]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/usb.h
UBUNTU: SAUCE: LSM stacking: LSM: Manage file security blobs
[mirror_ubuntu-artful-kernel.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56 * with one or more transfer descriptors (TDs) per urb
57 * @ep_dev: ep_device for sysfs info
58 * @extra: descriptors following this endpoint in the configuration
59 * @extralen: how many bytes of "extra" are valid
60 * @enabled: URBs may be submitted to this endpoint
61 * @streams: number of USB-3 streams allocated on the endpoint
62 *
63 * USB requests are always queued to a given endpoint, identified by a
64 * descriptor within an active interface in a given USB configuration.
65 */
66 struct usb_host_endpoint {
67 struct usb_endpoint_descriptor desc;
68 struct usb_ss_ep_comp_descriptor ss_ep_comp;
69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
70 struct list_head urb_list;
71 void *hcpriv;
72 struct ep_device *ep_dev; /* For sysfs info */
73
74 unsigned char *extra; /* Extra descriptors */
75 int extralen;
76 int enabled;
77 int streams;
78 };
79
80 /* host-side wrapper for one interface setting's parsed descriptors */
81 struct usb_host_interface {
82 struct usb_interface_descriptor desc;
83
84 int extralen;
85 unsigned char *extra; /* Extra descriptors */
86
87 /* array of desc.bNumEndpoints endpoints associated with this
88 * interface setting. these will be in no particular order.
89 */
90 struct usb_host_endpoint *endpoint;
91
92 char *string; /* iInterface string, if present */
93 };
94
95 enum usb_interface_condition {
96 USB_INTERFACE_UNBOUND = 0,
97 USB_INTERFACE_BINDING,
98 USB_INTERFACE_BOUND,
99 USB_INTERFACE_UNBINDING,
100 };
101
102 int __must_check
103 usb_find_common_endpoints(struct usb_host_interface *alt,
104 struct usb_endpoint_descriptor **bulk_in,
105 struct usb_endpoint_descriptor **bulk_out,
106 struct usb_endpoint_descriptor **int_in,
107 struct usb_endpoint_descriptor **int_out);
108
109 int __must_check
110 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
111 struct usb_endpoint_descriptor **bulk_in,
112 struct usb_endpoint_descriptor **bulk_out,
113 struct usb_endpoint_descriptor **int_in,
114 struct usb_endpoint_descriptor **int_out);
115
116 static inline int __must_check
117 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
118 struct usb_endpoint_descriptor **bulk_in)
119 {
120 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
121 }
122
123 static inline int __must_check
124 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
125 struct usb_endpoint_descriptor **bulk_out)
126 {
127 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
128 }
129
130 static inline int __must_check
131 usb_find_int_in_endpoint(struct usb_host_interface *alt,
132 struct usb_endpoint_descriptor **int_in)
133 {
134 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
135 }
136
137 static inline int __must_check
138 usb_find_int_out_endpoint(struct usb_host_interface *alt,
139 struct usb_endpoint_descriptor **int_out)
140 {
141 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
142 }
143
144 static inline int __must_check
145 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
146 struct usb_endpoint_descriptor **bulk_in)
147 {
148 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
149 }
150
151 static inline int __must_check
152 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
153 struct usb_endpoint_descriptor **bulk_out)
154 {
155 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
156 }
157
158 static inline int __must_check
159 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
160 struct usb_endpoint_descriptor **int_in)
161 {
162 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
163 }
164
165 static inline int __must_check
166 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
167 struct usb_endpoint_descriptor **int_out)
168 {
169 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
170 }
171
172 /**
173 * struct usb_interface - what usb device drivers talk to
174 * @altsetting: array of interface structures, one for each alternate
175 * setting that may be selected. Each one includes a set of
176 * endpoint configurations. They will be in no particular order.
177 * @cur_altsetting: the current altsetting.
178 * @num_altsetting: number of altsettings defined.
179 * @intf_assoc: interface association descriptor
180 * @minor: the minor number assigned to this interface, if this
181 * interface is bound to a driver that uses the USB major number.
182 * If this interface does not use the USB major, this field should
183 * be unused. The driver should set this value in the probe()
184 * function of the driver, after it has been assigned a minor
185 * number from the USB core by calling usb_register_dev().
186 * @condition: binding state of the interface: not bound, binding
187 * (in probe()), bound to a driver, or unbinding (in disconnect())
188 * @sysfs_files_created: sysfs attributes exist
189 * @ep_devs_created: endpoint child pseudo-devices exist
190 * @unregistering: flag set when the interface is being unregistered
191 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
192 * capability during autosuspend.
193 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
194 * has been deferred.
195 * @needs_binding: flag set when the driver should be re-probed or unbound
196 * following a reset or suspend operation it doesn't support.
197 * @authorized: This allows to (de)authorize individual interfaces instead
198 * a whole device in contrast to the device authorization.
199 * @dev: driver model's view of this device
200 * @usb_dev: if an interface is bound to the USB major, this will point
201 * to the sysfs representation for that device.
202 * @pm_usage_cnt: PM usage counter for this interface
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232 struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
260 struct work_struct reset_ws; /* for resets in atomic context */
261 };
262 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
263
264 static inline void *usb_get_intfdata(struct usb_interface *intf)
265 {
266 return dev_get_drvdata(&intf->dev);
267 }
268
269 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
270 {
271 dev_set_drvdata(&intf->dev, data);
272 }
273
274 struct usb_interface *usb_get_intf(struct usb_interface *intf);
275 void usb_put_intf(struct usb_interface *intf);
276
277 /* Hard limit */
278 #define USB_MAXENDPOINTS 30
279 /* this maximum is arbitrary */
280 #define USB_MAXINTERFACES 32
281 #define USB_MAXIADS (USB_MAXINTERFACES/2)
282
283 /*
284 * USB Resume Timer: Every Host controller driver should drive the resume
285 * signalling on the bus for the amount of time defined by this macro.
286 *
287 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
288 *
289 * Note that the USB Specification states we should drive resume for *at least*
290 * 20 ms, but it doesn't give an upper bound. This creates two possible
291 * situations which we want to avoid:
292 *
293 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
294 * us to fail USB Electrical Tests, thus failing Certification
295 *
296 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
297 * and while we can argue that's against the USB Specification, we don't have
298 * control over which devices a certification laboratory will be using for
299 * certification. If CertLab uses a device which was tested against Windows and
300 * that happens to have relaxed resume signalling rules, we might fall into
301 * situations where we fail interoperability and electrical tests.
302 *
303 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
304 * should cope with both LPJ calibration errors and devices not following every
305 * detail of the USB Specification.
306 */
307 #define USB_RESUME_TIMEOUT 40 /* ms */
308
309 /**
310 * struct usb_interface_cache - long-term representation of a device interface
311 * @num_altsetting: number of altsettings defined.
312 * @ref: reference counter.
313 * @altsetting: variable-length array of interface structures, one for
314 * each alternate setting that may be selected. Each one includes a
315 * set of endpoint configurations. They will be in no particular order.
316 *
317 * These structures persist for the lifetime of a usb_device, unlike
318 * struct usb_interface (which persists only as long as its configuration
319 * is installed). The altsetting arrays can be accessed through these
320 * structures at any time, permitting comparison of configurations and
321 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
322 */
323 struct usb_interface_cache {
324 unsigned num_altsetting; /* number of alternate settings */
325 struct kref ref; /* reference counter */
326
327 /* variable-length array of alternate settings for this interface,
328 * stored in no particular order */
329 struct usb_host_interface altsetting[0];
330 };
331 #define ref_to_usb_interface_cache(r) \
332 container_of(r, struct usb_interface_cache, ref)
333 #define altsetting_to_usb_interface_cache(a) \
334 container_of(a, struct usb_interface_cache, altsetting[0])
335
336 /**
337 * struct usb_host_config - representation of a device's configuration
338 * @desc: the device's configuration descriptor.
339 * @string: pointer to the cached version of the iConfiguration string, if
340 * present for this configuration.
341 * @intf_assoc: list of any interface association descriptors in this config
342 * @interface: array of pointers to usb_interface structures, one for each
343 * interface in the configuration. The number of interfaces is stored
344 * in desc.bNumInterfaces. These pointers are valid only while the
345 * the configuration is active.
346 * @intf_cache: array of pointers to usb_interface_cache structures, one
347 * for each interface in the configuration. These structures exist
348 * for the entire life of the device.
349 * @extra: pointer to buffer containing all extra descriptors associated
350 * with this configuration (those preceding the first interface
351 * descriptor).
352 * @extralen: length of the extra descriptors buffer.
353 *
354 * USB devices may have multiple configurations, but only one can be active
355 * at any time. Each encapsulates a different operational environment;
356 * for example, a dual-speed device would have separate configurations for
357 * full-speed and high-speed operation. The number of configurations
358 * available is stored in the device descriptor as bNumConfigurations.
359 *
360 * A configuration can contain multiple interfaces. Each corresponds to
361 * a different function of the USB device, and all are available whenever
362 * the configuration is active. The USB standard says that interfaces
363 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
364 * of devices get this wrong. In addition, the interface array is not
365 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
366 * look up an interface entry based on its number.
367 *
368 * Device drivers should not attempt to activate configurations. The choice
369 * of which configuration to install is a policy decision based on such
370 * considerations as available power, functionality provided, and the user's
371 * desires (expressed through userspace tools). However, drivers can call
372 * usb_reset_configuration() to reinitialize the current configuration and
373 * all its interfaces.
374 */
375 struct usb_host_config {
376 struct usb_config_descriptor desc;
377
378 char *string; /* iConfiguration string, if present */
379
380 /* List of any Interface Association Descriptors in this
381 * configuration. */
382 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
383
384 /* the interfaces associated with this configuration,
385 * stored in no particular order */
386 struct usb_interface *interface[USB_MAXINTERFACES];
387
388 /* Interface information available even when this is not the
389 * active configuration */
390 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
391
392 unsigned char *extra; /* Extra descriptors */
393 int extralen;
394 };
395
396 /* USB2.0 and USB3.0 device BOS descriptor set */
397 struct usb_host_bos {
398 struct usb_bos_descriptor *desc;
399
400 /* wireless cap descriptor is handled by wusb */
401 struct usb_ext_cap_descriptor *ext_cap;
402 struct usb_ss_cap_descriptor *ss_cap;
403 struct usb_ssp_cap_descriptor *ssp_cap;
404 struct usb_ss_container_id_descriptor *ss_id;
405 struct usb_ptm_cap_descriptor *ptm_cap;
406 };
407
408 int __usb_get_extra_descriptor(char *buffer, unsigned size,
409 unsigned char type, void **ptr);
410 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
411 __usb_get_extra_descriptor((ifpoint)->extra, \
412 (ifpoint)->extralen, \
413 type, (void **)ptr)
414
415 /* ----------------------------------------------------------------------- */
416
417 /* USB device number allocation bitmap */
418 struct usb_devmap {
419 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
420 };
421
422 /*
423 * Allocated per bus (tree of devices) we have:
424 */
425 struct usb_bus {
426 struct device *controller; /* host/master side hardware */
427 struct device *sysdev; /* as seen from firmware or bus */
428 int busnum; /* Bus number (in order of reg) */
429 const char *bus_name; /* stable id (PCI slot_name etc) */
430 u8 uses_dma; /* Does the host controller use DMA? */
431 u8 uses_pio_for_control; /*
432 * Does the host controller use PIO
433 * for control transfers?
434 */
435 u8 otg_port; /* 0, or number of OTG/HNP port */
436 unsigned is_b_host:1; /* true during some HNP roleswitches */
437 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
438 unsigned no_stop_on_short:1; /*
439 * Quirk: some controllers don't stop
440 * the ep queue on a short transfer
441 * with the URB_SHORT_NOT_OK flag set.
442 */
443 unsigned no_sg_constraint:1; /* no sg constraint */
444 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
445
446 int devnum_next; /* Next open device number in
447 * round-robin allocation */
448 struct mutex devnum_next_mutex; /* devnum_next mutex */
449
450 struct usb_devmap devmap; /* device address allocation map */
451 struct usb_device *root_hub; /* Root hub */
452 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
453
454 int bandwidth_allocated; /* on this bus: how much of the time
455 * reserved for periodic (intr/iso)
456 * requests is used, on average?
457 * Units: microseconds/frame.
458 * Limits: Full/low speed reserve 90%,
459 * while high speed reserves 80%.
460 */
461 int bandwidth_int_reqs; /* number of Interrupt requests */
462 int bandwidth_isoc_reqs; /* number of Isoc. requests */
463
464 unsigned resuming_ports; /* bit array: resuming root-hub ports */
465
466 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
467 struct mon_bus *mon_bus; /* non-null when associated */
468 int monitored; /* non-zero when monitored */
469 #endif
470 };
471
472 struct usb_dev_state;
473
474 /* ----------------------------------------------------------------------- */
475
476 struct usb_tt;
477
478 enum usb_device_removable {
479 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
480 USB_DEVICE_REMOVABLE,
481 USB_DEVICE_FIXED,
482 };
483
484 enum usb_port_connect_type {
485 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
486 USB_PORT_CONNECT_TYPE_HOT_PLUG,
487 USB_PORT_CONNECT_TYPE_HARD_WIRED,
488 USB_PORT_NOT_USED,
489 };
490
491 /*
492 * USB 2.0 Link Power Management (LPM) parameters.
493 */
494 struct usb2_lpm_parameters {
495 /* Best effort service latency indicate how long the host will drive
496 * resume on an exit from L1.
497 */
498 unsigned int besl;
499
500 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
501 * When the timer counts to zero, the parent hub will initiate a LPM
502 * transition to L1.
503 */
504 int timeout;
505 };
506
507 /*
508 * USB 3.0 Link Power Management (LPM) parameters.
509 *
510 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
511 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
512 * All three are stored in nanoseconds.
513 */
514 struct usb3_lpm_parameters {
515 /*
516 * Maximum exit latency (MEL) for the host to send a packet to the
517 * device (either a Ping for isoc endpoints, or a data packet for
518 * interrupt endpoints), the hubs to decode the packet, and for all hubs
519 * in the path to transition the links to U0.
520 */
521 unsigned int mel;
522 /*
523 * Maximum exit latency for a device-initiated LPM transition to bring
524 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
525 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
526 */
527 unsigned int pel;
528
529 /*
530 * The System Exit Latency (SEL) includes PEL, and three other
531 * latencies. After a device initiates a U0 transition, it will take
532 * some time from when the device sends the ERDY to when it will finally
533 * receive the data packet. Basically, SEL should be the worse-case
534 * latency from when a device starts initiating a U0 transition to when
535 * it will get data.
536 */
537 unsigned int sel;
538 /*
539 * The idle timeout value that is currently programmed into the parent
540 * hub for this device. When the timer counts to zero, the parent hub
541 * will initiate an LPM transition to either U1 or U2.
542 */
543 int timeout;
544 };
545
546 /**
547 * struct usb_device - kernel's representation of a USB device
548 * @devnum: device number; address on a USB bus
549 * @devpath: device ID string for use in messages (e.g., /port/...)
550 * @route: tree topology hex string for use with xHCI
551 * @state: device state: configured, not attached, etc.
552 * @speed: device speed: high/full/low (or error)
553 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
554 * @ttport: device port on that tt hub
555 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
556 * @parent: our hub, unless we're the root
557 * @bus: bus we're part of
558 * @ep0: endpoint 0 data (default control pipe)
559 * @dev: generic device interface
560 * @descriptor: USB device descriptor
561 * @bos: USB device BOS descriptor set
562 * @config: all of the device's configs
563 * @actconfig: the active configuration
564 * @ep_in: array of IN endpoints
565 * @ep_out: array of OUT endpoints
566 * @rawdescriptors: raw descriptors for each config
567 * @bus_mA: Current available from the bus
568 * @portnum: parent port number (origin 1)
569 * @level: number of USB hub ancestors
570 * @can_submit: URBs may be submitted
571 * @persist_enabled: USB_PERSIST enabled for this device
572 * @have_langid: whether string_langid is valid
573 * @authorized: policy has said we can use it;
574 * (user space) policy determines if we authorize this device to be
575 * used or not. By default, wired USB devices are authorized.
576 * WUSB devices are not, until we authorize them from user space.
577 * FIXME -- complete doc
578 * @authenticated: Crypto authentication passed
579 * @wusb: device is Wireless USB
580 * @lpm_capable: device supports LPM
581 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
582 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
583 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
584 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
585 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
586 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
587 * @string_langid: language ID for strings
588 * @product: iProduct string, if present (static)
589 * @manufacturer: iManufacturer string, if present (static)
590 * @serial: iSerialNumber string, if present (static)
591 * @filelist: usbfs files that are open to this device
592 * @maxchild: number of ports if hub
593 * @quirks: quirks of the whole device
594 * @urbnum: number of URBs submitted for the whole device
595 * @active_duration: total time device is not suspended
596 * @connect_time: time device was first connected
597 * @do_remote_wakeup: remote wakeup should be enabled
598 * @reset_resume: needs reset instead of resume
599 * @port_is_suspended: the upstream port is suspended (L2 or U3)
600 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
601 * specific data for the device.
602 * @slot_id: Slot ID assigned by xHCI
603 * @removable: Device can be physically removed from this port
604 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
605 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
606 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
607 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
608 * to keep track of the number of functions that require USB 3.0 Link Power
609 * Management to be disabled for this usb_device. This count should only
610 * be manipulated by those functions, with the bandwidth_mutex is held.
611 *
612 * Notes:
613 * Usbcore drivers should not set usbdev->state directly. Instead use
614 * usb_set_device_state().
615 */
616 struct usb_device {
617 int devnum;
618 char devpath[16];
619 u32 route;
620 enum usb_device_state state;
621 enum usb_device_speed speed;
622
623 struct usb_tt *tt;
624 int ttport;
625
626 unsigned int toggle[2];
627
628 struct usb_device *parent;
629 struct usb_bus *bus;
630 struct usb_host_endpoint ep0;
631
632 struct device dev;
633
634 struct usb_device_descriptor descriptor;
635 struct usb_host_bos *bos;
636 struct usb_host_config *config;
637
638 struct usb_host_config *actconfig;
639 struct usb_host_endpoint *ep_in[16];
640 struct usb_host_endpoint *ep_out[16];
641
642 char **rawdescriptors;
643
644 unsigned short bus_mA;
645 u8 portnum;
646 u8 level;
647
648 unsigned can_submit:1;
649 unsigned persist_enabled:1;
650 unsigned have_langid:1;
651 unsigned authorized:1;
652 unsigned authenticated:1;
653 unsigned wusb:1;
654 unsigned lpm_capable:1;
655 unsigned usb2_hw_lpm_capable:1;
656 unsigned usb2_hw_lpm_besl_capable:1;
657 unsigned usb2_hw_lpm_enabled:1;
658 unsigned usb2_hw_lpm_allowed:1;
659 unsigned usb3_lpm_u1_enabled:1;
660 unsigned usb3_lpm_u2_enabled:1;
661 int string_langid;
662
663 /* static strings from the device */
664 char *product;
665 char *manufacturer;
666 char *serial;
667
668 struct list_head filelist;
669
670 int maxchild;
671
672 u32 quirks;
673 atomic_t urbnum;
674
675 unsigned long active_duration;
676
677 #ifdef CONFIG_PM
678 unsigned long connect_time;
679
680 unsigned do_remote_wakeup:1;
681 unsigned reset_resume:1;
682 unsigned port_is_suspended:1;
683 #endif
684 struct wusb_dev *wusb_dev;
685 int slot_id;
686 enum usb_device_removable removable;
687 struct usb2_lpm_parameters l1_params;
688 struct usb3_lpm_parameters u1_params;
689 struct usb3_lpm_parameters u2_params;
690 unsigned lpm_disable_count;
691 };
692 #define to_usb_device(d) container_of(d, struct usb_device, dev)
693
694 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
695 {
696 return to_usb_device(intf->dev.parent);
697 }
698
699 extern struct usb_device *usb_get_dev(struct usb_device *dev);
700 extern void usb_put_dev(struct usb_device *dev);
701 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
702 int port1);
703
704 /**
705 * usb_hub_for_each_child - iterate over all child devices on the hub
706 * @hdev: USB device belonging to the usb hub
707 * @port1: portnum associated with child device
708 * @child: child device pointer
709 */
710 #define usb_hub_for_each_child(hdev, port1, child) \
711 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
712 port1 <= hdev->maxchild; \
713 child = usb_hub_find_child(hdev, ++port1)) \
714 if (!child) continue; else
715
716 /* USB device locking */
717 #define usb_lock_device(udev) device_lock(&(udev)->dev)
718 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
719 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
720 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
721 extern int usb_lock_device_for_reset(struct usb_device *udev,
722 const struct usb_interface *iface);
723
724 /* USB port reset for device reinitialization */
725 extern int usb_reset_device(struct usb_device *dev);
726 extern void usb_queue_reset_device(struct usb_interface *dev);
727
728 #ifdef CONFIG_ACPI
729 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
730 bool enable);
731 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
732 #else
733 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
734 bool enable) { return 0; }
735 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
736 { return true; }
737 #endif
738
739 /* USB autosuspend and autoresume */
740 #ifdef CONFIG_PM
741 extern void usb_enable_autosuspend(struct usb_device *udev);
742 extern void usb_disable_autosuspend(struct usb_device *udev);
743
744 extern int usb_autopm_get_interface(struct usb_interface *intf);
745 extern void usb_autopm_put_interface(struct usb_interface *intf);
746 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
747 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
748 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
749 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
750
751 static inline void usb_mark_last_busy(struct usb_device *udev)
752 {
753 pm_runtime_mark_last_busy(&udev->dev);
754 }
755
756 #else
757
758 static inline int usb_enable_autosuspend(struct usb_device *udev)
759 { return 0; }
760 static inline int usb_disable_autosuspend(struct usb_device *udev)
761 { return 0; }
762
763 static inline int usb_autopm_get_interface(struct usb_interface *intf)
764 { return 0; }
765 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
766 { return 0; }
767
768 static inline void usb_autopm_put_interface(struct usb_interface *intf)
769 { }
770 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
771 { }
772 static inline void usb_autopm_get_interface_no_resume(
773 struct usb_interface *intf)
774 { }
775 static inline void usb_autopm_put_interface_no_suspend(
776 struct usb_interface *intf)
777 { }
778 static inline void usb_mark_last_busy(struct usb_device *udev)
779 { }
780 #endif
781
782 extern int usb_disable_lpm(struct usb_device *udev);
783 extern void usb_enable_lpm(struct usb_device *udev);
784 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
785 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
786 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
787
788 extern int usb_disable_ltm(struct usb_device *udev);
789 extern void usb_enable_ltm(struct usb_device *udev);
790
791 static inline bool usb_device_supports_ltm(struct usb_device *udev)
792 {
793 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
794 return false;
795 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
796 }
797
798 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
799 {
800 return udev && udev->bus && udev->bus->no_sg_constraint;
801 }
802
803
804 /*-------------------------------------------------------------------------*/
805
806 /* for drivers using iso endpoints */
807 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
808
809 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
810 extern int usb_alloc_streams(struct usb_interface *interface,
811 struct usb_host_endpoint **eps, unsigned int num_eps,
812 unsigned int num_streams, gfp_t mem_flags);
813
814 /* Reverts a group of bulk endpoints back to not using stream IDs. */
815 extern int usb_free_streams(struct usb_interface *interface,
816 struct usb_host_endpoint **eps, unsigned int num_eps,
817 gfp_t mem_flags);
818
819 /* used these for multi-interface device registration */
820 extern int usb_driver_claim_interface(struct usb_driver *driver,
821 struct usb_interface *iface, void *priv);
822
823 /**
824 * usb_interface_claimed - returns true iff an interface is claimed
825 * @iface: the interface being checked
826 *
827 * Return: %true (nonzero) iff the interface is claimed, else %false
828 * (zero).
829 *
830 * Note:
831 * Callers must own the driver model's usb bus readlock. So driver
832 * probe() entries don't need extra locking, but other call contexts
833 * may need to explicitly claim that lock.
834 *
835 */
836 static inline int usb_interface_claimed(struct usb_interface *iface)
837 {
838 return (iface->dev.driver != NULL);
839 }
840
841 extern void usb_driver_release_interface(struct usb_driver *driver,
842 struct usb_interface *iface);
843 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
844 const struct usb_device_id *id);
845 extern int usb_match_one_id(struct usb_interface *interface,
846 const struct usb_device_id *id);
847
848 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
849 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
850 int minor);
851 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
852 unsigned ifnum);
853 extern struct usb_host_interface *usb_altnum_to_altsetting(
854 const struct usb_interface *intf, unsigned int altnum);
855 extern struct usb_host_interface *usb_find_alt_setting(
856 struct usb_host_config *config,
857 unsigned int iface_num,
858 unsigned int alt_num);
859
860 /* port claiming functions */
861 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
862 struct usb_dev_state *owner);
863 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
864 struct usb_dev_state *owner);
865
866 /**
867 * usb_make_path - returns stable device path in the usb tree
868 * @dev: the device whose path is being constructed
869 * @buf: where to put the string
870 * @size: how big is "buf"?
871 *
872 * Return: Length of the string (> 0) or negative if size was too small.
873 *
874 * Note:
875 * This identifier is intended to be "stable", reflecting physical paths in
876 * hardware such as physical bus addresses for host controllers or ports on
877 * USB hubs. That makes it stay the same until systems are physically
878 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
879 * controllers. Adding and removing devices, including virtual root hubs
880 * in host controller driver modules, does not change these path identifiers;
881 * neither does rebooting or re-enumerating. These are more useful identifiers
882 * than changeable ("unstable") ones like bus numbers or device addresses.
883 *
884 * With a partial exception for devices connected to USB 2.0 root hubs, these
885 * identifiers are also predictable. So long as the device tree isn't changed,
886 * plugging any USB device into a given hub port always gives it the same path.
887 * Because of the use of "companion" controllers, devices connected to ports on
888 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
889 * high speed, and a different one if they are full or low speed.
890 */
891 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
892 {
893 int actual;
894 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
895 dev->devpath);
896 return (actual >= (int)size) ? -1 : actual;
897 }
898
899 /*-------------------------------------------------------------------------*/
900
901 #define USB_DEVICE_ID_MATCH_DEVICE \
902 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
903 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
904 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
905 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
906 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
907 #define USB_DEVICE_ID_MATCH_DEV_INFO \
908 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
909 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
910 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
911 #define USB_DEVICE_ID_MATCH_INT_INFO \
912 (USB_DEVICE_ID_MATCH_INT_CLASS | \
913 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
914 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
915
916 /**
917 * USB_DEVICE - macro used to describe a specific usb device
918 * @vend: the 16 bit USB Vendor ID
919 * @prod: the 16 bit USB Product ID
920 *
921 * This macro is used to create a struct usb_device_id that matches a
922 * specific device.
923 */
924 #define USB_DEVICE(vend, prod) \
925 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
926 .idVendor = (vend), \
927 .idProduct = (prod)
928 /**
929 * USB_DEVICE_VER - describe a specific usb device with a version range
930 * @vend: the 16 bit USB Vendor ID
931 * @prod: the 16 bit USB Product ID
932 * @lo: the bcdDevice_lo value
933 * @hi: the bcdDevice_hi value
934 *
935 * This macro is used to create a struct usb_device_id that matches a
936 * specific device, with a version range.
937 */
938 #define USB_DEVICE_VER(vend, prod, lo, hi) \
939 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
940 .idVendor = (vend), \
941 .idProduct = (prod), \
942 .bcdDevice_lo = (lo), \
943 .bcdDevice_hi = (hi)
944
945 /**
946 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
947 * @vend: the 16 bit USB Vendor ID
948 * @prod: the 16 bit USB Product ID
949 * @cl: bInterfaceClass value
950 *
951 * This macro is used to create a struct usb_device_id that matches a
952 * specific interface class of devices.
953 */
954 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
955 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
956 USB_DEVICE_ID_MATCH_INT_CLASS, \
957 .idVendor = (vend), \
958 .idProduct = (prod), \
959 .bInterfaceClass = (cl)
960
961 /**
962 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
963 * @vend: the 16 bit USB Vendor ID
964 * @prod: the 16 bit USB Product ID
965 * @pr: bInterfaceProtocol value
966 *
967 * This macro is used to create a struct usb_device_id that matches a
968 * specific interface protocol of devices.
969 */
970 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
971 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
972 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
973 .idVendor = (vend), \
974 .idProduct = (prod), \
975 .bInterfaceProtocol = (pr)
976
977 /**
978 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
979 * @vend: the 16 bit USB Vendor ID
980 * @prod: the 16 bit USB Product ID
981 * @num: bInterfaceNumber value
982 *
983 * This macro is used to create a struct usb_device_id that matches a
984 * specific interface number of devices.
985 */
986 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
987 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
988 USB_DEVICE_ID_MATCH_INT_NUMBER, \
989 .idVendor = (vend), \
990 .idProduct = (prod), \
991 .bInterfaceNumber = (num)
992
993 /**
994 * USB_DEVICE_INFO - macro used to describe a class of usb devices
995 * @cl: bDeviceClass value
996 * @sc: bDeviceSubClass value
997 * @pr: bDeviceProtocol value
998 *
999 * This macro is used to create a struct usb_device_id that matches a
1000 * specific class of devices.
1001 */
1002 #define USB_DEVICE_INFO(cl, sc, pr) \
1003 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1004 .bDeviceClass = (cl), \
1005 .bDeviceSubClass = (sc), \
1006 .bDeviceProtocol = (pr)
1007
1008 /**
1009 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1010 * @cl: bInterfaceClass value
1011 * @sc: bInterfaceSubClass value
1012 * @pr: bInterfaceProtocol value
1013 *
1014 * This macro is used to create a struct usb_device_id that matches a
1015 * specific class of interfaces.
1016 */
1017 #define USB_INTERFACE_INFO(cl, sc, pr) \
1018 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1019 .bInterfaceClass = (cl), \
1020 .bInterfaceSubClass = (sc), \
1021 .bInterfaceProtocol = (pr)
1022
1023 /**
1024 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1025 * @vend: the 16 bit USB Vendor ID
1026 * @prod: the 16 bit USB Product ID
1027 * @cl: bInterfaceClass value
1028 * @sc: bInterfaceSubClass value
1029 * @pr: bInterfaceProtocol value
1030 *
1031 * This macro is used to create a struct usb_device_id that matches a
1032 * specific device with a specific class of interfaces.
1033 *
1034 * This is especially useful when explicitly matching devices that have
1035 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1036 */
1037 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1038 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1039 | USB_DEVICE_ID_MATCH_DEVICE, \
1040 .idVendor = (vend), \
1041 .idProduct = (prod), \
1042 .bInterfaceClass = (cl), \
1043 .bInterfaceSubClass = (sc), \
1044 .bInterfaceProtocol = (pr)
1045
1046 /**
1047 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1048 * @vend: the 16 bit USB Vendor ID
1049 * @cl: bInterfaceClass value
1050 * @sc: bInterfaceSubClass value
1051 * @pr: bInterfaceProtocol value
1052 *
1053 * This macro is used to create a struct usb_device_id that matches a
1054 * specific vendor with a specific class of interfaces.
1055 *
1056 * This is especially useful when explicitly matching devices that have
1057 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1058 */
1059 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1060 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1061 | USB_DEVICE_ID_MATCH_VENDOR, \
1062 .idVendor = (vend), \
1063 .bInterfaceClass = (cl), \
1064 .bInterfaceSubClass = (sc), \
1065 .bInterfaceProtocol = (pr)
1066
1067 /* ----------------------------------------------------------------------- */
1068
1069 /* Stuff for dynamic usb ids */
1070 struct usb_dynids {
1071 spinlock_t lock;
1072 struct list_head list;
1073 };
1074
1075 struct usb_dynid {
1076 struct list_head node;
1077 struct usb_device_id id;
1078 };
1079
1080 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1081 const struct usb_device_id *id_table,
1082 struct device_driver *driver,
1083 const char *buf, size_t count);
1084
1085 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1086
1087 /**
1088 * struct usbdrv_wrap - wrapper for driver-model structure
1089 * @driver: The driver-model core driver structure.
1090 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1091 */
1092 struct usbdrv_wrap {
1093 struct device_driver driver;
1094 int for_devices;
1095 };
1096
1097 /**
1098 * struct usb_driver - identifies USB interface driver to usbcore
1099 * @name: The driver name should be unique among USB drivers,
1100 * and should normally be the same as the module name.
1101 * @probe: Called to see if the driver is willing to manage a particular
1102 * interface on a device. If it is, probe returns zero and uses
1103 * usb_set_intfdata() to associate driver-specific data with the
1104 * interface. It may also use usb_set_interface() to specify the
1105 * appropriate altsetting. If unwilling to manage the interface,
1106 * return -ENODEV, if genuine IO errors occurred, an appropriate
1107 * negative errno value.
1108 * @disconnect: Called when the interface is no longer accessible, usually
1109 * because its device has been (or is being) disconnected or the
1110 * driver module is being unloaded.
1111 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1112 * the "usbfs" filesystem. This lets devices provide ways to
1113 * expose information to user space regardless of where they
1114 * do (or don't) show up otherwise in the filesystem.
1115 * @suspend: Called when the device is going to be suspended by the
1116 * system either from system sleep or runtime suspend context. The
1117 * return value will be ignored in system sleep context, so do NOT
1118 * try to continue using the device if suspend fails in this case.
1119 * Instead, let the resume or reset-resume routine recover from
1120 * the failure.
1121 * @resume: Called when the device is being resumed by the system.
1122 * @reset_resume: Called when the suspended device has been reset instead
1123 * of being resumed.
1124 * @pre_reset: Called by usb_reset_device() when the device is about to be
1125 * reset. This routine must not return until the driver has no active
1126 * URBs for the device, and no more URBs may be submitted until the
1127 * post_reset method is called.
1128 * @post_reset: Called by usb_reset_device() after the device
1129 * has been reset
1130 * @id_table: USB drivers use ID table to support hotplugging.
1131 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1132 * or your driver's probe function will never get called.
1133 * @dynids: used internally to hold the list of dynamically added device
1134 * ids for this driver.
1135 * @drvwrap: Driver-model core structure wrapper.
1136 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1137 * added to this driver by preventing the sysfs file from being created.
1138 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1139 * for interfaces bound to this driver.
1140 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1141 * endpoints before calling the driver's disconnect method.
1142 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1143 * to initiate lower power link state transitions when an idle timeout
1144 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1145 *
1146 * USB interface drivers must provide a name, probe() and disconnect()
1147 * methods, and an id_table. Other driver fields are optional.
1148 *
1149 * The id_table is used in hotplugging. It holds a set of descriptors,
1150 * and specialized data may be associated with each entry. That table
1151 * is used by both user and kernel mode hotplugging support.
1152 *
1153 * The probe() and disconnect() methods are called in a context where
1154 * they can sleep, but they should avoid abusing the privilege. Most
1155 * work to connect to a device should be done when the device is opened,
1156 * and undone at the last close. The disconnect code needs to address
1157 * concurrency issues with respect to open() and close() methods, as
1158 * well as forcing all pending I/O requests to complete (by unlinking
1159 * them as necessary, and blocking until the unlinks complete).
1160 */
1161 struct usb_driver {
1162 const char *name;
1163
1164 int (*probe) (struct usb_interface *intf,
1165 const struct usb_device_id *id);
1166
1167 void (*disconnect) (struct usb_interface *intf);
1168
1169 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1170 void *buf);
1171
1172 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1173 int (*resume) (struct usb_interface *intf);
1174 int (*reset_resume)(struct usb_interface *intf);
1175
1176 int (*pre_reset)(struct usb_interface *intf);
1177 int (*post_reset)(struct usb_interface *intf);
1178
1179 const struct usb_device_id *id_table;
1180
1181 struct usb_dynids dynids;
1182 struct usbdrv_wrap drvwrap;
1183 unsigned int no_dynamic_id:1;
1184 unsigned int supports_autosuspend:1;
1185 unsigned int disable_hub_initiated_lpm:1;
1186 unsigned int soft_unbind:1;
1187 };
1188 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1189
1190 /**
1191 * struct usb_device_driver - identifies USB device driver to usbcore
1192 * @name: The driver name should be unique among USB drivers,
1193 * and should normally be the same as the module name.
1194 * @probe: Called to see if the driver is willing to manage a particular
1195 * device. If it is, probe returns zero and uses dev_set_drvdata()
1196 * to associate driver-specific data with the device. If unwilling
1197 * to manage the device, return a negative errno value.
1198 * @disconnect: Called when the device is no longer accessible, usually
1199 * because it has been (or is being) disconnected or the driver's
1200 * module is being unloaded.
1201 * @suspend: Called when the device is going to be suspended by the system.
1202 * @resume: Called when the device is being resumed by the system.
1203 * @drvwrap: Driver-model core structure wrapper.
1204 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1205 * for devices bound to this driver.
1206 *
1207 * USB drivers must provide all the fields listed above except drvwrap.
1208 */
1209 struct usb_device_driver {
1210 const char *name;
1211
1212 int (*probe) (struct usb_device *udev);
1213 void (*disconnect) (struct usb_device *udev);
1214
1215 int (*suspend) (struct usb_device *udev, pm_message_t message);
1216 int (*resume) (struct usb_device *udev, pm_message_t message);
1217 struct usbdrv_wrap drvwrap;
1218 unsigned int supports_autosuspend:1;
1219 };
1220 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1221 drvwrap.driver)
1222
1223 extern struct bus_type usb_bus_type;
1224
1225 /**
1226 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1227 * @name: the usb class device name for this driver. Will show up in sysfs.
1228 * @devnode: Callback to provide a naming hint for a possible
1229 * device node to create.
1230 * @fops: pointer to the struct file_operations of this driver.
1231 * @minor_base: the start of the minor range for this driver.
1232 *
1233 * This structure is used for the usb_register_dev() and
1234 * usb_deregister_dev() functions, to consolidate a number of the
1235 * parameters used for them.
1236 */
1237 struct usb_class_driver {
1238 char *name;
1239 char *(*devnode)(struct device *dev, umode_t *mode);
1240 const struct file_operations *fops;
1241 int minor_base;
1242 };
1243
1244 /*
1245 * use these in module_init()/module_exit()
1246 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1247 */
1248 extern int usb_register_driver(struct usb_driver *, struct module *,
1249 const char *);
1250
1251 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1252 #define usb_register(driver) \
1253 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1254
1255 extern void usb_deregister(struct usb_driver *);
1256
1257 /**
1258 * module_usb_driver() - Helper macro for registering a USB driver
1259 * @__usb_driver: usb_driver struct
1260 *
1261 * Helper macro for USB drivers which do not do anything special in module
1262 * init/exit. This eliminates a lot of boilerplate. Each module may only
1263 * use this macro once, and calling it replaces module_init() and module_exit()
1264 */
1265 #define module_usb_driver(__usb_driver) \
1266 module_driver(__usb_driver, usb_register, \
1267 usb_deregister)
1268
1269 extern int usb_register_device_driver(struct usb_device_driver *,
1270 struct module *);
1271 extern void usb_deregister_device_driver(struct usb_device_driver *);
1272
1273 extern int usb_register_dev(struct usb_interface *intf,
1274 struct usb_class_driver *class_driver);
1275 extern void usb_deregister_dev(struct usb_interface *intf,
1276 struct usb_class_driver *class_driver);
1277
1278 extern int usb_disabled(void);
1279
1280 /* ----------------------------------------------------------------------- */
1281
1282 /*
1283 * URB support, for asynchronous request completions
1284 */
1285
1286 /*
1287 * urb->transfer_flags:
1288 *
1289 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1290 */
1291 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1292 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1293 * slot in the schedule */
1294 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1295 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1296 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1297 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1298 * needed */
1299 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1300
1301 /* The following flags are used internally by usbcore and HCDs */
1302 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1303 #define URB_DIR_OUT 0
1304 #define URB_DIR_MASK URB_DIR_IN
1305
1306 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1307 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1308 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1309 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1310 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1311 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1312 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1313 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1314
1315 struct usb_iso_packet_descriptor {
1316 unsigned int offset;
1317 unsigned int length; /* expected length */
1318 unsigned int actual_length;
1319 int status;
1320 };
1321
1322 struct urb;
1323
1324 struct usb_anchor {
1325 struct list_head urb_list;
1326 wait_queue_head_t wait;
1327 spinlock_t lock;
1328 atomic_t suspend_wakeups;
1329 unsigned int poisoned:1;
1330 };
1331
1332 static inline void init_usb_anchor(struct usb_anchor *anchor)
1333 {
1334 memset(anchor, 0, sizeof(*anchor));
1335 INIT_LIST_HEAD(&anchor->urb_list);
1336 init_waitqueue_head(&anchor->wait);
1337 spin_lock_init(&anchor->lock);
1338 }
1339
1340 typedef void (*usb_complete_t)(struct urb *);
1341
1342 /**
1343 * struct urb - USB Request Block
1344 * @urb_list: For use by current owner of the URB.
1345 * @anchor_list: membership in the list of an anchor
1346 * @anchor: to anchor URBs to a common mooring
1347 * @ep: Points to the endpoint's data structure. Will eventually
1348 * replace @pipe.
1349 * @pipe: Holds endpoint number, direction, type, and more.
1350 * Create these values with the eight macros available;
1351 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1352 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1353 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1354 * numbers range from zero to fifteen. Note that "in" endpoint two
1355 * is a different endpoint (and pipe) from "out" endpoint two.
1356 * The current configuration controls the existence, type, and
1357 * maximum packet size of any given endpoint.
1358 * @stream_id: the endpoint's stream ID for bulk streams
1359 * @dev: Identifies the USB device to perform the request.
1360 * @status: This is read in non-iso completion functions to get the
1361 * status of the particular request. ISO requests only use it
1362 * to tell whether the URB was unlinked; detailed status for
1363 * each frame is in the fields of the iso_frame-desc.
1364 * @transfer_flags: A variety of flags may be used to affect how URB
1365 * submission, unlinking, or operation are handled. Different
1366 * kinds of URB can use different flags.
1367 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1368 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1369 * (however, do not leave garbage in transfer_buffer even then).
1370 * This buffer must be suitable for DMA; allocate it with
1371 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1372 * of this buffer will be modified. This buffer is used for the data
1373 * stage of control transfers.
1374 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1375 * the device driver is saying that it provided this DMA address,
1376 * which the host controller driver should use in preference to the
1377 * transfer_buffer.
1378 * @sg: scatter gather buffer list, the buffer size of each element in
1379 * the list (except the last) must be divisible by the endpoint's
1380 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1381 * @num_mapped_sgs: (internal) number of mapped sg entries
1382 * @num_sgs: number of entries in the sg list
1383 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1384 * be broken up into chunks according to the current maximum packet
1385 * size for the endpoint, which is a function of the configuration
1386 * and is encoded in the pipe. When the length is zero, neither
1387 * transfer_buffer nor transfer_dma is used.
1388 * @actual_length: This is read in non-iso completion functions, and
1389 * it tells how many bytes (out of transfer_buffer_length) were
1390 * transferred. It will normally be the same as requested, unless
1391 * either an error was reported or a short read was performed.
1392 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1393 * short reads be reported as errors.
1394 * @setup_packet: Only used for control transfers, this points to eight bytes
1395 * of setup data. Control transfers always start by sending this data
1396 * to the device. Then transfer_buffer is read or written, if needed.
1397 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1398 * this field; setup_packet must point to a valid buffer.
1399 * @start_frame: Returns the initial frame for isochronous transfers.
1400 * @number_of_packets: Lists the number of ISO transfer buffers.
1401 * @interval: Specifies the polling interval for interrupt or isochronous
1402 * transfers. The units are frames (milliseconds) for full and low
1403 * speed devices, and microframes (1/8 millisecond) for highspeed
1404 * and SuperSpeed devices.
1405 * @error_count: Returns the number of ISO transfers that reported errors.
1406 * @context: For use in completion functions. This normally points to
1407 * request-specific driver context.
1408 * @complete: Completion handler. This URB is passed as the parameter to the
1409 * completion function. The completion function may then do what
1410 * it likes with the URB, including resubmitting or freeing it.
1411 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1412 * collect the transfer status for each buffer.
1413 *
1414 * This structure identifies USB transfer requests. URBs must be allocated by
1415 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1416 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1417 * are submitted using usb_submit_urb(), and pending requests may be canceled
1418 * using usb_unlink_urb() or usb_kill_urb().
1419 *
1420 * Data Transfer Buffers:
1421 *
1422 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1423 * taken from the general page pool. That is provided by transfer_buffer
1424 * (control requests also use setup_packet), and host controller drivers
1425 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1426 * mapping operations can be expensive on some platforms (perhaps using a dma
1427 * bounce buffer or talking to an IOMMU),
1428 * although they're cheap on commodity x86 and ppc hardware.
1429 *
1430 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1431 * which tells the host controller driver that no such mapping is needed for
1432 * the transfer_buffer since
1433 * the device driver is DMA-aware. For example, a device driver might
1434 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1435 * When this transfer flag is provided, host controller drivers will
1436 * attempt to use the dma address found in the transfer_dma
1437 * field rather than determining a dma address themselves.
1438 *
1439 * Note that transfer_buffer must still be set if the controller
1440 * does not support DMA (as indicated by bus.uses_dma) and when talking
1441 * to root hub. If you have to trasfer between highmem zone and the device
1442 * on such controller, create a bounce buffer or bail out with an error.
1443 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1444 * capable, assign NULL to it, so that usbmon knows not to use the value.
1445 * The setup_packet must always be set, so it cannot be located in highmem.
1446 *
1447 * Initialization:
1448 *
1449 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1450 * zero), and complete fields. All URBs must also initialize
1451 * transfer_buffer and transfer_buffer_length. They may provide the
1452 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1453 * to be treated as errors; that flag is invalid for write requests.
1454 *
1455 * Bulk URBs may
1456 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1457 * should always terminate with a short packet, even if it means adding an
1458 * extra zero length packet.
1459 *
1460 * Control URBs must provide a valid pointer in the setup_packet field.
1461 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1462 * beforehand.
1463 *
1464 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1465 * or, for highspeed devices, 125 microsecond units)
1466 * to poll for transfers. After the URB has been submitted, the interval
1467 * field reflects how the transfer was actually scheduled.
1468 * The polling interval may be more frequent than requested.
1469 * For example, some controllers have a maximum interval of 32 milliseconds,
1470 * while others support intervals of up to 1024 milliseconds.
1471 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1472 * endpoints, as well as high speed interrupt endpoints, the encoding of
1473 * the transfer interval in the endpoint descriptor is logarithmic.
1474 * Device drivers must convert that value to linear units themselves.)
1475 *
1476 * If an isochronous endpoint queue isn't already running, the host
1477 * controller will schedule a new URB to start as soon as bandwidth
1478 * utilization allows. If the queue is running then a new URB will be
1479 * scheduled to start in the first transfer slot following the end of the
1480 * preceding URB, if that slot has not already expired. If the slot has
1481 * expired (which can happen when IRQ delivery is delayed for a long time),
1482 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1483 * is clear then the URB will be scheduled to start in the expired slot,
1484 * implying that some of its packets will not be transferred; if the flag
1485 * is set then the URB will be scheduled in the first unexpired slot,
1486 * breaking the queue's synchronization. Upon URB completion, the
1487 * start_frame field will be set to the (micro)frame number in which the
1488 * transfer was scheduled. Ranges for frame counter values are HC-specific
1489 * and can go from as low as 256 to as high as 65536 frames.
1490 *
1491 * Isochronous URBs have a different data transfer model, in part because
1492 * the quality of service is only "best effort". Callers provide specially
1493 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1494 * at the end. Each such packet is an individual ISO transfer. Isochronous
1495 * URBs are normally queued, submitted by drivers to arrange that
1496 * transfers are at least double buffered, and then explicitly resubmitted
1497 * in completion handlers, so
1498 * that data (such as audio or video) streams at as constant a rate as the
1499 * host controller scheduler can support.
1500 *
1501 * Completion Callbacks:
1502 *
1503 * The completion callback is made in_interrupt(), and one of the first
1504 * things that a completion handler should do is check the status field.
1505 * The status field is provided for all URBs. It is used to report
1506 * unlinked URBs, and status for all non-ISO transfers. It should not
1507 * be examined before the URB is returned to the completion handler.
1508 *
1509 * The context field is normally used to link URBs back to the relevant
1510 * driver or request state.
1511 *
1512 * When the completion callback is invoked for non-isochronous URBs, the
1513 * actual_length field tells how many bytes were transferred. This field
1514 * is updated even when the URB terminated with an error or was unlinked.
1515 *
1516 * ISO transfer status is reported in the status and actual_length fields
1517 * of the iso_frame_desc array, and the number of errors is reported in
1518 * error_count. Completion callbacks for ISO transfers will normally
1519 * (re)submit URBs to ensure a constant transfer rate.
1520 *
1521 * Note that even fields marked "public" should not be touched by the driver
1522 * when the urb is owned by the hcd, that is, since the call to
1523 * usb_submit_urb() till the entry into the completion routine.
1524 */
1525 struct urb {
1526 /* private: usb core and host controller only fields in the urb */
1527 struct kref kref; /* reference count of the URB */
1528 void *hcpriv; /* private data for host controller */
1529 atomic_t use_count; /* concurrent submissions counter */
1530 atomic_t reject; /* submissions will fail */
1531 int unlinked; /* unlink error code */
1532
1533 /* public: documented fields in the urb that can be used by drivers */
1534 struct list_head urb_list; /* list head for use by the urb's
1535 * current owner */
1536 struct list_head anchor_list; /* the URB may be anchored */
1537 struct usb_anchor *anchor;
1538 struct usb_device *dev; /* (in) pointer to associated device */
1539 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1540 unsigned int pipe; /* (in) pipe information */
1541 unsigned int stream_id; /* (in) stream ID */
1542 int status; /* (return) non-ISO status */
1543 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1544 void *transfer_buffer; /* (in) associated data buffer */
1545 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1546 struct scatterlist *sg; /* (in) scatter gather buffer list */
1547 int num_mapped_sgs; /* (internal) mapped sg entries */
1548 int num_sgs; /* (in) number of entries in the sg list */
1549 u32 transfer_buffer_length; /* (in) data buffer length */
1550 u32 actual_length; /* (return) actual transfer length */
1551 unsigned char *setup_packet; /* (in) setup packet (control only) */
1552 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1553 int start_frame; /* (modify) start frame (ISO) */
1554 int number_of_packets; /* (in) number of ISO packets */
1555 int interval; /* (modify) transfer interval
1556 * (INT/ISO) */
1557 int error_count; /* (return) number of ISO errors */
1558 void *context; /* (in) context for completion */
1559 usb_complete_t complete; /* (in) completion routine */
1560 struct usb_iso_packet_descriptor iso_frame_desc[0];
1561 /* (in) ISO ONLY */
1562 };
1563
1564 /* ----------------------------------------------------------------------- */
1565
1566 /**
1567 * usb_fill_control_urb - initializes a control urb
1568 * @urb: pointer to the urb to initialize.
1569 * @dev: pointer to the struct usb_device for this urb.
1570 * @pipe: the endpoint pipe
1571 * @setup_packet: pointer to the setup_packet buffer
1572 * @transfer_buffer: pointer to the transfer buffer
1573 * @buffer_length: length of the transfer buffer
1574 * @complete_fn: pointer to the usb_complete_t function
1575 * @context: what to set the urb context to.
1576 *
1577 * Initializes a control urb with the proper information needed to submit
1578 * it to a device.
1579 */
1580 static inline void usb_fill_control_urb(struct urb *urb,
1581 struct usb_device *dev,
1582 unsigned int pipe,
1583 unsigned char *setup_packet,
1584 void *transfer_buffer,
1585 int buffer_length,
1586 usb_complete_t complete_fn,
1587 void *context)
1588 {
1589 urb->dev = dev;
1590 urb->pipe = pipe;
1591 urb->setup_packet = setup_packet;
1592 urb->transfer_buffer = transfer_buffer;
1593 urb->transfer_buffer_length = buffer_length;
1594 urb->complete = complete_fn;
1595 urb->context = context;
1596 }
1597
1598 /**
1599 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1600 * @urb: pointer to the urb to initialize.
1601 * @dev: pointer to the struct usb_device for this urb.
1602 * @pipe: the endpoint pipe
1603 * @transfer_buffer: pointer to the transfer buffer
1604 * @buffer_length: length of the transfer buffer
1605 * @complete_fn: pointer to the usb_complete_t function
1606 * @context: what to set the urb context to.
1607 *
1608 * Initializes a bulk urb with the proper information needed to submit it
1609 * to a device.
1610 */
1611 static inline void usb_fill_bulk_urb(struct urb *urb,
1612 struct usb_device *dev,
1613 unsigned int pipe,
1614 void *transfer_buffer,
1615 int buffer_length,
1616 usb_complete_t complete_fn,
1617 void *context)
1618 {
1619 urb->dev = dev;
1620 urb->pipe = pipe;
1621 urb->transfer_buffer = transfer_buffer;
1622 urb->transfer_buffer_length = buffer_length;
1623 urb->complete = complete_fn;
1624 urb->context = context;
1625 }
1626
1627 /**
1628 * usb_fill_int_urb - macro to help initialize a interrupt urb
1629 * @urb: pointer to the urb to initialize.
1630 * @dev: pointer to the struct usb_device for this urb.
1631 * @pipe: the endpoint pipe
1632 * @transfer_buffer: pointer to the transfer buffer
1633 * @buffer_length: length of the transfer buffer
1634 * @complete_fn: pointer to the usb_complete_t function
1635 * @context: what to set the urb context to.
1636 * @interval: what to set the urb interval to, encoded like
1637 * the endpoint descriptor's bInterval value.
1638 *
1639 * Initializes a interrupt urb with the proper information needed to submit
1640 * it to a device.
1641 *
1642 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1643 * encoding of the endpoint interval, and express polling intervals in
1644 * microframes (eight per millisecond) rather than in frames (one per
1645 * millisecond).
1646 *
1647 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1648 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1649 * through to the host controller, rather than being translated into microframe
1650 * units.
1651 */
1652 static inline void usb_fill_int_urb(struct urb *urb,
1653 struct usb_device *dev,
1654 unsigned int pipe,
1655 void *transfer_buffer,
1656 int buffer_length,
1657 usb_complete_t complete_fn,
1658 void *context,
1659 int interval)
1660 {
1661 urb->dev = dev;
1662 urb->pipe = pipe;
1663 urb->transfer_buffer = transfer_buffer;
1664 urb->transfer_buffer_length = buffer_length;
1665 urb->complete = complete_fn;
1666 urb->context = context;
1667
1668 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1669 /* make sure interval is within allowed range */
1670 interval = clamp(interval, 1, 16);
1671
1672 urb->interval = 1 << (interval - 1);
1673 } else {
1674 urb->interval = interval;
1675 }
1676
1677 urb->start_frame = -1;
1678 }
1679
1680 extern void usb_init_urb(struct urb *urb);
1681 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1682 extern void usb_free_urb(struct urb *urb);
1683 #define usb_put_urb usb_free_urb
1684 extern struct urb *usb_get_urb(struct urb *urb);
1685 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1686 extern int usb_unlink_urb(struct urb *urb);
1687 extern void usb_kill_urb(struct urb *urb);
1688 extern void usb_poison_urb(struct urb *urb);
1689 extern void usb_unpoison_urb(struct urb *urb);
1690 extern void usb_block_urb(struct urb *urb);
1691 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1692 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1693 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1694 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1695 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1696 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1697 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1698 extern void usb_unanchor_urb(struct urb *urb);
1699 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1700 unsigned int timeout);
1701 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1702 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1703 extern int usb_anchor_empty(struct usb_anchor *anchor);
1704
1705 #define usb_unblock_urb usb_unpoison_urb
1706
1707 /**
1708 * usb_urb_dir_in - check if an URB describes an IN transfer
1709 * @urb: URB to be checked
1710 *
1711 * Return: 1 if @urb describes an IN transfer (device-to-host),
1712 * otherwise 0.
1713 */
1714 static inline int usb_urb_dir_in(struct urb *urb)
1715 {
1716 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1717 }
1718
1719 /**
1720 * usb_urb_dir_out - check if an URB describes an OUT transfer
1721 * @urb: URB to be checked
1722 *
1723 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1724 * otherwise 0.
1725 */
1726 static inline int usb_urb_dir_out(struct urb *urb)
1727 {
1728 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1729 }
1730
1731 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1732 gfp_t mem_flags, dma_addr_t *dma);
1733 void usb_free_coherent(struct usb_device *dev, size_t size,
1734 void *addr, dma_addr_t dma);
1735
1736 #if 0
1737 struct urb *usb_buffer_map(struct urb *urb);
1738 void usb_buffer_dmasync(struct urb *urb);
1739 void usb_buffer_unmap(struct urb *urb);
1740 #endif
1741
1742 struct scatterlist;
1743 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1744 struct scatterlist *sg, int nents);
1745 #if 0
1746 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1747 struct scatterlist *sg, int n_hw_ents);
1748 #endif
1749 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1750 struct scatterlist *sg, int n_hw_ents);
1751
1752 /*-------------------------------------------------------------------*
1753 * SYNCHRONOUS CALL SUPPORT *
1754 *-------------------------------------------------------------------*/
1755
1756 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1757 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1758 void *data, __u16 size, int timeout);
1759 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1760 void *data, int len, int *actual_length, int timeout);
1761 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1762 void *data, int len, int *actual_length,
1763 int timeout);
1764
1765 /* wrappers around usb_control_msg() for the most common standard requests */
1766 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1767 unsigned char descindex, void *buf, int size);
1768 extern int usb_get_status(struct usb_device *dev,
1769 int type, int target, void *data);
1770 extern int usb_string(struct usb_device *dev, int index,
1771 char *buf, size_t size);
1772
1773 /* wrappers that also update important state inside usbcore */
1774 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1775 extern int usb_reset_configuration(struct usb_device *dev);
1776 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1777 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1778
1779 /* this request isn't really synchronous, but it belongs with the others */
1780 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1781
1782 /* choose and set configuration for device */
1783 extern int usb_choose_configuration(struct usb_device *udev);
1784 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1785
1786 /*
1787 * timeouts, in milliseconds, used for sending/receiving control messages
1788 * they typically complete within a few frames (msec) after they're issued
1789 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1790 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1791 */
1792 #define USB_CTRL_GET_TIMEOUT 5000
1793 #define USB_CTRL_SET_TIMEOUT 5000
1794
1795
1796 /**
1797 * struct usb_sg_request - support for scatter/gather I/O
1798 * @status: zero indicates success, else negative errno
1799 * @bytes: counts bytes transferred.
1800 *
1801 * These requests are initialized using usb_sg_init(), and then are used
1802 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1803 * members of the request object aren't for driver access.
1804 *
1805 * The status and bytecount values are valid only after usb_sg_wait()
1806 * returns. If the status is zero, then the bytecount matches the total
1807 * from the request.
1808 *
1809 * After an error completion, drivers may need to clear a halt condition
1810 * on the endpoint.
1811 */
1812 struct usb_sg_request {
1813 int status;
1814 size_t bytes;
1815
1816 /* private:
1817 * members below are private to usbcore,
1818 * and are not provided for driver access!
1819 */
1820 spinlock_t lock;
1821
1822 struct usb_device *dev;
1823 int pipe;
1824
1825 int entries;
1826 struct urb **urbs;
1827
1828 int count;
1829 struct completion complete;
1830 };
1831
1832 int usb_sg_init(
1833 struct usb_sg_request *io,
1834 struct usb_device *dev,
1835 unsigned pipe,
1836 unsigned period,
1837 struct scatterlist *sg,
1838 int nents,
1839 size_t length,
1840 gfp_t mem_flags
1841 );
1842 void usb_sg_cancel(struct usb_sg_request *io);
1843 void usb_sg_wait(struct usb_sg_request *io);
1844
1845
1846 /* ----------------------------------------------------------------------- */
1847
1848 /*
1849 * For various legacy reasons, Linux has a small cookie that's paired with
1850 * a struct usb_device to identify an endpoint queue. Queue characteristics
1851 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1852 * an unsigned int encoded as:
1853 *
1854 * - direction: bit 7 (0 = Host-to-Device [Out],
1855 * 1 = Device-to-Host [In] ...
1856 * like endpoint bEndpointAddress)
1857 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1858 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1859 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1860 * 10 = control, 11 = bulk)
1861 *
1862 * Given the device address and endpoint descriptor, pipes are redundant.
1863 */
1864
1865 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1866 /* (yet ... they're the values used by usbfs) */
1867 #define PIPE_ISOCHRONOUS 0
1868 #define PIPE_INTERRUPT 1
1869 #define PIPE_CONTROL 2
1870 #define PIPE_BULK 3
1871
1872 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1873 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1874
1875 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1876 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1877
1878 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1879 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1880 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1881 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1882 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1883
1884 static inline unsigned int __create_pipe(struct usb_device *dev,
1885 unsigned int endpoint)
1886 {
1887 return (dev->devnum << 8) | (endpoint << 15);
1888 }
1889
1890 /* Create various pipes... */
1891 #define usb_sndctrlpipe(dev, endpoint) \
1892 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1893 #define usb_rcvctrlpipe(dev, endpoint) \
1894 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1895 #define usb_sndisocpipe(dev, endpoint) \
1896 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1897 #define usb_rcvisocpipe(dev, endpoint) \
1898 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1899 #define usb_sndbulkpipe(dev, endpoint) \
1900 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1901 #define usb_rcvbulkpipe(dev, endpoint) \
1902 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1903 #define usb_sndintpipe(dev, endpoint) \
1904 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1905 #define usb_rcvintpipe(dev, endpoint) \
1906 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1907
1908 static inline struct usb_host_endpoint *
1909 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1910 {
1911 struct usb_host_endpoint **eps;
1912 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1913 return eps[usb_pipeendpoint(pipe)];
1914 }
1915
1916 /*-------------------------------------------------------------------------*/
1917
1918 static inline __u16
1919 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1920 {
1921 struct usb_host_endpoint *ep;
1922 unsigned epnum = usb_pipeendpoint(pipe);
1923
1924 if (is_out) {
1925 WARN_ON(usb_pipein(pipe));
1926 ep = udev->ep_out[epnum];
1927 } else {
1928 WARN_ON(usb_pipeout(pipe));
1929 ep = udev->ep_in[epnum];
1930 }
1931 if (!ep)
1932 return 0;
1933
1934 /* NOTE: only 0x07ff bits are for packet size... */
1935 return usb_endpoint_maxp(&ep->desc);
1936 }
1937
1938 /* ----------------------------------------------------------------------- */
1939
1940 /* translate USB error codes to codes user space understands */
1941 static inline int usb_translate_errors(int error_code)
1942 {
1943 switch (error_code) {
1944 case 0:
1945 case -ENOMEM:
1946 case -ENODEV:
1947 case -EOPNOTSUPP:
1948 return error_code;
1949 default:
1950 return -EIO;
1951 }
1952 }
1953
1954 /* Events from the usb core */
1955 #define USB_DEVICE_ADD 0x0001
1956 #define USB_DEVICE_REMOVE 0x0002
1957 #define USB_BUS_ADD 0x0003
1958 #define USB_BUS_REMOVE 0x0004
1959 extern void usb_register_notify(struct notifier_block *nb);
1960 extern void usb_unregister_notify(struct notifier_block *nb);
1961
1962 /* debugfs stuff */
1963 extern struct dentry *usb_debug_root;
1964
1965 /* LED triggers */
1966 enum usb_led_event {
1967 USB_LED_EVENT_HOST = 0,
1968 USB_LED_EVENT_GADGET = 1,
1969 };
1970
1971 #ifdef CONFIG_USB_LED_TRIG
1972 extern void usb_led_activity(enum usb_led_event ev);
1973 #else
1974 static inline void usb_led_activity(enum usb_led_event ev) {}
1975 #endif
1976
1977 #endif /* __KERNEL__ */
1978
1979 #endif