]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/slab.h
mm: get rid of __GFP_KMEMCG
[mirror_ubuntu-bionic-kernel.git] / include / linux / slab.h
1 /*
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
4 * (C) SGI 2006, Christoph Lameter
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
9 */
10
11 #ifndef _LINUX_SLAB_H
12 #define _LINUX_SLAB_H
13
14 #include <linux/gfp.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
17
18
19 /*
20 * Flags to pass to kmem_cache_create().
21 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
22 */
23 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
24 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
27 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
28 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
29 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
30 /*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
64 */
65 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
66 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
67 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
68
69 /* Flag to prevent checks on free */
70 #ifdef CONFIG_DEBUG_OBJECTS
71 # define SLAB_DEBUG_OBJECTS 0x00400000UL
72 #else
73 # define SLAB_DEBUG_OBJECTS 0x00000000UL
74 #endif
75
76 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
78 /* Don't track use of uninitialized memory */
79 #ifdef CONFIG_KMEMCHECK
80 # define SLAB_NOTRACK 0x01000000UL
81 #else
82 # define SLAB_NOTRACK 0x00000000UL
83 #endif
84 #ifdef CONFIG_FAILSLAB
85 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86 #else
87 # define SLAB_FAILSLAB 0x00000000UL
88 #endif
89
90 /* The following flags affect the page allocator grouping pages by mobility */
91 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
93 /*
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101 #define ZERO_SIZE_PTR ((void *)16)
102
103 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
104 (unsigned long)ZERO_SIZE_PTR)
105
106 #include <linux/kmemleak.h>
107
108 struct mem_cgroup;
109 /*
110 * struct kmem_cache related prototypes
111 */
112 void __init kmem_cache_init(void);
113 int slab_is_available(void);
114
115 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
116 unsigned long,
117 void (*)(void *));
118 #ifdef CONFIG_MEMCG_KMEM
119 void kmem_cache_create_memcg(struct mem_cgroup *, struct kmem_cache *);
120 #endif
121 void kmem_cache_destroy(struct kmem_cache *);
122 int kmem_cache_shrink(struct kmem_cache *);
123 void kmem_cache_free(struct kmem_cache *, void *);
124
125 /*
126 * Please use this macro to create slab caches. Simply specify the
127 * name of the structure and maybe some flags that are listed above.
128 *
129 * The alignment of the struct determines object alignment. If you
130 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
131 * then the objects will be properly aligned in SMP configurations.
132 */
133 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
134 sizeof(struct __struct), __alignof__(struct __struct),\
135 (__flags), NULL)
136
137 /*
138 * Common kmalloc functions provided by all allocators
139 */
140 void * __must_check __krealloc(const void *, size_t, gfp_t);
141 void * __must_check krealloc(const void *, size_t, gfp_t);
142 void kfree(const void *);
143 void kzfree(const void *);
144 size_t ksize(const void *);
145
146 /*
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than the alignment of a 64-bit integer.
149 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
150 */
151 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
152 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
153 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
154 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
155 #else
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #endif
158
159 #ifdef CONFIG_SLOB
160 /*
161 * Common fields provided in kmem_cache by all slab allocators
162 * This struct is either used directly by the allocator (SLOB)
163 * or the allocator must include definitions for all fields
164 * provided in kmem_cache_common in their definition of kmem_cache.
165 *
166 * Once we can do anonymous structs (C11 standard) we could put a
167 * anonymous struct definition in these allocators so that the
168 * separate allocations in the kmem_cache structure of SLAB and
169 * SLUB is no longer needed.
170 */
171 struct kmem_cache {
172 unsigned int object_size;/* The original size of the object */
173 unsigned int size; /* The aligned/padded/added on size */
174 unsigned int align; /* Alignment as calculated */
175 unsigned long flags; /* Active flags on the slab */
176 const char *name; /* Slab name for sysfs */
177 int refcount; /* Use counter */
178 void (*ctor)(void *); /* Called on object slot creation */
179 struct list_head list; /* List of all slab caches on the system */
180 };
181
182 #endif /* CONFIG_SLOB */
183
184 /*
185 * Kmalloc array related definitions
186 */
187
188 #ifdef CONFIG_SLAB
189 /*
190 * The largest kmalloc size supported by the SLAB allocators is
191 * 32 megabyte (2^25) or the maximum allocatable page order if that is
192 * less than 32 MB.
193 *
194 * WARNING: Its not easy to increase this value since the allocators have
195 * to do various tricks to work around compiler limitations in order to
196 * ensure proper constant folding.
197 */
198 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
199 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
200 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
201 #ifndef KMALLOC_SHIFT_LOW
202 #define KMALLOC_SHIFT_LOW 5
203 #endif
204 #endif
205
206 #ifdef CONFIG_SLUB
207 /*
208 * SLUB directly allocates requests fitting in to an order-1 page
209 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
210 */
211 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
212 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
213 #ifndef KMALLOC_SHIFT_LOW
214 #define KMALLOC_SHIFT_LOW 3
215 #endif
216 #endif
217
218 #ifdef CONFIG_SLOB
219 /*
220 * SLOB passes all requests larger than one page to the page allocator.
221 * No kmalloc array is necessary since objects of different sizes can
222 * be allocated from the same page.
223 */
224 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
225 #define KMALLOC_SHIFT_MAX 30
226 #ifndef KMALLOC_SHIFT_LOW
227 #define KMALLOC_SHIFT_LOW 3
228 #endif
229 #endif
230
231 /* Maximum allocatable size */
232 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
233 /* Maximum size for which we actually use a slab cache */
234 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
235 /* Maximum order allocatable via the slab allocagtor */
236 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
237
238 /*
239 * Kmalloc subsystem.
240 */
241 #ifndef KMALLOC_MIN_SIZE
242 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
243 #endif
244
245 /*
246 * This restriction comes from byte sized index implementation.
247 * Page size is normally 2^12 bytes and, in this case, if we want to use
248 * byte sized index which can represent 2^8 entries, the size of the object
249 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
250 * If minimum size of kmalloc is less than 16, we use it as minimum object
251 * size and give up to use byte sized index.
252 */
253 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
254 (KMALLOC_MIN_SIZE) : 16)
255
256 #ifndef CONFIG_SLOB
257 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
258 #ifdef CONFIG_ZONE_DMA
259 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
260 #endif
261
262 /*
263 * Figure out which kmalloc slab an allocation of a certain size
264 * belongs to.
265 * 0 = zero alloc
266 * 1 = 65 .. 96 bytes
267 * 2 = 120 .. 192 bytes
268 * n = 2^(n-1) .. 2^n -1
269 */
270 static __always_inline int kmalloc_index(size_t size)
271 {
272 if (!size)
273 return 0;
274
275 if (size <= KMALLOC_MIN_SIZE)
276 return KMALLOC_SHIFT_LOW;
277
278 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
279 return 1;
280 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
281 return 2;
282 if (size <= 8) return 3;
283 if (size <= 16) return 4;
284 if (size <= 32) return 5;
285 if (size <= 64) return 6;
286 if (size <= 128) return 7;
287 if (size <= 256) return 8;
288 if (size <= 512) return 9;
289 if (size <= 1024) return 10;
290 if (size <= 2 * 1024) return 11;
291 if (size <= 4 * 1024) return 12;
292 if (size <= 8 * 1024) return 13;
293 if (size <= 16 * 1024) return 14;
294 if (size <= 32 * 1024) return 15;
295 if (size <= 64 * 1024) return 16;
296 if (size <= 128 * 1024) return 17;
297 if (size <= 256 * 1024) return 18;
298 if (size <= 512 * 1024) return 19;
299 if (size <= 1024 * 1024) return 20;
300 if (size <= 2 * 1024 * 1024) return 21;
301 if (size <= 4 * 1024 * 1024) return 22;
302 if (size <= 8 * 1024 * 1024) return 23;
303 if (size <= 16 * 1024 * 1024) return 24;
304 if (size <= 32 * 1024 * 1024) return 25;
305 if (size <= 64 * 1024 * 1024) return 26;
306 BUG();
307
308 /* Will never be reached. Needed because the compiler may complain */
309 return -1;
310 }
311 #endif /* !CONFIG_SLOB */
312
313 void *__kmalloc(size_t size, gfp_t flags);
314 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
315
316 #ifdef CONFIG_NUMA
317 void *__kmalloc_node(size_t size, gfp_t flags, int node);
318 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
319 #else
320 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
321 {
322 return __kmalloc(size, flags);
323 }
324
325 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
326 {
327 return kmem_cache_alloc(s, flags);
328 }
329 #endif
330
331 #ifdef CONFIG_TRACING
332 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
333
334 #ifdef CONFIG_NUMA
335 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
336 gfp_t gfpflags,
337 int node, size_t size);
338 #else
339 static __always_inline void *
340 kmem_cache_alloc_node_trace(struct kmem_cache *s,
341 gfp_t gfpflags,
342 int node, size_t size)
343 {
344 return kmem_cache_alloc_trace(s, gfpflags, size);
345 }
346 #endif /* CONFIG_NUMA */
347
348 #else /* CONFIG_TRACING */
349 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
350 gfp_t flags, size_t size)
351 {
352 return kmem_cache_alloc(s, flags);
353 }
354
355 static __always_inline void *
356 kmem_cache_alloc_node_trace(struct kmem_cache *s,
357 gfp_t gfpflags,
358 int node, size_t size)
359 {
360 return kmem_cache_alloc_node(s, gfpflags, node);
361 }
362 #endif /* CONFIG_TRACING */
363
364 #ifdef CONFIG_SLAB
365 #include <linux/slab_def.h>
366 #endif
367
368 #ifdef CONFIG_SLUB
369 #include <linux/slub_def.h>
370 #endif
371
372 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
373
374 #ifdef CONFIG_TRACING
375 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
376 #else
377 static __always_inline void *
378 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
379 {
380 return kmalloc_order(size, flags, order);
381 }
382 #endif
383
384 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
385 {
386 unsigned int order = get_order(size);
387 return kmalloc_order_trace(size, flags, order);
388 }
389
390 /**
391 * kmalloc - allocate memory
392 * @size: how many bytes of memory are required.
393 * @flags: the type of memory to allocate.
394 *
395 * kmalloc is the normal method of allocating memory
396 * for objects smaller than page size in the kernel.
397 *
398 * The @flags argument may be one of:
399 *
400 * %GFP_USER - Allocate memory on behalf of user. May sleep.
401 *
402 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
403 *
404 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
405 * For example, use this inside interrupt handlers.
406 *
407 * %GFP_HIGHUSER - Allocate pages from high memory.
408 *
409 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
410 *
411 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
412 *
413 * %GFP_NOWAIT - Allocation will not sleep.
414 *
415 * %__GFP_THISNODE - Allocate node-local memory only.
416 *
417 * %GFP_DMA - Allocation suitable for DMA.
418 * Should only be used for kmalloc() caches. Otherwise, use a
419 * slab created with SLAB_DMA.
420 *
421 * Also it is possible to set different flags by OR'ing
422 * in one or more of the following additional @flags:
423 *
424 * %__GFP_COLD - Request cache-cold pages instead of
425 * trying to return cache-warm pages.
426 *
427 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
428 *
429 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
430 * (think twice before using).
431 *
432 * %__GFP_NORETRY - If memory is not immediately available,
433 * then give up at once.
434 *
435 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
436 *
437 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
438 *
439 * There are other flags available as well, but these are not intended
440 * for general use, and so are not documented here. For a full list of
441 * potential flags, always refer to linux/gfp.h.
442 */
443 static __always_inline void *kmalloc(size_t size, gfp_t flags)
444 {
445 if (__builtin_constant_p(size)) {
446 if (size > KMALLOC_MAX_CACHE_SIZE)
447 return kmalloc_large(size, flags);
448 #ifndef CONFIG_SLOB
449 if (!(flags & GFP_DMA)) {
450 int index = kmalloc_index(size);
451
452 if (!index)
453 return ZERO_SIZE_PTR;
454
455 return kmem_cache_alloc_trace(kmalloc_caches[index],
456 flags, size);
457 }
458 #endif
459 }
460 return __kmalloc(size, flags);
461 }
462
463 /*
464 * Determine size used for the nth kmalloc cache.
465 * return size or 0 if a kmalloc cache for that
466 * size does not exist
467 */
468 static __always_inline int kmalloc_size(int n)
469 {
470 #ifndef CONFIG_SLOB
471 if (n > 2)
472 return 1 << n;
473
474 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
475 return 96;
476
477 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
478 return 192;
479 #endif
480 return 0;
481 }
482
483 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
484 {
485 #ifndef CONFIG_SLOB
486 if (__builtin_constant_p(size) &&
487 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
488 int i = kmalloc_index(size);
489
490 if (!i)
491 return ZERO_SIZE_PTR;
492
493 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
494 flags, node, size);
495 }
496 #endif
497 return __kmalloc_node(size, flags, node);
498 }
499
500 /*
501 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
502 * Intended for arches that get misalignment faults even for 64 bit integer
503 * aligned buffers.
504 */
505 #ifndef ARCH_SLAB_MINALIGN
506 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
507 #endif
508 /*
509 * This is the main placeholder for memcg-related information in kmem caches.
510 * struct kmem_cache will hold a pointer to it, so the memory cost while
511 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
512 * would otherwise be if that would be bundled in kmem_cache: we'll need an
513 * extra pointer chase. But the trade off clearly lays in favor of not
514 * penalizing non-users.
515 *
516 * Both the root cache and the child caches will have it. For the root cache,
517 * this will hold a dynamically allocated array large enough to hold
518 * information about the currently limited memcgs in the system. To allow the
519 * array to be accessed without taking any locks, on relocation we free the old
520 * version only after a grace period.
521 *
522 * Child caches will hold extra metadata needed for its operation. Fields are:
523 *
524 * @memcg: pointer to the memcg this cache belongs to
525 * @list: list_head for the list of all caches in this memcg
526 * @root_cache: pointer to the global, root cache, this cache was derived from
527 * @dead: set to true after the memcg dies; the cache may still be around.
528 * @nr_pages: number of pages that belongs to this cache.
529 * @destroy: worker to be called whenever we are ready, or believe we may be
530 * ready, to destroy this cache.
531 */
532 struct memcg_cache_params {
533 bool is_root_cache;
534 union {
535 struct {
536 struct rcu_head rcu_head;
537 struct kmem_cache *memcg_caches[0];
538 };
539 struct {
540 struct mem_cgroup *memcg;
541 struct list_head list;
542 struct kmem_cache *root_cache;
543 bool dead;
544 atomic_t nr_pages;
545 struct work_struct destroy;
546 };
547 };
548 };
549
550 int memcg_update_all_caches(int num_memcgs);
551
552 struct seq_file;
553 int cache_show(struct kmem_cache *s, struct seq_file *m);
554 void print_slabinfo_header(struct seq_file *m);
555
556 /**
557 * kmalloc_array - allocate memory for an array.
558 * @n: number of elements.
559 * @size: element size.
560 * @flags: the type of memory to allocate (see kmalloc).
561 */
562 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
563 {
564 if (size != 0 && n > SIZE_MAX / size)
565 return NULL;
566 return __kmalloc(n * size, flags);
567 }
568
569 /**
570 * kcalloc - allocate memory for an array. The memory is set to zero.
571 * @n: number of elements.
572 * @size: element size.
573 * @flags: the type of memory to allocate (see kmalloc).
574 */
575 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
576 {
577 return kmalloc_array(n, size, flags | __GFP_ZERO);
578 }
579
580 /*
581 * kmalloc_track_caller is a special version of kmalloc that records the
582 * calling function of the routine calling it for slab leak tracking instead
583 * of just the calling function (confusing, eh?).
584 * It's useful when the call to kmalloc comes from a widely-used standard
585 * allocator where we care about the real place the memory allocation
586 * request comes from.
587 */
588 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
589 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
590 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
591 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
592 #define kmalloc_track_caller(size, flags) \
593 __kmalloc_track_caller(size, flags, _RET_IP_)
594 #else
595 #define kmalloc_track_caller(size, flags) \
596 __kmalloc(size, flags)
597 #endif /* DEBUG_SLAB */
598
599 #ifdef CONFIG_NUMA
600 /*
601 * kmalloc_node_track_caller is a special version of kmalloc_node that
602 * records the calling function of the routine calling it for slab leak
603 * tracking instead of just the calling function (confusing, eh?).
604 * It's useful when the call to kmalloc_node comes from a widely-used
605 * standard allocator where we care about the real place the memory
606 * allocation request comes from.
607 */
608 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
609 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
610 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
611 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
612 #define kmalloc_node_track_caller(size, flags, node) \
613 __kmalloc_node_track_caller(size, flags, node, \
614 _RET_IP_)
615 #else
616 #define kmalloc_node_track_caller(size, flags, node) \
617 __kmalloc_node(size, flags, node)
618 #endif
619
620 #else /* CONFIG_NUMA */
621
622 #define kmalloc_node_track_caller(size, flags, node) \
623 kmalloc_track_caller(size, flags)
624
625 #endif /* CONFIG_NUMA */
626
627 /*
628 * Shortcuts
629 */
630 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
631 {
632 return kmem_cache_alloc(k, flags | __GFP_ZERO);
633 }
634
635 /**
636 * kzalloc - allocate memory. The memory is set to zero.
637 * @size: how many bytes of memory are required.
638 * @flags: the type of memory to allocate (see kmalloc).
639 */
640 static inline void *kzalloc(size_t size, gfp_t flags)
641 {
642 return kmalloc(size, flags | __GFP_ZERO);
643 }
644
645 /**
646 * kzalloc_node - allocate zeroed memory from a particular memory node.
647 * @size: how many bytes of memory are required.
648 * @flags: the type of memory to allocate (see kmalloc).
649 * @node: memory node from which to allocate
650 */
651 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
652 {
653 return kmalloc_node(size, flags | __GFP_ZERO, node);
654 }
655
656 /*
657 * Determine the size of a slab object
658 */
659 static inline unsigned int kmem_cache_size(struct kmem_cache *s)
660 {
661 return s->object_size;
662 }
663
664 void __init kmem_cache_init_late(void);
665
666 #endif /* _LINUX_SLAB_H */