]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/slab.h
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / include / linux / slab.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
5 * (C) SGI 2006, Christoph Lameter
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
10 */
11
12 #ifndef _LINUX_SLAB_H
13 #define _LINUX_SLAB_H
14
15 #include <linux/gfp.h>
16 #include <linux/types.h>
17 #include <linux/workqueue.h>
18
19
20 /*
21 * Flags to pass to kmem_cache_create().
22 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
23 */
24 #define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */
25 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
26 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
27 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
28 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
29 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
30 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
31 /*
32 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
33 *
34 * This delays freeing the SLAB page by a grace period, it does _NOT_
35 * delay object freeing. This means that if you do kmem_cache_free()
36 * that memory location is free to be reused at any time. Thus it may
37 * be possible to see another object there in the same RCU grace period.
38 *
39 * This feature only ensures the memory location backing the object
40 * stays valid, the trick to using this is relying on an independent
41 * object validation pass. Something like:
42 *
43 * rcu_read_lock()
44 * again:
45 * obj = lockless_lookup(key);
46 * if (obj) {
47 * if (!try_get_ref(obj)) // might fail for free objects
48 * goto again;
49 *
50 * if (obj->key != key) { // not the object we expected
51 * put_ref(obj);
52 * goto again;
53 * }
54 * }
55 * rcu_read_unlock();
56 *
57 * This is useful if we need to approach a kernel structure obliquely,
58 * from its address obtained without the usual locking. We can lock
59 * the structure to stabilize it and check it's still at the given address,
60 * only if we can be sure that the memory has not been meanwhile reused
61 * for some other kind of object (which our subsystem's lock might corrupt).
62 *
63 * rcu_read_lock before reading the address, then rcu_read_unlock after
64 * taking the spinlock within the structure expected at that address.
65 *
66 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
67 */
68 #define SLAB_TYPESAFE_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
69 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
70 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
71
72 /* Flag to prevent checks on free */
73 #ifdef CONFIG_DEBUG_OBJECTS
74 # define SLAB_DEBUG_OBJECTS 0x00400000UL
75 #else
76 # define SLAB_DEBUG_OBJECTS 0x00000000UL
77 #endif
78
79 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
80
81 /* Don't track use of uninitialized memory */
82 #ifdef CONFIG_KMEMCHECK
83 # define SLAB_NOTRACK 0x01000000UL
84 #else
85 # define SLAB_NOTRACK 0x00000000UL
86 #endif
87 #ifdef CONFIG_FAILSLAB
88 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
89 #else
90 # define SLAB_FAILSLAB 0x00000000UL
91 #endif
92 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
93 # define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */
94 #else
95 # define SLAB_ACCOUNT 0x00000000UL
96 #endif
97
98 #ifdef CONFIG_KASAN
99 #define SLAB_KASAN 0x08000000UL
100 #else
101 #define SLAB_KASAN 0x00000000UL
102 #endif
103
104 /* The following flags affect the page allocator grouping pages by mobility */
105 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
106 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
107 /*
108 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
109 *
110 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
111 *
112 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
113 * Both make kfree a no-op.
114 */
115 #define ZERO_SIZE_PTR ((void *)16)
116
117 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
118 (unsigned long)ZERO_SIZE_PTR)
119
120 #include <linux/kmemleak.h>
121 #include <linux/kasan.h>
122
123 struct mem_cgroup;
124 /*
125 * struct kmem_cache related prototypes
126 */
127 void __init kmem_cache_init(void);
128 bool slab_is_available(void);
129
130 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
131 unsigned long,
132 void (*)(void *));
133 void kmem_cache_destroy(struct kmem_cache *);
134 int kmem_cache_shrink(struct kmem_cache *);
135
136 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
137 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
138 void memcg_destroy_kmem_caches(struct mem_cgroup *);
139
140 /*
141 * Please use this macro to create slab caches. Simply specify the
142 * name of the structure and maybe some flags that are listed above.
143 *
144 * The alignment of the struct determines object alignment. If you
145 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
146 * then the objects will be properly aligned in SMP configurations.
147 */
148 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
149 sizeof(struct __struct), __alignof__(struct __struct),\
150 (__flags), NULL)
151
152 /*
153 * Common kmalloc functions provided by all allocators
154 */
155 void * __must_check __krealloc(const void *, size_t, gfp_t);
156 void * __must_check krealloc(const void *, size_t, gfp_t);
157 void kfree(const void *);
158 void kzfree(const void *);
159 size_t ksize(const void *);
160
161 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
162 const char *__check_heap_object(const void *ptr, unsigned long n,
163 struct page *page);
164 #else
165 static inline const char *__check_heap_object(const void *ptr,
166 unsigned long n,
167 struct page *page)
168 {
169 return NULL;
170 }
171 #endif
172
173 /*
174 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
175 * alignment larger than the alignment of a 64-bit integer.
176 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
177 */
178 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
179 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
180 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
181 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
182 #else
183 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
184 #endif
185
186 /*
187 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
188 * Intended for arches that get misalignment faults even for 64 bit integer
189 * aligned buffers.
190 */
191 #ifndef ARCH_SLAB_MINALIGN
192 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
193 #endif
194
195 /*
196 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
197 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
198 * aligned pointers.
199 */
200 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
201 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
202 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
203
204 /*
205 * Kmalloc array related definitions
206 */
207
208 #ifdef CONFIG_SLAB
209 /*
210 * The largest kmalloc size supported by the SLAB allocators is
211 * 32 megabyte (2^25) or the maximum allocatable page order if that is
212 * less than 32 MB.
213 *
214 * WARNING: Its not easy to increase this value since the allocators have
215 * to do various tricks to work around compiler limitations in order to
216 * ensure proper constant folding.
217 */
218 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
219 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
220 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
221 #ifndef KMALLOC_SHIFT_LOW
222 #define KMALLOC_SHIFT_LOW 5
223 #endif
224 #endif
225
226 #ifdef CONFIG_SLUB
227 /*
228 * SLUB directly allocates requests fitting in to an order-1 page
229 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
230 */
231 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
232 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
233 #ifndef KMALLOC_SHIFT_LOW
234 #define KMALLOC_SHIFT_LOW 3
235 #endif
236 #endif
237
238 #ifdef CONFIG_SLOB
239 /*
240 * SLOB passes all requests larger than one page to the page allocator.
241 * No kmalloc array is necessary since objects of different sizes can
242 * be allocated from the same page.
243 */
244 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
245 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
246 #ifndef KMALLOC_SHIFT_LOW
247 #define KMALLOC_SHIFT_LOW 3
248 #endif
249 #endif
250
251 /* Maximum allocatable size */
252 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
253 /* Maximum size for which we actually use a slab cache */
254 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
255 /* Maximum order allocatable via the slab allocagtor */
256 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
257
258 /*
259 * Kmalloc subsystem.
260 */
261 #ifndef KMALLOC_MIN_SIZE
262 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
263 #endif
264
265 /*
266 * This restriction comes from byte sized index implementation.
267 * Page size is normally 2^12 bytes and, in this case, if we want to use
268 * byte sized index which can represent 2^8 entries, the size of the object
269 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
270 * If minimum size of kmalloc is less than 16, we use it as minimum object
271 * size and give up to use byte sized index.
272 */
273 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
274 (KMALLOC_MIN_SIZE) : 16)
275
276 #ifndef CONFIG_SLOB
277 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
278 #ifdef CONFIG_ZONE_DMA
279 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
280 #endif
281
282 /*
283 * Figure out which kmalloc slab an allocation of a certain size
284 * belongs to.
285 * 0 = zero alloc
286 * 1 = 65 .. 96 bytes
287 * 2 = 129 .. 192 bytes
288 * n = 2^(n-1)+1 .. 2^n
289 */
290 static __always_inline int kmalloc_index(size_t size)
291 {
292 if (!size)
293 return 0;
294
295 if (size <= KMALLOC_MIN_SIZE)
296 return KMALLOC_SHIFT_LOW;
297
298 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
299 return 1;
300 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
301 return 2;
302 if (size <= 8) return 3;
303 if (size <= 16) return 4;
304 if (size <= 32) return 5;
305 if (size <= 64) return 6;
306 if (size <= 128) return 7;
307 if (size <= 256) return 8;
308 if (size <= 512) return 9;
309 if (size <= 1024) return 10;
310 if (size <= 2 * 1024) return 11;
311 if (size <= 4 * 1024) return 12;
312 if (size <= 8 * 1024) return 13;
313 if (size <= 16 * 1024) return 14;
314 if (size <= 32 * 1024) return 15;
315 if (size <= 64 * 1024) return 16;
316 if (size <= 128 * 1024) return 17;
317 if (size <= 256 * 1024) return 18;
318 if (size <= 512 * 1024) return 19;
319 if (size <= 1024 * 1024) return 20;
320 if (size <= 2 * 1024 * 1024) return 21;
321 if (size <= 4 * 1024 * 1024) return 22;
322 if (size <= 8 * 1024 * 1024) return 23;
323 if (size <= 16 * 1024 * 1024) return 24;
324 if (size <= 32 * 1024 * 1024) return 25;
325 if (size <= 64 * 1024 * 1024) return 26;
326 BUG();
327
328 /* Will never be reached. Needed because the compiler may complain */
329 return -1;
330 }
331 #endif /* !CONFIG_SLOB */
332
333 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
334 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
335 void kmem_cache_free(struct kmem_cache *, void *);
336
337 /*
338 * Bulk allocation and freeing operations. These are accelerated in an
339 * allocator specific way to avoid taking locks repeatedly or building
340 * metadata structures unnecessarily.
341 *
342 * Note that interrupts must be enabled when calling these functions.
343 */
344 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
345 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
346
347 /*
348 * Caller must not use kfree_bulk() on memory not originally allocated
349 * by kmalloc(), because the SLOB allocator cannot handle this.
350 */
351 static __always_inline void kfree_bulk(size_t size, void **p)
352 {
353 kmem_cache_free_bulk(NULL, size, p);
354 }
355
356 #ifdef CONFIG_NUMA
357 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
358 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
359 #else
360 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
361 {
362 return __kmalloc(size, flags);
363 }
364
365 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
366 {
367 return kmem_cache_alloc(s, flags);
368 }
369 #endif
370
371 #ifdef CONFIG_TRACING
372 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
373
374 #ifdef CONFIG_NUMA
375 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
376 gfp_t gfpflags,
377 int node, size_t size) __assume_slab_alignment __malloc;
378 #else
379 static __always_inline void *
380 kmem_cache_alloc_node_trace(struct kmem_cache *s,
381 gfp_t gfpflags,
382 int node, size_t size)
383 {
384 return kmem_cache_alloc_trace(s, gfpflags, size);
385 }
386 #endif /* CONFIG_NUMA */
387
388 #else /* CONFIG_TRACING */
389 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
390 gfp_t flags, size_t size)
391 {
392 void *ret = kmem_cache_alloc(s, flags);
393
394 kasan_kmalloc(s, ret, size, flags);
395 return ret;
396 }
397
398 static __always_inline void *
399 kmem_cache_alloc_node_trace(struct kmem_cache *s,
400 gfp_t gfpflags,
401 int node, size_t size)
402 {
403 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
404
405 kasan_kmalloc(s, ret, size, gfpflags);
406 return ret;
407 }
408 #endif /* CONFIG_TRACING */
409
410 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
411
412 #ifdef CONFIG_TRACING
413 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
414 #else
415 static __always_inline void *
416 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
417 {
418 return kmalloc_order(size, flags, order);
419 }
420 #endif
421
422 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
423 {
424 unsigned int order = get_order(size);
425 return kmalloc_order_trace(size, flags, order);
426 }
427
428 /**
429 * kmalloc - allocate memory
430 * @size: how many bytes of memory are required.
431 * @flags: the type of memory to allocate.
432 *
433 * kmalloc is the normal method of allocating memory
434 * for objects smaller than page size in the kernel.
435 *
436 * The @flags argument may be one of:
437 *
438 * %GFP_USER - Allocate memory on behalf of user. May sleep.
439 *
440 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
441 *
442 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
443 * For example, use this inside interrupt handlers.
444 *
445 * %GFP_HIGHUSER - Allocate pages from high memory.
446 *
447 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
448 *
449 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
450 *
451 * %GFP_NOWAIT - Allocation will not sleep.
452 *
453 * %__GFP_THISNODE - Allocate node-local memory only.
454 *
455 * %GFP_DMA - Allocation suitable for DMA.
456 * Should only be used for kmalloc() caches. Otherwise, use a
457 * slab created with SLAB_DMA.
458 *
459 * Also it is possible to set different flags by OR'ing
460 * in one or more of the following additional @flags:
461 *
462 * %__GFP_COLD - Request cache-cold pages instead of
463 * trying to return cache-warm pages.
464 *
465 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
466 *
467 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
468 * (think twice before using).
469 *
470 * %__GFP_NORETRY - If memory is not immediately available,
471 * then give up at once.
472 *
473 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
474 *
475 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail
476 * eventually.
477 *
478 * There are other flags available as well, but these are not intended
479 * for general use, and so are not documented here. For a full list of
480 * potential flags, always refer to linux/gfp.h.
481 */
482 static __always_inline void *kmalloc(size_t size, gfp_t flags)
483 {
484 if (__builtin_constant_p(size)) {
485 if (size > KMALLOC_MAX_CACHE_SIZE)
486 return kmalloc_large(size, flags);
487 #ifndef CONFIG_SLOB
488 if (!(flags & GFP_DMA)) {
489 int index = kmalloc_index(size);
490
491 if (!index)
492 return ZERO_SIZE_PTR;
493
494 return kmem_cache_alloc_trace(kmalloc_caches[index],
495 flags, size);
496 }
497 #endif
498 }
499 return __kmalloc(size, flags);
500 }
501
502 /*
503 * Determine size used for the nth kmalloc cache.
504 * return size or 0 if a kmalloc cache for that
505 * size does not exist
506 */
507 static __always_inline int kmalloc_size(int n)
508 {
509 #ifndef CONFIG_SLOB
510 if (n > 2)
511 return 1 << n;
512
513 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
514 return 96;
515
516 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
517 return 192;
518 #endif
519 return 0;
520 }
521
522 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
523 {
524 #ifndef CONFIG_SLOB
525 if (__builtin_constant_p(size) &&
526 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
527 int i = kmalloc_index(size);
528
529 if (!i)
530 return ZERO_SIZE_PTR;
531
532 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
533 flags, node, size);
534 }
535 #endif
536 return __kmalloc_node(size, flags, node);
537 }
538
539 struct memcg_cache_array {
540 struct rcu_head rcu;
541 struct kmem_cache *entries[0];
542 };
543
544 /*
545 * This is the main placeholder for memcg-related information in kmem caches.
546 * Both the root cache and the child caches will have it. For the root cache,
547 * this will hold a dynamically allocated array large enough to hold
548 * information about the currently limited memcgs in the system. To allow the
549 * array to be accessed without taking any locks, on relocation we free the old
550 * version only after a grace period.
551 *
552 * Root and child caches hold different metadata.
553 *
554 * @root_cache: Common to root and child caches. NULL for root, pointer to
555 * the root cache for children.
556 *
557 * The following fields are specific to root caches.
558 *
559 * @memcg_caches: kmemcg ID indexed table of child caches. This table is
560 * used to index child cachces during allocation and cleared
561 * early during shutdown.
562 *
563 * @root_caches_node: List node for slab_root_caches list.
564 *
565 * @children: List of all child caches. While the child caches are also
566 * reachable through @memcg_caches, a child cache remains on
567 * this list until it is actually destroyed.
568 *
569 * The following fields are specific to child caches.
570 *
571 * @memcg: Pointer to the memcg this cache belongs to.
572 *
573 * @children_node: List node for @root_cache->children list.
574 *
575 * @kmem_caches_node: List node for @memcg->kmem_caches list.
576 */
577 struct memcg_cache_params {
578 struct kmem_cache *root_cache;
579 union {
580 struct {
581 struct memcg_cache_array __rcu *memcg_caches;
582 struct list_head __root_caches_node;
583 struct list_head children;
584 };
585 struct {
586 struct mem_cgroup *memcg;
587 struct list_head children_node;
588 struct list_head kmem_caches_node;
589
590 void (*deact_fn)(struct kmem_cache *);
591 union {
592 struct rcu_head deact_rcu_head;
593 struct work_struct deact_work;
594 };
595 };
596 };
597 };
598
599 int memcg_update_all_caches(int num_memcgs);
600
601 /**
602 * kmalloc_array - allocate memory for an array.
603 * @n: number of elements.
604 * @size: element size.
605 * @flags: the type of memory to allocate (see kmalloc).
606 */
607 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
608 {
609 if (size != 0 && n > SIZE_MAX / size)
610 return NULL;
611 if (__builtin_constant_p(n) && __builtin_constant_p(size))
612 return kmalloc(n * size, flags);
613 return __kmalloc(n * size, flags);
614 }
615
616 /**
617 * kcalloc - allocate memory for an array. The memory is set to zero.
618 * @n: number of elements.
619 * @size: element size.
620 * @flags: the type of memory to allocate (see kmalloc).
621 */
622 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
623 {
624 return kmalloc_array(n, size, flags | __GFP_ZERO);
625 }
626
627 /*
628 * kmalloc_track_caller is a special version of kmalloc that records the
629 * calling function of the routine calling it for slab leak tracking instead
630 * of just the calling function (confusing, eh?).
631 * It's useful when the call to kmalloc comes from a widely-used standard
632 * allocator where we care about the real place the memory allocation
633 * request comes from.
634 */
635 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
636 #define kmalloc_track_caller(size, flags) \
637 __kmalloc_track_caller(size, flags, _RET_IP_)
638
639 #ifdef CONFIG_NUMA
640 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
641 #define kmalloc_node_track_caller(size, flags, node) \
642 __kmalloc_node_track_caller(size, flags, node, \
643 _RET_IP_)
644
645 #else /* CONFIG_NUMA */
646
647 #define kmalloc_node_track_caller(size, flags, node) \
648 kmalloc_track_caller(size, flags)
649
650 #endif /* CONFIG_NUMA */
651
652 /*
653 * Shortcuts
654 */
655 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
656 {
657 return kmem_cache_alloc(k, flags | __GFP_ZERO);
658 }
659
660 /**
661 * kzalloc - allocate memory. The memory is set to zero.
662 * @size: how many bytes of memory are required.
663 * @flags: the type of memory to allocate (see kmalloc).
664 */
665 static inline void *kzalloc(size_t size, gfp_t flags)
666 {
667 return kmalloc(size, flags | __GFP_ZERO);
668 }
669
670 /**
671 * kzalloc_node - allocate zeroed memory from a particular memory node.
672 * @size: how many bytes of memory are required.
673 * @flags: the type of memory to allocate (see kmalloc).
674 * @node: memory node from which to allocate
675 */
676 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
677 {
678 return kmalloc_node(size, flags | __GFP_ZERO, node);
679 }
680
681 unsigned int kmem_cache_size(struct kmem_cache *s);
682 void __init kmem_cache_init_late(void);
683
684 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
685 int slab_prepare_cpu(unsigned int cpu);
686 int slab_dead_cpu(unsigned int cpu);
687 #else
688 #define slab_prepare_cpu NULL
689 #define slab_dead_cpu NULL
690 #endif
691
692 #endif /* _LINUX_SLAB_H */