallocated. If reallocation fails, an error
2437 * is returned and original skb is not changed.
2438 *
2439 * The result is skb with writable area skb->head...skb->tail
2440 * and at least @headroom of space at head.
2441 */
2442 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2443 {
2444 return __skb_cow(skb, headroom, skb_cloned(skb));
2445 }
2446
2447 /**
2448 * skb_cow_head - skb_cow but only making the head writable
2449 * @skb: buffer to cow
2450 * @headroom: needed headroom
2451 *
2452 * This function is identical to skb_cow except that we replace the
2453 * skb_cloned check by skb_header_cloned. It should be used when
2454 * you only need to push on some header and do not need to modify
2455 * the data.
2456 */
2457 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2458 {
2459 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2460 }
2461
2462 /**
2463 * skb_padto - pad an skbuff up to a minimal size
2464 * @skb: buffer to pad
2465 * @len: minimal length
2466 *
2467 * Pads up a buffer to ensure the trailing bytes exist and are
2468 * blanked. If the buffer already contains sufficient data it
2469 * is untouched. Otherwise it is extended. Returns zero on
2470 * success. The skb is freed on error.
2471 */
2472 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2473 {
2474 unsigned int size = skb->len;
2475 if (likely(size >= len))
2476 return 0;
2477 return skb_pad(skb, len - size);
2478 }
2479
2480 /**
2481 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2482 * @skb: buffer to pad
2483 * @len: minimal length
2484 *
2485 * Pads up a buffer to ensure the trailing bytes exist and are
2486 * blanked. If the buffer already contains sufficient data it
2487 * is untouched. Otherwise it is extended. Returns zero on
2488 * success. The skb is freed on error.
2489 */
2490 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2491 {
2492 unsigned int size = skb->len;
2493
2494 if (unlikely(size < len)) {
2495 len -= size;
2496 if (skb_pad(skb, len))
2497 return -ENOMEM;
2498 __skb_put(skb, len);
2499 }
2500 return 0;
2501 }
2502
2503 static inline int skb_add_data(struct sk_buff *skb,
2504 struct iov_iter *from, int copy)
2505 {
2506 const int off = skb->len;
2507
2508 if (skb->ip_summed == CHECKSUM_NONE) {
2509 __wsum csum = 0;
2510 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2511 &csum, from) == copy) {
2512 skb->csum = csum_block_add(skb->csum, csum, off);
2513 return 0;
2514 }
2515 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2516 return 0;
2517
2518 __skb_trim(skb, off);
2519 return -EFAULT;
2520 }
2521
2522 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2523 const struct page *page, int off)
2524 {
2525 if (i) {
2526 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2527
2528 return page == skb_frag_page(frag) &&
2529 off == frag->page_offset + skb_frag_size(frag);
2530 }
2531 return false;
2532 }
2533
2534 static inline int __skb_linearize(struct sk_buff *skb)
2535 {
2536 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2537 }
2538
2539 /**
2540 * skb_linearize - convert paged skb to linear one
2541 * @skb: buffer to linarize
2542 *
2543 * If there is no free memory -ENOMEM is returned, otherwise zero
2544 * is returned and the old skb data released.
2545 */
2546 static inline int skb_linearize(struct sk_buff *skb)
2547 {
2548 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2549 }
2550
2551 /**
2552 * skb_has_shared_frag - can any frag be overwritten
2553 * @skb: buffer to test
2554 *
2555 * Return true if the skb has at least one frag that might be modified
2556 * by an external entity (as in vmsplice()/sendfile())
2557 */
2558 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2559 {
2560 return skb_is_nonlinear(skb) &&
2561 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2562 }
2563
2564 /**
2565 * skb_linearize_cow - make sure skb is linear and writable
2566 * @skb: buffer to process
2567 *
2568 * If there is no free memory -ENOMEM is returned, otherwise zero
2569 * is returned and the old skb data released.
2570 */
2571 static inline int skb_linearize_cow(struct sk_buff *skb)
2572 {
2573 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2574 __skb_linearize(skb) : 0;
2575 }
2576
2577 /**
2578 * skb_postpull_rcsum - update checksum for received skb after pull
2579 * @skb: buffer to update
2580 * @start: start of data before pull
2581 * @len: length of data pulled
2582 *
2583 * After doing a pull on a received packet, you need to call this to
2584 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2585 * CHECKSUM_NONE so that it can be recomputed from scratch.
2586 */
2587
2588 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2589 const void *start, unsigned int len)
2590 {
2591 if (skb->ip_summed == CHECKSUM_COMPLETE)
2592 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2593 }
2594
2595 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2596
2597 /**
2598 * pskb_trim_rcsum - trim received skb and update checksum
2599 * @skb: buffer to trim
2600 * @len: new length
2601 *
2602 * This is exactly the same as pskb_trim except that it ensures the
2603 * checksum of received packets are still valid after the operation.
2604 */
2605
2606 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2607 {
2608 if (likely(len >= skb->len))
2609 return 0;
2610 if (skb->ip_summed == CHECKSUM_COMPLETE)
2611 skb->ip_summed = CHECKSUM_NONE;
2612 return __pskb_trim(skb, len);
2613 }
2614
2615 #define skb_queue_walk(queue, skb) \
2616 for (skb = (queue)->next; \
2617 skb != (struct sk_buff *)(queue); \
2618 skb = skb->next)
2619
2620 #define skb_queue_walk_safe(queue, skb, tmp) \
2621 for (skb = (queue)->next, tmp = skb->next; \
2622 skb != (struct sk_buff *)(queue); \
2623 skb = tmp, tmp = skb->next)
2624
2625 #define skb_queue_walk_from(queue, skb) \
2626 for (; skb != (struct sk_buff *)(queue); \
2627 skb = skb->next)
2628
2629 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2630 for (tmp = skb->next; \
2631 skb != (struct sk_buff *)(queue); \
2632 skb = tmp, tmp = skb->next)
2633
2634 #define skb_queue_reverse_walk(queue, skb) \
2635 for (skb = (queue)->prev; \
2636 skb != (struct sk_buff *)(queue); \
2637 skb = skb->prev)
2638
2639 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2640 for (skb = (queue)->prev, tmp = skb->prev; \
2641 skb != (struct sk_buff *)(queue); \
2642 skb = tmp, tmp = skb->prev)
2643
2644 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2645 for (tmp = skb->prev; \
2646 skb != (struct sk_buff *)(queue); \
2647 skb = tmp, tmp = skb->prev)
2648
2649 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2650 {
2651 return skb_shinfo(skb)->frag_list != NULL;
2652 }
2653
2654 static inline void skb_frag_list_init(struct sk_buff *skb)
2655 {
2656 skb_shinfo(skb)->frag_list = NULL;
2657 }
2658
2659 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2660 {
2661 frag->next = skb_shinfo(skb)->frag_list;
2662 skb_shinfo(skb)->frag_list = frag;
2663 }
2664
2665 #define skb_walk_frags(skb, iter) \
2666 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2667
2668 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2669 int *peeked, int *off, int *err);
2670 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2671 int *err);
2672 unsigned int datagram_poll(struct file *file, struct socket *sock,
2673 struct poll_table_struct *wait);
2674 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2675 struct iov_iter *to, int size);
2676 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2677 struct msghdr *msg, int size)
2678 {
2679 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2680 }
2681 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2682 struct msghdr *msg);
2683 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2684 struct iov_iter *from, int len);
2685 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2686 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2687 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2688 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2689 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2690 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2691 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2692 int len, __wsum csum);
2693 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2694 struct pipe_inode_info *pipe, unsigned int len,
2695 unsigned int flags);
2696 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2697 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2698 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2699 int len, int hlen);
2700 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2701 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2702 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2703 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2704 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2705 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2706 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2707 int skb_vlan_pop(struct sk_buff *skb);
2708 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2709
2710 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2711 {
2712 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2713 }
2714
2715 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2716 {
2717 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2718 }
2719
2720 struct skb_checksum_ops {
2721 __wsum (*update)(const void *mem, int len, __wsum wsum);
2722 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2723 };
2724
2725 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2726 __wsum csum, const struct skb_checksum_ops *ops);
2727 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2728 __wsum csum);
2729
2730 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2731 int len, void *data, int hlen, void *buffer)
2732 {
2733 if (hlen - offset >= len)
2734 return data + offset;
2735
2736 if (!skb ||
2737 skb_copy_bits(skb, offset, buffer, len) < 0)
2738 return NULL;
2739
2740 return buffer;
2741 }
2742
2743 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2744 int len, void *buffer)
2745 {
2746 return __skb_header_pointer(skb, offset, len, skb->data,
2747 skb_headlen(skb), buffer);
2748 }
2749
2750 /**
2751 * skb_needs_linearize - check if we need to linearize a given skb
2752 * depending on the given device features.
2753 * @skb: socket buffer to check
2754 * @features: net device features
2755 *
2756 * Returns true if either:
2757 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2758 * 2. skb is fragmented and the device does not support SG.
2759 */
2760 static inline bool skb_needs_linearize(struct sk_buff *skb,
2761 netdev_features_t features)
2762 {
2763 return skb_is_nonlinear(skb) &&
2764 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2765 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2766 }
2767
2768 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2769 void *to,
2770 const unsigned int len)
2771 {
2772 memcpy(to, skb->data, len);
2773 }
2774
2775 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2776 const int offset, void *to,
2777 const unsigned int len)
2778 {
2779 memcpy(to, skb->data + offset, len);
2780 }
2781
2782 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2783 const void *from,
2784 const unsigned int len)
2785 {
2786 memcpy(skb->data, from, len);
2787 }
2788
2789 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2790 const int offset,
2791 const void *from,
2792 const unsigned int len)
2793 {
2794 memcpy(skb->data + offset, from, len);
2795 }
2796
2797 void skb_init(void);
2798
2799 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2800 {
2801 return skb->tstamp;
2802 }
2803
2804 /**
2805 * skb_get_timestamp - get timestamp from a skb
2806 * @skb: skb to get stamp from
2807 * @stamp: pointer to struct timeval to store stamp in
2808 *
2809 * Timestamps are stored in the skb as offsets to a base timestamp.
2810 * This function converts the offset back to a struct timeval and stores
2811 * it in stamp.
2812 */
2813 static inline void skb_get_timestamp(const struct sk_buff *skb,
2814 struct timeval *stamp)
2815 {
2816 *stamp = ktime_to_timeval(skb->tstamp);
2817 }
2818
2819 static inline void skb_get_timestampns(const struct sk_buff *skb,
2820 struct timespec *stamp)
2821 {
2822 *stamp = ktime_to_timespec(skb->tstamp);
2823 }
2824
2825 static inline void __net_timestamp(struct sk_buff *skb)
2826 {
2827 skb->tstamp = ktime_get_real();
2828 }
2829
2830 static inline ktime_t net_timedelta(ktime_t t)
2831 {
2832 return ktime_sub(ktime_get_real(), t);
2833 }
2834
2835 static inline ktime_t net_invalid_timestamp(void)
2836 {
2837 return ktime_set(0, 0);
2838 }
2839
2840 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2841
2842 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2843
2844 void skb_clone_tx_timestamp(struct sk_buff *skb);
2845 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2846
2847 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2848
2849 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2850 {
2851 }
2852
2853 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2854 {
2855 return false;
2856 }
2857
2858 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2859
2860 /**
2861 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2862 *
2863 * PHY drivers may accept clones of transmitted packets for
2864 * timestamping via their phy_driver.txtstamp method. These drivers
2865 * must call this function to return the skb back to the stack, with
2866 * or without a timestamp.
2867 *
2868 * @skb: clone of the the original outgoing packet
2869 * @hwtstamps: hardware time stamps, may be NULL if not available
2870 *
2871 */
2872 void skb_complete_tx_timestamp(struct sk_buff *skb,
2873 struct skb_shared_hwtstamps *hwtstamps);
2874
2875 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2876 struct skb_shared_hwtstamps *hwtstamps,
2877 struct sock *sk, int tstype);
2878
2879 /**
2880 * skb_tstamp_tx - queue clone of skb with send time stamps
2881 * @orig_skb: the original outgoing packet
2882 * @hwtstamps: hardware time stamps, may be NULL if not available
2883 *
2884 * If the skb has a socket associated, then this function clones the
2885 * skb (thus sharing the actual data and optional structures), stores
2886 * the optional hardware time stamping information (if non NULL) or
2887 * generates a software time stamp (otherwise), then queues the clone
2888 * to the error queue of the socket. Errors are silently ignored.
2889 */
2890 void skb_tstamp_tx(struct sk_buff *orig_skb,
2891 struct skb_shared_hwtstamps *hwtstamps);
2892
2893 static inline void sw_tx_timestamp(struct sk_buff *skb)
2894 {
2895 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2896 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2897 skb_tstamp_tx(skb, NULL);
2898 }
2899
2900 /**
2901 * skb_tx_timestamp() - Driver hook for transmit timestamping
2902 *
2903 * Ethernet MAC Drivers should call this function in their hard_xmit()
2904 * function immediately before giving the sk_buff to the MAC hardware.
2905 *
2906 * Specifically, one should make absolutely sure that this function is
2907 * called before TX completion of this packet can trigger. Otherwise
2908 * the packet could potentially already be freed.
2909 *
2910 * @skb: A socket buffer.
2911 */
2912 static inline void skb_tx_timestamp(struct sk_buff *skb)
2913 {
2914 skb_clone_tx_timestamp(skb);
2915 sw_tx_timestamp(skb);
2916 }
2917
2918 /**
2919 * skb_complete_wifi_ack - deliver skb with wifi status
2920 *
2921 * @skb: the original outgoing packet
2922 * @acked: ack status
2923 *
2924 */
2925 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2926
2927 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2928 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2929
2930 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2931 {
2932 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2933 skb->csum_valid ||
2934 (skb->ip_summed == CHECKSUM_PARTIAL &&
2935 skb_checksum_start_offset(skb) >= 0));
2936 }
2937
2938 /**
2939 * skb_checksum_complete - Calculate checksum of an entire packet
2940 * @skb: packet to process
2941 *
2942 * This function calculates the checksum over the entire packet plus
2943 * the value of skb->csum. The latter can be used to supply the
2944 * checksum of a pseudo header as used by TCP/UDP. It returns the
2945 * checksum.
2946 *
2947 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2948 * this function can be used to verify that checksum on received
2949 * packets. In that case the function should return zero if the
2950 * checksum is correct. In particular, this function will return zero
2951 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2952 * hardware has already verified the correctness of the checksum.
2953 */
2954 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2955 {
2956 return skb_csum_unnecessary(skb) ?
2957 0 : __skb_checksum_complete(skb);
2958 }
2959
2960 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2961 {
2962 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2963 if (skb->csum_level == 0)
2964 skb->ip_summed = CHECKSUM_NONE;
2965 else
2966 skb->csum_level--;
2967 }
2968 }
2969
2970 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2971 {
2972 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2973 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2974 skb->csum_level++;
2975 } else if (skb->ip_summed == CHECKSUM_NONE) {
2976 skb->ip_summed = CHECKSUM_UNNECESSARY;
2977 skb->csum_level = 0;
2978 }
2979 }
2980
2981 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2982 {
2983 /* Mark current checksum as bad (typically called from GRO
2984 * path). In the case that ip_summed is CHECKSUM_NONE
2985 * this must be the first checksum encountered in the packet.
2986 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2987 * checksum after the last one validated. For UDP, a zero
2988 * checksum can not be marked as bad.
2989 */
2990
2991 if (skb->ip_summed == CHECKSUM_NONE ||
2992 skb->ip_summed == CHECKSUM_UNNECESSARY)
2993 skb->csum_bad = 1;
2994 }
2995
2996 /* Check if we need to perform checksum complete validation.
2997 *
2998 * Returns true if checksum complete is needed, false otherwise
2999 * (either checksum is unnecessary or zero checksum is allowed).
3000 */
3001 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3002 bool zero_okay,
3003 __sum16 check)
3004 {
3005 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3006 skb->csum_valid = 1;
3007 __skb_decr_checksum_unnecessary(skb);
3008 return false;
3009 }
3010
3011 return true;
3012 }
3013
3014 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3015 * in checksum_init.
3016 */
3017 #define CHECKSUM_BREAK 76
3018
3019 /* Unset checksum-complete
3020 *
3021 * Unset checksum complete can be done when packet is being modified
3022 * (uncompressed for instance) and checksum-complete value is
3023 * invalidated.
3024 */
3025 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3026 {
3027 if (skb->ip_summed == CHECKSUM_COMPLETE)
3028 skb->ip_summed = CHECKSUM_NONE;
3029 }
3030
3031 /* Validate (init) checksum based on checksum complete.
3032 *
3033 * Return values:
3034 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3035 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3036 * checksum is stored in skb->csum for use in __skb_checksum_complete
3037 * non-zero: value of invalid checksum
3038 *
3039 */
3040 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3041 bool complete,
3042 __wsum psum)
3043 {
3044 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3045 if (!csum_fold(csum_add(psum, skb->csum))) {
3046 skb->csum_valid = 1;
3047 return 0;
3048 }
3049 } else if (skb->csum_bad) {
3050 /* ip_summed == CHECKSUM_NONE in this case */
3051 return 1;
3052 }
3053
3054 skb->csum = psum;
3055
3056 if (complete || skb->len <= CHECKSUM_BREAK) {
3057 __sum16 csum;
3058
3059 csum = __skb_checksum_complete(skb);
3060 skb->csum_valid = !csum;
3061 return csum;
3062 }
3063
3064 return 0;
3065 }
3066
3067 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3068 {
3069 return 0;
3070 }
3071
3072 /* Perform checksum validate (init). Note that this is a macro since we only
3073 * want to calculate the pseudo header which is an input function if necessary.
3074 * First we try to validate without any computation (checksum unnecessary) and
3075 * then calculate based on checksum complete calling the function to compute
3076 * pseudo header.
3077 *
3078 * Return values:
3079 * 0: checksum is validated or try to in skb_checksum_complete
3080 * non-zero: value of invalid checksum
3081 */
3082 #define __skb_checksum_validate(skb, proto, complete, \
3083 zero_okay, check, compute_pseudo) \
3084 ({ \
3085 __sum16 __ret = 0; \
3086 skb->csum_valid = 0; \
3087 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3088 __ret = __skb_checksum_validate_complete(skb, \
3089 complete, compute_pseudo(skb, proto)); \
3090 __ret; \
3091 })
3092
3093 #define skb_checksum_init(skb, proto, compute_pseudo) \
3094 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3095
3096 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3097 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3098
3099 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3100 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3101
3102 #define skb_checksum_validate_zero_check(skb, proto, check, \
3103 compute_pseudo) \
3104 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3105
3106 #define skb_checksum_simple_validate(skb) \
3107 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3108
3109 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3110 {
3111 return (skb->ip_summed == CHECKSUM_NONE &&
3112 skb->csum_valid && !skb->csum_bad);
3113 }
3114
3115 static inline void __skb_checksum_convert(struct sk_buff *skb,
3116 __sum16 check, __wsum pseudo)
3117 {
3118 skb->csum = ~pseudo;
3119 skb->ip_summed = CHECKSUM_COMPLETE;
3120 }
3121
3122 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3123 do { \
3124 if (__skb_checksum_convert_check(skb)) \
3125 __skb_checksum_convert(skb, check, \
3126 compute_pseudo(skb, proto)); \
3127 } while (0)
3128
3129 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3130 u16 start, u16 offset)
3131 {
3132 skb->ip_summed = CHECKSUM_PARTIAL;
3133 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3134 skb->csum_offset = offset - start;
3135 }
3136
3137 /* Update skbuf and packet to reflect the remote checksum offload operation.
3138 * When called, ptr indicates the starting point for skb->csum when
3139 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3140 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3141 */
3142 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3143 int start, int offset, bool nopartial)
3144 {
3145 __wsum delta;
3146
3147 if (!nopartial) {
3148 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3149 return;
3150 }
3151
3152 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3153 __skb_checksum_complete(skb);
3154 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3155 }
3156
3157 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3158
3159 /* Adjust skb->csum since we changed the packet */
3160 skb->csum = csum_add(skb->csum, delta);
3161 }
3162
3163 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3164 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3165 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3166 {
3167 if (nfct && atomic_dec_and_test(&nfct->use))
3168 nf_conntrack_destroy(nfct);
3169 }
3170 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3171 {
3172 if (nfct)
3173 atomic_inc(&nfct->use);
3174 }
3175 #endif
3176 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3177 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3178 {
3179 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3180 kfree(nf_bridge);
3181 }
3182 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3183 {
3184 if (nf_bridge)
3185 atomic_inc(&nf_bridge->use);
3186 }
3187 #endif /* CONFIG_BRIDGE_NETFILTER */
3188 static inline void nf_reset(struct sk_buff *skb)
3189 {
3190 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3191 nf_conntrack_put(skb->nfct);
3192 skb->nfct = NULL;
3193 #endif
3194 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3195 nf_bridge_put(skb->nf_bridge);
3196 skb->nf_bridge = NULL;
3197 #endif
3198 }
3199
3200 static inline void nf_reset_trace(struct sk_buff *skb)
3201 {
3202 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3203 skb->nf_trace = 0;
3204 #endif
3205 }
3206
3207 /* Note: This doesn't put any conntrack and bridge info in dst. */
3208 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3209 bool copy)
3210 {
3211 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3212 dst->nfct = src->nfct;
3213 nf_conntrack_get(src->nfct);
3214 if (copy)
3215 dst->nfctinfo = src->nfctinfo;
3216 #endif
3217 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3218 dst->nf_bridge = src->nf_bridge;
3219 nf_bridge_get(src->nf_bridge);
3220 #endif
3221 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3222 if (copy)
3223 dst->nf_trace = src->nf_trace;
3224 #endif
3225 }
3226
3227 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3228 {
3229 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3230 nf_conntrack_put(dst->nfct);
3231 #endif
3232 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3233 nf_bridge_put(dst->nf_bridge);
3234 #endif
3235 __nf_copy(dst, src, true);
3236 }
3237
3238 #ifdef CONFIG_NETWORK_SECMARK
3239 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3240 {
3241 to->secmark = from->secmark;
3242 }
3243
3244 static inline void skb_init_secmark(struct sk_buff *skb)
3245 {
3246 skb->secmark = 0;
3247 }
3248 #else
3249 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3250 { }
3251
3252 static inline void skb_init_secmark(struct sk_buff *skb)
3253 { }
3254 #endif
3255
3256 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3257 {
3258 return !skb->destructor &&
3259 #if IS_ENABLED(CONFIG_XFRM)
3260 !skb->sp &&
3261 #endif
3262 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3263 !skb->nfct &&
3264 #endif
3265 !skb->_skb_refdst &&
3266 !skb_has_frag_list(skb);
3267 }
3268
3269 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3270 {
3271 skb->queue_mapping = queue_mapping;
3272 }
3273
3274 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3275 {
3276 return skb->queue_mapping;
3277 }
3278
3279 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3280 {
3281 to->queue_mapping = from->queue_mapping;
3282 }
3283
3284 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3285 {
3286 skb->queue_mapping = rx_queue + 1;
3287 }
3288
3289 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3290 {
3291 return skb->queue_mapping - 1;
3292 }
3293
3294 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3295 {
3296 return skb->queue_mapping != 0;
3297 }
3298
3299 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3300 unsigned int num_tx_queues);
3301
3302 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3303 {
3304 #ifdef CONFIG_XFRM
3305 return skb->sp;
3306 #else
3307 return NULL;
3308 #endif
3309 }
3310
3311 /* Keeps track of mac header offset relative to skb->head.
3312 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3313 * For non-tunnel skb it points to skb_mac_header() and for
3314 * tunnel skb it points to outer mac header.
3315 * Keeps track of level of encapsulation of network headers.
3316 */
3317 struct skb_gso_cb {
3318 int mac_offset;
3319 int encap_level;
3320 __u16 csum_start;
3321 };
3322 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3323
3324 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3325 {
3326 return (skb_mac_header(inner_skb) - inner_skb->head) -
3327 SKB_GSO_CB(inner_skb)->mac_offset;
3328 }
3329
3330 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3331 {
3332 int new_headroom, headroom;
3333 int ret;
3334
3335 headroom = skb_headroom(skb);
3336 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3337 if (ret)
3338 return ret;
3339
3340 new_headroom = skb_headroom(skb);
3341 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3342 return 0;
3343 }
3344
3345 /* Compute the checksum for a gso segment. First compute the checksum value
3346 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3347 * then add in skb->csum (checksum from csum_start to end of packet).
3348 * skb->csum and csum_start are then updated to reflect the checksum of the
3349 * resultant packet starting from the transport header-- the resultant checksum
3350 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3351 * header.
3352 */
3353 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3354 {
3355 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3356 skb_transport_offset(skb);
3357 __u16 csum;
3358
3359 csum = csum_fold(csum_partial(skb_transport_header(skb),
3360 plen, skb->csum));
3361 skb->csum = res;
3362 SKB_GSO_CB(skb)->csum_start -= plen;
3363
3364 return csum;
3365 }
3366
3367 static inline bool skb_is_gso(const struct sk_buff *skb)
3368 {
3369 return skb_shinfo(skb)->gso_size;
3370 }
3371
3372 /* Note: Should be called only if skb_is_gso(skb) is true */
3373 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3374 {
3375 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3376 }
3377
3378 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3379
3380 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3381 {
3382 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3383 * wanted then gso_type will be set. */
3384 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3385
3386 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3387 unlikely(shinfo->gso_type == 0)) {
3388 __skb_warn_lro_forwarding(skb);
3389 return true;
3390 }
3391 return false;
3392 }
3393
3394 static inline void skb_forward_csum(struct sk_buff *skb)
3395 {
3396 /* Unfortunately we don't support this one. Any brave souls? */
3397 if (skb->ip_summed == CHECKSUM_COMPLETE)
3398 skb->ip_summed = CHECKSUM_NONE;
3399 }
3400
3401 /**
3402 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3403 * @skb: skb to check
3404 *
3405 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3406 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3407 * use this helper, to document places where we make this assertion.
3408 */
3409 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3410 {
3411 #ifdef DEBUG
3412 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3413 #endif
3414 }
3415
3416 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3417
3418 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3419
3420 u32 skb_get_poff(const struct sk_buff *skb);
3421 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3422 const struct flow_keys *keys, int hlen);
3423
3424 /**
3425 * skb_head_is_locked - Determine if the skb->head is locked down
3426 * @skb: skb to check
3427 *
3428 * The head on skbs build around a head frag can be removed if they are
3429 * not cloned. This function returns true if the skb head is locked down
3430 * due to either being allocated via kmalloc, or by being a clone with
3431 * multiple references to the head.
3432 */
3433 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3434 {
3435 return !skb->head_frag || skb_cloned(skb);
3436 }
3437
3438 /**
3439 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3440 *
3441 * @skb: GSO skb
3442 *
3443 * skb_gso_network_seglen is used to determine the real size of the
3444 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3445 *
3446 * The MAC/L2 header is not accounted for.
3447 */
3448 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3449 {
3450 unsigned int hdr_len = skb_transport_header(skb) -
3451 skb_network_header(skb);
3452 return hdr_len + skb_gso_transport_seglen(skb);
3453 }
3454 #endif /* __KERNEL__ */
3455 #endif /* _LINUX_SKBUFF_H */