]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/skbuff.h
net: reduce structures when XFRM=n
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 unsigned int num_dma_maps;
151 #endif
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158
159 /* We divide dataref into two halves. The higher 16 bits hold references
160 * to the payload part of skb->data. The lower 16 bits hold references to
161 * the entire skb->data. A clone of a headerless skb holds the length of
162 * the header in skb->hdr_len.
163 *
164 * All users must obey the rule that the skb->data reference count must be
165 * greater than or equal to the payload reference count.
166 *
167 * Holding a reference to the payload part means that the user does not
168 * care about modifications to the header part of skb->data.
169 */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172
173
174 enum {
175 SKB_FCLONE_UNAVAILABLE,
176 SKB_FCLONE_ORIG,
177 SKB_FCLONE_CLONE,
178 };
179
180 enum {
181 SKB_GSO_TCPV4 = 1 << 0,
182 SKB_GSO_UDP = 1 << 1,
183
184 /* This indicates the skb is from an untrusted source. */
185 SKB_GSO_DODGY = 1 << 2,
186
187 /* This indicates the tcp segment has CWR set. */
188 SKB_GSO_TCP_ECN = 1 << 3,
189
190 SKB_GSO_TCPV6 = 1 << 4,
191 };
192
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202
203 /**
204 * struct sk_buff - socket buffer
205 * @next: Next buffer in list
206 * @prev: Previous buffer in list
207 * @sk: Socket we are owned by
208 * @tstamp: Time we arrived
209 * @dev: Device we arrived on/are leaving by
210 * @transport_header: Transport layer header
211 * @network_header: Network layer header
212 * @mac_header: Link layer header
213 * @dst: destination entry
214 * @sp: the security path, used for xfrm
215 * @cb: Control buffer. Free for use by every layer. Put private vars here
216 * @len: Length of actual data
217 * @data_len: Data length
218 * @mac_len: Length of link layer header
219 * @hdr_len: writable header length of cloned skb
220 * @csum: Checksum (must include start/offset pair)
221 * @csum_start: Offset from skb->head where checksumming should start
222 * @csum_offset: Offset from csum_start where checksum should be stored
223 * @local_df: allow local fragmentation
224 * @cloned: Head may be cloned (check refcnt to be sure)
225 * @nohdr: Payload reference only, must not modify header
226 * @pkt_type: Packet class
227 * @fclone: skbuff clone status
228 * @ip_summed: Driver fed us an IP checksum
229 * @priority: Packet queueing priority
230 * @users: User count - see {datagram,tcp}.c
231 * @protocol: Packet protocol from driver
232 * @truesize: Buffer size
233 * @head: Head of buffer
234 * @data: Data head pointer
235 * @tail: Tail pointer
236 * @end: End pointer
237 * @destructor: Destruct function
238 * @mark: Generic packet mark
239 * @nfct: Associated connection, if any
240 * @ipvs_property: skbuff is owned by ipvs
241 * @peeked: this packet has been seen already, so stats have been
242 * done for it, don't do them again
243 * @nf_trace: netfilter packet trace flag
244 * @nfctinfo: Relationship of this skb to the connection
245 * @nfct_reasm: netfilter conntrack re-assembly pointer
246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247 * @iif: ifindex of device we arrived on
248 * @queue_mapping: Queue mapping for multiqueue devices
249 * @tc_index: Traffic control index
250 * @tc_verd: traffic control verdict
251 * @ndisc_nodetype: router type (from link layer)
252 * @do_not_encrypt: set to prevent encryption of this frame
253 * @dma_cookie: a cookie to one of several possible DMA operations
254 * done by skb DMA functions
255 * @secmark: security marking
256 * @vlan_tci: vlan tag control information
257 */
258
259 struct sk_buff {
260 /* These two members must be first. */
261 struct sk_buff *next;
262 struct sk_buff *prev;
263
264 struct sock *sk;
265 ktime_t tstamp;
266 struct net_device *dev;
267
268 union {
269 struct dst_entry *dst;
270 struct rtable *rtable;
271 };
272 #ifdef CONFIG_XFRM
273 struct sec_path *sp;
274 #endif
275 /*
276 * This is the control buffer. It is free to use for every
277 * layer. Please put your private variables there. If you
278 * want to keep them across layers you have to do a skb_clone()
279 * first. This is owned by whoever has the skb queued ATM.
280 */
281 char cb[48];
282
283 unsigned int len,
284 data_len;
285 __u16 mac_len,
286 hdr_len;
287 union {
288 __wsum csum;
289 struct {
290 __u16 csum_start;
291 __u16 csum_offset;
292 };
293 };
294 __u32 priority;
295 __u8 local_df:1,
296 cloned:1,
297 ip_summed:2,
298 nohdr:1,
299 nfctinfo:3;
300 __u8 pkt_type:3,
301 fclone:2,
302 ipvs_property:1,
303 peeked:1,
304 nf_trace:1;
305 __be16 protocol;
306
307 void (*destructor)(struct sk_buff *skb);
308 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
309 struct nf_conntrack *nfct;
310 struct sk_buff *nfct_reasm;
311 #endif
312 #ifdef CONFIG_BRIDGE_NETFILTER
313 struct nf_bridge_info *nf_bridge;
314 #endif
315
316 int iif;
317 __u16 queue_mapping;
318 #ifdef CONFIG_NET_SCHED
319 __u16 tc_index; /* traffic control index */
320 #ifdef CONFIG_NET_CLS_ACT
321 __u16 tc_verd; /* traffic control verdict */
322 #endif
323 #endif
324 #ifdef CONFIG_IPV6_NDISC_NODETYPE
325 __u8 ndisc_nodetype:2;
326 #endif
327 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
328 __u8 do_not_encrypt:1;
329 #endif
330 /* 0/13/14 bit hole */
331
332 #ifdef CONFIG_NET_DMA
333 dma_cookie_t dma_cookie;
334 #endif
335 #ifdef CONFIG_NETWORK_SECMARK
336 __u32 secmark;
337 #endif
338
339 __u32 mark;
340
341 __u16 vlan_tci;
342
343 sk_buff_data_t transport_header;
344 sk_buff_data_t network_header;
345 sk_buff_data_t mac_header;
346 /* These elements must be at the end, see alloc_skb() for details. */
347 sk_buff_data_t tail;
348 sk_buff_data_t end;
349 unsigned char *head,
350 *data;
351 unsigned int truesize;
352 atomic_t users;
353 };
354
355 #ifdef __KERNEL__
356 /*
357 * Handling routines are only of interest to the kernel
358 */
359 #include <linux/slab.h>
360
361 #include <asm/system.h>
362
363 #ifdef CONFIG_HAS_DMA
364 #include <linux/dma-mapping.h>
365 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
366 enum dma_data_direction dir);
367 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
368 enum dma_data_direction dir);
369 #endif
370
371 extern void kfree_skb(struct sk_buff *skb);
372 extern void __kfree_skb(struct sk_buff *skb);
373 extern struct sk_buff *__alloc_skb(unsigned int size,
374 gfp_t priority, int fclone, int node);
375 static inline struct sk_buff *alloc_skb(unsigned int size,
376 gfp_t priority)
377 {
378 return __alloc_skb(size, priority, 0, -1);
379 }
380
381 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
382 gfp_t priority)
383 {
384 return __alloc_skb(size, priority, 1, -1);
385 }
386
387 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
388
389 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
390 extern struct sk_buff *skb_clone(struct sk_buff *skb,
391 gfp_t priority);
392 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
393 gfp_t priority);
394 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
395 gfp_t gfp_mask);
396 extern int pskb_expand_head(struct sk_buff *skb,
397 int nhead, int ntail,
398 gfp_t gfp_mask);
399 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
400 unsigned int headroom);
401 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
402 int newheadroom, int newtailroom,
403 gfp_t priority);
404 extern int skb_to_sgvec(struct sk_buff *skb,
405 struct scatterlist *sg, int offset,
406 int len);
407 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
408 struct sk_buff **trailer);
409 extern int skb_pad(struct sk_buff *skb, int pad);
410 #define dev_kfree_skb(a) kfree_skb(a)
411 extern void skb_over_panic(struct sk_buff *skb, int len,
412 void *here);
413 extern void skb_under_panic(struct sk_buff *skb, int len,
414 void *here);
415 extern void skb_truesize_bug(struct sk_buff *skb);
416
417 static inline void skb_truesize_check(struct sk_buff *skb)
418 {
419 int len = sizeof(struct sk_buff) + skb->len;
420
421 if (unlikely((int)skb->truesize < len))
422 skb_truesize_bug(skb);
423 }
424
425 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
426 int getfrag(void *from, char *to, int offset,
427 int len,int odd, struct sk_buff *skb),
428 void *from, int length);
429
430 struct skb_seq_state
431 {
432 __u32 lower_offset;
433 __u32 upper_offset;
434 __u32 frag_idx;
435 __u32 stepped_offset;
436 struct sk_buff *root_skb;
437 struct sk_buff *cur_skb;
438 __u8 *frag_data;
439 };
440
441 extern void skb_prepare_seq_read(struct sk_buff *skb,
442 unsigned int from, unsigned int to,
443 struct skb_seq_state *st);
444 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
445 struct skb_seq_state *st);
446 extern void skb_abort_seq_read(struct skb_seq_state *st);
447
448 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
449 unsigned int to, struct ts_config *config,
450 struct ts_state *state);
451
452 #ifdef NET_SKBUFF_DATA_USES_OFFSET
453 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
454 {
455 return skb->head + skb->end;
456 }
457 #else
458 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
459 {
460 return skb->end;
461 }
462 #endif
463
464 /* Internal */
465 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
466
467 /**
468 * skb_queue_empty - check if a queue is empty
469 * @list: queue head
470 *
471 * Returns true if the queue is empty, false otherwise.
472 */
473 static inline int skb_queue_empty(const struct sk_buff_head *list)
474 {
475 return list->next == (struct sk_buff *)list;
476 }
477
478 /**
479 * skb_queue_is_last - check if skb is the last entry in the queue
480 * @list: queue head
481 * @skb: buffer
482 *
483 * Returns true if @skb is the last buffer on the list.
484 */
485 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
486 const struct sk_buff *skb)
487 {
488 return (skb->next == (struct sk_buff *) list);
489 }
490
491 /**
492 * skb_queue_next - return the next packet in the queue
493 * @list: queue head
494 * @skb: current buffer
495 *
496 * Return the next packet in @list after @skb. It is only valid to
497 * call this if skb_queue_is_last() evaluates to false.
498 */
499 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
500 const struct sk_buff *skb)
501 {
502 /* This BUG_ON may seem severe, but if we just return then we
503 * are going to dereference garbage.
504 */
505 BUG_ON(skb_queue_is_last(list, skb));
506 return skb->next;
507 }
508
509 /**
510 * skb_get - reference buffer
511 * @skb: buffer to reference
512 *
513 * Makes another reference to a socket buffer and returns a pointer
514 * to the buffer.
515 */
516 static inline struct sk_buff *skb_get(struct sk_buff *skb)
517 {
518 atomic_inc(&skb->users);
519 return skb;
520 }
521
522 /*
523 * If users == 1, we are the only owner and are can avoid redundant
524 * atomic change.
525 */
526
527 /**
528 * skb_cloned - is the buffer a clone
529 * @skb: buffer to check
530 *
531 * Returns true if the buffer was generated with skb_clone() and is
532 * one of multiple shared copies of the buffer. Cloned buffers are
533 * shared data so must not be written to under normal circumstances.
534 */
535 static inline int skb_cloned(const struct sk_buff *skb)
536 {
537 return skb->cloned &&
538 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
539 }
540
541 /**
542 * skb_header_cloned - is the header a clone
543 * @skb: buffer to check
544 *
545 * Returns true if modifying the header part of the buffer requires
546 * the data to be copied.
547 */
548 static inline int skb_header_cloned(const struct sk_buff *skb)
549 {
550 int dataref;
551
552 if (!skb->cloned)
553 return 0;
554
555 dataref = atomic_read(&skb_shinfo(skb)->dataref);
556 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
557 return dataref != 1;
558 }
559
560 /**
561 * skb_header_release - release reference to header
562 * @skb: buffer to operate on
563 *
564 * Drop a reference to the header part of the buffer. This is done
565 * by acquiring a payload reference. You must not read from the header
566 * part of skb->data after this.
567 */
568 static inline void skb_header_release(struct sk_buff *skb)
569 {
570 BUG_ON(skb->nohdr);
571 skb->nohdr = 1;
572 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
573 }
574
575 /**
576 * skb_shared - is the buffer shared
577 * @skb: buffer to check
578 *
579 * Returns true if more than one person has a reference to this
580 * buffer.
581 */
582 static inline int skb_shared(const struct sk_buff *skb)
583 {
584 return atomic_read(&skb->users) != 1;
585 }
586
587 /**
588 * skb_share_check - check if buffer is shared and if so clone it
589 * @skb: buffer to check
590 * @pri: priority for memory allocation
591 *
592 * If the buffer is shared the buffer is cloned and the old copy
593 * drops a reference. A new clone with a single reference is returned.
594 * If the buffer is not shared the original buffer is returned. When
595 * being called from interrupt status or with spinlocks held pri must
596 * be GFP_ATOMIC.
597 *
598 * NULL is returned on a memory allocation failure.
599 */
600 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
601 gfp_t pri)
602 {
603 might_sleep_if(pri & __GFP_WAIT);
604 if (skb_shared(skb)) {
605 struct sk_buff *nskb = skb_clone(skb, pri);
606 kfree_skb(skb);
607 skb = nskb;
608 }
609 return skb;
610 }
611
612 /*
613 * Copy shared buffers into a new sk_buff. We effectively do COW on
614 * packets to handle cases where we have a local reader and forward
615 * and a couple of other messy ones. The normal one is tcpdumping
616 * a packet thats being forwarded.
617 */
618
619 /**
620 * skb_unshare - make a copy of a shared buffer
621 * @skb: buffer to check
622 * @pri: priority for memory allocation
623 *
624 * If the socket buffer is a clone then this function creates a new
625 * copy of the data, drops a reference count on the old copy and returns
626 * the new copy with the reference count at 1. If the buffer is not a clone
627 * the original buffer is returned. When called with a spinlock held or
628 * from interrupt state @pri must be %GFP_ATOMIC
629 *
630 * %NULL is returned on a memory allocation failure.
631 */
632 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
633 gfp_t pri)
634 {
635 might_sleep_if(pri & __GFP_WAIT);
636 if (skb_cloned(skb)) {
637 struct sk_buff *nskb = skb_copy(skb, pri);
638 kfree_skb(skb); /* Free our shared copy */
639 skb = nskb;
640 }
641 return skb;
642 }
643
644 /**
645 * skb_peek
646 * @list_: list to peek at
647 *
648 * Peek an &sk_buff. Unlike most other operations you _MUST_
649 * be careful with this one. A peek leaves the buffer on the
650 * list and someone else may run off with it. You must hold
651 * the appropriate locks or have a private queue to do this.
652 *
653 * Returns %NULL for an empty list or a pointer to the head element.
654 * The reference count is not incremented and the reference is therefore
655 * volatile. Use with caution.
656 */
657 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
658 {
659 struct sk_buff *list = ((struct sk_buff *)list_)->next;
660 if (list == (struct sk_buff *)list_)
661 list = NULL;
662 return list;
663 }
664
665 /**
666 * skb_peek_tail
667 * @list_: list to peek at
668 *
669 * Peek an &sk_buff. Unlike most other operations you _MUST_
670 * be careful with this one. A peek leaves the buffer on the
671 * list and someone else may run off with it. You must hold
672 * the appropriate locks or have a private queue to do this.
673 *
674 * Returns %NULL for an empty list or a pointer to the tail element.
675 * The reference count is not incremented and the reference is therefore
676 * volatile. Use with caution.
677 */
678 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
679 {
680 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
681 if (list == (struct sk_buff *)list_)
682 list = NULL;
683 return list;
684 }
685
686 /**
687 * skb_queue_len - get queue length
688 * @list_: list to measure
689 *
690 * Return the length of an &sk_buff queue.
691 */
692 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
693 {
694 return list_->qlen;
695 }
696
697 /**
698 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
699 * @list: queue to initialize
700 *
701 * This initializes only the list and queue length aspects of
702 * an sk_buff_head object. This allows to initialize the list
703 * aspects of an sk_buff_head without reinitializing things like
704 * the spinlock. It can also be used for on-stack sk_buff_head
705 * objects where the spinlock is known to not be used.
706 */
707 static inline void __skb_queue_head_init(struct sk_buff_head *list)
708 {
709 list->prev = list->next = (struct sk_buff *)list;
710 list->qlen = 0;
711 }
712
713 /*
714 * This function creates a split out lock class for each invocation;
715 * this is needed for now since a whole lot of users of the skb-queue
716 * infrastructure in drivers have different locking usage (in hardirq)
717 * than the networking core (in softirq only). In the long run either the
718 * network layer or drivers should need annotation to consolidate the
719 * main types of usage into 3 classes.
720 */
721 static inline void skb_queue_head_init(struct sk_buff_head *list)
722 {
723 spin_lock_init(&list->lock);
724 __skb_queue_head_init(list);
725 }
726
727 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
728 struct lock_class_key *class)
729 {
730 skb_queue_head_init(list);
731 lockdep_set_class(&list->lock, class);
732 }
733
734 /*
735 * Insert an sk_buff on a list.
736 *
737 * The "__skb_xxxx()" functions are the non-atomic ones that
738 * can only be called with interrupts disabled.
739 */
740 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
741 static inline void __skb_insert(struct sk_buff *newsk,
742 struct sk_buff *prev, struct sk_buff *next,
743 struct sk_buff_head *list)
744 {
745 newsk->next = next;
746 newsk->prev = prev;
747 next->prev = prev->next = newsk;
748 list->qlen++;
749 }
750
751 static inline void __skb_queue_splice(const struct sk_buff_head *list,
752 struct sk_buff *prev,
753 struct sk_buff *next)
754 {
755 struct sk_buff *first = list->next;
756 struct sk_buff *last = list->prev;
757
758 first->prev = prev;
759 prev->next = first;
760
761 last->next = next;
762 next->prev = last;
763 }
764
765 /**
766 * skb_queue_splice - join two skb lists, this is designed for stacks
767 * @list: the new list to add
768 * @head: the place to add it in the first list
769 */
770 static inline void skb_queue_splice(const struct sk_buff_head *list,
771 struct sk_buff_head *head)
772 {
773 if (!skb_queue_empty(list)) {
774 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
775 head->qlen += list->qlen;
776 }
777 }
778
779 /**
780 * skb_queue_splice - join two skb lists and reinitialise the emptied list
781 * @list: the new list to add
782 * @head: the place to add it in the first list
783 *
784 * The list at @list is reinitialised
785 */
786 static inline void skb_queue_splice_init(struct sk_buff_head *list,
787 struct sk_buff_head *head)
788 {
789 if (!skb_queue_empty(list)) {
790 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
791 head->qlen += list->qlen;
792 __skb_queue_head_init(list);
793 }
794 }
795
796 /**
797 * skb_queue_splice_tail - join two skb lists, each list being a queue
798 * @list: the new list to add
799 * @head: the place to add it in the first list
800 */
801 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
802 struct sk_buff_head *head)
803 {
804 if (!skb_queue_empty(list)) {
805 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
806 head->qlen += list->qlen;
807 }
808 }
809
810 /**
811 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
812 * @list: the new list to add
813 * @head: the place to add it in the first list
814 *
815 * Each of the lists is a queue.
816 * The list at @list is reinitialised
817 */
818 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
819 struct sk_buff_head *head)
820 {
821 if (!skb_queue_empty(list)) {
822 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
823 head->qlen += list->qlen;
824 __skb_queue_head_init(list);
825 }
826 }
827
828 /**
829 * __skb_queue_after - queue a buffer at the list head
830 * @list: list to use
831 * @prev: place after this buffer
832 * @newsk: buffer to queue
833 *
834 * Queue a buffer int the middle of a list. This function takes no locks
835 * and you must therefore hold required locks before calling it.
836 *
837 * A buffer cannot be placed on two lists at the same time.
838 */
839 static inline void __skb_queue_after(struct sk_buff_head *list,
840 struct sk_buff *prev,
841 struct sk_buff *newsk)
842 {
843 __skb_insert(newsk, prev, prev->next, list);
844 }
845
846 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
847 struct sk_buff_head *list);
848
849 static inline void __skb_queue_before(struct sk_buff_head *list,
850 struct sk_buff *next,
851 struct sk_buff *newsk)
852 {
853 __skb_insert(newsk, next->prev, next, list);
854 }
855
856 /**
857 * __skb_queue_head - queue a buffer at the list head
858 * @list: list to use
859 * @newsk: buffer to queue
860 *
861 * Queue a buffer at the start of a list. This function takes no locks
862 * and you must therefore hold required locks before calling it.
863 *
864 * A buffer cannot be placed on two lists at the same time.
865 */
866 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
867 static inline void __skb_queue_head(struct sk_buff_head *list,
868 struct sk_buff *newsk)
869 {
870 __skb_queue_after(list, (struct sk_buff *)list, newsk);
871 }
872
873 /**
874 * __skb_queue_tail - queue a buffer at the list tail
875 * @list: list to use
876 * @newsk: buffer to queue
877 *
878 * Queue a buffer at the end of a list. This function takes no locks
879 * and you must therefore hold required locks before calling it.
880 *
881 * A buffer cannot be placed on two lists at the same time.
882 */
883 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
884 static inline void __skb_queue_tail(struct sk_buff_head *list,
885 struct sk_buff *newsk)
886 {
887 __skb_queue_before(list, (struct sk_buff *)list, newsk);
888 }
889
890 /*
891 * remove sk_buff from list. _Must_ be called atomically, and with
892 * the list known..
893 */
894 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
895 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
896 {
897 struct sk_buff *next, *prev;
898
899 list->qlen--;
900 next = skb->next;
901 prev = skb->prev;
902 skb->next = skb->prev = NULL;
903 next->prev = prev;
904 prev->next = next;
905 }
906
907 /**
908 * __skb_dequeue - remove from the head of the queue
909 * @list: list to dequeue from
910 *
911 * Remove the head of the list. This function does not take any locks
912 * so must be used with appropriate locks held only. The head item is
913 * returned or %NULL if the list is empty.
914 */
915 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
916 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
917 {
918 struct sk_buff *skb = skb_peek(list);
919 if (skb)
920 __skb_unlink(skb, list);
921 return skb;
922 }
923
924 /**
925 * __skb_dequeue_tail - remove from the tail of the queue
926 * @list: list to dequeue from
927 *
928 * Remove the tail of the list. This function does not take any locks
929 * so must be used with appropriate locks held only. The tail item is
930 * returned or %NULL if the list is empty.
931 */
932 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
933 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
934 {
935 struct sk_buff *skb = skb_peek_tail(list);
936 if (skb)
937 __skb_unlink(skb, list);
938 return skb;
939 }
940
941
942 static inline int skb_is_nonlinear(const struct sk_buff *skb)
943 {
944 return skb->data_len;
945 }
946
947 static inline unsigned int skb_headlen(const struct sk_buff *skb)
948 {
949 return skb->len - skb->data_len;
950 }
951
952 static inline int skb_pagelen(const struct sk_buff *skb)
953 {
954 int i, len = 0;
955
956 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
957 len += skb_shinfo(skb)->frags[i].size;
958 return len + skb_headlen(skb);
959 }
960
961 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
962 struct page *page, int off, int size)
963 {
964 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
965
966 frag->page = page;
967 frag->page_offset = off;
968 frag->size = size;
969 skb_shinfo(skb)->nr_frags = i + 1;
970 }
971
972 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
973 int off, int size);
974
975 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
976 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
977 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
978
979 #ifdef NET_SKBUFF_DATA_USES_OFFSET
980 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
981 {
982 return skb->head + skb->tail;
983 }
984
985 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
986 {
987 skb->tail = skb->data - skb->head;
988 }
989
990 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
991 {
992 skb_reset_tail_pointer(skb);
993 skb->tail += offset;
994 }
995 #else /* NET_SKBUFF_DATA_USES_OFFSET */
996 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
997 {
998 return skb->tail;
999 }
1000
1001 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1002 {
1003 skb->tail = skb->data;
1004 }
1005
1006 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1007 {
1008 skb->tail = skb->data + offset;
1009 }
1010
1011 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1012
1013 /*
1014 * Add data to an sk_buff
1015 */
1016 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1017 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1018 {
1019 unsigned char *tmp = skb_tail_pointer(skb);
1020 SKB_LINEAR_ASSERT(skb);
1021 skb->tail += len;
1022 skb->len += len;
1023 return tmp;
1024 }
1025
1026 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1027 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1028 {
1029 skb->data -= len;
1030 skb->len += len;
1031 return skb->data;
1032 }
1033
1034 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1035 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1036 {
1037 skb->len -= len;
1038 BUG_ON(skb->len < skb->data_len);
1039 return skb->data += len;
1040 }
1041
1042 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1043
1044 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1045 {
1046 if (len > skb_headlen(skb) &&
1047 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1048 return NULL;
1049 skb->len -= len;
1050 return skb->data += len;
1051 }
1052
1053 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1054 {
1055 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1056 }
1057
1058 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1059 {
1060 if (likely(len <= skb_headlen(skb)))
1061 return 1;
1062 if (unlikely(len > skb->len))
1063 return 0;
1064 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1065 }
1066
1067 /**
1068 * skb_headroom - bytes at buffer head
1069 * @skb: buffer to check
1070 *
1071 * Return the number of bytes of free space at the head of an &sk_buff.
1072 */
1073 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1074 {
1075 return skb->data - skb->head;
1076 }
1077
1078 /**
1079 * skb_tailroom - bytes at buffer end
1080 * @skb: buffer to check
1081 *
1082 * Return the number of bytes of free space at the tail of an sk_buff
1083 */
1084 static inline int skb_tailroom(const struct sk_buff *skb)
1085 {
1086 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1087 }
1088
1089 /**
1090 * skb_reserve - adjust headroom
1091 * @skb: buffer to alter
1092 * @len: bytes to move
1093 *
1094 * Increase the headroom of an empty &sk_buff by reducing the tail
1095 * room. This is only allowed for an empty buffer.
1096 */
1097 static inline void skb_reserve(struct sk_buff *skb, int len)
1098 {
1099 skb->data += len;
1100 skb->tail += len;
1101 }
1102
1103 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1104 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1105 {
1106 return skb->head + skb->transport_header;
1107 }
1108
1109 static inline void skb_reset_transport_header(struct sk_buff *skb)
1110 {
1111 skb->transport_header = skb->data - skb->head;
1112 }
1113
1114 static inline void skb_set_transport_header(struct sk_buff *skb,
1115 const int offset)
1116 {
1117 skb_reset_transport_header(skb);
1118 skb->transport_header += offset;
1119 }
1120
1121 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1122 {
1123 return skb->head + skb->network_header;
1124 }
1125
1126 static inline void skb_reset_network_header(struct sk_buff *skb)
1127 {
1128 skb->network_header = skb->data - skb->head;
1129 }
1130
1131 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1132 {
1133 skb_reset_network_header(skb);
1134 skb->network_header += offset;
1135 }
1136
1137 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1138 {
1139 return skb->head + skb->mac_header;
1140 }
1141
1142 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1143 {
1144 return skb->mac_header != ~0U;
1145 }
1146
1147 static inline void skb_reset_mac_header(struct sk_buff *skb)
1148 {
1149 skb->mac_header = skb->data - skb->head;
1150 }
1151
1152 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1153 {
1154 skb_reset_mac_header(skb);
1155 skb->mac_header += offset;
1156 }
1157
1158 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1159
1160 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1161 {
1162 return skb->transport_header;
1163 }
1164
1165 static inline void skb_reset_transport_header(struct sk_buff *skb)
1166 {
1167 skb->transport_header = skb->data;
1168 }
1169
1170 static inline void skb_set_transport_header(struct sk_buff *skb,
1171 const int offset)
1172 {
1173 skb->transport_header = skb->data + offset;
1174 }
1175
1176 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1177 {
1178 return skb->network_header;
1179 }
1180
1181 static inline void skb_reset_network_header(struct sk_buff *skb)
1182 {
1183 skb->network_header = skb->data;
1184 }
1185
1186 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1187 {
1188 skb->network_header = skb->data + offset;
1189 }
1190
1191 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1192 {
1193 return skb->mac_header;
1194 }
1195
1196 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1197 {
1198 return skb->mac_header != NULL;
1199 }
1200
1201 static inline void skb_reset_mac_header(struct sk_buff *skb)
1202 {
1203 skb->mac_header = skb->data;
1204 }
1205
1206 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1207 {
1208 skb->mac_header = skb->data + offset;
1209 }
1210 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1211
1212 static inline int skb_transport_offset(const struct sk_buff *skb)
1213 {
1214 return skb_transport_header(skb) - skb->data;
1215 }
1216
1217 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1218 {
1219 return skb->transport_header - skb->network_header;
1220 }
1221
1222 static inline int skb_network_offset(const struct sk_buff *skb)
1223 {
1224 return skb_network_header(skb) - skb->data;
1225 }
1226
1227 /*
1228 * CPUs often take a performance hit when accessing unaligned memory
1229 * locations. The actual performance hit varies, it can be small if the
1230 * hardware handles it or large if we have to take an exception and fix it
1231 * in software.
1232 *
1233 * Since an ethernet header is 14 bytes network drivers often end up with
1234 * the IP header at an unaligned offset. The IP header can be aligned by
1235 * shifting the start of the packet by 2 bytes. Drivers should do this
1236 * with:
1237 *
1238 * skb_reserve(NET_IP_ALIGN);
1239 *
1240 * The downside to this alignment of the IP header is that the DMA is now
1241 * unaligned. On some architectures the cost of an unaligned DMA is high
1242 * and this cost outweighs the gains made by aligning the IP header.
1243 *
1244 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1245 * to be overridden.
1246 */
1247 #ifndef NET_IP_ALIGN
1248 #define NET_IP_ALIGN 2
1249 #endif
1250
1251 /*
1252 * The networking layer reserves some headroom in skb data (via
1253 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1254 * the header has to grow. In the default case, if the header has to grow
1255 * 16 bytes or less we avoid the reallocation.
1256 *
1257 * Unfortunately this headroom changes the DMA alignment of the resulting
1258 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1259 * on some architectures. An architecture can override this value,
1260 * perhaps setting it to a cacheline in size (since that will maintain
1261 * cacheline alignment of the DMA). It must be a power of 2.
1262 *
1263 * Various parts of the networking layer expect at least 16 bytes of
1264 * headroom, you should not reduce this.
1265 */
1266 #ifndef NET_SKB_PAD
1267 #define NET_SKB_PAD 16
1268 #endif
1269
1270 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1271
1272 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1273 {
1274 if (unlikely(skb->data_len)) {
1275 WARN_ON(1);
1276 return;
1277 }
1278 skb->len = len;
1279 skb_set_tail_pointer(skb, len);
1280 }
1281
1282 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1283
1284 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1285 {
1286 if (skb->data_len)
1287 return ___pskb_trim(skb, len);
1288 __skb_trim(skb, len);
1289 return 0;
1290 }
1291
1292 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1293 {
1294 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1295 }
1296
1297 /**
1298 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1299 * @skb: buffer to alter
1300 * @len: new length
1301 *
1302 * This is identical to pskb_trim except that the caller knows that
1303 * the skb is not cloned so we should never get an error due to out-
1304 * of-memory.
1305 */
1306 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1307 {
1308 int err = pskb_trim(skb, len);
1309 BUG_ON(err);
1310 }
1311
1312 /**
1313 * skb_orphan - orphan a buffer
1314 * @skb: buffer to orphan
1315 *
1316 * If a buffer currently has an owner then we call the owner's
1317 * destructor function and make the @skb unowned. The buffer continues
1318 * to exist but is no longer charged to its former owner.
1319 */
1320 static inline void skb_orphan(struct sk_buff *skb)
1321 {
1322 if (skb->destructor)
1323 skb->destructor(skb);
1324 skb->destructor = NULL;
1325 skb->sk = NULL;
1326 }
1327
1328 /**
1329 * __skb_queue_purge - empty a list
1330 * @list: list to empty
1331 *
1332 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1333 * the list and one reference dropped. This function does not take the
1334 * list lock and the caller must hold the relevant locks to use it.
1335 */
1336 extern void skb_queue_purge(struct sk_buff_head *list);
1337 static inline void __skb_queue_purge(struct sk_buff_head *list)
1338 {
1339 struct sk_buff *skb;
1340 while ((skb = __skb_dequeue(list)) != NULL)
1341 kfree_skb(skb);
1342 }
1343
1344 /**
1345 * __dev_alloc_skb - allocate an skbuff for receiving
1346 * @length: length to allocate
1347 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1348 *
1349 * Allocate a new &sk_buff and assign it a usage count of one. The
1350 * buffer has unspecified headroom built in. Users should allocate
1351 * the headroom they think they need without accounting for the
1352 * built in space. The built in space is used for optimisations.
1353 *
1354 * %NULL is returned if there is no free memory.
1355 */
1356 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1357 gfp_t gfp_mask)
1358 {
1359 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1360 if (likely(skb))
1361 skb_reserve(skb, NET_SKB_PAD);
1362 return skb;
1363 }
1364
1365 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1366
1367 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1368 unsigned int length, gfp_t gfp_mask);
1369
1370 /**
1371 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1372 * @dev: network device to receive on
1373 * @length: length to allocate
1374 *
1375 * Allocate a new &sk_buff and assign it a usage count of one. The
1376 * buffer has unspecified headroom built in. Users should allocate
1377 * the headroom they think they need without accounting for the
1378 * built in space. The built in space is used for optimisations.
1379 *
1380 * %NULL is returned if there is no free memory. Although this function
1381 * allocates memory it can be called from an interrupt.
1382 */
1383 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1384 unsigned int length)
1385 {
1386 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1387 }
1388
1389 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1390
1391 /**
1392 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1393 * @dev: network device to receive on
1394 *
1395 * Allocate a new page node local to the specified device.
1396 *
1397 * %NULL is returned if there is no free memory.
1398 */
1399 static inline struct page *netdev_alloc_page(struct net_device *dev)
1400 {
1401 return __netdev_alloc_page(dev, GFP_ATOMIC);
1402 }
1403
1404 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1405 {
1406 __free_page(page);
1407 }
1408
1409 /**
1410 * skb_clone_writable - is the header of a clone writable
1411 * @skb: buffer to check
1412 * @len: length up to which to write
1413 *
1414 * Returns true if modifying the header part of the cloned buffer
1415 * does not requires the data to be copied.
1416 */
1417 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1418 {
1419 return !skb_header_cloned(skb) &&
1420 skb_headroom(skb) + len <= skb->hdr_len;
1421 }
1422
1423 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1424 int cloned)
1425 {
1426 int delta = 0;
1427
1428 if (headroom < NET_SKB_PAD)
1429 headroom = NET_SKB_PAD;
1430 if (headroom > skb_headroom(skb))
1431 delta = headroom - skb_headroom(skb);
1432
1433 if (delta || cloned)
1434 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1435 GFP_ATOMIC);
1436 return 0;
1437 }
1438
1439 /**
1440 * skb_cow - copy header of skb when it is required
1441 * @skb: buffer to cow
1442 * @headroom: needed headroom
1443 *
1444 * If the skb passed lacks sufficient headroom or its data part
1445 * is shared, data is reallocated. If reallocation fails, an error
1446 * is returned and original skb is not changed.
1447 *
1448 * The result is skb with writable area skb->head...skb->tail
1449 * and at least @headroom of space at head.
1450 */
1451 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1452 {
1453 return __skb_cow(skb, headroom, skb_cloned(skb));
1454 }
1455
1456 /**
1457 * skb_cow_head - skb_cow but only making the head writable
1458 * @skb: buffer to cow
1459 * @headroom: needed headroom
1460 *
1461 * This function is identical to skb_cow except that we replace the
1462 * skb_cloned check by skb_header_cloned. It should be used when
1463 * you only need to push on some header and do not need to modify
1464 * the data.
1465 */
1466 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1467 {
1468 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1469 }
1470
1471 /**
1472 * skb_padto - pad an skbuff up to a minimal size
1473 * @skb: buffer to pad
1474 * @len: minimal length
1475 *
1476 * Pads up a buffer to ensure the trailing bytes exist and are
1477 * blanked. If the buffer already contains sufficient data it
1478 * is untouched. Otherwise it is extended. Returns zero on
1479 * success. The skb is freed on error.
1480 */
1481
1482 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1483 {
1484 unsigned int size = skb->len;
1485 if (likely(size >= len))
1486 return 0;
1487 return skb_pad(skb, len - size);
1488 }
1489
1490 static inline int skb_add_data(struct sk_buff *skb,
1491 char __user *from, int copy)
1492 {
1493 const int off = skb->len;
1494
1495 if (skb->ip_summed == CHECKSUM_NONE) {
1496 int err = 0;
1497 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1498 copy, 0, &err);
1499 if (!err) {
1500 skb->csum = csum_block_add(skb->csum, csum, off);
1501 return 0;
1502 }
1503 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1504 return 0;
1505
1506 __skb_trim(skb, off);
1507 return -EFAULT;
1508 }
1509
1510 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1511 struct page *page, int off)
1512 {
1513 if (i) {
1514 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1515
1516 return page == frag->page &&
1517 off == frag->page_offset + frag->size;
1518 }
1519 return 0;
1520 }
1521
1522 static inline int __skb_linearize(struct sk_buff *skb)
1523 {
1524 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1525 }
1526
1527 /**
1528 * skb_linearize - convert paged skb to linear one
1529 * @skb: buffer to linarize
1530 *
1531 * If there is no free memory -ENOMEM is returned, otherwise zero
1532 * is returned and the old skb data released.
1533 */
1534 static inline int skb_linearize(struct sk_buff *skb)
1535 {
1536 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1537 }
1538
1539 /**
1540 * skb_linearize_cow - make sure skb is linear and writable
1541 * @skb: buffer to process
1542 *
1543 * If there is no free memory -ENOMEM is returned, otherwise zero
1544 * is returned and the old skb data released.
1545 */
1546 static inline int skb_linearize_cow(struct sk_buff *skb)
1547 {
1548 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1549 __skb_linearize(skb) : 0;
1550 }
1551
1552 /**
1553 * skb_postpull_rcsum - update checksum for received skb after pull
1554 * @skb: buffer to update
1555 * @start: start of data before pull
1556 * @len: length of data pulled
1557 *
1558 * After doing a pull on a received packet, you need to call this to
1559 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1560 * CHECKSUM_NONE so that it can be recomputed from scratch.
1561 */
1562
1563 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1564 const void *start, unsigned int len)
1565 {
1566 if (skb->ip_summed == CHECKSUM_COMPLETE)
1567 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1568 }
1569
1570 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1571
1572 /**
1573 * pskb_trim_rcsum - trim received skb and update checksum
1574 * @skb: buffer to trim
1575 * @len: new length
1576 *
1577 * This is exactly the same as pskb_trim except that it ensures the
1578 * checksum of received packets are still valid after the operation.
1579 */
1580
1581 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1582 {
1583 if (likely(len >= skb->len))
1584 return 0;
1585 if (skb->ip_summed == CHECKSUM_COMPLETE)
1586 skb->ip_summed = CHECKSUM_NONE;
1587 return __pskb_trim(skb, len);
1588 }
1589
1590 #define skb_queue_walk(queue, skb) \
1591 for (skb = (queue)->next; \
1592 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1593 skb = skb->next)
1594
1595 #define skb_queue_walk_safe(queue, skb, tmp) \
1596 for (skb = (queue)->next, tmp = skb->next; \
1597 skb != (struct sk_buff *)(queue); \
1598 skb = tmp, tmp = skb->next)
1599
1600 #define skb_queue_walk_from(queue, skb) \
1601 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1602 skb = skb->next)
1603
1604 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1605 for (tmp = skb->next; \
1606 skb != (struct sk_buff *)(queue); \
1607 skb = tmp, tmp = skb->next)
1608
1609 #define skb_queue_reverse_walk(queue, skb) \
1610 for (skb = (queue)->prev; \
1611 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1612 skb = skb->prev)
1613
1614
1615 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1616 int *peeked, int *err);
1617 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1618 int noblock, int *err);
1619 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1620 struct poll_table_struct *wait);
1621 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1622 int offset, struct iovec *to,
1623 int size);
1624 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1625 int hlen,
1626 struct iovec *iov);
1627 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1628 int offset,
1629 struct iovec *from,
1630 int len);
1631 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1632 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1633 unsigned int flags);
1634 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1635 int len, __wsum csum);
1636 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1637 void *to, int len);
1638 extern int skb_store_bits(struct sk_buff *skb, int offset,
1639 const void *from, int len);
1640 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1641 int offset, u8 *to, int len,
1642 __wsum csum);
1643 extern int skb_splice_bits(struct sk_buff *skb,
1644 unsigned int offset,
1645 struct pipe_inode_info *pipe,
1646 unsigned int len,
1647 unsigned int flags);
1648 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1649 extern void skb_split(struct sk_buff *skb,
1650 struct sk_buff *skb1, const u32 len);
1651
1652 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1653
1654 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1655 int len, void *buffer)
1656 {
1657 int hlen = skb_headlen(skb);
1658
1659 if (hlen - offset >= len)
1660 return skb->data + offset;
1661
1662 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1663 return NULL;
1664
1665 return buffer;
1666 }
1667
1668 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1669 void *to,
1670 const unsigned int len)
1671 {
1672 memcpy(to, skb->data, len);
1673 }
1674
1675 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1676 const int offset, void *to,
1677 const unsigned int len)
1678 {
1679 memcpy(to, skb->data + offset, len);
1680 }
1681
1682 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1683 const void *from,
1684 const unsigned int len)
1685 {
1686 memcpy(skb->data, from, len);
1687 }
1688
1689 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1690 const int offset,
1691 const void *from,
1692 const unsigned int len)
1693 {
1694 memcpy(skb->data + offset, from, len);
1695 }
1696
1697 extern void skb_init(void);
1698
1699 /**
1700 * skb_get_timestamp - get timestamp from a skb
1701 * @skb: skb to get stamp from
1702 * @stamp: pointer to struct timeval to store stamp in
1703 *
1704 * Timestamps are stored in the skb as offsets to a base timestamp.
1705 * This function converts the offset back to a struct timeval and stores
1706 * it in stamp.
1707 */
1708 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1709 {
1710 *stamp = ktime_to_timeval(skb->tstamp);
1711 }
1712
1713 static inline void __net_timestamp(struct sk_buff *skb)
1714 {
1715 skb->tstamp = ktime_get_real();
1716 }
1717
1718 static inline ktime_t net_timedelta(ktime_t t)
1719 {
1720 return ktime_sub(ktime_get_real(), t);
1721 }
1722
1723 static inline ktime_t net_invalid_timestamp(void)
1724 {
1725 return ktime_set(0, 0);
1726 }
1727
1728 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1729 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1730
1731 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1732 {
1733 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1734 }
1735
1736 /**
1737 * skb_checksum_complete - Calculate checksum of an entire packet
1738 * @skb: packet to process
1739 *
1740 * This function calculates the checksum over the entire packet plus
1741 * the value of skb->csum. The latter can be used to supply the
1742 * checksum of a pseudo header as used by TCP/UDP. It returns the
1743 * checksum.
1744 *
1745 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1746 * this function can be used to verify that checksum on received
1747 * packets. In that case the function should return zero if the
1748 * checksum is correct. In particular, this function will return zero
1749 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1750 * hardware has already verified the correctness of the checksum.
1751 */
1752 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1753 {
1754 return skb_csum_unnecessary(skb) ?
1755 0 : __skb_checksum_complete(skb);
1756 }
1757
1758 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1759 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1760 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1761 {
1762 if (nfct && atomic_dec_and_test(&nfct->use))
1763 nf_conntrack_destroy(nfct);
1764 }
1765 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1766 {
1767 if (nfct)
1768 atomic_inc(&nfct->use);
1769 }
1770 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1771 {
1772 if (skb)
1773 atomic_inc(&skb->users);
1774 }
1775 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1776 {
1777 if (skb)
1778 kfree_skb(skb);
1779 }
1780 #endif
1781 #ifdef CONFIG_BRIDGE_NETFILTER
1782 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1783 {
1784 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1785 kfree(nf_bridge);
1786 }
1787 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1788 {
1789 if (nf_bridge)
1790 atomic_inc(&nf_bridge->use);
1791 }
1792 #endif /* CONFIG_BRIDGE_NETFILTER */
1793 static inline void nf_reset(struct sk_buff *skb)
1794 {
1795 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1796 nf_conntrack_put(skb->nfct);
1797 skb->nfct = NULL;
1798 nf_conntrack_put_reasm(skb->nfct_reasm);
1799 skb->nfct_reasm = NULL;
1800 #endif
1801 #ifdef CONFIG_BRIDGE_NETFILTER
1802 nf_bridge_put(skb->nf_bridge);
1803 skb->nf_bridge = NULL;
1804 #endif
1805 }
1806
1807 /* Note: This doesn't put any conntrack and bridge info in dst. */
1808 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1809 {
1810 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1811 dst->nfct = src->nfct;
1812 nf_conntrack_get(src->nfct);
1813 dst->nfctinfo = src->nfctinfo;
1814 dst->nfct_reasm = src->nfct_reasm;
1815 nf_conntrack_get_reasm(src->nfct_reasm);
1816 #endif
1817 #ifdef CONFIG_BRIDGE_NETFILTER
1818 dst->nf_bridge = src->nf_bridge;
1819 nf_bridge_get(src->nf_bridge);
1820 #endif
1821 }
1822
1823 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1824 {
1825 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1826 nf_conntrack_put(dst->nfct);
1827 nf_conntrack_put_reasm(dst->nfct_reasm);
1828 #endif
1829 #ifdef CONFIG_BRIDGE_NETFILTER
1830 nf_bridge_put(dst->nf_bridge);
1831 #endif
1832 __nf_copy(dst, src);
1833 }
1834
1835 #ifdef CONFIG_NETWORK_SECMARK
1836 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1837 {
1838 to->secmark = from->secmark;
1839 }
1840
1841 static inline void skb_init_secmark(struct sk_buff *skb)
1842 {
1843 skb->secmark = 0;
1844 }
1845 #else
1846 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1847 { }
1848
1849 static inline void skb_init_secmark(struct sk_buff *skb)
1850 { }
1851 #endif
1852
1853 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1854 {
1855 skb->queue_mapping = queue_mapping;
1856 }
1857
1858 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1859 {
1860 return skb->queue_mapping;
1861 }
1862
1863 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1864 {
1865 to->queue_mapping = from->queue_mapping;
1866 }
1867
1868 #ifdef CONFIG_XFRM
1869 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1870 {
1871 return skb->sp;
1872 }
1873 #else
1874 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1875 {
1876 return NULL;
1877 }
1878 #endif
1879
1880 static inline int skb_is_gso(const struct sk_buff *skb)
1881 {
1882 return skb_shinfo(skb)->gso_size;
1883 }
1884
1885 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1886 {
1887 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1888 }
1889
1890 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1891
1892 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1893 {
1894 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1895 * wanted then gso_type will be set. */
1896 struct skb_shared_info *shinfo = skb_shinfo(skb);
1897 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1898 __skb_warn_lro_forwarding(skb);
1899 return true;
1900 }
1901 return false;
1902 }
1903
1904 static inline void skb_forward_csum(struct sk_buff *skb)
1905 {
1906 /* Unfortunately we don't support this one. Any brave souls? */
1907 if (skb->ip_summed == CHECKSUM_COMPLETE)
1908 skb->ip_summed = CHECKSUM_NONE;
1909 }
1910
1911 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1912 #endif /* __KERNEL__ */
1913 #endif /* _LINUX_SKBUFF_H */