]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/slab.h
mm, treewide: rename kzfree() to kfree_sensitive()
[mirror_ubuntu-jammy-kernel.git] / include / linux / slab.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
5 * (C) SGI 2006, Christoph Lameter
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
10 */
11
12 #ifndef _LINUX_SLAB_H
13 #define _LINUX_SLAB_H
14
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20
21
22 /*
23 * Flags to pass to kmem_cache_create().
24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25 */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON ((slab_flags_t __force)0x00000800U)
32 /* Align objs on cache lines */
33 #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
34 /* Use GFP_DMA memory */
35 #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
36 /* Use GFP_DMA32 memory */
37 #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
38 /* DEBUG: Store the last owner for bug hunting */
39 #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
40 /* Panic if kmem_cache_create() fails */
41 #define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
42 /*
43 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44 *
45 * This delays freeing the SLAB page by a grace period, it does _NOT_
46 * delay object freeing. This means that if you do kmem_cache_free()
47 * that memory location is free to be reused at any time. Thus it may
48 * be possible to see another object there in the same RCU grace period.
49 *
50 * This feature only ensures the memory location backing the object
51 * stays valid, the trick to using this is relying on an independent
52 * object validation pass. Something like:
53 *
54 * rcu_read_lock()
55 * again:
56 * obj = lockless_lookup(key);
57 * if (obj) {
58 * if (!try_get_ref(obj)) // might fail for free objects
59 * goto again;
60 *
61 * if (obj->key != key) { // not the object we expected
62 * put_ref(obj);
63 * goto again;
64 * }
65 * }
66 * rcu_read_unlock();
67 *
68 * This is useful if we need to approach a kernel structure obliquely,
69 * from its address obtained without the usual locking. We can lock
70 * the structure to stabilize it and check it's still at the given address,
71 * only if we can be sure that the memory has not been meanwhile reused
72 * for some other kind of object (which our subsystem's lock might corrupt).
73 *
74 * rcu_read_lock before reading the address, then rcu_read_unlock after
75 * taking the spinlock within the structure expected at that address.
76 *
77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78 */
79 /* Defer freeing slabs to RCU */
80 #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
81 /* Spread some memory over cpuset */
82 #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
83 /* Trace allocations and frees */
84 #define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
85
86 /* Flag to prevent checks on free */
87 #ifdef CONFIG_DEBUG_OBJECTS
88 # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
89 #else
90 # define SLAB_DEBUG_OBJECTS 0
91 #endif
92
93 /* Avoid kmemleak tracing */
94 #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
95
96 /* Fault injection mark */
97 #ifdef CONFIG_FAILSLAB
98 # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
99 #else
100 # define SLAB_FAILSLAB 0
101 #endif
102 /* Account to memcg */
103 #ifdef CONFIG_MEMCG_KMEM
104 # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
105 #else
106 # define SLAB_ACCOUNT 0
107 #endif
108
109 #ifdef CONFIG_KASAN
110 #define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
111 #else
112 #define SLAB_KASAN 0
113 #endif
114
115 /* The following flags affect the page allocator grouping pages by mobility */
116 /* Objects are reclaimable */
117 #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
118 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
119
120 /* Slab deactivation flag */
121 #define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U)
122
123 /*
124 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125 *
126 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127 *
128 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129 * Both make kfree a no-op.
130 */
131 #define ZERO_SIZE_PTR ((void *)16)
132
133 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
134 (unsigned long)ZERO_SIZE_PTR)
135
136 #include <linux/kasan.h>
137
138 struct mem_cgroup;
139 /*
140 * struct kmem_cache related prototypes
141 */
142 void __init kmem_cache_init(void);
143 bool slab_is_available(void);
144
145 extern bool usercopy_fallback;
146
147 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
148 unsigned int align, slab_flags_t flags,
149 void (*ctor)(void *));
150 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
151 unsigned int size, unsigned int align,
152 slab_flags_t flags,
153 unsigned int useroffset, unsigned int usersize,
154 void (*ctor)(void *));
155 void kmem_cache_destroy(struct kmem_cache *);
156 int kmem_cache_shrink(struct kmem_cache *);
157
158 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
159 void memcg_deactivate_kmem_caches(struct mem_cgroup *, struct mem_cgroup *);
160
161 /*
162 * Please use this macro to create slab caches. Simply specify the
163 * name of the structure and maybe some flags that are listed above.
164 *
165 * The alignment of the struct determines object alignment. If you
166 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
167 * then the objects will be properly aligned in SMP configurations.
168 */
169 #define KMEM_CACHE(__struct, __flags) \
170 kmem_cache_create(#__struct, sizeof(struct __struct), \
171 __alignof__(struct __struct), (__flags), NULL)
172
173 /*
174 * To whitelist a single field for copying to/from usercopy, use this
175 * macro instead for KMEM_CACHE() above.
176 */
177 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
178 kmem_cache_create_usercopy(#__struct, \
179 sizeof(struct __struct), \
180 __alignof__(struct __struct), (__flags), \
181 offsetof(struct __struct, __field), \
182 sizeof_field(struct __struct, __field), NULL)
183
184 /*
185 * Common kmalloc functions provided by all allocators
186 */
187 void * __must_check krealloc(const void *, size_t, gfp_t);
188 void kfree(const void *);
189 void kfree_sensitive(const void *);
190 size_t __ksize(const void *);
191 size_t ksize(const void *);
192
193 #define kzfree(x) kfree_sensitive(x) /* For backward compatibility */
194
195 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
196 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
197 bool to_user);
198 #else
199 static inline void __check_heap_object(const void *ptr, unsigned long n,
200 struct page *page, bool to_user) { }
201 #endif
202
203 /*
204 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
205 * alignment larger than the alignment of a 64-bit integer.
206 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
207 */
208 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
209 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
210 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
211 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
212 #else
213 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
214 #endif
215
216 /*
217 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
218 * Intended for arches that get misalignment faults even for 64 bit integer
219 * aligned buffers.
220 */
221 #ifndef ARCH_SLAB_MINALIGN
222 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
223 #endif
224
225 /*
226 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
227 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
228 * aligned pointers.
229 */
230 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
231 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
232 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
233
234 /*
235 * Kmalloc array related definitions
236 */
237
238 #ifdef CONFIG_SLAB
239 /*
240 * The largest kmalloc size supported by the SLAB allocators is
241 * 32 megabyte (2^25) or the maximum allocatable page order if that is
242 * less than 32 MB.
243 *
244 * WARNING: Its not easy to increase this value since the allocators have
245 * to do various tricks to work around compiler limitations in order to
246 * ensure proper constant folding.
247 */
248 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
249 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
250 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
251 #ifndef KMALLOC_SHIFT_LOW
252 #define KMALLOC_SHIFT_LOW 5
253 #endif
254 #endif
255
256 #ifdef CONFIG_SLUB
257 /*
258 * SLUB directly allocates requests fitting in to an order-1 page
259 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
260 */
261 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
262 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
263 #ifndef KMALLOC_SHIFT_LOW
264 #define KMALLOC_SHIFT_LOW 3
265 #endif
266 #endif
267
268 #ifdef CONFIG_SLOB
269 /*
270 * SLOB passes all requests larger than one page to the page allocator.
271 * No kmalloc array is necessary since objects of different sizes can
272 * be allocated from the same page.
273 */
274 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
275 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
276 #ifndef KMALLOC_SHIFT_LOW
277 #define KMALLOC_SHIFT_LOW 3
278 #endif
279 #endif
280
281 /* Maximum allocatable size */
282 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
283 /* Maximum size for which we actually use a slab cache */
284 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
285 /* Maximum order allocatable via the slab allocagtor */
286 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
287
288 /*
289 * Kmalloc subsystem.
290 */
291 #ifndef KMALLOC_MIN_SIZE
292 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
293 #endif
294
295 /*
296 * This restriction comes from byte sized index implementation.
297 * Page size is normally 2^12 bytes and, in this case, if we want to use
298 * byte sized index which can represent 2^8 entries, the size of the object
299 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
300 * If minimum size of kmalloc is less than 16, we use it as minimum object
301 * size and give up to use byte sized index.
302 */
303 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
304 (KMALLOC_MIN_SIZE) : 16)
305
306 /*
307 * Whenever changing this, take care of that kmalloc_type() and
308 * create_kmalloc_caches() still work as intended.
309 */
310 enum kmalloc_cache_type {
311 KMALLOC_NORMAL = 0,
312 KMALLOC_RECLAIM,
313 #ifdef CONFIG_ZONE_DMA
314 KMALLOC_DMA,
315 #endif
316 NR_KMALLOC_TYPES
317 };
318
319 #ifndef CONFIG_SLOB
320 extern struct kmem_cache *
321 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
322
323 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
324 {
325 #ifdef CONFIG_ZONE_DMA
326 /*
327 * The most common case is KMALLOC_NORMAL, so test for it
328 * with a single branch for both flags.
329 */
330 if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
331 return KMALLOC_NORMAL;
332
333 /*
334 * At least one of the flags has to be set. If both are, __GFP_DMA
335 * is more important.
336 */
337 return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
338 #else
339 return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
340 #endif
341 }
342
343 /*
344 * Figure out which kmalloc slab an allocation of a certain size
345 * belongs to.
346 * 0 = zero alloc
347 * 1 = 65 .. 96 bytes
348 * 2 = 129 .. 192 bytes
349 * n = 2^(n-1)+1 .. 2^n
350 */
351 static __always_inline unsigned int kmalloc_index(size_t size)
352 {
353 if (!size)
354 return 0;
355
356 if (size <= KMALLOC_MIN_SIZE)
357 return KMALLOC_SHIFT_LOW;
358
359 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
360 return 1;
361 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
362 return 2;
363 if (size <= 8) return 3;
364 if (size <= 16) return 4;
365 if (size <= 32) return 5;
366 if (size <= 64) return 6;
367 if (size <= 128) return 7;
368 if (size <= 256) return 8;
369 if (size <= 512) return 9;
370 if (size <= 1024) return 10;
371 if (size <= 2 * 1024) return 11;
372 if (size <= 4 * 1024) return 12;
373 if (size <= 8 * 1024) return 13;
374 if (size <= 16 * 1024) return 14;
375 if (size <= 32 * 1024) return 15;
376 if (size <= 64 * 1024) return 16;
377 if (size <= 128 * 1024) return 17;
378 if (size <= 256 * 1024) return 18;
379 if (size <= 512 * 1024) return 19;
380 if (size <= 1024 * 1024) return 20;
381 if (size <= 2 * 1024 * 1024) return 21;
382 if (size <= 4 * 1024 * 1024) return 22;
383 if (size <= 8 * 1024 * 1024) return 23;
384 if (size <= 16 * 1024 * 1024) return 24;
385 if (size <= 32 * 1024 * 1024) return 25;
386 if (size <= 64 * 1024 * 1024) return 26;
387 BUG();
388
389 /* Will never be reached. Needed because the compiler may complain */
390 return -1;
391 }
392 #endif /* !CONFIG_SLOB */
393
394 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
395 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
396 void kmem_cache_free(struct kmem_cache *, void *);
397
398 /*
399 * Bulk allocation and freeing operations. These are accelerated in an
400 * allocator specific way to avoid taking locks repeatedly or building
401 * metadata structures unnecessarily.
402 *
403 * Note that interrupts must be enabled when calling these functions.
404 */
405 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
406 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
407
408 /*
409 * Caller must not use kfree_bulk() on memory not originally allocated
410 * by kmalloc(), because the SLOB allocator cannot handle this.
411 */
412 static __always_inline void kfree_bulk(size_t size, void **p)
413 {
414 kmem_cache_free_bulk(NULL, size, p);
415 }
416
417 #ifdef CONFIG_NUMA
418 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
419 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
420 #else
421 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
422 {
423 return __kmalloc(size, flags);
424 }
425
426 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
427 {
428 return kmem_cache_alloc(s, flags);
429 }
430 #endif
431
432 #ifdef CONFIG_TRACING
433 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
434
435 #ifdef CONFIG_NUMA
436 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
437 gfp_t gfpflags,
438 int node, size_t size) __assume_slab_alignment __malloc;
439 #else
440 static __always_inline void *
441 kmem_cache_alloc_node_trace(struct kmem_cache *s,
442 gfp_t gfpflags,
443 int node, size_t size)
444 {
445 return kmem_cache_alloc_trace(s, gfpflags, size);
446 }
447 #endif /* CONFIG_NUMA */
448
449 #else /* CONFIG_TRACING */
450 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
451 gfp_t flags, size_t size)
452 {
453 void *ret = kmem_cache_alloc(s, flags);
454
455 ret = kasan_kmalloc(s, ret, size, flags);
456 return ret;
457 }
458
459 static __always_inline void *
460 kmem_cache_alloc_node_trace(struct kmem_cache *s,
461 gfp_t gfpflags,
462 int node, size_t size)
463 {
464 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
465
466 ret = kasan_kmalloc(s, ret, size, gfpflags);
467 return ret;
468 }
469 #endif /* CONFIG_TRACING */
470
471 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
472
473 #ifdef CONFIG_TRACING
474 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
475 #else
476 static __always_inline void *
477 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
478 {
479 return kmalloc_order(size, flags, order);
480 }
481 #endif
482
483 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
484 {
485 unsigned int order = get_order(size);
486 return kmalloc_order_trace(size, flags, order);
487 }
488
489 /**
490 * kmalloc - allocate memory
491 * @size: how many bytes of memory are required.
492 * @flags: the type of memory to allocate.
493 *
494 * kmalloc is the normal method of allocating memory
495 * for objects smaller than page size in the kernel.
496 *
497 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
498 * bytes. For @size of power of two bytes, the alignment is also guaranteed
499 * to be at least to the size.
500 *
501 * The @flags argument may be one of the GFP flags defined at
502 * include/linux/gfp.h and described at
503 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
504 *
505 * The recommended usage of the @flags is described at
506 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
507 *
508 * Below is a brief outline of the most useful GFP flags
509 *
510 * %GFP_KERNEL
511 * Allocate normal kernel ram. May sleep.
512 *
513 * %GFP_NOWAIT
514 * Allocation will not sleep.
515 *
516 * %GFP_ATOMIC
517 * Allocation will not sleep. May use emergency pools.
518 *
519 * %GFP_HIGHUSER
520 * Allocate memory from high memory on behalf of user.
521 *
522 * Also it is possible to set different flags by OR'ing
523 * in one or more of the following additional @flags:
524 *
525 * %__GFP_HIGH
526 * This allocation has high priority and may use emergency pools.
527 *
528 * %__GFP_NOFAIL
529 * Indicate that this allocation is in no way allowed to fail
530 * (think twice before using).
531 *
532 * %__GFP_NORETRY
533 * If memory is not immediately available,
534 * then give up at once.
535 *
536 * %__GFP_NOWARN
537 * If allocation fails, don't issue any warnings.
538 *
539 * %__GFP_RETRY_MAYFAIL
540 * Try really hard to succeed the allocation but fail
541 * eventually.
542 */
543 static __always_inline void *kmalloc(size_t size, gfp_t flags)
544 {
545 if (__builtin_constant_p(size)) {
546 #ifndef CONFIG_SLOB
547 unsigned int index;
548 #endif
549 if (size > KMALLOC_MAX_CACHE_SIZE)
550 return kmalloc_large(size, flags);
551 #ifndef CONFIG_SLOB
552 index = kmalloc_index(size);
553
554 if (!index)
555 return ZERO_SIZE_PTR;
556
557 return kmem_cache_alloc_trace(
558 kmalloc_caches[kmalloc_type(flags)][index],
559 flags, size);
560 #endif
561 }
562 return __kmalloc(size, flags);
563 }
564
565 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
566 {
567 #ifndef CONFIG_SLOB
568 if (__builtin_constant_p(size) &&
569 size <= KMALLOC_MAX_CACHE_SIZE) {
570 unsigned int i = kmalloc_index(size);
571
572 if (!i)
573 return ZERO_SIZE_PTR;
574
575 return kmem_cache_alloc_node_trace(
576 kmalloc_caches[kmalloc_type(flags)][i],
577 flags, node, size);
578 }
579 #endif
580 return __kmalloc_node(size, flags, node);
581 }
582
583 int memcg_update_all_caches(int num_memcgs);
584
585 /**
586 * kmalloc_array - allocate memory for an array.
587 * @n: number of elements.
588 * @size: element size.
589 * @flags: the type of memory to allocate (see kmalloc).
590 */
591 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
592 {
593 size_t bytes;
594
595 if (unlikely(check_mul_overflow(n, size, &bytes)))
596 return NULL;
597 if (__builtin_constant_p(n) && __builtin_constant_p(size))
598 return kmalloc(bytes, flags);
599 return __kmalloc(bytes, flags);
600 }
601
602 /**
603 * kcalloc - allocate memory for an array. The memory is set to zero.
604 * @n: number of elements.
605 * @size: element size.
606 * @flags: the type of memory to allocate (see kmalloc).
607 */
608 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
609 {
610 return kmalloc_array(n, size, flags | __GFP_ZERO);
611 }
612
613 /*
614 * kmalloc_track_caller is a special version of kmalloc that records the
615 * calling function of the routine calling it for slab leak tracking instead
616 * of just the calling function (confusing, eh?).
617 * It's useful when the call to kmalloc comes from a widely-used standard
618 * allocator where we care about the real place the memory allocation
619 * request comes from.
620 */
621 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
622 #define kmalloc_track_caller(size, flags) \
623 __kmalloc_track_caller(size, flags, _RET_IP_)
624
625 static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
626 int node)
627 {
628 size_t bytes;
629
630 if (unlikely(check_mul_overflow(n, size, &bytes)))
631 return NULL;
632 if (__builtin_constant_p(n) && __builtin_constant_p(size))
633 return kmalloc_node(bytes, flags, node);
634 return __kmalloc_node(bytes, flags, node);
635 }
636
637 static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
638 {
639 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
640 }
641
642
643 #ifdef CONFIG_NUMA
644 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
645 #define kmalloc_node_track_caller(size, flags, node) \
646 __kmalloc_node_track_caller(size, flags, node, \
647 _RET_IP_)
648
649 #else /* CONFIG_NUMA */
650
651 #define kmalloc_node_track_caller(size, flags, node) \
652 kmalloc_track_caller(size, flags)
653
654 #endif /* CONFIG_NUMA */
655
656 /*
657 * Shortcuts
658 */
659 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
660 {
661 return kmem_cache_alloc(k, flags | __GFP_ZERO);
662 }
663
664 /**
665 * kzalloc - allocate memory. The memory is set to zero.
666 * @size: how many bytes of memory are required.
667 * @flags: the type of memory to allocate (see kmalloc).
668 */
669 static inline void *kzalloc(size_t size, gfp_t flags)
670 {
671 return kmalloc(size, flags | __GFP_ZERO);
672 }
673
674 /**
675 * kzalloc_node - allocate zeroed memory from a particular memory node.
676 * @size: how many bytes of memory are required.
677 * @flags: the type of memory to allocate (see kmalloc).
678 * @node: memory node from which to allocate
679 */
680 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
681 {
682 return kmalloc_node(size, flags | __GFP_ZERO, node);
683 }
684
685 unsigned int kmem_cache_size(struct kmem_cache *s);
686 void __init kmem_cache_init_late(void);
687
688 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
689 int slab_prepare_cpu(unsigned int cpu);
690 int slab_dead_cpu(unsigned int cpu);
691 #else
692 #define slab_prepare_cpu NULL
693 #define slab_dead_cpu NULL
694 #endif
695
696 #endif /* _LINUX_SLAB_H */