]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/usb.h
Merge tag 'usb-serial-5.13-rc6' of https://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / include / linux / usb.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 /**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232 struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 struct work_struct reset_ws; /* for resets in atomic context */
260 };
261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
262
263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 return dev_get_drvdata(&intf->dev);
266 }
267
268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 dev_set_drvdata(&intf->dev, data);
271 }
272
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275
276 /* Hard limit */
277 #define USB_MAXENDPOINTS 30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES 32
280 #define USB_MAXIADS (USB_MAXINTERFACES/2)
281
282 /*
283 * USB Resume Timer: Every Host controller driver should drive the resume
284 * signalling on the bus for the amount of time defined by this macro.
285 *
286 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
287 *
288 * Note that the USB Specification states we should drive resume for *at least*
289 * 20 ms, but it doesn't give an upper bound. This creates two possible
290 * situations which we want to avoid:
291 *
292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
293 * us to fail USB Electrical Tests, thus failing Certification
294 *
295 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
296 * and while we can argue that's against the USB Specification, we don't have
297 * control over which devices a certification laboratory will be using for
298 * certification. If CertLab uses a device which was tested against Windows and
299 * that happens to have relaxed resume signalling rules, we might fall into
300 * situations where we fail interoperability and electrical tests.
301 *
302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
303 * should cope with both LPJ calibration errors and devices not following every
304 * detail of the USB Specification.
305 */
306 #define USB_RESUME_TIMEOUT 40 /* ms */
307
308 /**
309 * struct usb_interface_cache - long-term representation of a device interface
310 * @num_altsetting: number of altsettings defined.
311 * @ref: reference counter.
312 * @altsetting: variable-length array of interface structures, one for
313 * each alternate setting that may be selected. Each one includes a
314 * set of endpoint configurations. They will be in no particular order.
315 *
316 * These structures persist for the lifetime of a usb_device, unlike
317 * struct usb_interface (which persists only as long as its configuration
318 * is installed). The altsetting arrays can be accessed through these
319 * structures at any time, permitting comparison of configurations and
320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
321 */
322 struct usb_interface_cache {
323 unsigned num_altsetting; /* number of alternate settings */
324 struct kref ref; /* reference counter */
325
326 /* variable-length array of alternate settings for this interface,
327 * stored in no particular order */
328 struct usb_host_interface altsetting[];
329 };
330 #define ref_to_usb_interface_cache(r) \
331 container_of(r, struct usb_interface_cache, ref)
332 #define altsetting_to_usb_interface_cache(a) \
333 container_of(a, struct usb_interface_cache, altsetting[0])
334
335 /**
336 * struct usb_host_config - representation of a device's configuration
337 * @desc: the device's configuration descriptor.
338 * @string: pointer to the cached version of the iConfiguration string, if
339 * present for this configuration.
340 * @intf_assoc: list of any interface association descriptors in this config
341 * @interface: array of pointers to usb_interface structures, one for each
342 * interface in the configuration. The number of interfaces is stored
343 * in desc.bNumInterfaces. These pointers are valid only while the
344 * configuration is active.
345 * @intf_cache: array of pointers to usb_interface_cache structures, one
346 * for each interface in the configuration. These structures exist
347 * for the entire life of the device.
348 * @extra: pointer to buffer containing all extra descriptors associated
349 * with this configuration (those preceding the first interface
350 * descriptor).
351 * @extralen: length of the extra descriptors buffer.
352 *
353 * USB devices may have multiple configurations, but only one can be active
354 * at any time. Each encapsulates a different operational environment;
355 * for example, a dual-speed device would have separate configurations for
356 * full-speed and high-speed operation. The number of configurations
357 * available is stored in the device descriptor as bNumConfigurations.
358 *
359 * A configuration can contain multiple interfaces. Each corresponds to
360 * a different function of the USB device, and all are available whenever
361 * the configuration is active. The USB standard says that interfaces
362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
363 * of devices get this wrong. In addition, the interface array is not
364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
365 * look up an interface entry based on its number.
366 *
367 * Device drivers should not attempt to activate configurations. The choice
368 * of which configuration to install is a policy decision based on such
369 * considerations as available power, functionality provided, and the user's
370 * desires (expressed through userspace tools). However, drivers can call
371 * usb_reset_configuration() to reinitialize the current configuration and
372 * all its interfaces.
373 */
374 struct usb_host_config {
375 struct usb_config_descriptor desc;
376
377 char *string; /* iConfiguration string, if present */
378
379 /* List of any Interface Association Descriptors in this
380 * configuration. */
381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
382
383 /* the interfaces associated with this configuration,
384 * stored in no particular order */
385 struct usb_interface *interface[USB_MAXINTERFACES];
386
387 /* Interface information available even when this is not the
388 * active configuration */
389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
390
391 unsigned char *extra; /* Extra descriptors */
392 int extralen;
393 };
394
395 /* USB2.0 and USB3.0 device BOS descriptor set */
396 struct usb_host_bos {
397 struct usb_bos_descriptor *desc;
398
399 /* wireless cap descriptor is handled by wusb */
400 struct usb_ext_cap_descriptor *ext_cap;
401 struct usb_ss_cap_descriptor *ss_cap;
402 struct usb_ssp_cap_descriptor *ssp_cap;
403 struct usb_ss_container_id_descriptor *ss_id;
404 struct usb_ptm_cap_descriptor *ptm_cap;
405 };
406
407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
408 unsigned char type, void **ptr, size_t min);
409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
410 __usb_get_extra_descriptor((ifpoint)->extra, \
411 (ifpoint)->extralen, \
412 type, (void **)ptr, sizeof(**(ptr)))
413
414 /* ----------------------------------------------------------------------- */
415
416 /* USB device number allocation bitmap */
417 struct usb_devmap {
418 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
419 };
420
421 /*
422 * Allocated per bus (tree of devices) we have:
423 */
424 struct usb_bus {
425 struct device *controller; /* host side hardware */
426 struct device *sysdev; /* as seen from firmware or bus */
427 int busnum; /* Bus number (in order of reg) */
428 const char *bus_name; /* stable id (PCI slot_name etc) */
429 u8 uses_pio_for_control; /*
430 * Does the host controller use PIO
431 * for control transfers?
432 */
433 u8 otg_port; /* 0, or number of OTG/HNP port */
434 unsigned is_b_host:1; /* true during some HNP roleswitches */
435 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
436 unsigned no_stop_on_short:1; /*
437 * Quirk: some controllers don't stop
438 * the ep queue on a short transfer
439 * with the URB_SHORT_NOT_OK flag set.
440 */
441 unsigned no_sg_constraint:1; /* no sg constraint */
442 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
443
444 int devnum_next; /* Next open device number in
445 * round-robin allocation */
446 struct mutex devnum_next_mutex; /* devnum_next mutex */
447
448 struct usb_devmap devmap; /* device address allocation map */
449 struct usb_device *root_hub; /* Root hub */
450 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
451
452 int bandwidth_allocated; /* on this bus: how much of the time
453 * reserved for periodic (intr/iso)
454 * requests is used, on average?
455 * Units: microseconds/frame.
456 * Limits: Full/low speed reserve 90%,
457 * while high speed reserves 80%.
458 */
459 int bandwidth_int_reqs; /* number of Interrupt requests */
460 int bandwidth_isoc_reqs; /* number of Isoc. requests */
461
462 unsigned resuming_ports; /* bit array: resuming root-hub ports */
463
464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
465 struct mon_bus *mon_bus; /* non-null when associated */
466 int monitored; /* non-zero when monitored */
467 #endif
468 };
469
470 struct usb_dev_state;
471
472 /* ----------------------------------------------------------------------- */
473
474 struct usb_tt;
475
476 enum usb_device_removable {
477 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
478 USB_DEVICE_REMOVABLE,
479 USB_DEVICE_FIXED,
480 };
481
482 enum usb_port_connect_type {
483 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
484 USB_PORT_CONNECT_TYPE_HOT_PLUG,
485 USB_PORT_CONNECT_TYPE_HARD_WIRED,
486 USB_PORT_NOT_USED,
487 };
488
489 /*
490 * USB port quirks.
491 */
492
493 /* For the given port, prefer the old (faster) enumeration scheme. */
494 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
495
496 /* Decrease TRSTRCY to 10ms during device enumeration. */
497 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
498
499 /*
500 * USB 2.0 Link Power Management (LPM) parameters.
501 */
502 struct usb2_lpm_parameters {
503 /* Best effort service latency indicate how long the host will drive
504 * resume on an exit from L1.
505 */
506 unsigned int besl;
507
508 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
509 * When the timer counts to zero, the parent hub will initiate a LPM
510 * transition to L1.
511 */
512 int timeout;
513 };
514
515 /*
516 * USB 3.0 Link Power Management (LPM) parameters.
517 *
518 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
519 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
520 * All three are stored in nanoseconds.
521 */
522 struct usb3_lpm_parameters {
523 /*
524 * Maximum exit latency (MEL) for the host to send a packet to the
525 * device (either a Ping for isoc endpoints, or a data packet for
526 * interrupt endpoints), the hubs to decode the packet, and for all hubs
527 * in the path to transition the links to U0.
528 */
529 unsigned int mel;
530 /*
531 * Maximum exit latency for a device-initiated LPM transition to bring
532 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
533 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
534 */
535 unsigned int pel;
536
537 /*
538 * The System Exit Latency (SEL) includes PEL, and three other
539 * latencies. After a device initiates a U0 transition, it will take
540 * some time from when the device sends the ERDY to when it will finally
541 * receive the data packet. Basically, SEL should be the worse-case
542 * latency from when a device starts initiating a U0 transition to when
543 * it will get data.
544 */
545 unsigned int sel;
546 /*
547 * The idle timeout value that is currently programmed into the parent
548 * hub for this device. When the timer counts to zero, the parent hub
549 * will initiate an LPM transition to either U1 or U2.
550 */
551 int timeout;
552 };
553
554 /**
555 * struct usb_device - kernel's representation of a USB device
556 * @devnum: device number; address on a USB bus
557 * @devpath: device ID string for use in messages (e.g., /port/...)
558 * @route: tree topology hex string for use with xHCI
559 * @state: device state: configured, not attached, etc.
560 * @speed: device speed: high/full/low (or error)
561 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
562 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
563 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
564 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
565 * @ttport: device port on that tt hub
566 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
567 * @parent: our hub, unless we're the root
568 * @bus: bus we're part of
569 * @ep0: endpoint 0 data (default control pipe)
570 * @dev: generic device interface
571 * @descriptor: USB device descriptor
572 * @bos: USB device BOS descriptor set
573 * @config: all of the device's configs
574 * @actconfig: the active configuration
575 * @ep_in: array of IN endpoints
576 * @ep_out: array of OUT endpoints
577 * @rawdescriptors: raw descriptors for each config
578 * @bus_mA: Current available from the bus
579 * @portnum: parent port number (origin 1)
580 * @level: number of USB hub ancestors
581 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
582 * @can_submit: URBs may be submitted
583 * @persist_enabled: USB_PERSIST enabled for this device
584 * @have_langid: whether string_langid is valid
585 * @authorized: policy has said we can use it;
586 * (user space) policy determines if we authorize this device to be
587 * used or not. By default, wired USB devices are authorized.
588 * WUSB devices are not, until we authorize them from user space.
589 * FIXME -- complete doc
590 * @authenticated: Crypto authentication passed
591 * @wusb: device is Wireless USB
592 * @lpm_capable: device supports LPM
593 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
594 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
595 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
596 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
597 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
598 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
599 * @string_langid: language ID for strings
600 * @product: iProduct string, if present (static)
601 * @manufacturer: iManufacturer string, if present (static)
602 * @serial: iSerialNumber string, if present (static)
603 * @filelist: usbfs files that are open to this device
604 * @maxchild: number of ports if hub
605 * @quirks: quirks of the whole device
606 * @urbnum: number of URBs submitted for the whole device
607 * @active_duration: total time device is not suspended
608 * @connect_time: time device was first connected
609 * @do_remote_wakeup: remote wakeup should be enabled
610 * @reset_resume: needs reset instead of resume
611 * @port_is_suspended: the upstream port is suspended (L2 or U3)
612 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
613 * specific data for the device.
614 * @slot_id: Slot ID assigned by xHCI
615 * @removable: Device can be physically removed from this port
616 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
617 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
618 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
619 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
620 * to keep track of the number of functions that require USB 3.0 Link Power
621 * Management to be disabled for this usb_device. This count should only
622 * be manipulated by those functions, with the bandwidth_mutex is held.
623 * @hub_delay: cached value consisting of:
624 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
625 * Will be used as wValue for SetIsochDelay requests.
626 * @use_generic_driver: ask driver core to reprobe using the generic driver.
627 *
628 * Notes:
629 * Usbcore drivers should not set usbdev->state directly. Instead use
630 * usb_set_device_state().
631 */
632 struct usb_device {
633 int devnum;
634 char devpath[16];
635 u32 route;
636 enum usb_device_state state;
637 enum usb_device_speed speed;
638 unsigned int rx_lanes;
639 unsigned int tx_lanes;
640 enum usb_ssp_rate ssp_rate;
641
642 struct usb_tt *tt;
643 int ttport;
644
645 unsigned int toggle[2];
646
647 struct usb_device *parent;
648 struct usb_bus *bus;
649 struct usb_host_endpoint ep0;
650
651 struct device dev;
652
653 struct usb_device_descriptor descriptor;
654 struct usb_host_bos *bos;
655 struct usb_host_config *config;
656
657 struct usb_host_config *actconfig;
658 struct usb_host_endpoint *ep_in[16];
659 struct usb_host_endpoint *ep_out[16];
660
661 char **rawdescriptors;
662
663 unsigned short bus_mA;
664 u8 portnum;
665 u8 level;
666 u8 devaddr;
667
668 unsigned can_submit:1;
669 unsigned persist_enabled:1;
670 unsigned have_langid:1;
671 unsigned authorized:1;
672 unsigned authenticated:1;
673 unsigned wusb:1;
674 unsigned lpm_capable:1;
675 unsigned usb2_hw_lpm_capable:1;
676 unsigned usb2_hw_lpm_besl_capable:1;
677 unsigned usb2_hw_lpm_enabled:1;
678 unsigned usb2_hw_lpm_allowed:1;
679 unsigned usb3_lpm_u1_enabled:1;
680 unsigned usb3_lpm_u2_enabled:1;
681 int string_langid;
682
683 /* static strings from the device */
684 char *product;
685 char *manufacturer;
686 char *serial;
687
688 struct list_head filelist;
689
690 int maxchild;
691
692 u32 quirks;
693 atomic_t urbnum;
694
695 unsigned long active_duration;
696
697 #ifdef CONFIG_PM
698 unsigned long connect_time;
699
700 unsigned do_remote_wakeup:1;
701 unsigned reset_resume:1;
702 unsigned port_is_suspended:1;
703 #endif
704 struct wusb_dev *wusb_dev;
705 int slot_id;
706 enum usb_device_removable removable;
707 struct usb2_lpm_parameters l1_params;
708 struct usb3_lpm_parameters u1_params;
709 struct usb3_lpm_parameters u2_params;
710 unsigned lpm_disable_count;
711
712 u16 hub_delay;
713 unsigned use_generic_driver:1;
714 };
715 #define to_usb_device(d) container_of(d, struct usb_device, dev)
716
717 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
718 {
719 return to_usb_device(intf->dev.parent);
720 }
721
722 extern struct usb_device *usb_get_dev(struct usb_device *dev);
723 extern void usb_put_dev(struct usb_device *dev);
724 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
725 int port1);
726
727 /**
728 * usb_hub_for_each_child - iterate over all child devices on the hub
729 * @hdev: USB device belonging to the usb hub
730 * @port1: portnum associated with child device
731 * @child: child device pointer
732 */
733 #define usb_hub_for_each_child(hdev, port1, child) \
734 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
735 port1 <= hdev->maxchild; \
736 child = usb_hub_find_child(hdev, ++port1)) \
737 if (!child) continue; else
738
739 /* USB device locking */
740 #define usb_lock_device(udev) device_lock(&(udev)->dev)
741 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
742 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
743 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
744 extern int usb_lock_device_for_reset(struct usb_device *udev,
745 const struct usb_interface *iface);
746
747 /* USB port reset for device reinitialization */
748 extern int usb_reset_device(struct usb_device *dev);
749 extern void usb_queue_reset_device(struct usb_interface *dev);
750
751 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
752
753 #ifdef CONFIG_ACPI
754 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
755 bool enable);
756 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
757 #else
758 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
759 bool enable) { return 0; }
760 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
761 { return true; }
762 #endif
763
764 /* USB autosuspend and autoresume */
765 #ifdef CONFIG_PM
766 extern void usb_enable_autosuspend(struct usb_device *udev);
767 extern void usb_disable_autosuspend(struct usb_device *udev);
768
769 extern int usb_autopm_get_interface(struct usb_interface *intf);
770 extern void usb_autopm_put_interface(struct usb_interface *intf);
771 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
772 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
773 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
774 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
775
776 static inline void usb_mark_last_busy(struct usb_device *udev)
777 {
778 pm_runtime_mark_last_busy(&udev->dev);
779 }
780
781 #else
782
783 static inline int usb_enable_autosuspend(struct usb_device *udev)
784 { return 0; }
785 static inline int usb_disable_autosuspend(struct usb_device *udev)
786 { return 0; }
787
788 static inline int usb_autopm_get_interface(struct usb_interface *intf)
789 { return 0; }
790 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
791 { return 0; }
792
793 static inline void usb_autopm_put_interface(struct usb_interface *intf)
794 { }
795 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
796 { }
797 static inline void usb_autopm_get_interface_no_resume(
798 struct usb_interface *intf)
799 { }
800 static inline void usb_autopm_put_interface_no_suspend(
801 struct usb_interface *intf)
802 { }
803 static inline void usb_mark_last_busy(struct usb_device *udev)
804 { }
805 #endif
806
807 extern int usb_disable_lpm(struct usb_device *udev);
808 extern void usb_enable_lpm(struct usb_device *udev);
809 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
810 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
811 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
812
813 extern int usb_disable_ltm(struct usb_device *udev);
814 extern void usb_enable_ltm(struct usb_device *udev);
815
816 static inline bool usb_device_supports_ltm(struct usb_device *udev)
817 {
818 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
819 return false;
820 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
821 }
822
823 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
824 {
825 return udev && udev->bus && udev->bus->no_sg_constraint;
826 }
827
828
829 /*-------------------------------------------------------------------------*/
830
831 /* for drivers using iso endpoints */
832 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
833
834 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
835 extern int usb_alloc_streams(struct usb_interface *interface,
836 struct usb_host_endpoint **eps, unsigned int num_eps,
837 unsigned int num_streams, gfp_t mem_flags);
838
839 /* Reverts a group of bulk endpoints back to not using stream IDs. */
840 extern int usb_free_streams(struct usb_interface *interface,
841 struct usb_host_endpoint **eps, unsigned int num_eps,
842 gfp_t mem_flags);
843
844 /* used these for multi-interface device registration */
845 extern int usb_driver_claim_interface(struct usb_driver *driver,
846 struct usb_interface *iface, void *data);
847
848 /**
849 * usb_interface_claimed - returns true iff an interface is claimed
850 * @iface: the interface being checked
851 *
852 * Return: %true (nonzero) iff the interface is claimed, else %false
853 * (zero).
854 *
855 * Note:
856 * Callers must own the driver model's usb bus readlock. So driver
857 * probe() entries don't need extra locking, but other call contexts
858 * may need to explicitly claim that lock.
859 *
860 */
861 static inline int usb_interface_claimed(struct usb_interface *iface)
862 {
863 return (iface->dev.driver != NULL);
864 }
865
866 extern void usb_driver_release_interface(struct usb_driver *driver,
867 struct usb_interface *iface);
868 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
869 const struct usb_device_id *id);
870 extern int usb_match_one_id(struct usb_interface *interface,
871 const struct usb_device_id *id);
872
873 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
874 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
875 int minor);
876 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
877 unsigned ifnum);
878 extern struct usb_host_interface *usb_altnum_to_altsetting(
879 const struct usb_interface *intf, unsigned int altnum);
880 extern struct usb_host_interface *usb_find_alt_setting(
881 struct usb_host_config *config,
882 unsigned int iface_num,
883 unsigned int alt_num);
884
885 #if IS_REACHABLE(CONFIG_USB)
886 int usb_for_each_port(void *data, int (*fn)(struct device *, void *));
887 #else
888 static inline int usb_for_each_port(void *data, int (*fn)(struct device *, void *))
889 {
890 return 0;
891 }
892 #endif
893
894 /* port claiming functions */
895 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
896 struct usb_dev_state *owner);
897 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
898 struct usb_dev_state *owner);
899
900 /**
901 * usb_make_path - returns stable device path in the usb tree
902 * @dev: the device whose path is being constructed
903 * @buf: where to put the string
904 * @size: how big is "buf"?
905 *
906 * Return: Length of the string (> 0) or negative if size was too small.
907 *
908 * Note:
909 * This identifier is intended to be "stable", reflecting physical paths in
910 * hardware such as physical bus addresses for host controllers or ports on
911 * USB hubs. That makes it stay the same until systems are physically
912 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
913 * controllers. Adding and removing devices, including virtual root hubs
914 * in host controller driver modules, does not change these path identifiers;
915 * neither does rebooting or re-enumerating. These are more useful identifiers
916 * than changeable ("unstable") ones like bus numbers or device addresses.
917 *
918 * With a partial exception for devices connected to USB 2.0 root hubs, these
919 * identifiers are also predictable. So long as the device tree isn't changed,
920 * plugging any USB device into a given hub port always gives it the same path.
921 * Because of the use of "companion" controllers, devices connected to ports on
922 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
923 * high speed, and a different one if they are full or low speed.
924 */
925 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
926 {
927 int actual;
928 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
929 dev->devpath);
930 return (actual >= (int)size) ? -1 : actual;
931 }
932
933 /*-------------------------------------------------------------------------*/
934
935 #define USB_DEVICE_ID_MATCH_DEVICE \
936 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
937 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
938 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
939 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
940 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
941 #define USB_DEVICE_ID_MATCH_DEV_INFO \
942 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
943 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
944 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
945 #define USB_DEVICE_ID_MATCH_INT_INFO \
946 (USB_DEVICE_ID_MATCH_INT_CLASS | \
947 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
948 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
949
950 /**
951 * USB_DEVICE - macro used to describe a specific usb device
952 * @vend: the 16 bit USB Vendor ID
953 * @prod: the 16 bit USB Product ID
954 *
955 * This macro is used to create a struct usb_device_id that matches a
956 * specific device.
957 */
958 #define USB_DEVICE(vend, prod) \
959 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
960 .idVendor = (vend), \
961 .idProduct = (prod)
962 /**
963 * USB_DEVICE_VER - describe a specific usb device with a version range
964 * @vend: the 16 bit USB Vendor ID
965 * @prod: the 16 bit USB Product ID
966 * @lo: the bcdDevice_lo value
967 * @hi: the bcdDevice_hi value
968 *
969 * This macro is used to create a struct usb_device_id that matches a
970 * specific device, with a version range.
971 */
972 #define USB_DEVICE_VER(vend, prod, lo, hi) \
973 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
974 .idVendor = (vend), \
975 .idProduct = (prod), \
976 .bcdDevice_lo = (lo), \
977 .bcdDevice_hi = (hi)
978
979 /**
980 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
981 * @vend: the 16 bit USB Vendor ID
982 * @prod: the 16 bit USB Product ID
983 * @cl: bInterfaceClass value
984 *
985 * This macro is used to create a struct usb_device_id that matches a
986 * specific interface class of devices.
987 */
988 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
989 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
990 USB_DEVICE_ID_MATCH_INT_CLASS, \
991 .idVendor = (vend), \
992 .idProduct = (prod), \
993 .bInterfaceClass = (cl)
994
995 /**
996 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
997 * @vend: the 16 bit USB Vendor ID
998 * @prod: the 16 bit USB Product ID
999 * @pr: bInterfaceProtocol value
1000 *
1001 * This macro is used to create a struct usb_device_id that matches a
1002 * specific interface protocol of devices.
1003 */
1004 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1005 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1006 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1007 .idVendor = (vend), \
1008 .idProduct = (prod), \
1009 .bInterfaceProtocol = (pr)
1010
1011 /**
1012 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1013 * @vend: the 16 bit USB Vendor ID
1014 * @prod: the 16 bit USB Product ID
1015 * @num: bInterfaceNumber value
1016 *
1017 * This macro is used to create a struct usb_device_id that matches a
1018 * specific interface number of devices.
1019 */
1020 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1021 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1022 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1023 .idVendor = (vend), \
1024 .idProduct = (prod), \
1025 .bInterfaceNumber = (num)
1026
1027 /**
1028 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1029 * @cl: bDeviceClass value
1030 * @sc: bDeviceSubClass value
1031 * @pr: bDeviceProtocol value
1032 *
1033 * This macro is used to create a struct usb_device_id that matches a
1034 * specific class of devices.
1035 */
1036 #define USB_DEVICE_INFO(cl, sc, pr) \
1037 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1038 .bDeviceClass = (cl), \
1039 .bDeviceSubClass = (sc), \
1040 .bDeviceProtocol = (pr)
1041
1042 /**
1043 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1044 * @cl: bInterfaceClass value
1045 * @sc: bInterfaceSubClass value
1046 * @pr: bInterfaceProtocol value
1047 *
1048 * This macro is used to create a struct usb_device_id that matches a
1049 * specific class of interfaces.
1050 */
1051 #define USB_INTERFACE_INFO(cl, sc, pr) \
1052 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1053 .bInterfaceClass = (cl), \
1054 .bInterfaceSubClass = (sc), \
1055 .bInterfaceProtocol = (pr)
1056
1057 /**
1058 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1059 * @vend: the 16 bit USB Vendor ID
1060 * @prod: the 16 bit USB Product ID
1061 * @cl: bInterfaceClass value
1062 * @sc: bInterfaceSubClass value
1063 * @pr: bInterfaceProtocol value
1064 *
1065 * This macro is used to create a struct usb_device_id that matches a
1066 * specific device with a specific class of interfaces.
1067 *
1068 * This is especially useful when explicitly matching devices that have
1069 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1070 */
1071 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1072 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1073 | USB_DEVICE_ID_MATCH_DEVICE, \
1074 .idVendor = (vend), \
1075 .idProduct = (prod), \
1076 .bInterfaceClass = (cl), \
1077 .bInterfaceSubClass = (sc), \
1078 .bInterfaceProtocol = (pr)
1079
1080 /**
1081 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1082 * @vend: the 16 bit USB Vendor ID
1083 * @cl: bInterfaceClass value
1084 * @sc: bInterfaceSubClass value
1085 * @pr: bInterfaceProtocol value
1086 *
1087 * This macro is used to create a struct usb_device_id that matches a
1088 * specific vendor with a specific class of interfaces.
1089 *
1090 * This is especially useful when explicitly matching devices that have
1091 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1092 */
1093 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1094 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1095 | USB_DEVICE_ID_MATCH_VENDOR, \
1096 .idVendor = (vend), \
1097 .bInterfaceClass = (cl), \
1098 .bInterfaceSubClass = (sc), \
1099 .bInterfaceProtocol = (pr)
1100
1101 /* ----------------------------------------------------------------------- */
1102
1103 /* Stuff for dynamic usb ids */
1104 struct usb_dynids {
1105 spinlock_t lock;
1106 struct list_head list;
1107 };
1108
1109 struct usb_dynid {
1110 struct list_head node;
1111 struct usb_device_id id;
1112 };
1113
1114 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1115 const struct usb_device_id *id_table,
1116 struct device_driver *driver,
1117 const char *buf, size_t count);
1118
1119 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1120
1121 /**
1122 * struct usbdrv_wrap - wrapper for driver-model structure
1123 * @driver: The driver-model core driver structure.
1124 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1125 */
1126 struct usbdrv_wrap {
1127 struct device_driver driver;
1128 int for_devices;
1129 };
1130
1131 /**
1132 * struct usb_driver - identifies USB interface driver to usbcore
1133 * @name: The driver name should be unique among USB drivers,
1134 * and should normally be the same as the module name.
1135 * @probe: Called to see if the driver is willing to manage a particular
1136 * interface on a device. If it is, probe returns zero and uses
1137 * usb_set_intfdata() to associate driver-specific data with the
1138 * interface. It may also use usb_set_interface() to specify the
1139 * appropriate altsetting. If unwilling to manage the interface,
1140 * return -ENODEV, if genuine IO errors occurred, an appropriate
1141 * negative errno value.
1142 * @disconnect: Called when the interface is no longer accessible, usually
1143 * because its device has been (or is being) disconnected or the
1144 * driver module is being unloaded.
1145 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1146 * the "usbfs" filesystem. This lets devices provide ways to
1147 * expose information to user space regardless of where they
1148 * do (or don't) show up otherwise in the filesystem.
1149 * @suspend: Called when the device is going to be suspended by the
1150 * system either from system sleep or runtime suspend context. The
1151 * return value will be ignored in system sleep context, so do NOT
1152 * try to continue using the device if suspend fails in this case.
1153 * Instead, let the resume or reset-resume routine recover from
1154 * the failure.
1155 * @resume: Called when the device is being resumed by the system.
1156 * @reset_resume: Called when the suspended device has been reset instead
1157 * of being resumed.
1158 * @pre_reset: Called by usb_reset_device() when the device is about to be
1159 * reset. This routine must not return until the driver has no active
1160 * URBs for the device, and no more URBs may be submitted until the
1161 * post_reset method is called.
1162 * @post_reset: Called by usb_reset_device() after the device
1163 * has been reset
1164 * @id_table: USB drivers use ID table to support hotplugging.
1165 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1166 * or your driver's probe function will never get called.
1167 * @dev_groups: Attributes attached to the device that will be created once it
1168 * is bound to the driver.
1169 * @dynids: used internally to hold the list of dynamically added device
1170 * ids for this driver.
1171 * @drvwrap: Driver-model core structure wrapper.
1172 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1173 * added to this driver by preventing the sysfs file from being created.
1174 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1175 * for interfaces bound to this driver.
1176 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1177 * endpoints before calling the driver's disconnect method.
1178 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1179 * to initiate lower power link state transitions when an idle timeout
1180 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1181 *
1182 * USB interface drivers must provide a name, probe() and disconnect()
1183 * methods, and an id_table. Other driver fields are optional.
1184 *
1185 * The id_table is used in hotplugging. It holds a set of descriptors,
1186 * and specialized data may be associated with each entry. That table
1187 * is used by both user and kernel mode hotplugging support.
1188 *
1189 * The probe() and disconnect() methods are called in a context where
1190 * they can sleep, but they should avoid abusing the privilege. Most
1191 * work to connect to a device should be done when the device is opened,
1192 * and undone at the last close. The disconnect code needs to address
1193 * concurrency issues with respect to open() and close() methods, as
1194 * well as forcing all pending I/O requests to complete (by unlinking
1195 * them as necessary, and blocking until the unlinks complete).
1196 */
1197 struct usb_driver {
1198 const char *name;
1199
1200 int (*probe) (struct usb_interface *intf,
1201 const struct usb_device_id *id);
1202
1203 void (*disconnect) (struct usb_interface *intf);
1204
1205 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1206 void *buf);
1207
1208 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1209 int (*resume) (struct usb_interface *intf);
1210 int (*reset_resume)(struct usb_interface *intf);
1211
1212 int (*pre_reset)(struct usb_interface *intf);
1213 int (*post_reset)(struct usb_interface *intf);
1214
1215 const struct usb_device_id *id_table;
1216 const struct attribute_group **dev_groups;
1217
1218 struct usb_dynids dynids;
1219 struct usbdrv_wrap drvwrap;
1220 unsigned int no_dynamic_id:1;
1221 unsigned int supports_autosuspend:1;
1222 unsigned int disable_hub_initiated_lpm:1;
1223 unsigned int soft_unbind:1;
1224 };
1225 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1226
1227 /**
1228 * struct usb_device_driver - identifies USB device driver to usbcore
1229 * @name: The driver name should be unique among USB drivers,
1230 * and should normally be the same as the module name.
1231 * @match: If set, used for better device/driver matching.
1232 * @probe: Called to see if the driver is willing to manage a particular
1233 * device. If it is, probe returns zero and uses dev_set_drvdata()
1234 * to associate driver-specific data with the device. If unwilling
1235 * to manage the device, return a negative errno value.
1236 * @disconnect: Called when the device is no longer accessible, usually
1237 * because it has been (or is being) disconnected or the driver's
1238 * module is being unloaded.
1239 * @suspend: Called when the device is going to be suspended by the system.
1240 * @resume: Called when the device is being resumed by the system.
1241 * @dev_groups: Attributes attached to the device that will be created once it
1242 * is bound to the driver.
1243 * @drvwrap: Driver-model core structure wrapper.
1244 * @id_table: used with @match() to select better matching driver at
1245 * probe() time.
1246 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1247 * for devices bound to this driver.
1248 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1249 * resume and suspend functions will be called in addition to the driver's
1250 * own, so this part of the setup does not need to be replicated.
1251 *
1252 * USB drivers must provide all the fields listed above except drvwrap,
1253 * match, and id_table.
1254 */
1255 struct usb_device_driver {
1256 const char *name;
1257
1258 bool (*match) (struct usb_device *udev);
1259 int (*probe) (struct usb_device *udev);
1260 void (*disconnect) (struct usb_device *udev);
1261
1262 int (*suspend) (struct usb_device *udev, pm_message_t message);
1263 int (*resume) (struct usb_device *udev, pm_message_t message);
1264 const struct attribute_group **dev_groups;
1265 struct usbdrv_wrap drvwrap;
1266 const struct usb_device_id *id_table;
1267 unsigned int supports_autosuspend:1;
1268 unsigned int generic_subclass:1;
1269 };
1270 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1271 drvwrap.driver)
1272
1273 /**
1274 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1275 * @name: the usb class device name for this driver. Will show up in sysfs.
1276 * @devnode: Callback to provide a naming hint for a possible
1277 * device node to create.
1278 * @fops: pointer to the struct file_operations of this driver.
1279 * @minor_base: the start of the minor range for this driver.
1280 *
1281 * This structure is used for the usb_register_dev() and
1282 * usb_deregister_dev() functions, to consolidate a number of the
1283 * parameters used for them.
1284 */
1285 struct usb_class_driver {
1286 char *name;
1287 char *(*devnode)(struct device *dev, umode_t *mode);
1288 const struct file_operations *fops;
1289 int minor_base;
1290 };
1291
1292 /*
1293 * use these in module_init()/module_exit()
1294 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1295 */
1296 extern int usb_register_driver(struct usb_driver *, struct module *,
1297 const char *);
1298
1299 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1300 #define usb_register(driver) \
1301 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1302
1303 extern void usb_deregister(struct usb_driver *);
1304
1305 /**
1306 * module_usb_driver() - Helper macro for registering a USB driver
1307 * @__usb_driver: usb_driver struct
1308 *
1309 * Helper macro for USB drivers which do not do anything special in module
1310 * init/exit. This eliminates a lot of boilerplate. Each module may only
1311 * use this macro once, and calling it replaces module_init() and module_exit()
1312 */
1313 #define module_usb_driver(__usb_driver) \
1314 module_driver(__usb_driver, usb_register, \
1315 usb_deregister)
1316
1317 extern int usb_register_device_driver(struct usb_device_driver *,
1318 struct module *);
1319 extern void usb_deregister_device_driver(struct usb_device_driver *);
1320
1321 extern int usb_register_dev(struct usb_interface *intf,
1322 struct usb_class_driver *class_driver);
1323 extern void usb_deregister_dev(struct usb_interface *intf,
1324 struct usb_class_driver *class_driver);
1325
1326 extern int usb_disabled(void);
1327
1328 /* ----------------------------------------------------------------------- */
1329
1330 /*
1331 * URB support, for asynchronous request completions
1332 */
1333
1334 /*
1335 * urb->transfer_flags:
1336 *
1337 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1338 */
1339 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1340 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1341 * slot in the schedule */
1342 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1343 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1344 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1345 * needed */
1346 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1347
1348 /* The following flags are used internally by usbcore and HCDs */
1349 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1350 #define URB_DIR_OUT 0
1351 #define URB_DIR_MASK URB_DIR_IN
1352
1353 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1354 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1355 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1356 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1357 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1358 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1359 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1360 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1361
1362 struct usb_iso_packet_descriptor {
1363 unsigned int offset;
1364 unsigned int length; /* expected length */
1365 unsigned int actual_length;
1366 int status;
1367 };
1368
1369 struct urb;
1370
1371 struct usb_anchor {
1372 struct list_head urb_list;
1373 wait_queue_head_t wait;
1374 spinlock_t lock;
1375 atomic_t suspend_wakeups;
1376 unsigned int poisoned:1;
1377 };
1378
1379 static inline void init_usb_anchor(struct usb_anchor *anchor)
1380 {
1381 memset(anchor, 0, sizeof(*anchor));
1382 INIT_LIST_HEAD(&anchor->urb_list);
1383 init_waitqueue_head(&anchor->wait);
1384 spin_lock_init(&anchor->lock);
1385 }
1386
1387 typedef void (*usb_complete_t)(struct urb *);
1388
1389 /**
1390 * struct urb - USB Request Block
1391 * @urb_list: For use by current owner of the URB.
1392 * @anchor_list: membership in the list of an anchor
1393 * @anchor: to anchor URBs to a common mooring
1394 * @ep: Points to the endpoint's data structure. Will eventually
1395 * replace @pipe.
1396 * @pipe: Holds endpoint number, direction, type, and more.
1397 * Create these values with the eight macros available;
1398 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1399 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1400 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1401 * numbers range from zero to fifteen. Note that "in" endpoint two
1402 * is a different endpoint (and pipe) from "out" endpoint two.
1403 * The current configuration controls the existence, type, and
1404 * maximum packet size of any given endpoint.
1405 * @stream_id: the endpoint's stream ID for bulk streams
1406 * @dev: Identifies the USB device to perform the request.
1407 * @status: This is read in non-iso completion functions to get the
1408 * status of the particular request. ISO requests only use it
1409 * to tell whether the URB was unlinked; detailed status for
1410 * each frame is in the fields of the iso_frame-desc.
1411 * @transfer_flags: A variety of flags may be used to affect how URB
1412 * submission, unlinking, or operation are handled. Different
1413 * kinds of URB can use different flags.
1414 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1415 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1416 * (however, do not leave garbage in transfer_buffer even then).
1417 * This buffer must be suitable for DMA; allocate it with
1418 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1419 * of this buffer will be modified. This buffer is used for the data
1420 * stage of control transfers.
1421 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1422 * the device driver is saying that it provided this DMA address,
1423 * which the host controller driver should use in preference to the
1424 * transfer_buffer.
1425 * @sg: scatter gather buffer list, the buffer size of each element in
1426 * the list (except the last) must be divisible by the endpoint's
1427 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1428 * @num_mapped_sgs: (internal) number of mapped sg entries
1429 * @num_sgs: number of entries in the sg list
1430 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1431 * be broken up into chunks according to the current maximum packet
1432 * size for the endpoint, which is a function of the configuration
1433 * and is encoded in the pipe. When the length is zero, neither
1434 * transfer_buffer nor transfer_dma is used.
1435 * @actual_length: This is read in non-iso completion functions, and
1436 * it tells how many bytes (out of transfer_buffer_length) were
1437 * transferred. It will normally be the same as requested, unless
1438 * either an error was reported or a short read was performed.
1439 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1440 * short reads be reported as errors.
1441 * @setup_packet: Only used for control transfers, this points to eight bytes
1442 * of setup data. Control transfers always start by sending this data
1443 * to the device. Then transfer_buffer is read or written, if needed.
1444 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1445 * this field; setup_packet must point to a valid buffer.
1446 * @start_frame: Returns the initial frame for isochronous transfers.
1447 * @number_of_packets: Lists the number of ISO transfer buffers.
1448 * @interval: Specifies the polling interval for interrupt or isochronous
1449 * transfers. The units are frames (milliseconds) for full and low
1450 * speed devices, and microframes (1/8 millisecond) for highspeed
1451 * and SuperSpeed devices.
1452 * @error_count: Returns the number of ISO transfers that reported errors.
1453 * @context: For use in completion functions. This normally points to
1454 * request-specific driver context.
1455 * @complete: Completion handler. This URB is passed as the parameter to the
1456 * completion function. The completion function may then do what
1457 * it likes with the URB, including resubmitting or freeing it.
1458 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1459 * collect the transfer status for each buffer.
1460 *
1461 * This structure identifies USB transfer requests. URBs must be allocated by
1462 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1463 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1464 * are submitted using usb_submit_urb(), and pending requests may be canceled
1465 * using usb_unlink_urb() or usb_kill_urb().
1466 *
1467 * Data Transfer Buffers:
1468 *
1469 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1470 * taken from the general page pool. That is provided by transfer_buffer
1471 * (control requests also use setup_packet), and host controller drivers
1472 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1473 * mapping operations can be expensive on some platforms (perhaps using a dma
1474 * bounce buffer or talking to an IOMMU),
1475 * although they're cheap on commodity x86 and ppc hardware.
1476 *
1477 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1478 * which tells the host controller driver that no such mapping is needed for
1479 * the transfer_buffer since
1480 * the device driver is DMA-aware. For example, a device driver might
1481 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1482 * When this transfer flag is provided, host controller drivers will
1483 * attempt to use the dma address found in the transfer_dma
1484 * field rather than determining a dma address themselves.
1485 *
1486 * Note that transfer_buffer must still be set if the controller
1487 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1488 * to root hub. If you have to trasfer between highmem zone and the device
1489 * on such controller, create a bounce buffer or bail out with an error.
1490 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1491 * capable, assign NULL to it, so that usbmon knows not to use the value.
1492 * The setup_packet must always be set, so it cannot be located in highmem.
1493 *
1494 * Initialization:
1495 *
1496 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1497 * zero), and complete fields. All URBs must also initialize
1498 * transfer_buffer and transfer_buffer_length. They may provide the
1499 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1500 * to be treated as errors; that flag is invalid for write requests.
1501 *
1502 * Bulk URBs may
1503 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1504 * should always terminate with a short packet, even if it means adding an
1505 * extra zero length packet.
1506 *
1507 * Control URBs must provide a valid pointer in the setup_packet field.
1508 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1509 * beforehand.
1510 *
1511 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1512 * or, for highspeed devices, 125 microsecond units)
1513 * to poll for transfers. After the URB has been submitted, the interval
1514 * field reflects how the transfer was actually scheduled.
1515 * The polling interval may be more frequent than requested.
1516 * For example, some controllers have a maximum interval of 32 milliseconds,
1517 * while others support intervals of up to 1024 milliseconds.
1518 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1519 * endpoints, as well as high speed interrupt endpoints, the encoding of
1520 * the transfer interval in the endpoint descriptor is logarithmic.
1521 * Device drivers must convert that value to linear units themselves.)
1522 *
1523 * If an isochronous endpoint queue isn't already running, the host
1524 * controller will schedule a new URB to start as soon as bandwidth
1525 * utilization allows. If the queue is running then a new URB will be
1526 * scheduled to start in the first transfer slot following the end of the
1527 * preceding URB, if that slot has not already expired. If the slot has
1528 * expired (which can happen when IRQ delivery is delayed for a long time),
1529 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1530 * is clear then the URB will be scheduled to start in the expired slot,
1531 * implying that some of its packets will not be transferred; if the flag
1532 * is set then the URB will be scheduled in the first unexpired slot,
1533 * breaking the queue's synchronization. Upon URB completion, the
1534 * start_frame field will be set to the (micro)frame number in which the
1535 * transfer was scheduled. Ranges for frame counter values are HC-specific
1536 * and can go from as low as 256 to as high as 65536 frames.
1537 *
1538 * Isochronous URBs have a different data transfer model, in part because
1539 * the quality of service is only "best effort". Callers provide specially
1540 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1541 * at the end. Each such packet is an individual ISO transfer. Isochronous
1542 * URBs are normally queued, submitted by drivers to arrange that
1543 * transfers are at least double buffered, and then explicitly resubmitted
1544 * in completion handlers, so
1545 * that data (such as audio or video) streams at as constant a rate as the
1546 * host controller scheduler can support.
1547 *
1548 * Completion Callbacks:
1549 *
1550 * The completion callback is made in_interrupt(), and one of the first
1551 * things that a completion handler should do is check the status field.
1552 * The status field is provided for all URBs. It is used to report
1553 * unlinked URBs, and status for all non-ISO transfers. It should not
1554 * be examined before the URB is returned to the completion handler.
1555 *
1556 * The context field is normally used to link URBs back to the relevant
1557 * driver or request state.
1558 *
1559 * When the completion callback is invoked for non-isochronous URBs, the
1560 * actual_length field tells how many bytes were transferred. This field
1561 * is updated even when the URB terminated with an error or was unlinked.
1562 *
1563 * ISO transfer status is reported in the status and actual_length fields
1564 * of the iso_frame_desc array, and the number of errors is reported in
1565 * error_count. Completion callbacks for ISO transfers will normally
1566 * (re)submit URBs to ensure a constant transfer rate.
1567 *
1568 * Note that even fields marked "public" should not be touched by the driver
1569 * when the urb is owned by the hcd, that is, since the call to
1570 * usb_submit_urb() till the entry into the completion routine.
1571 */
1572 struct urb {
1573 /* private: usb core and host controller only fields in the urb */
1574 struct kref kref; /* reference count of the URB */
1575 int unlinked; /* unlink error code */
1576 void *hcpriv; /* private data for host controller */
1577 atomic_t use_count; /* concurrent submissions counter */
1578 atomic_t reject; /* submissions will fail */
1579
1580 /* public: documented fields in the urb that can be used by drivers */
1581 struct list_head urb_list; /* list head for use by the urb's
1582 * current owner */
1583 struct list_head anchor_list; /* the URB may be anchored */
1584 struct usb_anchor *anchor;
1585 struct usb_device *dev; /* (in) pointer to associated device */
1586 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1587 unsigned int pipe; /* (in) pipe information */
1588 unsigned int stream_id; /* (in) stream ID */
1589 int status; /* (return) non-ISO status */
1590 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1591 void *transfer_buffer; /* (in) associated data buffer */
1592 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1593 struct scatterlist *sg; /* (in) scatter gather buffer list */
1594 int num_mapped_sgs; /* (internal) mapped sg entries */
1595 int num_sgs; /* (in) number of entries in the sg list */
1596 u32 transfer_buffer_length; /* (in) data buffer length */
1597 u32 actual_length; /* (return) actual transfer length */
1598 unsigned char *setup_packet; /* (in) setup packet (control only) */
1599 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1600 int start_frame; /* (modify) start frame (ISO) */
1601 int number_of_packets; /* (in) number of ISO packets */
1602 int interval; /* (modify) transfer interval
1603 * (INT/ISO) */
1604 int error_count; /* (return) number of ISO errors */
1605 void *context; /* (in) context for completion */
1606 usb_complete_t complete; /* (in) completion routine */
1607 struct usb_iso_packet_descriptor iso_frame_desc[];
1608 /* (in) ISO ONLY */
1609 };
1610
1611 /* ----------------------------------------------------------------------- */
1612
1613 /**
1614 * usb_fill_control_urb - initializes a control urb
1615 * @urb: pointer to the urb to initialize.
1616 * @dev: pointer to the struct usb_device for this urb.
1617 * @pipe: the endpoint pipe
1618 * @setup_packet: pointer to the setup_packet buffer
1619 * @transfer_buffer: pointer to the transfer buffer
1620 * @buffer_length: length of the transfer buffer
1621 * @complete_fn: pointer to the usb_complete_t function
1622 * @context: what to set the urb context to.
1623 *
1624 * Initializes a control urb with the proper information needed to submit
1625 * it to a device.
1626 */
1627 static inline void usb_fill_control_urb(struct urb *urb,
1628 struct usb_device *dev,
1629 unsigned int pipe,
1630 unsigned char *setup_packet,
1631 void *transfer_buffer,
1632 int buffer_length,
1633 usb_complete_t complete_fn,
1634 void *context)
1635 {
1636 urb->dev = dev;
1637 urb->pipe = pipe;
1638 urb->setup_packet = setup_packet;
1639 urb->transfer_buffer = transfer_buffer;
1640 urb->transfer_buffer_length = buffer_length;
1641 urb->complete = complete_fn;
1642 urb->context = context;
1643 }
1644
1645 /**
1646 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1647 * @urb: pointer to the urb to initialize.
1648 * @dev: pointer to the struct usb_device for this urb.
1649 * @pipe: the endpoint pipe
1650 * @transfer_buffer: pointer to the transfer buffer
1651 * @buffer_length: length of the transfer buffer
1652 * @complete_fn: pointer to the usb_complete_t function
1653 * @context: what to set the urb context to.
1654 *
1655 * Initializes a bulk urb with the proper information needed to submit it
1656 * to a device.
1657 */
1658 static inline void usb_fill_bulk_urb(struct urb *urb,
1659 struct usb_device *dev,
1660 unsigned int pipe,
1661 void *transfer_buffer,
1662 int buffer_length,
1663 usb_complete_t complete_fn,
1664 void *context)
1665 {
1666 urb->dev = dev;
1667 urb->pipe = pipe;
1668 urb->transfer_buffer = transfer_buffer;
1669 urb->transfer_buffer_length = buffer_length;
1670 urb->complete = complete_fn;
1671 urb->context = context;
1672 }
1673
1674 /**
1675 * usb_fill_int_urb - macro to help initialize a interrupt urb
1676 * @urb: pointer to the urb to initialize.
1677 * @dev: pointer to the struct usb_device for this urb.
1678 * @pipe: the endpoint pipe
1679 * @transfer_buffer: pointer to the transfer buffer
1680 * @buffer_length: length of the transfer buffer
1681 * @complete_fn: pointer to the usb_complete_t function
1682 * @context: what to set the urb context to.
1683 * @interval: what to set the urb interval to, encoded like
1684 * the endpoint descriptor's bInterval value.
1685 *
1686 * Initializes a interrupt urb with the proper information needed to submit
1687 * it to a device.
1688 *
1689 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1690 * encoding of the endpoint interval, and express polling intervals in
1691 * microframes (eight per millisecond) rather than in frames (one per
1692 * millisecond).
1693 *
1694 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1695 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1696 * through to the host controller, rather than being translated into microframe
1697 * units.
1698 */
1699 static inline void usb_fill_int_urb(struct urb *urb,
1700 struct usb_device *dev,
1701 unsigned int pipe,
1702 void *transfer_buffer,
1703 int buffer_length,
1704 usb_complete_t complete_fn,
1705 void *context,
1706 int interval)
1707 {
1708 urb->dev = dev;
1709 urb->pipe = pipe;
1710 urb->transfer_buffer = transfer_buffer;
1711 urb->transfer_buffer_length = buffer_length;
1712 urb->complete = complete_fn;
1713 urb->context = context;
1714
1715 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1716 /* make sure interval is within allowed range */
1717 interval = clamp(interval, 1, 16);
1718
1719 urb->interval = 1 << (interval - 1);
1720 } else {
1721 urb->interval = interval;
1722 }
1723
1724 urb->start_frame = -1;
1725 }
1726
1727 extern void usb_init_urb(struct urb *urb);
1728 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1729 extern void usb_free_urb(struct urb *urb);
1730 #define usb_put_urb usb_free_urb
1731 extern struct urb *usb_get_urb(struct urb *urb);
1732 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1733 extern int usb_unlink_urb(struct urb *urb);
1734 extern void usb_kill_urb(struct urb *urb);
1735 extern void usb_poison_urb(struct urb *urb);
1736 extern void usb_unpoison_urb(struct urb *urb);
1737 extern void usb_block_urb(struct urb *urb);
1738 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1739 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1740 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1741 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1742 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1743 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1744 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1745 extern void usb_unanchor_urb(struct urb *urb);
1746 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1747 unsigned int timeout);
1748 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1749 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1750 extern int usb_anchor_empty(struct usb_anchor *anchor);
1751
1752 #define usb_unblock_urb usb_unpoison_urb
1753
1754 /**
1755 * usb_urb_dir_in - check if an URB describes an IN transfer
1756 * @urb: URB to be checked
1757 *
1758 * Return: 1 if @urb describes an IN transfer (device-to-host),
1759 * otherwise 0.
1760 */
1761 static inline int usb_urb_dir_in(struct urb *urb)
1762 {
1763 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1764 }
1765
1766 /**
1767 * usb_urb_dir_out - check if an URB describes an OUT transfer
1768 * @urb: URB to be checked
1769 *
1770 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1771 * otherwise 0.
1772 */
1773 static inline int usb_urb_dir_out(struct urb *urb)
1774 {
1775 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1776 }
1777
1778 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1779 int usb_urb_ep_type_check(const struct urb *urb);
1780
1781 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1782 gfp_t mem_flags, dma_addr_t *dma);
1783 void usb_free_coherent(struct usb_device *dev, size_t size,
1784 void *addr, dma_addr_t dma);
1785
1786 #if 0
1787 struct urb *usb_buffer_map(struct urb *urb);
1788 void usb_buffer_dmasync(struct urb *urb);
1789 void usb_buffer_unmap(struct urb *urb);
1790 #endif
1791
1792 struct scatterlist;
1793 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1794 struct scatterlist *sg, int nents);
1795 #if 0
1796 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1797 struct scatterlist *sg, int n_hw_ents);
1798 #endif
1799 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1800 struct scatterlist *sg, int n_hw_ents);
1801
1802 /*-------------------------------------------------------------------*
1803 * SYNCHRONOUS CALL SUPPORT *
1804 *-------------------------------------------------------------------*/
1805
1806 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1807 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1808 void *data, __u16 size, int timeout);
1809 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1810 void *data, int len, int *actual_length, int timeout);
1811 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1812 void *data, int len, int *actual_length,
1813 int timeout);
1814
1815 /* wrappers around usb_control_msg() for the most common standard requests */
1816 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1817 __u8 requesttype, __u16 value, __u16 index,
1818 const void *data, __u16 size, int timeout,
1819 gfp_t memflags);
1820 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1821 __u8 requesttype, __u16 value, __u16 index,
1822 void *data, __u16 size, int timeout,
1823 gfp_t memflags);
1824 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1825 unsigned char descindex, void *buf, int size);
1826 extern int usb_get_status(struct usb_device *dev,
1827 int recip, int type, int target, void *data);
1828
1829 static inline int usb_get_std_status(struct usb_device *dev,
1830 int recip, int target, void *data)
1831 {
1832 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1833 data);
1834 }
1835
1836 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1837 {
1838 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1839 0, data);
1840 }
1841
1842 extern int usb_string(struct usb_device *dev, int index,
1843 char *buf, size_t size);
1844
1845 /* wrappers that also update important state inside usbcore */
1846 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1847 extern int usb_reset_configuration(struct usb_device *dev);
1848 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1849 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1850
1851 /* this request isn't really synchronous, but it belongs with the others */
1852 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1853
1854 /* choose and set configuration for device */
1855 extern int usb_choose_configuration(struct usb_device *udev);
1856 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1857
1858 /*
1859 * timeouts, in milliseconds, used for sending/receiving control messages
1860 * they typically complete within a few frames (msec) after they're issued
1861 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1862 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1863 */
1864 #define USB_CTRL_GET_TIMEOUT 5000
1865 #define USB_CTRL_SET_TIMEOUT 5000
1866
1867
1868 /**
1869 * struct usb_sg_request - support for scatter/gather I/O
1870 * @status: zero indicates success, else negative errno
1871 * @bytes: counts bytes transferred.
1872 *
1873 * These requests are initialized using usb_sg_init(), and then are used
1874 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1875 * members of the request object aren't for driver access.
1876 *
1877 * The status and bytecount values are valid only after usb_sg_wait()
1878 * returns. If the status is zero, then the bytecount matches the total
1879 * from the request.
1880 *
1881 * After an error completion, drivers may need to clear a halt condition
1882 * on the endpoint.
1883 */
1884 struct usb_sg_request {
1885 int status;
1886 size_t bytes;
1887
1888 /* private:
1889 * members below are private to usbcore,
1890 * and are not provided for driver access!
1891 */
1892 spinlock_t lock;
1893
1894 struct usb_device *dev;
1895 int pipe;
1896
1897 int entries;
1898 struct urb **urbs;
1899
1900 int count;
1901 struct completion complete;
1902 };
1903
1904 int usb_sg_init(
1905 struct usb_sg_request *io,
1906 struct usb_device *dev,
1907 unsigned pipe,
1908 unsigned period,
1909 struct scatterlist *sg,
1910 int nents,
1911 size_t length,
1912 gfp_t mem_flags
1913 );
1914 void usb_sg_cancel(struct usb_sg_request *io);
1915 void usb_sg_wait(struct usb_sg_request *io);
1916
1917
1918 /* ----------------------------------------------------------------------- */
1919
1920 /*
1921 * For various legacy reasons, Linux has a small cookie that's paired with
1922 * a struct usb_device to identify an endpoint queue. Queue characteristics
1923 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1924 * an unsigned int encoded as:
1925 *
1926 * - direction: bit 7 (0 = Host-to-Device [Out],
1927 * 1 = Device-to-Host [In] ...
1928 * like endpoint bEndpointAddress)
1929 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1930 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1931 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1932 * 10 = control, 11 = bulk)
1933 *
1934 * Given the device address and endpoint descriptor, pipes are redundant.
1935 */
1936
1937 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1938 /* (yet ... they're the values used by usbfs) */
1939 #define PIPE_ISOCHRONOUS 0
1940 #define PIPE_INTERRUPT 1
1941 #define PIPE_CONTROL 2
1942 #define PIPE_BULK 3
1943
1944 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1945 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1946
1947 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1948 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1949
1950 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1951 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1952 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1953 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1954 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1955
1956 static inline unsigned int __create_pipe(struct usb_device *dev,
1957 unsigned int endpoint)
1958 {
1959 return (dev->devnum << 8) | (endpoint << 15);
1960 }
1961
1962 /* Create various pipes... */
1963 #define usb_sndctrlpipe(dev, endpoint) \
1964 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1965 #define usb_rcvctrlpipe(dev, endpoint) \
1966 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1967 #define usb_sndisocpipe(dev, endpoint) \
1968 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1969 #define usb_rcvisocpipe(dev, endpoint) \
1970 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1971 #define usb_sndbulkpipe(dev, endpoint) \
1972 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1973 #define usb_rcvbulkpipe(dev, endpoint) \
1974 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1975 #define usb_sndintpipe(dev, endpoint) \
1976 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1977 #define usb_rcvintpipe(dev, endpoint) \
1978 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1979
1980 static inline struct usb_host_endpoint *
1981 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1982 {
1983 struct usb_host_endpoint **eps;
1984 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1985 return eps[usb_pipeendpoint(pipe)];
1986 }
1987
1988 /*-------------------------------------------------------------------------*/
1989
1990 static inline __u16
1991 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1992 {
1993 struct usb_host_endpoint *ep;
1994 unsigned epnum = usb_pipeendpoint(pipe);
1995
1996 if (is_out) {
1997 WARN_ON(usb_pipein(pipe));
1998 ep = udev->ep_out[epnum];
1999 } else {
2000 WARN_ON(usb_pipeout(pipe));
2001 ep = udev->ep_in[epnum];
2002 }
2003 if (!ep)
2004 return 0;
2005
2006 /* NOTE: only 0x07ff bits are for packet size... */
2007 return usb_endpoint_maxp(&ep->desc);
2008 }
2009
2010 /* ----------------------------------------------------------------------- */
2011
2012 /* translate USB error codes to codes user space understands */
2013 static inline int usb_translate_errors(int error_code)
2014 {
2015 switch (error_code) {
2016 case 0:
2017 case -ENOMEM:
2018 case -ENODEV:
2019 case -EOPNOTSUPP:
2020 return error_code;
2021 default:
2022 return -EIO;
2023 }
2024 }
2025
2026 /* Events from the usb core */
2027 #define USB_DEVICE_ADD 0x0001
2028 #define USB_DEVICE_REMOVE 0x0002
2029 #define USB_BUS_ADD 0x0003
2030 #define USB_BUS_REMOVE 0x0004
2031 extern void usb_register_notify(struct notifier_block *nb);
2032 extern void usb_unregister_notify(struct notifier_block *nb);
2033
2034 /* debugfs stuff */
2035 extern struct dentry *usb_debug_root;
2036
2037 /* LED triggers */
2038 enum usb_led_event {
2039 USB_LED_EVENT_HOST = 0,
2040 USB_LED_EVENT_GADGET = 1,
2041 };
2042
2043 #ifdef CONFIG_USB_LED_TRIG
2044 extern void usb_led_activity(enum usb_led_event ev);
2045 #else
2046 static inline void usb_led_activity(enum usb_led_event ev) {}
2047 #endif
2048
2049 #endif /* __KERNEL__ */
2050
2051 #endif