]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/slub_def.h
Merge remote branch 'nouveau/for-airlied' of /ssd/git/drm-nouveau-next into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / include / linux / slub_def.h
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
3
4 /*
5 * SLUB : A Slab allocator without object queues.
6 *
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
13 #include <linux/kmemleak.h>
14
15 #include <trace/events/kmem.h>
16
17 enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
35 ORDER_FALLBACK, /* Number of times fallback was necessary */
36 NR_SLUB_STAT_ITEMS };
37
38 struct kmem_cache_cpu {
39 void **freelist; /* Pointer to first free per cpu object */
40 struct page *page; /* The slab from which we are allocating */
41 int node; /* The node of the page (or -1 for debug) */
42 #ifdef CONFIG_SLUB_STATS
43 unsigned stat[NR_SLUB_STAT_ITEMS];
44 #endif
45 };
46
47 struct kmem_cache_node {
48 spinlock_t list_lock; /* Protect partial list and nr_partial */
49 unsigned long nr_partial;
50 struct list_head partial;
51 #ifdef CONFIG_SLUB_DEBUG
52 atomic_long_t nr_slabs;
53 atomic_long_t total_objects;
54 struct list_head full;
55 #endif
56 };
57
58 /*
59 * Word size structure that can be atomically updated or read and that
60 * contains both the order and the number of objects that a slab of the
61 * given order would contain.
62 */
63 struct kmem_cache_order_objects {
64 unsigned long x;
65 };
66
67 /*
68 * Slab cache management.
69 */
70 struct kmem_cache {
71 struct kmem_cache_cpu __percpu *cpu_slab;
72 /* Used for retriving partial slabs etc */
73 unsigned long flags;
74 int size; /* The size of an object including meta data */
75 int objsize; /* The size of an object without meta data */
76 int offset; /* Free pointer offset. */
77 struct kmem_cache_order_objects oo;
78
79 /* Allocation and freeing of slabs */
80 struct kmem_cache_order_objects max;
81 struct kmem_cache_order_objects min;
82 gfp_t allocflags; /* gfp flags to use on each alloc */
83 int refcount; /* Refcount for slab cache destroy */
84 void (*ctor)(void *);
85 int inuse; /* Offset to metadata */
86 int align; /* Alignment */
87 unsigned long min_partial;
88 const char *name; /* Name (only for display!) */
89 struct list_head list; /* List of slab caches */
90 #ifdef CONFIG_SLUB_DEBUG
91 struct kobject kobj; /* For sysfs */
92 #endif
93
94 #ifdef CONFIG_NUMA
95 /*
96 * Defragmentation by allocating from a remote node.
97 */
98 int remote_node_defrag_ratio;
99 struct kmem_cache_node *node[MAX_NUMNODES];
100 #else
101 /* Avoid an extra cache line for UP */
102 struct kmem_cache_node local_node;
103 #endif
104 };
105
106 /*
107 * Kmalloc subsystem.
108 */
109 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
110 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
111 #else
112 #define KMALLOC_MIN_SIZE 8
113 #endif
114
115 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
116
117 #ifdef ARCH_DMA_MINALIGN
118 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
119 #else
120 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
121 #endif
122
123 #ifndef ARCH_SLAB_MINALIGN
124 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
125 #endif
126
127 /*
128 * Maximum kmalloc object size handled by SLUB. Larger object allocations
129 * are passed through to the page allocator. The page allocator "fastpath"
130 * is relatively slow so we need this value sufficiently high so that
131 * performance critical objects are allocated through the SLUB fastpath.
132 *
133 * This should be dropped to PAGE_SIZE / 2 once the page allocator
134 * "fastpath" becomes competitive with the slab allocator fastpaths.
135 */
136 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
137
138 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
139
140 #ifdef CONFIG_ZONE_DMA
141 #define SLUB_DMA __GFP_DMA
142 /* Reserve extra caches for potential DMA use */
143 #define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT)
144 #else
145 /* Disable DMA functionality */
146 #define SLUB_DMA (__force gfp_t)0
147 #define KMALLOC_CACHES SLUB_PAGE_SHIFT
148 #endif
149
150 /*
151 * We keep the general caches in an array of slab caches that are used for
152 * 2^x bytes of allocations.
153 */
154 extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
155
156 /*
157 * Sorry that the following has to be that ugly but some versions of GCC
158 * have trouble with constant propagation and loops.
159 */
160 static __always_inline int kmalloc_index(size_t size)
161 {
162 if (!size)
163 return 0;
164
165 if (size <= KMALLOC_MIN_SIZE)
166 return KMALLOC_SHIFT_LOW;
167
168 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
169 return 1;
170 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
171 return 2;
172 if (size <= 8) return 3;
173 if (size <= 16) return 4;
174 if (size <= 32) return 5;
175 if (size <= 64) return 6;
176 if (size <= 128) return 7;
177 if (size <= 256) return 8;
178 if (size <= 512) return 9;
179 if (size <= 1024) return 10;
180 if (size <= 2 * 1024) return 11;
181 if (size <= 4 * 1024) return 12;
182 /*
183 * The following is only needed to support architectures with a larger page
184 * size than 4k.
185 */
186 if (size <= 8 * 1024) return 13;
187 if (size <= 16 * 1024) return 14;
188 if (size <= 32 * 1024) return 15;
189 if (size <= 64 * 1024) return 16;
190 if (size <= 128 * 1024) return 17;
191 if (size <= 256 * 1024) return 18;
192 if (size <= 512 * 1024) return 19;
193 if (size <= 1024 * 1024) return 20;
194 if (size <= 2 * 1024 * 1024) return 21;
195 return -1;
196
197 /*
198 * What we really wanted to do and cannot do because of compiler issues is:
199 * int i;
200 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
201 * if (size <= (1 << i))
202 * return i;
203 */
204 }
205
206 /*
207 * Find the slab cache for a given combination of allocation flags and size.
208 *
209 * This ought to end up with a global pointer to the right cache
210 * in kmalloc_caches.
211 */
212 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
213 {
214 int index = kmalloc_index(size);
215
216 if (index == 0)
217 return NULL;
218
219 return &kmalloc_caches[index];
220 }
221
222 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
223 void *__kmalloc(size_t size, gfp_t flags);
224
225 #ifdef CONFIG_TRACING
226 extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
227 #else
228 static __always_inline void *
229 kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
230 {
231 return kmem_cache_alloc(s, gfpflags);
232 }
233 #endif
234
235 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
236 {
237 unsigned int order = get_order(size);
238 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
239
240 kmemleak_alloc(ret, size, 1, flags);
241 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
242
243 return ret;
244 }
245
246 static __always_inline void *kmalloc(size_t size, gfp_t flags)
247 {
248 void *ret;
249
250 if (__builtin_constant_p(size)) {
251 if (size > SLUB_MAX_SIZE)
252 return kmalloc_large(size, flags);
253
254 if (!(flags & SLUB_DMA)) {
255 struct kmem_cache *s = kmalloc_slab(size);
256
257 if (!s)
258 return ZERO_SIZE_PTR;
259
260 ret = kmem_cache_alloc_notrace(s, flags);
261
262 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
263
264 return ret;
265 }
266 }
267 return __kmalloc(size, flags);
268 }
269
270 #ifdef CONFIG_NUMA
271 void *__kmalloc_node(size_t size, gfp_t flags, int node);
272 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
273
274 #ifdef CONFIG_TRACING
275 extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
276 gfp_t gfpflags,
277 int node);
278 #else
279 static __always_inline void *
280 kmem_cache_alloc_node_notrace(struct kmem_cache *s,
281 gfp_t gfpflags,
282 int node)
283 {
284 return kmem_cache_alloc_node(s, gfpflags, node);
285 }
286 #endif
287
288 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
289 {
290 void *ret;
291
292 if (__builtin_constant_p(size) &&
293 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
294 struct kmem_cache *s = kmalloc_slab(size);
295
296 if (!s)
297 return ZERO_SIZE_PTR;
298
299 ret = kmem_cache_alloc_node_notrace(s, flags, node);
300
301 trace_kmalloc_node(_THIS_IP_, ret,
302 size, s->size, flags, node);
303
304 return ret;
305 }
306 return __kmalloc_node(size, flags, node);
307 }
308 #endif
309
310 #endif /* _LINUX_SLUB_DEF_H */