]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/usb.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 * @streams: number of USB-3 streams allocated on the endpoint
61 *
62 * USB requests are always queued to a given endpoint, identified by a
63 * descriptor within an active interface in a given USB configuration.
64 */
65 struct usb_host_endpoint {
66 struct usb_endpoint_descriptor desc;
67 struct usb_ss_ep_comp_descriptor ss_ep_comp;
68 struct list_head urb_list;
69 void *hcpriv;
70 struct ep_device *ep_dev; /* For sysfs info */
71
72 unsigned char *extra; /* Extra descriptors */
73 int extralen;
74 int enabled;
75 int streams;
76 };
77
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 struct usb_interface_descriptor desc;
81
82 int extralen;
83 unsigned char *extra; /* Extra descriptors */
84
85 /* array of desc.bNumEndpoint endpoints associated with this
86 * interface setting. these will be in no particular order.
87 */
88 struct usb_host_endpoint *endpoint;
89
90 char *string; /* iInterface string, if present */
91 };
92
93 enum usb_interface_condition {
94 USB_INTERFACE_UNBOUND = 0,
95 USB_INTERFACE_BINDING,
96 USB_INTERFACE_BOUND,
97 USB_INTERFACE_UNBINDING,
98 };
99
100 /**
101 * struct usb_interface - what usb device drivers talk to
102 * @altsetting: array of interface structures, one for each alternate
103 * setting that may be selected. Each one includes a set of
104 * endpoint configurations. They will be in no particular order.
105 * @cur_altsetting: the current altsetting.
106 * @num_altsetting: number of altsettings defined.
107 * @intf_assoc: interface association descriptor
108 * @minor: the minor number assigned to this interface, if this
109 * interface is bound to a driver that uses the USB major number.
110 * If this interface does not use the USB major, this field should
111 * be unused. The driver should set this value in the probe()
112 * function of the driver, after it has been assigned a minor
113 * number from the USB core by calling usb_register_dev().
114 * @condition: binding state of the interface: not bound, binding
115 * (in probe()), bound to a driver, or unbinding (in disconnect())
116 * @sysfs_files_created: sysfs attributes exist
117 * @ep_devs_created: endpoint child pseudo-devices exist
118 * @unregistering: flag set when the interface is being unregistered
119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120 * capability during autosuspend.
121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122 * has been deferred.
123 * @needs_binding: flag set when the driver should be re-probed or unbound
124 * following a reset or suspend operation it doesn't support.
125 * @dev: driver model's view of this device
126 * @usb_dev: if an interface is bound to the USB major, this will point
127 * to the sysfs representation for that device.
128 * @pm_usage_cnt: PM usage counter for this interface
129 * @reset_ws: Used for scheduling resets from atomic context.
130 * @reset_running: set to 1 if the interface is currently running a
131 * queued reset so that usb_cancel_queued_reset() doesn't try to
132 * remove from the workqueue when running inside the worker
133 * thread. See __usb_queue_reset_device().
134 * @resetting_device: USB core reset the device, so use alt setting 0 as
135 * current; needs bandwidth alloc after reset.
136 *
137 * USB device drivers attach to interfaces on a physical device. Each
138 * interface encapsulates a single high level function, such as feeding
139 * an audio stream to a speaker or reporting a change in a volume control.
140 * Many USB devices only have one interface. The protocol used to talk to
141 * an interface's endpoints can be defined in a usb "class" specification,
142 * or by a product's vendor. The (default) control endpoint is part of
143 * every interface, but is never listed among the interface's descriptors.
144 *
145 * The driver that is bound to the interface can use standard driver model
146 * calls such as dev_get_drvdata() on the dev member of this structure.
147 *
148 * Each interface may have alternate settings. The initial configuration
149 * of a device sets altsetting 0, but the device driver can change
150 * that setting using usb_set_interface(). Alternate settings are often
151 * used to control the use of periodic endpoints, such as by having
152 * different endpoints use different amounts of reserved USB bandwidth.
153 * All standards-conformant USB devices that use isochronous endpoints
154 * will use them in non-default settings.
155 *
156 * The USB specification says that alternate setting numbers must run from
157 * 0 to one less than the total number of alternate settings. But some
158 * devices manage to mess this up, and the structures aren't necessarily
159 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
160 * look up an alternate setting in the altsetting array based on its number.
161 */
162 struct usb_interface {
163 /* array of alternate settings for this interface,
164 * stored in no particular order */
165 struct usb_host_interface *altsetting;
166
167 struct usb_host_interface *cur_altsetting; /* the currently
168 * active alternate setting */
169 unsigned num_altsetting; /* number of alternate settings */
170
171 /* If there is an interface association descriptor then it will list
172 * the associated interfaces */
173 struct usb_interface_assoc_descriptor *intf_assoc;
174
175 int minor; /* minor number this interface is
176 * bound to */
177 enum usb_interface_condition condition; /* state of binding */
178 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
179 unsigned ep_devs_created:1; /* endpoint "devices" exist */
180 unsigned unregistering:1; /* unregistration is in progress */
181 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
182 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
183 unsigned needs_binding:1; /* needs delayed unbind/rebind */
184 unsigned reset_running:1;
185 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
186
187 struct device dev; /* interface specific device info */
188 struct device *usb_dev;
189 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
190 struct work_struct reset_ws; /* for resets in atomic context */
191 };
192 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
193
194 static inline void *usb_get_intfdata(struct usb_interface *intf)
195 {
196 return dev_get_drvdata(&intf->dev);
197 }
198
199 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
200 {
201 dev_set_drvdata(&intf->dev, data);
202 }
203
204 struct usb_interface *usb_get_intf(struct usb_interface *intf);
205 void usb_put_intf(struct usb_interface *intf);
206
207 /* Hard limit */
208 #define USB_MAXENDPOINTS 30
209 /* this maximum is arbitrary */
210 #define USB_MAXINTERFACES 32
211 #define USB_MAXIADS (USB_MAXINTERFACES/2)
212
213 /**
214 * struct usb_interface_cache - long-term representation of a device interface
215 * @num_altsetting: number of altsettings defined.
216 * @ref: reference counter.
217 * @altsetting: variable-length array of interface structures, one for
218 * each alternate setting that may be selected. Each one includes a
219 * set of endpoint configurations. They will be in no particular order.
220 *
221 * These structures persist for the lifetime of a usb_device, unlike
222 * struct usb_interface (which persists only as long as its configuration
223 * is installed). The altsetting arrays can be accessed through these
224 * structures at any time, permitting comparison of configurations and
225 * providing support for the /proc/bus/usb/devices pseudo-file.
226 */
227 struct usb_interface_cache {
228 unsigned num_altsetting; /* number of alternate settings */
229 struct kref ref; /* reference counter */
230
231 /* variable-length array of alternate settings for this interface,
232 * stored in no particular order */
233 struct usb_host_interface altsetting[0];
234 };
235 #define ref_to_usb_interface_cache(r) \
236 container_of(r, struct usb_interface_cache, ref)
237 #define altsetting_to_usb_interface_cache(a) \
238 container_of(a, struct usb_interface_cache, altsetting[0])
239
240 /**
241 * struct usb_host_config - representation of a device's configuration
242 * @desc: the device's configuration descriptor.
243 * @string: pointer to the cached version of the iConfiguration string, if
244 * present for this configuration.
245 * @intf_assoc: list of any interface association descriptors in this config
246 * @interface: array of pointers to usb_interface structures, one for each
247 * interface in the configuration. The number of interfaces is stored
248 * in desc.bNumInterfaces. These pointers are valid only while the
249 * the configuration is active.
250 * @intf_cache: array of pointers to usb_interface_cache structures, one
251 * for each interface in the configuration. These structures exist
252 * for the entire life of the device.
253 * @extra: pointer to buffer containing all extra descriptors associated
254 * with this configuration (those preceding the first interface
255 * descriptor).
256 * @extralen: length of the extra descriptors buffer.
257 *
258 * USB devices may have multiple configurations, but only one can be active
259 * at any time. Each encapsulates a different operational environment;
260 * for example, a dual-speed device would have separate configurations for
261 * full-speed and high-speed operation. The number of configurations
262 * available is stored in the device descriptor as bNumConfigurations.
263 *
264 * A configuration can contain multiple interfaces. Each corresponds to
265 * a different function of the USB device, and all are available whenever
266 * the configuration is active. The USB standard says that interfaces
267 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
268 * of devices get this wrong. In addition, the interface array is not
269 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
270 * look up an interface entry based on its number.
271 *
272 * Device drivers should not attempt to activate configurations. The choice
273 * of which configuration to install is a policy decision based on such
274 * considerations as available power, functionality provided, and the user's
275 * desires (expressed through userspace tools). However, drivers can call
276 * usb_reset_configuration() to reinitialize the current configuration and
277 * all its interfaces.
278 */
279 struct usb_host_config {
280 struct usb_config_descriptor desc;
281
282 char *string; /* iConfiguration string, if present */
283
284 /* List of any Interface Association Descriptors in this
285 * configuration. */
286 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
287
288 /* the interfaces associated with this configuration,
289 * stored in no particular order */
290 struct usb_interface *interface[USB_MAXINTERFACES];
291
292 /* Interface information available even when this is not the
293 * active configuration */
294 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
295
296 unsigned char *extra; /* Extra descriptors */
297 int extralen;
298 };
299
300 /* USB2.0 and USB3.0 device BOS descriptor set */
301 struct usb_host_bos {
302 struct usb_bos_descriptor *desc;
303
304 /* wireless cap descriptor is handled by wusb */
305 struct usb_ext_cap_descriptor *ext_cap;
306 struct usb_ss_cap_descriptor *ss_cap;
307 struct usb_ss_container_id_descriptor *ss_id;
308 };
309
310 int __usb_get_extra_descriptor(char *buffer, unsigned size,
311 unsigned char type, void **ptr);
312 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
313 __usb_get_extra_descriptor((ifpoint)->extra, \
314 (ifpoint)->extralen, \
315 type, (void **)ptr)
316
317 /* ----------------------------------------------------------------------- */
318
319 /* USB device number allocation bitmap */
320 struct usb_devmap {
321 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
322 };
323
324 /*
325 * Allocated per bus (tree of devices) we have:
326 */
327 struct usb_bus {
328 struct device *controller; /* host/master side hardware */
329 int busnum; /* Bus number (in order of reg) */
330 const char *bus_name; /* stable id (PCI slot_name etc) */
331 u8 uses_dma; /* Does the host controller use DMA? */
332 u8 uses_pio_for_control; /*
333 * Does the host controller use PIO
334 * for control transfers?
335 */
336 u8 otg_port; /* 0, or number of OTG/HNP port */
337 unsigned is_b_host:1; /* true during some HNP roleswitches */
338 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
339 unsigned no_stop_on_short:1; /*
340 * Quirk: some controllers don't stop
341 * the ep queue on a short transfer
342 * with the URB_SHORT_NOT_OK flag set.
343 */
344 unsigned no_sg_constraint:1; /* no sg constraint */
345 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
346
347 int devnum_next; /* Next open device number in
348 * round-robin allocation */
349
350 struct usb_devmap devmap; /* device address allocation map */
351 struct usb_device *root_hub; /* Root hub */
352 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
353 struct list_head bus_list; /* list of busses */
354
355 struct mutex usb_address0_mutex; /* unaddressed device mutex */
356
357 int bandwidth_allocated; /* on this bus: how much of the time
358 * reserved for periodic (intr/iso)
359 * requests is used, on average?
360 * Units: microseconds/frame.
361 * Limits: Full/low speed reserve 90%,
362 * while high speed reserves 80%.
363 */
364 int bandwidth_int_reqs; /* number of Interrupt requests */
365 int bandwidth_isoc_reqs; /* number of Isoc. requests */
366
367 unsigned resuming_ports; /* bit array: resuming root-hub ports */
368
369 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
370 struct mon_bus *mon_bus; /* non-null when associated */
371 int monitored; /* non-zero when monitored */
372 #endif
373 };
374
375 struct usb_dev_state;
376
377 /* ----------------------------------------------------------------------- */
378
379 struct usb_tt;
380
381 enum usb_device_removable {
382 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
383 USB_DEVICE_REMOVABLE,
384 USB_DEVICE_FIXED,
385 };
386
387 enum usb_port_connect_type {
388 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
389 USB_PORT_CONNECT_TYPE_HOT_PLUG,
390 USB_PORT_CONNECT_TYPE_HARD_WIRED,
391 USB_PORT_NOT_USED,
392 };
393
394 /*
395 * USB 2.0 Link Power Management (LPM) parameters.
396 */
397 struct usb2_lpm_parameters {
398 /* Best effort service latency indicate how long the host will drive
399 * resume on an exit from L1.
400 */
401 unsigned int besl;
402
403 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
404 * When the timer counts to zero, the parent hub will initiate a LPM
405 * transition to L1.
406 */
407 int timeout;
408 };
409
410 /*
411 * USB 3.0 Link Power Management (LPM) parameters.
412 *
413 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
414 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
415 * All three are stored in nanoseconds.
416 */
417 struct usb3_lpm_parameters {
418 /*
419 * Maximum exit latency (MEL) for the host to send a packet to the
420 * device (either a Ping for isoc endpoints, or a data packet for
421 * interrupt endpoints), the hubs to decode the packet, and for all hubs
422 * in the path to transition the links to U0.
423 */
424 unsigned int mel;
425 /*
426 * Maximum exit latency for a device-initiated LPM transition to bring
427 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
428 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
429 */
430 unsigned int pel;
431
432 /*
433 * The System Exit Latency (SEL) includes PEL, and three other
434 * latencies. After a device initiates a U0 transition, it will take
435 * some time from when the device sends the ERDY to when it will finally
436 * receive the data packet. Basically, SEL should be the worse-case
437 * latency from when a device starts initiating a U0 transition to when
438 * it will get data.
439 */
440 unsigned int sel;
441 /*
442 * The idle timeout value that is currently programmed into the parent
443 * hub for this device. When the timer counts to zero, the parent hub
444 * will initiate an LPM transition to either U1 or U2.
445 */
446 int timeout;
447 };
448
449 /**
450 * struct usb_device - kernel's representation of a USB device
451 * @devnum: device number; address on a USB bus
452 * @devpath: device ID string for use in messages (e.g., /port/...)
453 * @route: tree topology hex string for use with xHCI
454 * @state: device state: configured, not attached, etc.
455 * @speed: device speed: high/full/low (or error)
456 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
457 * @ttport: device port on that tt hub
458 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
459 * @parent: our hub, unless we're the root
460 * @bus: bus we're part of
461 * @ep0: endpoint 0 data (default control pipe)
462 * @dev: generic device interface
463 * @descriptor: USB device descriptor
464 * @bos: USB device BOS descriptor set
465 * @config: all of the device's configs
466 * @actconfig: the active configuration
467 * @ep_in: array of IN endpoints
468 * @ep_out: array of OUT endpoints
469 * @rawdescriptors: raw descriptors for each config
470 * @bus_mA: Current available from the bus
471 * @portnum: parent port number (origin 1)
472 * @level: number of USB hub ancestors
473 * @can_submit: URBs may be submitted
474 * @persist_enabled: USB_PERSIST enabled for this device
475 * @have_langid: whether string_langid is valid
476 * @authorized: policy has said we can use it;
477 * (user space) policy determines if we authorize this device to be
478 * used or not. By default, wired USB devices are authorized.
479 * WUSB devices are not, until we authorize them from user space.
480 * FIXME -- complete doc
481 * @authenticated: Crypto authentication passed
482 * @wusb: device is Wireless USB
483 * @lpm_capable: device supports LPM
484 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
485 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
486 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
487 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
488 * @usb3_lpm_enabled: USB3 hardware LPM enabled
489 * @string_langid: language ID for strings
490 * @product: iProduct string, if present (static)
491 * @manufacturer: iManufacturer string, if present (static)
492 * @serial: iSerialNumber string, if present (static)
493 * @filelist: usbfs files that are open to this device
494 * @maxchild: number of ports if hub
495 * @quirks: quirks of the whole device
496 * @urbnum: number of URBs submitted for the whole device
497 * @active_duration: total time device is not suspended
498 * @connect_time: time device was first connected
499 * @do_remote_wakeup: remote wakeup should be enabled
500 * @reset_resume: needs reset instead of resume
501 * @port_is_suspended: the upstream port is suspended (L2 or U3)
502 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
503 * specific data for the device.
504 * @slot_id: Slot ID assigned by xHCI
505 * @removable: Device can be physically removed from this port
506 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
507 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
508 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
509 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
510 * to keep track of the number of functions that require USB 3.0 Link Power
511 * Management to be disabled for this usb_device. This count should only
512 * be manipulated by those functions, with the bandwidth_mutex is held.
513 *
514 * Notes:
515 * Usbcore drivers should not set usbdev->state directly. Instead use
516 * usb_set_device_state().
517 */
518 struct usb_device {
519 int devnum;
520 char devpath[16];
521 u32 route;
522 enum usb_device_state state;
523 enum usb_device_speed speed;
524
525 struct usb_tt *tt;
526 int ttport;
527
528 unsigned int toggle[2];
529
530 struct usb_device *parent;
531 struct usb_bus *bus;
532 struct usb_host_endpoint ep0;
533
534 struct device dev;
535
536 struct usb_device_descriptor descriptor;
537 struct usb_host_bos *bos;
538 struct usb_host_config *config;
539
540 struct usb_host_config *actconfig;
541 struct usb_host_endpoint *ep_in[16];
542 struct usb_host_endpoint *ep_out[16];
543
544 char **rawdescriptors;
545
546 unsigned short bus_mA;
547 u8 portnum;
548 u8 level;
549
550 unsigned can_submit:1;
551 unsigned persist_enabled:1;
552 unsigned have_langid:1;
553 unsigned authorized:1;
554 unsigned authenticated:1;
555 unsigned wusb:1;
556 unsigned lpm_capable:1;
557 unsigned usb2_hw_lpm_capable:1;
558 unsigned usb2_hw_lpm_besl_capable:1;
559 unsigned usb2_hw_lpm_enabled:1;
560 unsigned usb2_hw_lpm_allowed:1;
561 unsigned usb3_lpm_enabled:1;
562 int string_langid;
563
564 /* static strings from the device */
565 char *product;
566 char *manufacturer;
567 char *serial;
568
569 struct list_head filelist;
570
571 int maxchild;
572
573 u32 quirks;
574 atomic_t urbnum;
575
576 unsigned long active_duration;
577
578 #ifdef CONFIG_PM
579 unsigned long connect_time;
580
581 unsigned do_remote_wakeup:1;
582 unsigned reset_resume:1;
583 unsigned port_is_suspended:1;
584 #endif
585 struct wusb_dev *wusb_dev;
586 int slot_id;
587 enum usb_device_removable removable;
588 struct usb2_lpm_parameters l1_params;
589 struct usb3_lpm_parameters u1_params;
590 struct usb3_lpm_parameters u2_params;
591 unsigned lpm_disable_count;
592 };
593 #define to_usb_device(d) container_of(d, struct usb_device, dev)
594
595 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
596 {
597 return to_usb_device(intf->dev.parent);
598 }
599
600 extern struct usb_device *usb_get_dev(struct usb_device *dev);
601 extern void usb_put_dev(struct usb_device *dev);
602 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
603 int port1);
604
605 /**
606 * usb_hub_for_each_child - iterate over all child devices on the hub
607 * @hdev: USB device belonging to the usb hub
608 * @port1: portnum associated with child device
609 * @child: child device pointer
610 */
611 #define usb_hub_for_each_child(hdev, port1, child) \
612 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
613 port1 <= hdev->maxchild; \
614 child = usb_hub_find_child(hdev, ++port1)) \
615 if (!child) continue; else
616
617 /* USB device locking */
618 #define usb_lock_device(udev) device_lock(&(udev)->dev)
619 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
620 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
621 extern int usb_lock_device_for_reset(struct usb_device *udev,
622 const struct usb_interface *iface);
623
624 /* USB port reset for device reinitialization */
625 extern int usb_reset_device(struct usb_device *dev);
626 extern void usb_queue_reset_device(struct usb_interface *dev);
627
628 #ifdef CONFIG_ACPI
629 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
630 bool enable);
631 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
632 #else
633 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
634 bool enable) { return 0; }
635 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
636 { return true; }
637 #endif
638
639 /* USB autosuspend and autoresume */
640 #ifdef CONFIG_PM
641 extern void usb_enable_autosuspend(struct usb_device *udev);
642 extern void usb_disable_autosuspend(struct usb_device *udev);
643
644 extern int usb_autopm_get_interface(struct usb_interface *intf);
645 extern void usb_autopm_put_interface(struct usb_interface *intf);
646 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
647 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
648 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
649 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
650
651 static inline void usb_mark_last_busy(struct usb_device *udev)
652 {
653 pm_runtime_mark_last_busy(&udev->dev);
654 }
655
656 #else
657
658 static inline int usb_enable_autosuspend(struct usb_device *udev)
659 { return 0; }
660 static inline int usb_disable_autosuspend(struct usb_device *udev)
661 { return 0; }
662
663 static inline int usb_autopm_get_interface(struct usb_interface *intf)
664 { return 0; }
665 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
666 { return 0; }
667
668 static inline void usb_autopm_put_interface(struct usb_interface *intf)
669 { }
670 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
671 { }
672 static inline void usb_autopm_get_interface_no_resume(
673 struct usb_interface *intf)
674 { }
675 static inline void usb_autopm_put_interface_no_suspend(
676 struct usb_interface *intf)
677 { }
678 static inline void usb_mark_last_busy(struct usb_device *udev)
679 { }
680 #endif
681
682 extern int usb_disable_lpm(struct usb_device *udev);
683 extern void usb_enable_lpm(struct usb_device *udev);
684 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
685 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
686 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
687
688 extern int usb_disable_ltm(struct usb_device *udev);
689 extern void usb_enable_ltm(struct usb_device *udev);
690
691 static inline bool usb_device_supports_ltm(struct usb_device *udev)
692 {
693 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
694 return false;
695 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
696 }
697
698 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
699 {
700 return udev && udev->bus && udev->bus->no_sg_constraint;
701 }
702
703
704 /*-------------------------------------------------------------------------*/
705
706 /* for drivers using iso endpoints */
707 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
708
709 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
710 extern int usb_alloc_streams(struct usb_interface *interface,
711 struct usb_host_endpoint **eps, unsigned int num_eps,
712 unsigned int num_streams, gfp_t mem_flags);
713
714 /* Reverts a group of bulk endpoints back to not using stream IDs. */
715 extern int usb_free_streams(struct usb_interface *interface,
716 struct usb_host_endpoint **eps, unsigned int num_eps,
717 gfp_t mem_flags);
718
719 /* used these for multi-interface device registration */
720 extern int usb_driver_claim_interface(struct usb_driver *driver,
721 struct usb_interface *iface, void *priv);
722
723 /**
724 * usb_interface_claimed - returns true iff an interface is claimed
725 * @iface: the interface being checked
726 *
727 * Return: %true (nonzero) iff the interface is claimed, else %false
728 * (zero).
729 *
730 * Note:
731 * Callers must own the driver model's usb bus readlock. So driver
732 * probe() entries don't need extra locking, but other call contexts
733 * may need to explicitly claim that lock.
734 *
735 */
736 static inline int usb_interface_claimed(struct usb_interface *iface)
737 {
738 return (iface->dev.driver != NULL);
739 }
740
741 extern void usb_driver_release_interface(struct usb_driver *driver,
742 struct usb_interface *iface);
743 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
744 const struct usb_device_id *id);
745 extern int usb_match_one_id(struct usb_interface *interface,
746 const struct usb_device_id *id);
747
748 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
749 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
750 int minor);
751 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
752 unsigned ifnum);
753 extern struct usb_host_interface *usb_altnum_to_altsetting(
754 const struct usb_interface *intf, unsigned int altnum);
755 extern struct usb_host_interface *usb_find_alt_setting(
756 struct usb_host_config *config,
757 unsigned int iface_num,
758 unsigned int alt_num);
759
760 /* port claiming functions */
761 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
762 struct usb_dev_state *owner);
763 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
764 struct usb_dev_state *owner);
765
766 /**
767 * usb_make_path - returns stable device path in the usb tree
768 * @dev: the device whose path is being constructed
769 * @buf: where to put the string
770 * @size: how big is "buf"?
771 *
772 * Return: Length of the string (> 0) or negative if size was too small.
773 *
774 * Note:
775 * This identifier is intended to be "stable", reflecting physical paths in
776 * hardware such as physical bus addresses for host controllers or ports on
777 * USB hubs. That makes it stay the same until systems are physically
778 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
779 * controllers. Adding and removing devices, including virtual root hubs
780 * in host controller driver modules, does not change these path identifiers;
781 * neither does rebooting or re-enumerating. These are more useful identifiers
782 * than changeable ("unstable") ones like bus numbers or device addresses.
783 *
784 * With a partial exception for devices connected to USB 2.0 root hubs, these
785 * identifiers are also predictable. So long as the device tree isn't changed,
786 * plugging any USB device into a given hub port always gives it the same path.
787 * Because of the use of "companion" controllers, devices connected to ports on
788 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
789 * high speed, and a different one if they are full or low speed.
790 */
791 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
792 {
793 int actual;
794 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
795 dev->devpath);
796 return (actual >= (int)size) ? -1 : actual;
797 }
798
799 /*-------------------------------------------------------------------------*/
800
801 #define USB_DEVICE_ID_MATCH_DEVICE \
802 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
803 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
804 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
805 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
806 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
807 #define USB_DEVICE_ID_MATCH_DEV_INFO \
808 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
809 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
810 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
811 #define USB_DEVICE_ID_MATCH_INT_INFO \
812 (USB_DEVICE_ID_MATCH_INT_CLASS | \
813 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
814 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
815
816 /**
817 * USB_DEVICE - macro used to describe a specific usb device
818 * @vend: the 16 bit USB Vendor ID
819 * @prod: the 16 bit USB Product ID
820 *
821 * This macro is used to create a struct usb_device_id that matches a
822 * specific device.
823 */
824 #define USB_DEVICE(vend, prod) \
825 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
826 .idVendor = (vend), \
827 .idProduct = (prod)
828 /**
829 * USB_DEVICE_VER - describe a specific usb device with a version range
830 * @vend: the 16 bit USB Vendor ID
831 * @prod: the 16 bit USB Product ID
832 * @lo: the bcdDevice_lo value
833 * @hi: the bcdDevice_hi value
834 *
835 * This macro is used to create a struct usb_device_id that matches a
836 * specific device, with a version range.
837 */
838 #define USB_DEVICE_VER(vend, prod, lo, hi) \
839 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
840 .idVendor = (vend), \
841 .idProduct = (prod), \
842 .bcdDevice_lo = (lo), \
843 .bcdDevice_hi = (hi)
844
845 /**
846 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
847 * @vend: the 16 bit USB Vendor ID
848 * @prod: the 16 bit USB Product ID
849 * @cl: bInterfaceClass value
850 *
851 * This macro is used to create a struct usb_device_id that matches a
852 * specific interface class of devices.
853 */
854 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
855 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
856 USB_DEVICE_ID_MATCH_INT_CLASS, \
857 .idVendor = (vend), \
858 .idProduct = (prod), \
859 .bInterfaceClass = (cl)
860
861 /**
862 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
863 * @vend: the 16 bit USB Vendor ID
864 * @prod: the 16 bit USB Product ID
865 * @pr: bInterfaceProtocol value
866 *
867 * This macro is used to create a struct usb_device_id that matches a
868 * specific interface protocol of devices.
869 */
870 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
871 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
872 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
873 .idVendor = (vend), \
874 .idProduct = (prod), \
875 .bInterfaceProtocol = (pr)
876
877 /**
878 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
879 * @vend: the 16 bit USB Vendor ID
880 * @prod: the 16 bit USB Product ID
881 * @num: bInterfaceNumber value
882 *
883 * This macro is used to create a struct usb_device_id that matches a
884 * specific interface number of devices.
885 */
886 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
887 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
888 USB_DEVICE_ID_MATCH_INT_NUMBER, \
889 .idVendor = (vend), \
890 .idProduct = (prod), \
891 .bInterfaceNumber = (num)
892
893 /**
894 * USB_DEVICE_INFO - macro used to describe a class of usb devices
895 * @cl: bDeviceClass value
896 * @sc: bDeviceSubClass value
897 * @pr: bDeviceProtocol value
898 *
899 * This macro is used to create a struct usb_device_id that matches a
900 * specific class of devices.
901 */
902 #define USB_DEVICE_INFO(cl, sc, pr) \
903 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
904 .bDeviceClass = (cl), \
905 .bDeviceSubClass = (sc), \
906 .bDeviceProtocol = (pr)
907
908 /**
909 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
910 * @cl: bInterfaceClass value
911 * @sc: bInterfaceSubClass value
912 * @pr: bInterfaceProtocol value
913 *
914 * This macro is used to create a struct usb_device_id that matches a
915 * specific class of interfaces.
916 */
917 #define USB_INTERFACE_INFO(cl, sc, pr) \
918 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
919 .bInterfaceClass = (cl), \
920 .bInterfaceSubClass = (sc), \
921 .bInterfaceProtocol = (pr)
922
923 /**
924 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
925 * @vend: the 16 bit USB Vendor ID
926 * @prod: the 16 bit USB Product ID
927 * @cl: bInterfaceClass value
928 * @sc: bInterfaceSubClass value
929 * @pr: bInterfaceProtocol value
930 *
931 * This macro is used to create a struct usb_device_id that matches a
932 * specific device with a specific class of interfaces.
933 *
934 * This is especially useful when explicitly matching devices that have
935 * vendor specific bDeviceClass values, but standards-compliant interfaces.
936 */
937 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
938 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
939 | USB_DEVICE_ID_MATCH_DEVICE, \
940 .idVendor = (vend), \
941 .idProduct = (prod), \
942 .bInterfaceClass = (cl), \
943 .bInterfaceSubClass = (sc), \
944 .bInterfaceProtocol = (pr)
945
946 /**
947 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
948 * @vend: the 16 bit USB Vendor ID
949 * @cl: bInterfaceClass value
950 * @sc: bInterfaceSubClass value
951 * @pr: bInterfaceProtocol value
952 *
953 * This macro is used to create a struct usb_device_id that matches a
954 * specific vendor with a specific class of interfaces.
955 *
956 * This is especially useful when explicitly matching devices that have
957 * vendor specific bDeviceClass values, but standards-compliant interfaces.
958 */
959 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
960 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
961 | USB_DEVICE_ID_MATCH_VENDOR, \
962 .idVendor = (vend), \
963 .bInterfaceClass = (cl), \
964 .bInterfaceSubClass = (sc), \
965 .bInterfaceProtocol = (pr)
966
967 /* ----------------------------------------------------------------------- */
968
969 /* Stuff for dynamic usb ids */
970 struct usb_dynids {
971 spinlock_t lock;
972 struct list_head list;
973 };
974
975 struct usb_dynid {
976 struct list_head node;
977 struct usb_device_id id;
978 };
979
980 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
981 const struct usb_device_id *id_table,
982 struct device_driver *driver,
983 const char *buf, size_t count);
984
985 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
986
987 /**
988 * struct usbdrv_wrap - wrapper for driver-model structure
989 * @driver: The driver-model core driver structure.
990 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
991 */
992 struct usbdrv_wrap {
993 struct device_driver driver;
994 int for_devices;
995 };
996
997 /**
998 * struct usb_driver - identifies USB interface driver to usbcore
999 * @name: The driver name should be unique among USB drivers,
1000 * and should normally be the same as the module name.
1001 * @probe: Called to see if the driver is willing to manage a particular
1002 * interface on a device. If it is, probe returns zero and uses
1003 * usb_set_intfdata() to associate driver-specific data with the
1004 * interface. It may also use usb_set_interface() to specify the
1005 * appropriate altsetting. If unwilling to manage the interface,
1006 * return -ENODEV, if genuine IO errors occurred, an appropriate
1007 * negative errno value.
1008 * @disconnect: Called when the interface is no longer accessible, usually
1009 * because its device has been (or is being) disconnected or the
1010 * driver module is being unloaded.
1011 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1012 * the "usbfs" filesystem. This lets devices provide ways to
1013 * expose information to user space regardless of where they
1014 * do (or don't) show up otherwise in the filesystem.
1015 * @suspend: Called when the device is going to be suspended by the
1016 * system either from system sleep or runtime suspend context. The
1017 * return value will be ignored in system sleep context, so do NOT
1018 * try to continue using the device if suspend fails in this case.
1019 * Instead, let the resume or reset-resume routine recover from
1020 * the failure.
1021 * @resume: Called when the device is being resumed by the system.
1022 * @reset_resume: Called when the suspended device has been reset instead
1023 * of being resumed.
1024 * @pre_reset: Called by usb_reset_device() when the device is about to be
1025 * reset. This routine must not return until the driver has no active
1026 * URBs for the device, and no more URBs may be submitted until the
1027 * post_reset method is called.
1028 * @post_reset: Called by usb_reset_device() after the device
1029 * has been reset
1030 * @id_table: USB drivers use ID table to support hotplugging.
1031 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1032 * or your driver's probe function will never get called.
1033 * @dynids: used internally to hold the list of dynamically added device
1034 * ids for this driver.
1035 * @drvwrap: Driver-model core structure wrapper.
1036 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1037 * added to this driver by preventing the sysfs file from being created.
1038 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1039 * for interfaces bound to this driver.
1040 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1041 * endpoints before calling the driver's disconnect method.
1042 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1043 * to initiate lower power link state transitions when an idle timeout
1044 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1045 *
1046 * USB interface drivers must provide a name, probe() and disconnect()
1047 * methods, and an id_table. Other driver fields are optional.
1048 *
1049 * The id_table is used in hotplugging. It holds a set of descriptors,
1050 * and specialized data may be associated with each entry. That table
1051 * is used by both user and kernel mode hotplugging support.
1052 *
1053 * The probe() and disconnect() methods are called in a context where
1054 * they can sleep, but they should avoid abusing the privilege. Most
1055 * work to connect to a device should be done when the device is opened,
1056 * and undone at the last close. The disconnect code needs to address
1057 * concurrency issues with respect to open() and close() methods, as
1058 * well as forcing all pending I/O requests to complete (by unlinking
1059 * them as necessary, and blocking until the unlinks complete).
1060 */
1061 struct usb_driver {
1062 const char *name;
1063
1064 int (*probe) (struct usb_interface *intf,
1065 const struct usb_device_id *id);
1066
1067 void (*disconnect) (struct usb_interface *intf);
1068
1069 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1070 void *buf);
1071
1072 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1073 int (*resume) (struct usb_interface *intf);
1074 int (*reset_resume)(struct usb_interface *intf);
1075
1076 int (*pre_reset)(struct usb_interface *intf);
1077 int (*post_reset)(struct usb_interface *intf);
1078
1079 const struct usb_device_id *id_table;
1080
1081 struct usb_dynids dynids;
1082 struct usbdrv_wrap drvwrap;
1083 unsigned int no_dynamic_id:1;
1084 unsigned int supports_autosuspend:1;
1085 unsigned int disable_hub_initiated_lpm:1;
1086 unsigned int soft_unbind:1;
1087 };
1088 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1089
1090 /**
1091 * struct usb_device_driver - identifies USB device driver to usbcore
1092 * @name: The driver name should be unique among USB drivers,
1093 * and should normally be the same as the module name.
1094 * @probe: Called to see if the driver is willing to manage a particular
1095 * device. If it is, probe returns zero and uses dev_set_drvdata()
1096 * to associate driver-specific data with the device. If unwilling
1097 * to manage the device, return a negative errno value.
1098 * @disconnect: Called when the device is no longer accessible, usually
1099 * because it has been (or is being) disconnected or the driver's
1100 * module is being unloaded.
1101 * @suspend: Called when the device is going to be suspended by the system.
1102 * @resume: Called when the device is being resumed by the system.
1103 * @drvwrap: Driver-model core structure wrapper.
1104 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1105 * for devices bound to this driver.
1106 *
1107 * USB drivers must provide all the fields listed above except drvwrap.
1108 */
1109 struct usb_device_driver {
1110 const char *name;
1111
1112 int (*probe) (struct usb_device *udev);
1113 void (*disconnect) (struct usb_device *udev);
1114
1115 int (*suspend) (struct usb_device *udev, pm_message_t message);
1116 int (*resume) (struct usb_device *udev, pm_message_t message);
1117 struct usbdrv_wrap drvwrap;
1118 unsigned int supports_autosuspend:1;
1119 };
1120 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1121 drvwrap.driver)
1122
1123 extern struct bus_type usb_bus_type;
1124
1125 /**
1126 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1127 * @name: the usb class device name for this driver. Will show up in sysfs.
1128 * @devnode: Callback to provide a naming hint for a possible
1129 * device node to create.
1130 * @fops: pointer to the struct file_operations of this driver.
1131 * @minor_base: the start of the minor range for this driver.
1132 *
1133 * This structure is used for the usb_register_dev() and
1134 * usb_unregister_dev() functions, to consolidate a number of the
1135 * parameters used for them.
1136 */
1137 struct usb_class_driver {
1138 char *name;
1139 char *(*devnode)(struct device *dev, umode_t *mode);
1140 const struct file_operations *fops;
1141 int minor_base;
1142 };
1143
1144 /*
1145 * use these in module_init()/module_exit()
1146 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1147 */
1148 extern int usb_register_driver(struct usb_driver *, struct module *,
1149 const char *);
1150
1151 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1152 #define usb_register(driver) \
1153 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1154
1155 extern void usb_deregister(struct usb_driver *);
1156
1157 /**
1158 * module_usb_driver() - Helper macro for registering a USB driver
1159 * @__usb_driver: usb_driver struct
1160 *
1161 * Helper macro for USB drivers which do not do anything special in module
1162 * init/exit. This eliminates a lot of boilerplate. Each module may only
1163 * use this macro once, and calling it replaces module_init() and module_exit()
1164 */
1165 #define module_usb_driver(__usb_driver) \
1166 module_driver(__usb_driver, usb_register, \
1167 usb_deregister)
1168
1169 extern int usb_register_device_driver(struct usb_device_driver *,
1170 struct module *);
1171 extern void usb_deregister_device_driver(struct usb_device_driver *);
1172
1173 extern int usb_register_dev(struct usb_interface *intf,
1174 struct usb_class_driver *class_driver);
1175 extern void usb_deregister_dev(struct usb_interface *intf,
1176 struct usb_class_driver *class_driver);
1177
1178 extern int usb_disabled(void);
1179
1180 /* ----------------------------------------------------------------------- */
1181
1182 /*
1183 * URB support, for asynchronous request completions
1184 */
1185
1186 /*
1187 * urb->transfer_flags:
1188 *
1189 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1190 */
1191 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1192 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1193 * slot in the schedule */
1194 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1195 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1196 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1197 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1198 * needed */
1199 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1200
1201 /* The following flags are used internally by usbcore and HCDs */
1202 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1203 #define URB_DIR_OUT 0
1204 #define URB_DIR_MASK URB_DIR_IN
1205
1206 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1207 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1208 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1209 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1210 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1211 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1212 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1213 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1214
1215 struct usb_iso_packet_descriptor {
1216 unsigned int offset;
1217 unsigned int length; /* expected length */
1218 unsigned int actual_length;
1219 int status;
1220 };
1221
1222 struct urb;
1223
1224 struct usb_anchor {
1225 struct list_head urb_list;
1226 wait_queue_head_t wait;
1227 spinlock_t lock;
1228 atomic_t suspend_wakeups;
1229 unsigned int poisoned:1;
1230 };
1231
1232 static inline void init_usb_anchor(struct usb_anchor *anchor)
1233 {
1234 memset(anchor, 0, sizeof(*anchor));
1235 INIT_LIST_HEAD(&anchor->urb_list);
1236 init_waitqueue_head(&anchor->wait);
1237 spin_lock_init(&anchor->lock);
1238 }
1239
1240 typedef void (*usb_complete_t)(struct urb *);
1241
1242 /**
1243 * struct urb - USB Request Block
1244 * @urb_list: For use by current owner of the URB.
1245 * @anchor_list: membership in the list of an anchor
1246 * @anchor: to anchor URBs to a common mooring
1247 * @ep: Points to the endpoint's data structure. Will eventually
1248 * replace @pipe.
1249 * @pipe: Holds endpoint number, direction, type, and more.
1250 * Create these values with the eight macros available;
1251 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1252 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1253 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1254 * numbers range from zero to fifteen. Note that "in" endpoint two
1255 * is a different endpoint (and pipe) from "out" endpoint two.
1256 * The current configuration controls the existence, type, and
1257 * maximum packet size of any given endpoint.
1258 * @stream_id: the endpoint's stream ID for bulk streams
1259 * @dev: Identifies the USB device to perform the request.
1260 * @status: This is read in non-iso completion functions to get the
1261 * status of the particular request. ISO requests only use it
1262 * to tell whether the URB was unlinked; detailed status for
1263 * each frame is in the fields of the iso_frame-desc.
1264 * @transfer_flags: A variety of flags may be used to affect how URB
1265 * submission, unlinking, or operation are handled. Different
1266 * kinds of URB can use different flags.
1267 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1268 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1269 * (however, do not leave garbage in transfer_buffer even then).
1270 * This buffer must be suitable for DMA; allocate it with
1271 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1272 * of this buffer will be modified. This buffer is used for the data
1273 * stage of control transfers.
1274 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1275 * the device driver is saying that it provided this DMA address,
1276 * which the host controller driver should use in preference to the
1277 * transfer_buffer.
1278 * @sg: scatter gather buffer list, the buffer size of each element in
1279 * the list (except the last) must be divisible by the endpoint's
1280 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1281 * @num_mapped_sgs: (internal) number of mapped sg entries
1282 * @num_sgs: number of entries in the sg list
1283 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1284 * be broken up into chunks according to the current maximum packet
1285 * size for the endpoint, which is a function of the configuration
1286 * and is encoded in the pipe. When the length is zero, neither
1287 * transfer_buffer nor transfer_dma is used.
1288 * @actual_length: This is read in non-iso completion functions, and
1289 * it tells how many bytes (out of transfer_buffer_length) were
1290 * transferred. It will normally be the same as requested, unless
1291 * either an error was reported or a short read was performed.
1292 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1293 * short reads be reported as errors.
1294 * @setup_packet: Only used for control transfers, this points to eight bytes
1295 * of setup data. Control transfers always start by sending this data
1296 * to the device. Then transfer_buffer is read or written, if needed.
1297 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1298 * this field; setup_packet must point to a valid buffer.
1299 * @start_frame: Returns the initial frame for isochronous transfers.
1300 * @number_of_packets: Lists the number of ISO transfer buffers.
1301 * @interval: Specifies the polling interval for interrupt or isochronous
1302 * transfers. The units are frames (milliseconds) for full and low
1303 * speed devices, and microframes (1/8 millisecond) for highspeed
1304 * and SuperSpeed devices.
1305 * @error_count: Returns the number of ISO transfers that reported errors.
1306 * @context: For use in completion functions. This normally points to
1307 * request-specific driver context.
1308 * @complete: Completion handler. This URB is passed as the parameter to the
1309 * completion function. The completion function may then do what
1310 * it likes with the URB, including resubmitting or freeing it.
1311 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1312 * collect the transfer status for each buffer.
1313 *
1314 * This structure identifies USB transfer requests. URBs must be allocated by
1315 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1316 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1317 * are submitted using usb_submit_urb(), and pending requests may be canceled
1318 * using usb_unlink_urb() or usb_kill_urb().
1319 *
1320 * Data Transfer Buffers:
1321 *
1322 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1323 * taken from the general page pool. That is provided by transfer_buffer
1324 * (control requests also use setup_packet), and host controller drivers
1325 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1326 * mapping operations can be expensive on some platforms (perhaps using a dma
1327 * bounce buffer or talking to an IOMMU),
1328 * although they're cheap on commodity x86 and ppc hardware.
1329 *
1330 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1331 * which tells the host controller driver that no such mapping is needed for
1332 * the transfer_buffer since
1333 * the device driver is DMA-aware. For example, a device driver might
1334 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1335 * When this transfer flag is provided, host controller drivers will
1336 * attempt to use the dma address found in the transfer_dma
1337 * field rather than determining a dma address themselves.
1338 *
1339 * Note that transfer_buffer must still be set if the controller
1340 * does not support DMA (as indicated by bus.uses_dma) and when talking
1341 * to root hub. If you have to trasfer between highmem zone and the device
1342 * on such controller, create a bounce buffer or bail out with an error.
1343 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1344 * capable, assign NULL to it, so that usbmon knows not to use the value.
1345 * The setup_packet must always be set, so it cannot be located in highmem.
1346 *
1347 * Initialization:
1348 *
1349 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1350 * zero), and complete fields. All URBs must also initialize
1351 * transfer_buffer and transfer_buffer_length. They may provide the
1352 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1353 * to be treated as errors; that flag is invalid for write requests.
1354 *
1355 * Bulk URBs may
1356 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1357 * should always terminate with a short packet, even if it means adding an
1358 * extra zero length packet.
1359 *
1360 * Control URBs must provide a valid pointer in the setup_packet field.
1361 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1362 * beforehand.
1363 *
1364 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1365 * or, for highspeed devices, 125 microsecond units)
1366 * to poll for transfers. After the URB has been submitted, the interval
1367 * field reflects how the transfer was actually scheduled.
1368 * The polling interval may be more frequent than requested.
1369 * For example, some controllers have a maximum interval of 32 milliseconds,
1370 * while others support intervals of up to 1024 milliseconds.
1371 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1372 * endpoints, as well as high speed interrupt endpoints, the encoding of
1373 * the transfer interval in the endpoint descriptor is logarithmic.
1374 * Device drivers must convert that value to linear units themselves.)
1375 *
1376 * If an isochronous endpoint queue isn't already running, the host
1377 * controller will schedule a new URB to start as soon as bandwidth
1378 * utilization allows. If the queue is running then a new URB will be
1379 * scheduled to start in the first transfer slot following the end of the
1380 * preceding URB, if that slot has not already expired. If the slot has
1381 * expired (which can happen when IRQ delivery is delayed for a long time),
1382 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1383 * is clear then the URB will be scheduled to start in the expired slot,
1384 * implying that some of its packets will not be transferred; if the flag
1385 * is set then the URB will be scheduled in the first unexpired slot,
1386 * breaking the queue's synchronization. Upon URB completion, the
1387 * start_frame field will be set to the (micro)frame number in which the
1388 * transfer was scheduled. Ranges for frame counter values are HC-specific
1389 * and can go from as low as 256 to as high as 65536 frames.
1390 *
1391 * Isochronous URBs have a different data transfer model, in part because
1392 * the quality of service is only "best effort". Callers provide specially
1393 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1394 * at the end. Each such packet is an individual ISO transfer. Isochronous
1395 * URBs are normally queued, submitted by drivers to arrange that
1396 * transfers are at least double buffered, and then explicitly resubmitted
1397 * in completion handlers, so
1398 * that data (such as audio or video) streams at as constant a rate as the
1399 * host controller scheduler can support.
1400 *
1401 * Completion Callbacks:
1402 *
1403 * The completion callback is made in_interrupt(), and one of the first
1404 * things that a completion handler should do is check the status field.
1405 * The status field is provided for all URBs. It is used to report
1406 * unlinked URBs, and status for all non-ISO transfers. It should not
1407 * be examined before the URB is returned to the completion handler.
1408 *
1409 * The context field is normally used to link URBs back to the relevant
1410 * driver or request state.
1411 *
1412 * When the completion callback is invoked for non-isochronous URBs, the
1413 * actual_length field tells how many bytes were transferred. This field
1414 * is updated even when the URB terminated with an error or was unlinked.
1415 *
1416 * ISO transfer status is reported in the status and actual_length fields
1417 * of the iso_frame_desc array, and the number of errors is reported in
1418 * error_count. Completion callbacks for ISO transfers will normally
1419 * (re)submit URBs to ensure a constant transfer rate.
1420 *
1421 * Note that even fields marked "public" should not be touched by the driver
1422 * when the urb is owned by the hcd, that is, since the call to
1423 * usb_submit_urb() till the entry into the completion routine.
1424 */
1425 struct urb {
1426 /* private: usb core and host controller only fields in the urb */
1427 struct kref kref; /* reference count of the URB */
1428 void *hcpriv; /* private data for host controller */
1429 atomic_t use_count; /* concurrent submissions counter */
1430 atomic_t reject; /* submissions will fail */
1431 int unlinked; /* unlink error code */
1432
1433 /* public: documented fields in the urb that can be used by drivers */
1434 struct list_head urb_list; /* list head for use by the urb's
1435 * current owner */
1436 struct list_head anchor_list; /* the URB may be anchored */
1437 struct usb_anchor *anchor;
1438 struct usb_device *dev; /* (in) pointer to associated device */
1439 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1440 unsigned int pipe; /* (in) pipe information */
1441 unsigned int stream_id; /* (in) stream ID */
1442 int status; /* (return) non-ISO status */
1443 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1444 void *transfer_buffer; /* (in) associated data buffer */
1445 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1446 struct scatterlist *sg; /* (in) scatter gather buffer list */
1447 int num_mapped_sgs; /* (internal) mapped sg entries */
1448 int num_sgs; /* (in) number of entries in the sg list */
1449 u32 transfer_buffer_length; /* (in) data buffer length */
1450 u32 actual_length; /* (return) actual transfer length */
1451 unsigned char *setup_packet; /* (in) setup packet (control only) */
1452 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1453 int start_frame; /* (modify) start frame (ISO) */
1454 int number_of_packets; /* (in) number of ISO packets */
1455 int interval; /* (modify) transfer interval
1456 * (INT/ISO) */
1457 int error_count; /* (return) number of ISO errors */
1458 void *context; /* (in) context for completion */
1459 usb_complete_t complete; /* (in) completion routine */
1460 struct usb_iso_packet_descriptor iso_frame_desc[0];
1461 /* (in) ISO ONLY */
1462 };
1463
1464 /* ----------------------------------------------------------------------- */
1465
1466 /**
1467 * usb_fill_control_urb - initializes a control urb
1468 * @urb: pointer to the urb to initialize.
1469 * @dev: pointer to the struct usb_device for this urb.
1470 * @pipe: the endpoint pipe
1471 * @setup_packet: pointer to the setup_packet buffer
1472 * @transfer_buffer: pointer to the transfer buffer
1473 * @buffer_length: length of the transfer buffer
1474 * @complete_fn: pointer to the usb_complete_t function
1475 * @context: what to set the urb context to.
1476 *
1477 * Initializes a control urb with the proper information needed to submit
1478 * it to a device.
1479 */
1480 static inline void usb_fill_control_urb(struct urb *urb,
1481 struct usb_device *dev,
1482 unsigned int pipe,
1483 unsigned char *setup_packet,
1484 void *transfer_buffer,
1485 int buffer_length,
1486 usb_complete_t complete_fn,
1487 void *context)
1488 {
1489 urb->dev = dev;
1490 urb->pipe = pipe;
1491 urb->setup_packet = setup_packet;
1492 urb->transfer_buffer = transfer_buffer;
1493 urb->transfer_buffer_length = buffer_length;
1494 urb->complete = complete_fn;
1495 urb->context = context;
1496 }
1497
1498 /**
1499 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1500 * @urb: pointer to the urb to initialize.
1501 * @dev: pointer to the struct usb_device for this urb.
1502 * @pipe: the endpoint pipe
1503 * @transfer_buffer: pointer to the transfer buffer
1504 * @buffer_length: length of the transfer buffer
1505 * @complete_fn: pointer to the usb_complete_t function
1506 * @context: what to set the urb context to.
1507 *
1508 * Initializes a bulk urb with the proper information needed to submit it
1509 * to a device.
1510 */
1511 static inline void usb_fill_bulk_urb(struct urb *urb,
1512 struct usb_device *dev,
1513 unsigned int pipe,
1514 void *transfer_buffer,
1515 int buffer_length,
1516 usb_complete_t complete_fn,
1517 void *context)
1518 {
1519 urb->dev = dev;
1520 urb->pipe = pipe;
1521 urb->transfer_buffer = transfer_buffer;
1522 urb->transfer_buffer_length = buffer_length;
1523 urb->complete = complete_fn;
1524 urb->context = context;
1525 }
1526
1527 /**
1528 * usb_fill_int_urb - macro to help initialize a interrupt urb
1529 * @urb: pointer to the urb to initialize.
1530 * @dev: pointer to the struct usb_device for this urb.
1531 * @pipe: the endpoint pipe
1532 * @transfer_buffer: pointer to the transfer buffer
1533 * @buffer_length: length of the transfer buffer
1534 * @complete_fn: pointer to the usb_complete_t function
1535 * @context: what to set the urb context to.
1536 * @interval: what to set the urb interval to, encoded like
1537 * the endpoint descriptor's bInterval value.
1538 *
1539 * Initializes a interrupt urb with the proper information needed to submit
1540 * it to a device.
1541 *
1542 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1543 * encoding of the endpoint interval, and express polling intervals in
1544 * microframes (eight per millisecond) rather than in frames (one per
1545 * millisecond).
1546 *
1547 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1548 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1549 * through to the host controller, rather than being translated into microframe
1550 * units.
1551 */
1552 static inline void usb_fill_int_urb(struct urb *urb,
1553 struct usb_device *dev,
1554 unsigned int pipe,
1555 void *transfer_buffer,
1556 int buffer_length,
1557 usb_complete_t complete_fn,
1558 void *context,
1559 int interval)
1560 {
1561 urb->dev = dev;
1562 urb->pipe = pipe;
1563 urb->transfer_buffer = transfer_buffer;
1564 urb->transfer_buffer_length = buffer_length;
1565 urb->complete = complete_fn;
1566 urb->context = context;
1567
1568 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1569 /* make sure interval is within allowed range */
1570 interval = clamp(interval, 1, 16);
1571
1572 urb->interval = 1 << (interval - 1);
1573 } else {
1574 urb->interval = interval;
1575 }
1576
1577 urb->start_frame = -1;
1578 }
1579
1580 extern void usb_init_urb(struct urb *urb);
1581 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1582 extern void usb_free_urb(struct urb *urb);
1583 #define usb_put_urb usb_free_urb
1584 extern struct urb *usb_get_urb(struct urb *urb);
1585 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1586 extern int usb_unlink_urb(struct urb *urb);
1587 extern void usb_kill_urb(struct urb *urb);
1588 extern void usb_poison_urb(struct urb *urb);
1589 extern void usb_unpoison_urb(struct urb *urb);
1590 extern void usb_block_urb(struct urb *urb);
1591 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1592 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1593 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1594 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1595 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1596 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1597 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1598 extern void usb_unanchor_urb(struct urb *urb);
1599 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1600 unsigned int timeout);
1601 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1602 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1603 extern int usb_anchor_empty(struct usb_anchor *anchor);
1604
1605 #define usb_unblock_urb usb_unpoison_urb
1606
1607 /**
1608 * usb_urb_dir_in - check if an URB describes an IN transfer
1609 * @urb: URB to be checked
1610 *
1611 * Return: 1 if @urb describes an IN transfer (device-to-host),
1612 * otherwise 0.
1613 */
1614 static inline int usb_urb_dir_in(struct urb *urb)
1615 {
1616 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1617 }
1618
1619 /**
1620 * usb_urb_dir_out - check if an URB describes an OUT transfer
1621 * @urb: URB to be checked
1622 *
1623 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1624 * otherwise 0.
1625 */
1626 static inline int usb_urb_dir_out(struct urb *urb)
1627 {
1628 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1629 }
1630
1631 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1632 gfp_t mem_flags, dma_addr_t *dma);
1633 void usb_free_coherent(struct usb_device *dev, size_t size,
1634 void *addr, dma_addr_t dma);
1635
1636 #if 0
1637 struct urb *usb_buffer_map(struct urb *urb);
1638 void usb_buffer_dmasync(struct urb *urb);
1639 void usb_buffer_unmap(struct urb *urb);
1640 #endif
1641
1642 struct scatterlist;
1643 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1644 struct scatterlist *sg, int nents);
1645 #if 0
1646 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1647 struct scatterlist *sg, int n_hw_ents);
1648 #endif
1649 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1650 struct scatterlist *sg, int n_hw_ents);
1651
1652 /*-------------------------------------------------------------------*
1653 * SYNCHRONOUS CALL SUPPORT *
1654 *-------------------------------------------------------------------*/
1655
1656 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1657 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1658 void *data, __u16 size, int timeout);
1659 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1660 void *data, int len, int *actual_length, int timeout);
1661 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1662 void *data, int len, int *actual_length,
1663 int timeout);
1664
1665 /* wrappers around usb_control_msg() for the most common standard requests */
1666 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1667 unsigned char descindex, void *buf, int size);
1668 extern int usb_get_status(struct usb_device *dev,
1669 int type, int target, void *data);
1670 extern int usb_string(struct usb_device *dev, int index,
1671 char *buf, size_t size);
1672
1673 /* wrappers that also update important state inside usbcore */
1674 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1675 extern int usb_reset_configuration(struct usb_device *dev);
1676 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1677 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1678
1679 /* this request isn't really synchronous, but it belongs with the others */
1680 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1681
1682 /* choose and set configuration for device */
1683 extern int usb_choose_configuration(struct usb_device *udev);
1684 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1685
1686 /*
1687 * timeouts, in milliseconds, used for sending/receiving control messages
1688 * they typically complete within a few frames (msec) after they're issued
1689 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1690 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1691 */
1692 #define USB_CTRL_GET_TIMEOUT 5000
1693 #define USB_CTRL_SET_TIMEOUT 5000
1694
1695
1696 /**
1697 * struct usb_sg_request - support for scatter/gather I/O
1698 * @status: zero indicates success, else negative errno
1699 * @bytes: counts bytes transferred.
1700 *
1701 * These requests are initialized using usb_sg_init(), and then are used
1702 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1703 * members of the request object aren't for driver access.
1704 *
1705 * The status and bytecount values are valid only after usb_sg_wait()
1706 * returns. If the status is zero, then the bytecount matches the total
1707 * from the request.
1708 *
1709 * After an error completion, drivers may need to clear a halt condition
1710 * on the endpoint.
1711 */
1712 struct usb_sg_request {
1713 int status;
1714 size_t bytes;
1715
1716 /* private:
1717 * members below are private to usbcore,
1718 * and are not provided for driver access!
1719 */
1720 spinlock_t lock;
1721
1722 struct usb_device *dev;
1723 int pipe;
1724
1725 int entries;
1726 struct urb **urbs;
1727
1728 int count;
1729 struct completion complete;
1730 };
1731
1732 int usb_sg_init(
1733 struct usb_sg_request *io,
1734 struct usb_device *dev,
1735 unsigned pipe,
1736 unsigned period,
1737 struct scatterlist *sg,
1738 int nents,
1739 size_t length,
1740 gfp_t mem_flags
1741 );
1742 void usb_sg_cancel(struct usb_sg_request *io);
1743 void usb_sg_wait(struct usb_sg_request *io);
1744
1745
1746 /* ----------------------------------------------------------------------- */
1747
1748 /*
1749 * For various legacy reasons, Linux has a small cookie that's paired with
1750 * a struct usb_device to identify an endpoint queue. Queue characteristics
1751 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1752 * an unsigned int encoded as:
1753 *
1754 * - direction: bit 7 (0 = Host-to-Device [Out],
1755 * 1 = Device-to-Host [In] ...
1756 * like endpoint bEndpointAddress)
1757 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1758 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1759 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1760 * 10 = control, 11 = bulk)
1761 *
1762 * Given the device address and endpoint descriptor, pipes are redundant.
1763 */
1764
1765 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1766 /* (yet ... they're the values used by usbfs) */
1767 #define PIPE_ISOCHRONOUS 0
1768 #define PIPE_INTERRUPT 1
1769 #define PIPE_CONTROL 2
1770 #define PIPE_BULK 3
1771
1772 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1773 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1774
1775 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1776 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1777
1778 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1779 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1780 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1781 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1782 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1783
1784 static inline unsigned int __create_pipe(struct usb_device *dev,
1785 unsigned int endpoint)
1786 {
1787 return (dev->devnum << 8) | (endpoint << 15);
1788 }
1789
1790 /* Create various pipes... */
1791 #define usb_sndctrlpipe(dev, endpoint) \
1792 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1793 #define usb_rcvctrlpipe(dev, endpoint) \
1794 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1795 #define usb_sndisocpipe(dev, endpoint) \
1796 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1797 #define usb_rcvisocpipe(dev, endpoint) \
1798 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1799 #define usb_sndbulkpipe(dev, endpoint) \
1800 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1801 #define usb_rcvbulkpipe(dev, endpoint) \
1802 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1803 #define usb_sndintpipe(dev, endpoint) \
1804 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1805 #define usb_rcvintpipe(dev, endpoint) \
1806 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1807
1808 static inline struct usb_host_endpoint *
1809 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1810 {
1811 struct usb_host_endpoint **eps;
1812 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1813 return eps[usb_pipeendpoint(pipe)];
1814 }
1815
1816 /*-------------------------------------------------------------------------*/
1817
1818 static inline __u16
1819 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1820 {
1821 struct usb_host_endpoint *ep;
1822 unsigned epnum = usb_pipeendpoint(pipe);
1823
1824 if (is_out) {
1825 WARN_ON(usb_pipein(pipe));
1826 ep = udev->ep_out[epnum];
1827 } else {
1828 WARN_ON(usb_pipeout(pipe));
1829 ep = udev->ep_in[epnum];
1830 }
1831 if (!ep)
1832 return 0;
1833
1834 /* NOTE: only 0x07ff bits are for packet size... */
1835 return usb_endpoint_maxp(&ep->desc);
1836 }
1837
1838 /* ----------------------------------------------------------------------- */
1839
1840 /* translate USB error codes to codes user space understands */
1841 static inline int usb_translate_errors(int error_code)
1842 {
1843 switch (error_code) {
1844 case 0:
1845 case -ENOMEM:
1846 case -ENODEV:
1847 case -EOPNOTSUPP:
1848 return error_code;
1849 default:
1850 return -EIO;
1851 }
1852 }
1853
1854 /* Events from the usb core */
1855 #define USB_DEVICE_ADD 0x0001
1856 #define USB_DEVICE_REMOVE 0x0002
1857 #define USB_BUS_ADD 0x0003
1858 #define USB_BUS_REMOVE 0x0004
1859 extern void usb_register_notify(struct notifier_block *nb);
1860 extern void usb_unregister_notify(struct notifier_block *nb);
1861
1862 /* debugfs stuff */
1863 extern struct dentry *usb_debug_root;
1864
1865 /* LED triggers */
1866 enum usb_led_event {
1867 USB_LED_EVENT_HOST = 0,
1868 USB_LED_EVENT_GADGET = 1,
1869 };
1870
1871 #ifdef CONFIG_USB_LED_TRIG
1872 extern void usb_led_activity(enum usb_led_event ev);
1873 #else
1874 static inline void usb_led_activity(enum usb_led_event ev) {}
1875 #endif
1876
1877 #endif /* __KERNEL__ */
1878
1879 #endif