]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/uaccess.h
arm/arm64: KVM: Advertise SMCCC v1.1
[mirror_ubuntu-artful-kernel.git] / include / linux / uaccess.h
1 #ifndef __LINUX_UACCESS_H__
2 #define __LINUX_UACCESS_H__
3
4 #include <linux/sched.h>
5 #include <linux/thread_info.h>
6 #include <linux/kasan-checks.h>
7
8 #define VERIFY_READ 0
9 #define VERIFY_WRITE 1
10
11 #define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS)
12
13 #include <asm/uaccess.h>
14
15 /*
16 * Architectures should provide two primitives (raw_copy_{to,from}_user())
17 * and get rid of their private instances of copy_{to,from}_user() and
18 * __copy_{to,from}_user{,_inatomic}().
19 *
20 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
21 * return the amount left to copy. They should assume that access_ok() has
22 * already been checked (and succeeded); they should *not* zero-pad anything.
23 * No KASAN or object size checks either - those belong here.
24 *
25 * Both of these functions should attempt to copy size bytes starting at from
26 * into the area starting at to. They must not fetch or store anything
27 * outside of those areas. Return value must be between 0 (everything
28 * copied successfully) and size (nothing copied).
29 *
30 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
31 * at to must become equal to the bytes fetched from the corresponding area
32 * starting at from. All data past to + size - N must be left unmodified.
33 *
34 * If copying succeeds, the return value must be 0. If some data cannot be
35 * fetched, it is permitted to copy less than had been fetched; the only
36 * hard requirement is that not storing anything at all (i.e. returning size)
37 * should happen only when nothing could be copied. In other words, you don't
38 * have to squeeze as much as possible - it is allowed, but not necessary.
39 *
40 * For raw_copy_from_user() to always points to kernel memory and no faults
41 * on store should happen. Interpretation of from is affected by set_fs().
42 * For raw_copy_to_user() it's the other way round.
43 *
44 * Both can be inlined - it's up to architectures whether it wants to bother
45 * with that. They should not be used directly; they are used to implement
46 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
47 * that are used instead. Out of those, __... ones are inlined. Plain
48 * copy_{to,from}_user() might or might not be inlined. If you want them
49 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
50 *
51 * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
52 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
53 * at all; their callers absolutely must check the return value.
54 *
55 * Biarch ones should also provide raw_copy_in_user() - similar to the above,
56 * but both source and destination are __user pointers (affected by set_fs()
57 * as usual) and both source and destination can trigger faults.
58 */
59
60 static __always_inline unsigned long
61 __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
62 {
63 kasan_check_write(to, n);
64 check_object_size(to, n, false);
65 return raw_copy_from_user(to, from, n);
66 }
67
68 static __always_inline unsigned long
69 __copy_from_user(void *to, const void __user *from, unsigned long n)
70 {
71 might_fault();
72 kasan_check_write(to, n);
73 check_object_size(to, n, false);
74 return raw_copy_from_user(to, from, n);
75 }
76
77 /**
78 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
79 * @to: Destination address, in user space.
80 * @from: Source address, in kernel space.
81 * @n: Number of bytes to copy.
82 *
83 * Context: User context only.
84 *
85 * Copy data from kernel space to user space. Caller must check
86 * the specified block with access_ok() before calling this function.
87 * The caller should also make sure he pins the user space address
88 * so that we don't result in page fault and sleep.
89 */
90 static __always_inline unsigned long
91 __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
92 {
93 kasan_check_read(from, n);
94 check_object_size(from, n, true);
95 return raw_copy_to_user(to, from, n);
96 }
97
98 static __always_inline unsigned long
99 __copy_to_user(void __user *to, const void *from, unsigned long n)
100 {
101 might_fault();
102 kasan_check_read(from, n);
103 check_object_size(from, n, true);
104 return raw_copy_to_user(to, from, n);
105 }
106
107 #ifdef INLINE_COPY_FROM_USER
108 static inline unsigned long
109 _copy_from_user(void *to, const void __user *from, unsigned long n)
110 {
111 unsigned long res = n;
112 might_fault();
113 if (likely(access_ok(VERIFY_READ, from, n))) {
114 kasan_check_write(to, n);
115 res = raw_copy_from_user(to, from, n);
116 }
117 if (unlikely(res))
118 memset(to + (n - res), 0, res);
119 return res;
120 }
121 #else
122 extern unsigned long
123 _copy_from_user(void *, const void __user *, unsigned long);
124 #endif
125
126 #ifdef INLINE_COPY_TO_USER
127 static inline unsigned long
128 _copy_to_user(void __user *to, const void *from, unsigned long n)
129 {
130 might_fault();
131 if (access_ok(VERIFY_WRITE, to, n)) {
132 kasan_check_read(from, n);
133 n = raw_copy_to_user(to, from, n);
134 }
135 return n;
136 }
137 #else
138 extern unsigned long
139 _copy_to_user(void __user *, const void *, unsigned long);
140 #endif
141
142 static __always_inline unsigned long __must_check
143 copy_from_user(void *to, const void __user *from, unsigned long n)
144 {
145 if (likely(check_copy_size(to, n, false)))
146 n = _copy_from_user(to, from, n);
147 return n;
148 }
149
150 static __always_inline unsigned long __must_check
151 copy_to_user(void __user *to, const void *from, unsigned long n)
152 {
153 if (likely(check_copy_size(from, n, true)))
154 n = _copy_to_user(to, from, n);
155 return n;
156 }
157 #ifdef CONFIG_COMPAT
158 static __always_inline unsigned long __must_check
159 copy_in_user(void __user *to, const void __user *from, unsigned long n)
160 {
161 might_fault();
162 if (access_ok(VERIFY_WRITE, to, n) && access_ok(VERIFY_READ, from, n))
163 n = raw_copy_in_user(to, from, n);
164 return n;
165 }
166 #endif
167
168 static __always_inline void pagefault_disabled_inc(void)
169 {
170 current->pagefault_disabled++;
171 }
172
173 static __always_inline void pagefault_disabled_dec(void)
174 {
175 current->pagefault_disabled--;
176 }
177
178 /*
179 * These routines enable/disable the pagefault handler. If disabled, it will
180 * not take any locks and go straight to the fixup table.
181 *
182 * User access methods will not sleep when called from a pagefault_disabled()
183 * environment.
184 */
185 static inline void pagefault_disable(void)
186 {
187 pagefault_disabled_inc();
188 /*
189 * make sure to have issued the store before a pagefault
190 * can hit.
191 */
192 barrier();
193 }
194
195 static inline void pagefault_enable(void)
196 {
197 /*
198 * make sure to issue those last loads/stores before enabling
199 * the pagefault handler again.
200 */
201 barrier();
202 pagefault_disabled_dec();
203 }
204
205 /*
206 * Is the pagefault handler disabled? If so, user access methods will not sleep.
207 */
208 #define pagefault_disabled() (current->pagefault_disabled != 0)
209
210 /*
211 * The pagefault handler is in general disabled by pagefault_disable() or
212 * when in irq context (via in_atomic()).
213 *
214 * This function should only be used by the fault handlers. Other users should
215 * stick to pagefault_disabled().
216 * Please NEVER use preempt_disable() to disable the fault handler. With
217 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
218 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
219 */
220 #define faulthandler_disabled() (pagefault_disabled() || in_atomic())
221
222 #ifndef ARCH_HAS_NOCACHE_UACCESS
223
224 static inline unsigned long __copy_from_user_inatomic_nocache(void *to,
225 const void __user *from, unsigned long n)
226 {
227 return __copy_from_user_inatomic(to, from, n);
228 }
229
230 #endif /* ARCH_HAS_NOCACHE_UACCESS */
231
232 /*
233 * probe_kernel_read(): safely attempt to read from a location
234 * @dst: pointer to the buffer that shall take the data
235 * @src: address to read from
236 * @size: size of the data chunk
237 *
238 * Safely read from address @src to the buffer at @dst. If a kernel fault
239 * happens, handle that and return -EFAULT.
240 */
241 extern long probe_kernel_read(void *dst, const void *src, size_t size);
242 extern long __probe_kernel_read(void *dst, const void *src, size_t size);
243
244 /*
245 * probe_kernel_write(): safely attempt to write to a location
246 * @dst: address to write to
247 * @src: pointer to the data that shall be written
248 * @size: size of the data chunk
249 *
250 * Safely write to address @dst from the buffer at @src. If a kernel fault
251 * happens, handle that and return -EFAULT.
252 */
253 extern long notrace probe_kernel_write(void *dst, const void *src, size_t size);
254 extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size);
255
256 extern long strncpy_from_unsafe(char *dst, const void *unsafe_addr, long count);
257
258 /**
259 * probe_kernel_address(): safely attempt to read from a location
260 * @addr: address to read from
261 * @retval: read into this variable
262 *
263 * Returns 0 on success, or -EFAULT.
264 */
265 #define probe_kernel_address(addr, retval) \
266 probe_kernel_read(&retval, addr, sizeof(retval))
267
268 #ifndef user_access_begin
269 #define user_access_begin() do { } while (0)
270 #define user_access_end() do { } while (0)
271 #define unsafe_get_user(x, ptr, err) do { if (unlikely(__get_user(x, ptr))) goto err; } while (0)
272 #define unsafe_put_user(x, ptr, err) do { if (unlikely(__put_user(x, ptr))) goto err; } while (0)
273 #endif
274
275 #endif /* __LINUX_UACCESS_H__ */