]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/usb.h
mm/hotplug: invalid PFNs from pfn_to_online_page()
[mirror_ubuntu-bionic-kernel.git] / include / linux / usb.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 /**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232 struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 struct work_struct reset_ws; /* for resets in atomic context */
260 };
261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
262
263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 return dev_get_drvdata(&intf->dev);
266 }
267
268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 dev_set_drvdata(&intf->dev, data);
271 }
272
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275
276 /* Hard limit */
277 #define USB_MAXENDPOINTS 30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES 32
280 #define USB_MAXIADS (USB_MAXINTERFACES/2)
281
282 /*
283 * USB Resume Timer: Every Host controller driver should drive the resume
284 * signalling on the bus for the amount of time defined by this macro.
285 *
286 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
287 *
288 * Note that the USB Specification states we should drive resume for *at least*
289 * 20 ms, but it doesn't give an upper bound. This creates two possible
290 * situations which we want to avoid:
291 *
292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
293 * us to fail USB Electrical Tests, thus failing Certification
294 *
295 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
296 * and while we can argue that's against the USB Specification, we don't have
297 * control over which devices a certification laboratory will be using for
298 * certification. If CertLab uses a device which was tested against Windows and
299 * that happens to have relaxed resume signalling rules, we might fall into
300 * situations where we fail interoperability and electrical tests.
301 *
302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
303 * should cope with both LPJ calibration errors and devices not following every
304 * detail of the USB Specification.
305 */
306 #define USB_RESUME_TIMEOUT 40 /* ms */
307
308 /**
309 * struct usb_interface_cache - long-term representation of a device interface
310 * @num_altsetting: number of altsettings defined.
311 * @ref: reference counter.
312 * @altsetting: variable-length array of interface structures, one for
313 * each alternate setting that may be selected. Each one includes a
314 * set of endpoint configurations. They will be in no particular order.
315 *
316 * These structures persist for the lifetime of a usb_device, unlike
317 * struct usb_interface (which persists only as long as its configuration
318 * is installed). The altsetting arrays can be accessed through these
319 * structures at any time, permitting comparison of configurations and
320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
321 */
322 struct usb_interface_cache {
323 unsigned num_altsetting; /* number of alternate settings */
324 struct kref ref; /* reference counter */
325
326 /* variable-length array of alternate settings for this interface,
327 * stored in no particular order */
328 struct usb_host_interface altsetting[0];
329 };
330 #define ref_to_usb_interface_cache(r) \
331 container_of(r, struct usb_interface_cache, ref)
332 #define altsetting_to_usb_interface_cache(a) \
333 container_of(a, struct usb_interface_cache, altsetting[0])
334
335 /**
336 * struct usb_host_config - representation of a device's configuration
337 * @desc: the device's configuration descriptor.
338 * @string: pointer to the cached version of the iConfiguration string, if
339 * present for this configuration.
340 * @intf_assoc: list of any interface association descriptors in this config
341 * @interface: array of pointers to usb_interface structures, one for each
342 * interface in the configuration. The number of interfaces is stored
343 * in desc.bNumInterfaces. These pointers are valid only while the
344 * the configuration is active.
345 * @intf_cache: array of pointers to usb_interface_cache structures, one
346 * for each interface in the configuration. These structures exist
347 * for the entire life of the device.
348 * @extra: pointer to buffer containing all extra descriptors associated
349 * with this configuration (those preceding the first interface
350 * descriptor).
351 * @extralen: length of the extra descriptors buffer.
352 *
353 * USB devices may have multiple configurations, but only one can be active
354 * at any time. Each encapsulates a different operational environment;
355 * for example, a dual-speed device would have separate configurations for
356 * full-speed and high-speed operation. The number of configurations
357 * available is stored in the device descriptor as bNumConfigurations.
358 *
359 * A configuration can contain multiple interfaces. Each corresponds to
360 * a different function of the USB device, and all are available whenever
361 * the configuration is active. The USB standard says that interfaces
362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
363 * of devices get this wrong. In addition, the interface array is not
364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
365 * look up an interface entry based on its number.
366 *
367 * Device drivers should not attempt to activate configurations. The choice
368 * of which configuration to install is a policy decision based on such
369 * considerations as available power, functionality provided, and the user's
370 * desires (expressed through userspace tools). However, drivers can call
371 * usb_reset_configuration() to reinitialize the current configuration and
372 * all its interfaces.
373 */
374 struct usb_host_config {
375 struct usb_config_descriptor desc;
376
377 char *string; /* iConfiguration string, if present */
378
379 /* List of any Interface Association Descriptors in this
380 * configuration. */
381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
382
383 /* the interfaces associated with this configuration,
384 * stored in no particular order */
385 struct usb_interface *interface[USB_MAXINTERFACES];
386
387 /* Interface information available even when this is not the
388 * active configuration */
389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
390
391 unsigned char *extra; /* Extra descriptors */
392 int extralen;
393 };
394
395 /* USB2.0 and USB3.0 device BOS descriptor set */
396 struct usb_host_bos {
397 struct usb_bos_descriptor *desc;
398
399 /* wireless cap descriptor is handled by wusb */
400 struct usb_ext_cap_descriptor *ext_cap;
401 struct usb_ss_cap_descriptor *ss_cap;
402 struct usb_ssp_cap_descriptor *ssp_cap;
403 struct usb_ss_container_id_descriptor *ss_id;
404 struct usb_ptm_cap_descriptor *ptm_cap;
405 };
406
407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
408 unsigned char type, void **ptr, size_t min);
409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
410 __usb_get_extra_descriptor((ifpoint)->extra, \
411 (ifpoint)->extralen, \
412 type, (void **)ptr, sizeof(**(ptr)))
413
414 /* ----------------------------------------------------------------------- */
415
416 /* USB device number allocation bitmap */
417 struct usb_devmap {
418 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
419 };
420
421 /*
422 * Allocated per bus (tree of devices) we have:
423 */
424 struct usb_bus {
425 struct device *controller; /* host/master side hardware */
426 struct device *sysdev; /* as seen from firmware or bus */
427 int busnum; /* Bus number (in order of reg) */
428 const char *bus_name; /* stable id (PCI slot_name etc) */
429 u8 uses_dma; /* Does the host controller use DMA? */
430 u8 uses_pio_for_control; /*
431 * Does the host controller use PIO
432 * for control transfers?
433 */
434 u8 otg_port; /* 0, or number of OTG/HNP port */
435 unsigned is_b_host:1; /* true during some HNP roleswitches */
436 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
437 unsigned no_stop_on_short:1; /*
438 * Quirk: some controllers don't stop
439 * the ep queue on a short transfer
440 * with the URB_SHORT_NOT_OK flag set.
441 */
442 unsigned no_sg_constraint:1; /* no sg constraint */
443 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
444
445 int devnum_next; /* Next open device number in
446 * round-robin allocation */
447 struct mutex devnum_next_mutex; /* devnum_next mutex */
448
449 struct usb_devmap devmap; /* device address allocation map */
450 struct usb_device *root_hub; /* Root hub */
451 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
452
453 int bandwidth_allocated; /* on this bus: how much of the time
454 * reserved for periodic (intr/iso)
455 * requests is used, on average?
456 * Units: microseconds/frame.
457 * Limits: Full/low speed reserve 90%,
458 * while high speed reserves 80%.
459 */
460 int bandwidth_int_reqs; /* number of Interrupt requests */
461 int bandwidth_isoc_reqs; /* number of Isoc. requests */
462
463 unsigned resuming_ports; /* bit array: resuming root-hub ports */
464
465 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
466 struct mon_bus *mon_bus; /* non-null when associated */
467 int monitored; /* non-zero when monitored */
468 #endif
469 };
470
471 struct usb_dev_state;
472
473 /* ----------------------------------------------------------------------- */
474
475 struct usb_tt;
476
477 enum usb_device_removable {
478 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
479 USB_DEVICE_REMOVABLE,
480 USB_DEVICE_FIXED,
481 };
482
483 enum usb_port_connect_type {
484 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
485 USB_PORT_CONNECT_TYPE_HOT_PLUG,
486 USB_PORT_CONNECT_TYPE_HARD_WIRED,
487 USB_PORT_NOT_USED,
488 };
489
490 /*
491 * USB 2.0 Link Power Management (LPM) parameters.
492 */
493 struct usb2_lpm_parameters {
494 /* Best effort service latency indicate how long the host will drive
495 * resume on an exit from L1.
496 */
497 unsigned int besl;
498
499 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
500 * When the timer counts to zero, the parent hub will initiate a LPM
501 * transition to L1.
502 */
503 int timeout;
504 };
505
506 /*
507 * USB 3.0 Link Power Management (LPM) parameters.
508 *
509 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
510 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
511 * All three are stored in nanoseconds.
512 */
513 struct usb3_lpm_parameters {
514 /*
515 * Maximum exit latency (MEL) for the host to send a packet to the
516 * device (either a Ping for isoc endpoints, or a data packet for
517 * interrupt endpoints), the hubs to decode the packet, and for all hubs
518 * in the path to transition the links to U0.
519 */
520 unsigned int mel;
521 /*
522 * Maximum exit latency for a device-initiated LPM transition to bring
523 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
524 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
525 */
526 unsigned int pel;
527
528 /*
529 * The System Exit Latency (SEL) includes PEL, and three other
530 * latencies. After a device initiates a U0 transition, it will take
531 * some time from when the device sends the ERDY to when it will finally
532 * receive the data packet. Basically, SEL should be the worse-case
533 * latency from when a device starts initiating a U0 transition to when
534 * it will get data.
535 */
536 unsigned int sel;
537 /*
538 * The idle timeout value that is currently programmed into the parent
539 * hub for this device. When the timer counts to zero, the parent hub
540 * will initiate an LPM transition to either U1 or U2.
541 */
542 int timeout;
543 };
544
545 /**
546 * struct usb_device - kernel's representation of a USB device
547 * @devnum: device number; address on a USB bus
548 * @devpath: device ID string for use in messages (e.g., /port/...)
549 * @route: tree topology hex string for use with xHCI
550 * @state: device state: configured, not attached, etc.
551 * @speed: device speed: high/full/low (or error)
552 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
553 * @ttport: device port on that tt hub
554 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
555 * @parent: our hub, unless we're the root
556 * @bus: bus we're part of
557 * @ep0: endpoint 0 data (default control pipe)
558 * @dev: generic device interface
559 * @descriptor: USB device descriptor
560 * @bos: USB device BOS descriptor set
561 * @config: all of the device's configs
562 * @actconfig: the active configuration
563 * @ep_in: array of IN endpoints
564 * @ep_out: array of OUT endpoints
565 * @rawdescriptors: raw descriptors for each config
566 * @bus_mA: Current available from the bus
567 * @portnum: parent port number (origin 1)
568 * @level: number of USB hub ancestors
569 * @can_submit: URBs may be submitted
570 * @persist_enabled: USB_PERSIST enabled for this device
571 * @have_langid: whether string_langid is valid
572 * @authorized: policy has said we can use it;
573 * (user space) policy determines if we authorize this device to be
574 * used or not. By default, wired USB devices are authorized.
575 * WUSB devices are not, until we authorize them from user space.
576 * FIXME -- complete doc
577 * @authenticated: Crypto authentication passed
578 * @wusb: device is Wireless USB
579 * @lpm_capable: device supports LPM
580 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
581 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
582 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
583 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
584 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
585 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
586 * @string_langid: language ID for strings
587 * @product: iProduct string, if present (static)
588 * @manufacturer: iManufacturer string, if present (static)
589 * @serial: iSerialNumber string, if present (static)
590 * @filelist: usbfs files that are open to this device
591 * @maxchild: number of ports if hub
592 * @quirks: quirks of the whole device
593 * @urbnum: number of URBs submitted for the whole device
594 * @active_duration: total time device is not suspended
595 * @connect_time: time device was first connected
596 * @do_remote_wakeup: remote wakeup should be enabled
597 * @reset_resume: needs reset instead of resume
598 * @port_is_suspended: the upstream port is suspended (L2 or U3)
599 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
600 * specific data for the device.
601 * @slot_id: Slot ID assigned by xHCI
602 * @removable: Device can be physically removed from this port
603 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
604 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
605 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
606 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
607 * to keep track of the number of functions that require USB 3.0 Link Power
608 * Management to be disabled for this usb_device. This count should only
609 * be manipulated by those functions, with the bandwidth_mutex is held.
610 *
611 * Notes:
612 * Usbcore drivers should not set usbdev->state directly. Instead use
613 * usb_set_device_state().
614 */
615 struct usb_device {
616 int devnum;
617 char devpath[16];
618 u32 route;
619 enum usb_device_state state;
620 enum usb_device_speed speed;
621
622 struct usb_tt *tt;
623 int ttport;
624
625 unsigned int toggle[2];
626
627 struct usb_device *parent;
628 struct usb_bus *bus;
629 struct usb_host_endpoint ep0;
630
631 struct device dev;
632
633 struct usb_device_descriptor descriptor;
634 struct usb_host_bos *bos;
635 struct usb_host_config *config;
636
637 struct usb_host_config *actconfig;
638 struct usb_host_endpoint *ep_in[16];
639 struct usb_host_endpoint *ep_out[16];
640
641 char **rawdescriptors;
642
643 unsigned short bus_mA;
644 u8 portnum;
645 u8 level;
646
647 unsigned can_submit:1;
648 unsigned persist_enabled:1;
649 unsigned have_langid:1;
650 unsigned authorized:1;
651 unsigned authenticated:1;
652 unsigned wusb:1;
653 unsigned lpm_capable:1;
654 unsigned usb2_hw_lpm_capable:1;
655 unsigned usb2_hw_lpm_besl_capable:1;
656 unsigned usb2_hw_lpm_enabled:1;
657 unsigned usb2_hw_lpm_allowed:1;
658 unsigned usb3_lpm_u1_enabled:1;
659 unsigned usb3_lpm_u2_enabled:1;
660 int string_langid;
661
662 /* static strings from the device */
663 char *product;
664 char *manufacturer;
665 char *serial;
666
667 struct list_head filelist;
668
669 int maxchild;
670
671 u32 quirks;
672 atomic_t urbnum;
673
674 unsigned long active_duration;
675
676 #ifdef CONFIG_PM
677 unsigned long connect_time;
678
679 unsigned do_remote_wakeup:1;
680 unsigned reset_resume:1;
681 unsigned port_is_suspended:1;
682 #endif
683 struct wusb_dev *wusb_dev;
684 int slot_id;
685 enum usb_device_removable removable;
686 struct usb2_lpm_parameters l1_params;
687 struct usb3_lpm_parameters u1_params;
688 struct usb3_lpm_parameters u2_params;
689 unsigned lpm_disable_count;
690 };
691 #define to_usb_device(d) container_of(d, struct usb_device, dev)
692
693 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
694 {
695 return to_usb_device(intf->dev.parent);
696 }
697
698 extern struct usb_device *usb_get_dev(struct usb_device *dev);
699 extern void usb_put_dev(struct usb_device *dev);
700 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
701 int port1);
702
703 /**
704 * usb_hub_for_each_child - iterate over all child devices on the hub
705 * @hdev: USB device belonging to the usb hub
706 * @port1: portnum associated with child device
707 * @child: child device pointer
708 */
709 #define usb_hub_for_each_child(hdev, port1, child) \
710 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
711 port1 <= hdev->maxchild; \
712 child = usb_hub_find_child(hdev, ++port1)) \
713 if (!child) continue; else
714
715 /* USB device locking */
716 #define usb_lock_device(udev) device_lock(&(udev)->dev)
717 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
718 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
719 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
720 extern int usb_lock_device_for_reset(struct usb_device *udev,
721 const struct usb_interface *iface);
722
723 /* USB port reset for device reinitialization */
724 extern int usb_reset_device(struct usb_device *dev);
725 extern void usb_queue_reset_device(struct usb_interface *dev);
726
727 #ifdef CONFIG_ACPI
728 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
729 bool enable);
730 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
731 #else
732 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
733 bool enable) { return 0; }
734 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
735 { return true; }
736 #endif
737
738 /* USB autosuspend and autoresume */
739 #ifdef CONFIG_PM
740 extern void usb_enable_autosuspend(struct usb_device *udev);
741 extern void usb_disable_autosuspend(struct usb_device *udev);
742
743 extern int usb_autopm_get_interface(struct usb_interface *intf);
744 extern void usb_autopm_put_interface(struct usb_interface *intf);
745 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
746 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
747 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
748 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
749
750 static inline void usb_mark_last_busy(struct usb_device *udev)
751 {
752 pm_runtime_mark_last_busy(&udev->dev);
753 }
754
755 #else
756
757 static inline int usb_enable_autosuspend(struct usb_device *udev)
758 { return 0; }
759 static inline int usb_disable_autosuspend(struct usb_device *udev)
760 { return 0; }
761
762 static inline int usb_autopm_get_interface(struct usb_interface *intf)
763 { return 0; }
764 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
765 { return 0; }
766
767 static inline void usb_autopm_put_interface(struct usb_interface *intf)
768 { }
769 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
770 { }
771 static inline void usb_autopm_get_interface_no_resume(
772 struct usb_interface *intf)
773 { }
774 static inline void usb_autopm_put_interface_no_suspend(
775 struct usb_interface *intf)
776 { }
777 static inline void usb_mark_last_busy(struct usb_device *udev)
778 { }
779 #endif
780
781 extern int usb_disable_lpm(struct usb_device *udev);
782 extern void usb_enable_lpm(struct usb_device *udev);
783 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
784 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
785 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
786
787 extern int usb_disable_ltm(struct usb_device *udev);
788 extern void usb_enable_ltm(struct usb_device *udev);
789
790 static inline bool usb_device_supports_ltm(struct usb_device *udev)
791 {
792 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
793 return false;
794 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
795 }
796
797 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
798 {
799 return udev && udev->bus && udev->bus->no_sg_constraint;
800 }
801
802
803 /*-------------------------------------------------------------------------*/
804
805 /* for drivers using iso endpoints */
806 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
807
808 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
809 extern int usb_alloc_streams(struct usb_interface *interface,
810 struct usb_host_endpoint **eps, unsigned int num_eps,
811 unsigned int num_streams, gfp_t mem_flags);
812
813 /* Reverts a group of bulk endpoints back to not using stream IDs. */
814 extern int usb_free_streams(struct usb_interface *interface,
815 struct usb_host_endpoint **eps, unsigned int num_eps,
816 gfp_t mem_flags);
817
818 /* used these for multi-interface device registration */
819 extern int usb_driver_claim_interface(struct usb_driver *driver,
820 struct usb_interface *iface, void *priv);
821
822 /**
823 * usb_interface_claimed - returns true iff an interface is claimed
824 * @iface: the interface being checked
825 *
826 * Return: %true (nonzero) iff the interface is claimed, else %false
827 * (zero).
828 *
829 * Note:
830 * Callers must own the driver model's usb bus readlock. So driver
831 * probe() entries don't need extra locking, but other call contexts
832 * may need to explicitly claim that lock.
833 *
834 */
835 static inline int usb_interface_claimed(struct usb_interface *iface)
836 {
837 return (iface->dev.driver != NULL);
838 }
839
840 extern void usb_driver_release_interface(struct usb_driver *driver,
841 struct usb_interface *iface);
842 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
843 const struct usb_device_id *id);
844 extern int usb_match_one_id(struct usb_interface *interface,
845 const struct usb_device_id *id);
846
847 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
848 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
849 int minor);
850 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
851 unsigned ifnum);
852 extern struct usb_host_interface *usb_altnum_to_altsetting(
853 const struct usb_interface *intf, unsigned int altnum);
854 extern struct usb_host_interface *usb_find_alt_setting(
855 struct usb_host_config *config,
856 unsigned int iface_num,
857 unsigned int alt_num);
858
859 /* port claiming functions */
860 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
861 struct usb_dev_state *owner);
862 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
863 struct usb_dev_state *owner);
864
865 /**
866 * usb_make_path - returns stable device path in the usb tree
867 * @dev: the device whose path is being constructed
868 * @buf: where to put the string
869 * @size: how big is "buf"?
870 *
871 * Return: Length of the string (> 0) or negative if size was too small.
872 *
873 * Note:
874 * This identifier is intended to be "stable", reflecting physical paths in
875 * hardware such as physical bus addresses for host controllers or ports on
876 * USB hubs. That makes it stay the same until systems are physically
877 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
878 * controllers. Adding and removing devices, including virtual root hubs
879 * in host controller driver modules, does not change these path identifiers;
880 * neither does rebooting or re-enumerating. These are more useful identifiers
881 * than changeable ("unstable") ones like bus numbers or device addresses.
882 *
883 * With a partial exception for devices connected to USB 2.0 root hubs, these
884 * identifiers are also predictable. So long as the device tree isn't changed,
885 * plugging any USB device into a given hub port always gives it the same path.
886 * Because of the use of "companion" controllers, devices connected to ports on
887 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
888 * high speed, and a different one if they are full or low speed.
889 */
890 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
891 {
892 int actual;
893 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
894 dev->devpath);
895 return (actual >= (int)size) ? -1 : actual;
896 }
897
898 /*-------------------------------------------------------------------------*/
899
900 #define USB_DEVICE_ID_MATCH_DEVICE \
901 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
902 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
903 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
904 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
905 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
906 #define USB_DEVICE_ID_MATCH_DEV_INFO \
907 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
908 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
909 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
910 #define USB_DEVICE_ID_MATCH_INT_INFO \
911 (USB_DEVICE_ID_MATCH_INT_CLASS | \
912 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
913 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
914
915 /**
916 * USB_DEVICE - macro used to describe a specific usb device
917 * @vend: the 16 bit USB Vendor ID
918 * @prod: the 16 bit USB Product ID
919 *
920 * This macro is used to create a struct usb_device_id that matches a
921 * specific device.
922 */
923 #define USB_DEVICE(vend, prod) \
924 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
925 .idVendor = (vend), \
926 .idProduct = (prod)
927 /**
928 * USB_DEVICE_VER - describe a specific usb device with a version range
929 * @vend: the 16 bit USB Vendor ID
930 * @prod: the 16 bit USB Product ID
931 * @lo: the bcdDevice_lo value
932 * @hi: the bcdDevice_hi value
933 *
934 * This macro is used to create a struct usb_device_id that matches a
935 * specific device, with a version range.
936 */
937 #define USB_DEVICE_VER(vend, prod, lo, hi) \
938 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
939 .idVendor = (vend), \
940 .idProduct = (prod), \
941 .bcdDevice_lo = (lo), \
942 .bcdDevice_hi = (hi)
943
944 /**
945 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
946 * @vend: the 16 bit USB Vendor ID
947 * @prod: the 16 bit USB Product ID
948 * @cl: bInterfaceClass value
949 *
950 * This macro is used to create a struct usb_device_id that matches a
951 * specific interface class of devices.
952 */
953 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
954 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
955 USB_DEVICE_ID_MATCH_INT_CLASS, \
956 .idVendor = (vend), \
957 .idProduct = (prod), \
958 .bInterfaceClass = (cl)
959
960 /**
961 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
962 * @vend: the 16 bit USB Vendor ID
963 * @prod: the 16 bit USB Product ID
964 * @pr: bInterfaceProtocol value
965 *
966 * This macro is used to create a struct usb_device_id that matches a
967 * specific interface protocol of devices.
968 */
969 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
970 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
971 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
972 .idVendor = (vend), \
973 .idProduct = (prod), \
974 .bInterfaceProtocol = (pr)
975
976 /**
977 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
978 * @vend: the 16 bit USB Vendor ID
979 * @prod: the 16 bit USB Product ID
980 * @num: bInterfaceNumber value
981 *
982 * This macro is used to create a struct usb_device_id that matches a
983 * specific interface number of devices.
984 */
985 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
986 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
987 USB_DEVICE_ID_MATCH_INT_NUMBER, \
988 .idVendor = (vend), \
989 .idProduct = (prod), \
990 .bInterfaceNumber = (num)
991
992 /**
993 * USB_DEVICE_INFO - macro used to describe a class of usb devices
994 * @cl: bDeviceClass value
995 * @sc: bDeviceSubClass value
996 * @pr: bDeviceProtocol value
997 *
998 * This macro is used to create a struct usb_device_id that matches a
999 * specific class of devices.
1000 */
1001 #define USB_DEVICE_INFO(cl, sc, pr) \
1002 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1003 .bDeviceClass = (cl), \
1004 .bDeviceSubClass = (sc), \
1005 .bDeviceProtocol = (pr)
1006
1007 /**
1008 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1009 * @cl: bInterfaceClass value
1010 * @sc: bInterfaceSubClass value
1011 * @pr: bInterfaceProtocol value
1012 *
1013 * This macro is used to create a struct usb_device_id that matches a
1014 * specific class of interfaces.
1015 */
1016 #define USB_INTERFACE_INFO(cl, sc, pr) \
1017 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1018 .bInterfaceClass = (cl), \
1019 .bInterfaceSubClass = (sc), \
1020 .bInterfaceProtocol = (pr)
1021
1022 /**
1023 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1024 * @vend: the 16 bit USB Vendor ID
1025 * @prod: the 16 bit USB Product ID
1026 * @cl: bInterfaceClass value
1027 * @sc: bInterfaceSubClass value
1028 * @pr: bInterfaceProtocol value
1029 *
1030 * This macro is used to create a struct usb_device_id that matches a
1031 * specific device with a specific class of interfaces.
1032 *
1033 * This is especially useful when explicitly matching devices that have
1034 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1035 */
1036 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1037 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1038 | USB_DEVICE_ID_MATCH_DEVICE, \
1039 .idVendor = (vend), \
1040 .idProduct = (prod), \
1041 .bInterfaceClass = (cl), \
1042 .bInterfaceSubClass = (sc), \
1043 .bInterfaceProtocol = (pr)
1044
1045 /**
1046 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1047 * @vend: the 16 bit USB Vendor ID
1048 * @cl: bInterfaceClass value
1049 * @sc: bInterfaceSubClass value
1050 * @pr: bInterfaceProtocol value
1051 *
1052 * This macro is used to create a struct usb_device_id that matches a
1053 * specific vendor with a specific class of interfaces.
1054 *
1055 * This is especially useful when explicitly matching devices that have
1056 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1057 */
1058 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1059 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1060 | USB_DEVICE_ID_MATCH_VENDOR, \
1061 .idVendor = (vend), \
1062 .bInterfaceClass = (cl), \
1063 .bInterfaceSubClass = (sc), \
1064 .bInterfaceProtocol = (pr)
1065
1066 /* ----------------------------------------------------------------------- */
1067
1068 /* Stuff for dynamic usb ids */
1069 struct usb_dynids {
1070 spinlock_t lock;
1071 struct list_head list;
1072 };
1073
1074 struct usb_dynid {
1075 struct list_head node;
1076 struct usb_device_id id;
1077 };
1078
1079 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1080 const struct usb_device_id *id_table,
1081 struct device_driver *driver,
1082 const char *buf, size_t count);
1083
1084 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1085
1086 /**
1087 * struct usbdrv_wrap - wrapper for driver-model structure
1088 * @driver: The driver-model core driver structure.
1089 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1090 */
1091 struct usbdrv_wrap {
1092 struct device_driver driver;
1093 int for_devices;
1094 };
1095
1096 /**
1097 * struct usb_driver - identifies USB interface driver to usbcore
1098 * @name: The driver name should be unique among USB drivers,
1099 * and should normally be the same as the module name.
1100 * @probe: Called to see if the driver is willing to manage a particular
1101 * interface on a device. If it is, probe returns zero and uses
1102 * usb_set_intfdata() to associate driver-specific data with the
1103 * interface. It may also use usb_set_interface() to specify the
1104 * appropriate altsetting. If unwilling to manage the interface,
1105 * return -ENODEV, if genuine IO errors occurred, an appropriate
1106 * negative errno value.
1107 * @disconnect: Called when the interface is no longer accessible, usually
1108 * because its device has been (or is being) disconnected or the
1109 * driver module is being unloaded.
1110 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1111 * the "usbfs" filesystem. This lets devices provide ways to
1112 * expose information to user space regardless of where they
1113 * do (or don't) show up otherwise in the filesystem.
1114 * @suspend: Called when the device is going to be suspended by the
1115 * system either from system sleep or runtime suspend context. The
1116 * return value will be ignored in system sleep context, so do NOT
1117 * try to continue using the device if suspend fails in this case.
1118 * Instead, let the resume or reset-resume routine recover from
1119 * the failure.
1120 * @resume: Called when the device is being resumed by the system.
1121 * @reset_resume: Called when the suspended device has been reset instead
1122 * of being resumed.
1123 * @pre_reset: Called by usb_reset_device() when the device is about to be
1124 * reset. This routine must not return until the driver has no active
1125 * URBs for the device, and no more URBs may be submitted until the
1126 * post_reset method is called.
1127 * @post_reset: Called by usb_reset_device() after the device
1128 * has been reset
1129 * @id_table: USB drivers use ID table to support hotplugging.
1130 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1131 * or your driver's probe function will never get called.
1132 * @dynids: used internally to hold the list of dynamically added device
1133 * ids for this driver.
1134 * @drvwrap: Driver-model core structure wrapper.
1135 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1136 * added to this driver by preventing the sysfs file from being created.
1137 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1138 * for interfaces bound to this driver.
1139 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1140 * endpoints before calling the driver's disconnect method.
1141 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1142 * to initiate lower power link state transitions when an idle timeout
1143 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1144 *
1145 * USB interface drivers must provide a name, probe() and disconnect()
1146 * methods, and an id_table. Other driver fields are optional.
1147 *
1148 * The id_table is used in hotplugging. It holds a set of descriptors,
1149 * and specialized data may be associated with each entry. That table
1150 * is used by both user and kernel mode hotplugging support.
1151 *
1152 * The probe() and disconnect() methods are called in a context where
1153 * they can sleep, but they should avoid abusing the privilege. Most
1154 * work to connect to a device should be done when the device is opened,
1155 * and undone at the last close. The disconnect code needs to address
1156 * concurrency issues with respect to open() and close() methods, as
1157 * well as forcing all pending I/O requests to complete (by unlinking
1158 * them as necessary, and blocking until the unlinks complete).
1159 */
1160 struct usb_driver {
1161 const char *name;
1162
1163 int (*probe) (struct usb_interface *intf,
1164 const struct usb_device_id *id);
1165
1166 void (*disconnect) (struct usb_interface *intf);
1167
1168 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1169 void *buf);
1170
1171 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1172 int (*resume) (struct usb_interface *intf);
1173 int (*reset_resume)(struct usb_interface *intf);
1174
1175 int (*pre_reset)(struct usb_interface *intf);
1176 int (*post_reset)(struct usb_interface *intf);
1177
1178 const struct usb_device_id *id_table;
1179
1180 struct usb_dynids dynids;
1181 struct usbdrv_wrap drvwrap;
1182 unsigned int no_dynamic_id:1;
1183 unsigned int supports_autosuspend:1;
1184 unsigned int disable_hub_initiated_lpm:1;
1185 unsigned int soft_unbind:1;
1186 };
1187 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1188
1189 /**
1190 * struct usb_device_driver - identifies USB device driver to usbcore
1191 * @name: The driver name should be unique among USB drivers,
1192 * and should normally be the same as the module name.
1193 * @probe: Called to see if the driver is willing to manage a particular
1194 * device. If it is, probe returns zero and uses dev_set_drvdata()
1195 * to associate driver-specific data with the device. If unwilling
1196 * to manage the device, return a negative errno value.
1197 * @disconnect: Called when the device is no longer accessible, usually
1198 * because it has been (or is being) disconnected or the driver's
1199 * module is being unloaded.
1200 * @suspend: Called when the device is going to be suspended by the system.
1201 * @resume: Called when the device is being resumed by the system.
1202 * @drvwrap: Driver-model core structure wrapper.
1203 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1204 * for devices bound to this driver.
1205 *
1206 * USB drivers must provide all the fields listed above except drvwrap.
1207 */
1208 struct usb_device_driver {
1209 const char *name;
1210
1211 int (*probe) (struct usb_device *udev);
1212 void (*disconnect) (struct usb_device *udev);
1213
1214 int (*suspend) (struct usb_device *udev, pm_message_t message);
1215 int (*resume) (struct usb_device *udev, pm_message_t message);
1216 struct usbdrv_wrap drvwrap;
1217 unsigned int supports_autosuspend:1;
1218 };
1219 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1220 drvwrap.driver)
1221
1222 extern struct bus_type usb_bus_type;
1223
1224 /**
1225 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1226 * @name: the usb class device name for this driver. Will show up in sysfs.
1227 * @devnode: Callback to provide a naming hint for a possible
1228 * device node to create.
1229 * @fops: pointer to the struct file_operations of this driver.
1230 * @minor_base: the start of the minor range for this driver.
1231 *
1232 * This structure is used for the usb_register_dev() and
1233 * usb_deregister_dev() functions, to consolidate a number of the
1234 * parameters used for them.
1235 */
1236 struct usb_class_driver {
1237 char *name;
1238 char *(*devnode)(struct device *dev, umode_t *mode);
1239 const struct file_operations *fops;
1240 int minor_base;
1241 };
1242
1243 /*
1244 * use these in module_init()/module_exit()
1245 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1246 */
1247 extern int usb_register_driver(struct usb_driver *, struct module *,
1248 const char *);
1249
1250 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1251 #define usb_register(driver) \
1252 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1253
1254 extern void usb_deregister(struct usb_driver *);
1255
1256 /**
1257 * module_usb_driver() - Helper macro for registering a USB driver
1258 * @__usb_driver: usb_driver struct
1259 *
1260 * Helper macro for USB drivers which do not do anything special in module
1261 * init/exit. This eliminates a lot of boilerplate. Each module may only
1262 * use this macro once, and calling it replaces module_init() and module_exit()
1263 */
1264 #define module_usb_driver(__usb_driver) \
1265 module_driver(__usb_driver, usb_register, \
1266 usb_deregister)
1267
1268 extern int usb_register_device_driver(struct usb_device_driver *,
1269 struct module *);
1270 extern void usb_deregister_device_driver(struct usb_device_driver *);
1271
1272 extern int usb_register_dev(struct usb_interface *intf,
1273 struct usb_class_driver *class_driver);
1274 extern void usb_deregister_dev(struct usb_interface *intf,
1275 struct usb_class_driver *class_driver);
1276
1277 extern int usb_disabled(void);
1278
1279 /* ----------------------------------------------------------------------- */
1280
1281 /*
1282 * URB support, for asynchronous request completions
1283 */
1284
1285 /*
1286 * urb->transfer_flags:
1287 *
1288 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1289 */
1290 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1291 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1292 * slot in the schedule */
1293 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1294 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1295 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1296 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1297 * needed */
1298 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1299
1300 /* The following flags are used internally by usbcore and HCDs */
1301 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1302 #define URB_DIR_OUT 0
1303 #define URB_DIR_MASK URB_DIR_IN
1304
1305 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1306 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1307 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1308 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1309 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1310 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1311 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1312 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1313
1314 struct usb_iso_packet_descriptor {
1315 unsigned int offset;
1316 unsigned int length; /* expected length */
1317 unsigned int actual_length;
1318 int status;
1319 };
1320
1321 struct urb;
1322
1323 struct usb_anchor {
1324 struct list_head urb_list;
1325 wait_queue_head_t wait;
1326 spinlock_t lock;
1327 atomic_t suspend_wakeups;
1328 unsigned int poisoned:1;
1329 };
1330
1331 static inline void init_usb_anchor(struct usb_anchor *anchor)
1332 {
1333 memset(anchor, 0, sizeof(*anchor));
1334 INIT_LIST_HEAD(&anchor->urb_list);
1335 init_waitqueue_head(&anchor->wait);
1336 spin_lock_init(&anchor->lock);
1337 }
1338
1339 typedef void (*usb_complete_t)(struct urb *);
1340
1341 /**
1342 * struct urb - USB Request Block
1343 * @urb_list: For use by current owner of the URB.
1344 * @anchor_list: membership in the list of an anchor
1345 * @anchor: to anchor URBs to a common mooring
1346 * @ep: Points to the endpoint's data structure. Will eventually
1347 * replace @pipe.
1348 * @pipe: Holds endpoint number, direction, type, and more.
1349 * Create these values with the eight macros available;
1350 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1351 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1352 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1353 * numbers range from zero to fifteen. Note that "in" endpoint two
1354 * is a different endpoint (and pipe) from "out" endpoint two.
1355 * The current configuration controls the existence, type, and
1356 * maximum packet size of any given endpoint.
1357 * @stream_id: the endpoint's stream ID for bulk streams
1358 * @dev: Identifies the USB device to perform the request.
1359 * @status: This is read in non-iso completion functions to get the
1360 * status of the particular request. ISO requests only use it
1361 * to tell whether the URB was unlinked; detailed status for
1362 * each frame is in the fields of the iso_frame-desc.
1363 * @transfer_flags: A variety of flags may be used to affect how URB
1364 * submission, unlinking, or operation are handled. Different
1365 * kinds of URB can use different flags.
1366 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1367 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1368 * (however, do not leave garbage in transfer_buffer even then).
1369 * This buffer must be suitable for DMA; allocate it with
1370 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1371 * of this buffer will be modified. This buffer is used for the data
1372 * stage of control transfers.
1373 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1374 * the device driver is saying that it provided this DMA address,
1375 * which the host controller driver should use in preference to the
1376 * transfer_buffer.
1377 * @sg: scatter gather buffer list, the buffer size of each element in
1378 * the list (except the last) must be divisible by the endpoint's
1379 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1380 * @num_mapped_sgs: (internal) number of mapped sg entries
1381 * @num_sgs: number of entries in the sg list
1382 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1383 * be broken up into chunks according to the current maximum packet
1384 * size for the endpoint, which is a function of the configuration
1385 * and is encoded in the pipe. When the length is zero, neither
1386 * transfer_buffer nor transfer_dma is used.
1387 * @actual_length: This is read in non-iso completion functions, and
1388 * it tells how many bytes (out of transfer_buffer_length) were
1389 * transferred. It will normally be the same as requested, unless
1390 * either an error was reported or a short read was performed.
1391 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1392 * short reads be reported as errors.
1393 * @setup_packet: Only used for control transfers, this points to eight bytes
1394 * of setup data. Control transfers always start by sending this data
1395 * to the device. Then transfer_buffer is read or written, if needed.
1396 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1397 * this field; setup_packet must point to a valid buffer.
1398 * @start_frame: Returns the initial frame for isochronous transfers.
1399 * @number_of_packets: Lists the number of ISO transfer buffers.
1400 * @interval: Specifies the polling interval for interrupt or isochronous
1401 * transfers. The units are frames (milliseconds) for full and low
1402 * speed devices, and microframes (1/8 millisecond) for highspeed
1403 * and SuperSpeed devices.
1404 * @error_count: Returns the number of ISO transfers that reported errors.
1405 * @context: For use in completion functions. This normally points to
1406 * request-specific driver context.
1407 * @complete: Completion handler. This URB is passed as the parameter to the
1408 * completion function. The completion function may then do what
1409 * it likes with the URB, including resubmitting or freeing it.
1410 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1411 * collect the transfer status for each buffer.
1412 *
1413 * This structure identifies USB transfer requests. URBs must be allocated by
1414 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1415 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1416 * are submitted using usb_submit_urb(), and pending requests may be canceled
1417 * using usb_unlink_urb() or usb_kill_urb().
1418 *
1419 * Data Transfer Buffers:
1420 *
1421 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1422 * taken from the general page pool. That is provided by transfer_buffer
1423 * (control requests also use setup_packet), and host controller drivers
1424 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1425 * mapping operations can be expensive on some platforms (perhaps using a dma
1426 * bounce buffer or talking to an IOMMU),
1427 * although they're cheap on commodity x86 and ppc hardware.
1428 *
1429 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1430 * which tells the host controller driver that no such mapping is needed for
1431 * the transfer_buffer since
1432 * the device driver is DMA-aware. For example, a device driver might
1433 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1434 * When this transfer flag is provided, host controller drivers will
1435 * attempt to use the dma address found in the transfer_dma
1436 * field rather than determining a dma address themselves.
1437 *
1438 * Note that transfer_buffer must still be set if the controller
1439 * does not support DMA (as indicated by bus.uses_dma) and when talking
1440 * to root hub. If you have to trasfer between highmem zone and the device
1441 * on such controller, create a bounce buffer or bail out with an error.
1442 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1443 * capable, assign NULL to it, so that usbmon knows not to use the value.
1444 * The setup_packet must always be set, so it cannot be located in highmem.
1445 *
1446 * Initialization:
1447 *
1448 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1449 * zero), and complete fields. All URBs must also initialize
1450 * transfer_buffer and transfer_buffer_length. They may provide the
1451 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1452 * to be treated as errors; that flag is invalid for write requests.
1453 *
1454 * Bulk URBs may
1455 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1456 * should always terminate with a short packet, even if it means adding an
1457 * extra zero length packet.
1458 *
1459 * Control URBs must provide a valid pointer in the setup_packet field.
1460 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1461 * beforehand.
1462 *
1463 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1464 * or, for highspeed devices, 125 microsecond units)
1465 * to poll for transfers. After the URB has been submitted, the interval
1466 * field reflects how the transfer was actually scheduled.
1467 * The polling interval may be more frequent than requested.
1468 * For example, some controllers have a maximum interval of 32 milliseconds,
1469 * while others support intervals of up to 1024 milliseconds.
1470 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1471 * endpoints, as well as high speed interrupt endpoints, the encoding of
1472 * the transfer interval in the endpoint descriptor is logarithmic.
1473 * Device drivers must convert that value to linear units themselves.)
1474 *
1475 * If an isochronous endpoint queue isn't already running, the host
1476 * controller will schedule a new URB to start as soon as bandwidth
1477 * utilization allows. If the queue is running then a new URB will be
1478 * scheduled to start in the first transfer slot following the end of the
1479 * preceding URB, if that slot has not already expired. If the slot has
1480 * expired (which can happen when IRQ delivery is delayed for a long time),
1481 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1482 * is clear then the URB will be scheduled to start in the expired slot,
1483 * implying that some of its packets will not be transferred; if the flag
1484 * is set then the URB will be scheduled in the first unexpired slot,
1485 * breaking the queue's synchronization. Upon URB completion, the
1486 * start_frame field will be set to the (micro)frame number in which the
1487 * transfer was scheduled. Ranges for frame counter values are HC-specific
1488 * and can go from as low as 256 to as high as 65536 frames.
1489 *
1490 * Isochronous URBs have a different data transfer model, in part because
1491 * the quality of service is only "best effort". Callers provide specially
1492 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1493 * at the end. Each such packet is an individual ISO transfer. Isochronous
1494 * URBs are normally queued, submitted by drivers to arrange that
1495 * transfers are at least double buffered, and then explicitly resubmitted
1496 * in completion handlers, so
1497 * that data (such as audio or video) streams at as constant a rate as the
1498 * host controller scheduler can support.
1499 *
1500 * Completion Callbacks:
1501 *
1502 * The completion callback is made in_interrupt(), and one of the first
1503 * things that a completion handler should do is check the status field.
1504 * The status field is provided for all URBs. It is used to report
1505 * unlinked URBs, and status for all non-ISO transfers. It should not
1506 * be examined before the URB is returned to the completion handler.
1507 *
1508 * The context field is normally used to link URBs back to the relevant
1509 * driver or request state.
1510 *
1511 * When the completion callback is invoked for non-isochronous URBs, the
1512 * actual_length field tells how many bytes were transferred. This field
1513 * is updated even when the URB terminated with an error or was unlinked.
1514 *
1515 * ISO transfer status is reported in the status and actual_length fields
1516 * of the iso_frame_desc array, and the number of errors is reported in
1517 * error_count. Completion callbacks for ISO transfers will normally
1518 * (re)submit URBs to ensure a constant transfer rate.
1519 *
1520 * Note that even fields marked "public" should not be touched by the driver
1521 * when the urb is owned by the hcd, that is, since the call to
1522 * usb_submit_urb() till the entry into the completion routine.
1523 */
1524 struct urb {
1525 /* private: usb core and host controller only fields in the urb */
1526 struct kref kref; /* reference count of the URB */
1527 void *hcpriv; /* private data for host controller */
1528 atomic_t use_count; /* concurrent submissions counter */
1529 atomic_t reject; /* submissions will fail */
1530 int unlinked; /* unlink error code */
1531
1532 /* public: documented fields in the urb that can be used by drivers */
1533 struct list_head urb_list; /* list head for use by the urb's
1534 * current owner */
1535 struct list_head anchor_list; /* the URB may be anchored */
1536 struct usb_anchor *anchor;
1537 struct usb_device *dev; /* (in) pointer to associated device */
1538 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1539 unsigned int pipe; /* (in) pipe information */
1540 unsigned int stream_id; /* (in) stream ID */
1541 int status; /* (return) non-ISO status */
1542 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1543 void *transfer_buffer; /* (in) associated data buffer */
1544 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1545 struct scatterlist *sg; /* (in) scatter gather buffer list */
1546 int num_mapped_sgs; /* (internal) mapped sg entries */
1547 int num_sgs; /* (in) number of entries in the sg list */
1548 u32 transfer_buffer_length; /* (in) data buffer length */
1549 u32 actual_length; /* (return) actual transfer length */
1550 unsigned char *setup_packet; /* (in) setup packet (control only) */
1551 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1552 int start_frame; /* (modify) start frame (ISO) */
1553 int number_of_packets; /* (in) number of ISO packets */
1554 int interval; /* (modify) transfer interval
1555 * (INT/ISO) */
1556 int error_count; /* (return) number of ISO errors */
1557 void *context; /* (in) context for completion */
1558 usb_complete_t complete; /* (in) completion routine */
1559 struct usb_iso_packet_descriptor iso_frame_desc[0];
1560 /* (in) ISO ONLY */
1561 };
1562
1563 /* ----------------------------------------------------------------------- */
1564
1565 /**
1566 * usb_fill_control_urb - initializes a control urb
1567 * @urb: pointer to the urb to initialize.
1568 * @dev: pointer to the struct usb_device for this urb.
1569 * @pipe: the endpoint pipe
1570 * @setup_packet: pointer to the setup_packet buffer
1571 * @transfer_buffer: pointer to the transfer buffer
1572 * @buffer_length: length of the transfer buffer
1573 * @complete_fn: pointer to the usb_complete_t function
1574 * @context: what to set the urb context to.
1575 *
1576 * Initializes a control urb with the proper information needed to submit
1577 * it to a device.
1578 */
1579 static inline void usb_fill_control_urb(struct urb *urb,
1580 struct usb_device *dev,
1581 unsigned int pipe,
1582 unsigned char *setup_packet,
1583 void *transfer_buffer,
1584 int buffer_length,
1585 usb_complete_t complete_fn,
1586 void *context)
1587 {
1588 urb->dev = dev;
1589 urb->pipe = pipe;
1590 urb->setup_packet = setup_packet;
1591 urb->transfer_buffer = transfer_buffer;
1592 urb->transfer_buffer_length = buffer_length;
1593 urb->complete = complete_fn;
1594 urb->context = context;
1595 }
1596
1597 /**
1598 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1599 * @urb: pointer to the urb to initialize.
1600 * @dev: pointer to the struct usb_device for this urb.
1601 * @pipe: the endpoint pipe
1602 * @transfer_buffer: pointer to the transfer buffer
1603 * @buffer_length: length of the transfer buffer
1604 * @complete_fn: pointer to the usb_complete_t function
1605 * @context: what to set the urb context to.
1606 *
1607 * Initializes a bulk urb with the proper information needed to submit it
1608 * to a device.
1609 */
1610 static inline void usb_fill_bulk_urb(struct urb *urb,
1611 struct usb_device *dev,
1612 unsigned int pipe,
1613 void *transfer_buffer,
1614 int buffer_length,
1615 usb_complete_t complete_fn,
1616 void *context)
1617 {
1618 urb->dev = dev;
1619 urb->pipe = pipe;
1620 urb->transfer_buffer = transfer_buffer;
1621 urb->transfer_buffer_length = buffer_length;
1622 urb->complete = complete_fn;
1623 urb->context = context;
1624 }
1625
1626 /**
1627 * usb_fill_int_urb - macro to help initialize a interrupt urb
1628 * @urb: pointer to the urb to initialize.
1629 * @dev: pointer to the struct usb_device for this urb.
1630 * @pipe: the endpoint pipe
1631 * @transfer_buffer: pointer to the transfer buffer
1632 * @buffer_length: length of the transfer buffer
1633 * @complete_fn: pointer to the usb_complete_t function
1634 * @context: what to set the urb context to.
1635 * @interval: what to set the urb interval to, encoded like
1636 * the endpoint descriptor's bInterval value.
1637 *
1638 * Initializes a interrupt urb with the proper information needed to submit
1639 * it to a device.
1640 *
1641 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1642 * encoding of the endpoint interval, and express polling intervals in
1643 * microframes (eight per millisecond) rather than in frames (one per
1644 * millisecond).
1645 *
1646 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1647 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1648 * through to the host controller, rather than being translated into microframe
1649 * units.
1650 */
1651 static inline void usb_fill_int_urb(struct urb *urb,
1652 struct usb_device *dev,
1653 unsigned int pipe,
1654 void *transfer_buffer,
1655 int buffer_length,
1656 usb_complete_t complete_fn,
1657 void *context,
1658 int interval)
1659 {
1660 urb->dev = dev;
1661 urb->pipe = pipe;
1662 urb->transfer_buffer = transfer_buffer;
1663 urb->transfer_buffer_length = buffer_length;
1664 urb->complete = complete_fn;
1665 urb->context = context;
1666
1667 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1668 /* make sure interval is within allowed range */
1669 interval = clamp(interval, 1, 16);
1670
1671 urb->interval = 1 << (interval - 1);
1672 } else {
1673 urb->interval = interval;
1674 }
1675
1676 urb->start_frame = -1;
1677 }
1678
1679 extern void usb_init_urb(struct urb *urb);
1680 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1681 extern void usb_free_urb(struct urb *urb);
1682 #define usb_put_urb usb_free_urb
1683 extern struct urb *usb_get_urb(struct urb *urb);
1684 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1685 extern int usb_unlink_urb(struct urb *urb);
1686 extern void usb_kill_urb(struct urb *urb);
1687 extern void usb_poison_urb(struct urb *urb);
1688 extern void usb_unpoison_urb(struct urb *urb);
1689 extern void usb_block_urb(struct urb *urb);
1690 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1691 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1692 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1693 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1694 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1695 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1696 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1697 extern void usb_unanchor_urb(struct urb *urb);
1698 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1699 unsigned int timeout);
1700 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1701 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1702 extern int usb_anchor_empty(struct usb_anchor *anchor);
1703
1704 #define usb_unblock_urb usb_unpoison_urb
1705
1706 /**
1707 * usb_urb_dir_in - check if an URB describes an IN transfer
1708 * @urb: URB to be checked
1709 *
1710 * Return: 1 if @urb describes an IN transfer (device-to-host),
1711 * otherwise 0.
1712 */
1713 static inline int usb_urb_dir_in(struct urb *urb)
1714 {
1715 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1716 }
1717
1718 /**
1719 * usb_urb_dir_out - check if an URB describes an OUT transfer
1720 * @urb: URB to be checked
1721 *
1722 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1723 * otherwise 0.
1724 */
1725 static inline int usb_urb_dir_out(struct urb *urb)
1726 {
1727 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1728 }
1729
1730 int usb_urb_ep_type_check(const struct urb *urb);
1731
1732 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1733 gfp_t mem_flags, dma_addr_t *dma);
1734 void usb_free_coherent(struct usb_device *dev, size_t size,
1735 void *addr, dma_addr_t dma);
1736
1737 #if 0
1738 struct urb *usb_buffer_map(struct urb *urb);
1739 void usb_buffer_dmasync(struct urb *urb);
1740 void usb_buffer_unmap(struct urb *urb);
1741 #endif
1742
1743 struct scatterlist;
1744 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1745 struct scatterlist *sg, int nents);
1746 #if 0
1747 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1748 struct scatterlist *sg, int n_hw_ents);
1749 #endif
1750 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1751 struct scatterlist *sg, int n_hw_ents);
1752
1753 /*-------------------------------------------------------------------*
1754 * SYNCHRONOUS CALL SUPPORT *
1755 *-------------------------------------------------------------------*/
1756
1757 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1758 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1759 void *data, __u16 size, int timeout);
1760 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1761 void *data, int len, int *actual_length, int timeout);
1762 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1763 void *data, int len, int *actual_length,
1764 int timeout);
1765
1766 /* wrappers around usb_control_msg() for the most common standard requests */
1767 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1768 unsigned char descindex, void *buf, int size);
1769 extern int usb_get_status(struct usb_device *dev,
1770 int recip, int type, int target, void *data);
1771
1772 static inline int usb_get_std_status(struct usb_device *dev,
1773 int recip, int target, void *data)
1774 {
1775 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1776 data);
1777 }
1778
1779 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1780 {
1781 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1782 0, data);
1783 }
1784
1785 extern int usb_string(struct usb_device *dev, int index,
1786 char *buf, size_t size);
1787
1788 /* wrappers that also update important state inside usbcore */
1789 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1790 extern int usb_reset_configuration(struct usb_device *dev);
1791 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1792 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1793
1794 /* this request isn't really synchronous, but it belongs with the others */
1795 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1796
1797 /* choose and set configuration for device */
1798 extern int usb_choose_configuration(struct usb_device *udev);
1799 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1800
1801 /*
1802 * timeouts, in milliseconds, used for sending/receiving control messages
1803 * they typically complete within a few frames (msec) after they're issued
1804 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1805 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1806 */
1807 #define USB_CTRL_GET_TIMEOUT 5000
1808 #define USB_CTRL_SET_TIMEOUT 5000
1809
1810
1811 /**
1812 * struct usb_sg_request - support for scatter/gather I/O
1813 * @status: zero indicates success, else negative errno
1814 * @bytes: counts bytes transferred.
1815 *
1816 * These requests are initialized using usb_sg_init(), and then are used
1817 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1818 * members of the request object aren't for driver access.
1819 *
1820 * The status and bytecount values are valid only after usb_sg_wait()
1821 * returns. If the status is zero, then the bytecount matches the total
1822 * from the request.
1823 *
1824 * After an error completion, drivers may need to clear a halt condition
1825 * on the endpoint.
1826 */
1827 struct usb_sg_request {
1828 int status;
1829 size_t bytes;
1830
1831 /* private:
1832 * members below are private to usbcore,
1833 * and are not provided for driver access!
1834 */
1835 spinlock_t lock;
1836
1837 struct usb_device *dev;
1838 int pipe;
1839
1840 int entries;
1841 struct urb **urbs;
1842
1843 int count;
1844 struct completion complete;
1845 };
1846
1847 int usb_sg_init(
1848 struct usb_sg_request *io,
1849 struct usb_device *dev,
1850 unsigned pipe,
1851 unsigned period,
1852 struct scatterlist *sg,
1853 int nents,
1854 size_t length,
1855 gfp_t mem_flags
1856 );
1857 void usb_sg_cancel(struct usb_sg_request *io);
1858 void usb_sg_wait(struct usb_sg_request *io);
1859
1860
1861 /* ----------------------------------------------------------------------- */
1862
1863 /*
1864 * For various legacy reasons, Linux has a small cookie that's paired with
1865 * a struct usb_device to identify an endpoint queue. Queue characteristics
1866 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1867 * an unsigned int encoded as:
1868 *
1869 * - direction: bit 7 (0 = Host-to-Device [Out],
1870 * 1 = Device-to-Host [In] ...
1871 * like endpoint bEndpointAddress)
1872 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1873 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1874 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1875 * 10 = control, 11 = bulk)
1876 *
1877 * Given the device address and endpoint descriptor, pipes are redundant.
1878 */
1879
1880 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1881 /* (yet ... they're the values used by usbfs) */
1882 #define PIPE_ISOCHRONOUS 0
1883 #define PIPE_INTERRUPT 1
1884 #define PIPE_CONTROL 2
1885 #define PIPE_BULK 3
1886
1887 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1888 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1889
1890 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1891 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1892
1893 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1894 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1895 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1896 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1897 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1898
1899 static inline unsigned int __create_pipe(struct usb_device *dev,
1900 unsigned int endpoint)
1901 {
1902 return (dev->devnum << 8) | (endpoint << 15);
1903 }
1904
1905 /* Create various pipes... */
1906 #define usb_sndctrlpipe(dev, endpoint) \
1907 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1908 #define usb_rcvctrlpipe(dev, endpoint) \
1909 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1910 #define usb_sndisocpipe(dev, endpoint) \
1911 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1912 #define usb_rcvisocpipe(dev, endpoint) \
1913 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1914 #define usb_sndbulkpipe(dev, endpoint) \
1915 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1916 #define usb_rcvbulkpipe(dev, endpoint) \
1917 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1918 #define usb_sndintpipe(dev, endpoint) \
1919 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1920 #define usb_rcvintpipe(dev, endpoint) \
1921 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1922
1923 static inline struct usb_host_endpoint *
1924 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1925 {
1926 struct usb_host_endpoint **eps;
1927 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1928 return eps[usb_pipeendpoint(pipe)];
1929 }
1930
1931 /*-------------------------------------------------------------------------*/
1932
1933 static inline __u16
1934 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1935 {
1936 struct usb_host_endpoint *ep;
1937 unsigned epnum = usb_pipeendpoint(pipe);
1938
1939 if (is_out) {
1940 WARN_ON(usb_pipein(pipe));
1941 ep = udev->ep_out[epnum];
1942 } else {
1943 WARN_ON(usb_pipeout(pipe));
1944 ep = udev->ep_in[epnum];
1945 }
1946 if (!ep)
1947 return 0;
1948
1949 /* NOTE: only 0x07ff bits are for packet size... */
1950 return usb_endpoint_maxp(&ep->desc);
1951 }
1952
1953 /* ----------------------------------------------------------------------- */
1954
1955 /* translate USB error codes to codes user space understands */
1956 static inline int usb_translate_errors(int error_code)
1957 {
1958 switch (error_code) {
1959 case 0:
1960 case -ENOMEM:
1961 case -ENODEV:
1962 case -EOPNOTSUPP:
1963 return error_code;
1964 default:
1965 return -EIO;
1966 }
1967 }
1968
1969 /* Events from the usb core */
1970 #define USB_DEVICE_ADD 0x0001
1971 #define USB_DEVICE_REMOVE 0x0002
1972 #define USB_BUS_ADD 0x0003
1973 #define USB_BUS_REMOVE 0x0004
1974 extern void usb_register_notify(struct notifier_block *nb);
1975 extern void usb_unregister_notify(struct notifier_block *nb);
1976
1977 /* debugfs stuff */
1978 extern struct dentry *usb_debug_root;
1979
1980 /* LED triggers */
1981 enum usb_led_event {
1982 USB_LED_EVENT_HOST = 0,
1983 USB_LED_EVENT_GADGET = 1,
1984 };
1985
1986 #ifdef CONFIG_USB_LED_TRIG
1987 extern void usb_led_activity(enum usb_led_event ev);
1988 #else
1989 static inline void usb_led_activity(enum usb_led_event ev) {}
1990 #endif
1991
1992 #endif /* __KERNEL__ */
1993
1994 #endif