]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/usb.h
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-artful-kernel.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56 * with one or more transfer descriptors (TDs) per urb
57 * @ep_dev: ep_device for sysfs info
58 * @extra: descriptors following this endpoint in the configuration
59 * @extralen: how many bytes of "extra" are valid
60 * @enabled: URBs may be submitted to this endpoint
61 * @streams: number of USB-3 streams allocated on the endpoint
62 *
63 * USB requests are always queued to a given endpoint, identified by a
64 * descriptor within an active interface in a given USB configuration.
65 */
66 struct usb_host_endpoint {
67 struct usb_endpoint_descriptor desc;
68 struct usb_ss_ep_comp_descriptor ss_ep_comp;
69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
70 struct list_head urb_list;
71 void *hcpriv;
72 struct ep_device *ep_dev; /* For sysfs info */
73
74 unsigned char *extra; /* Extra descriptors */
75 int extralen;
76 int enabled;
77 int streams;
78 };
79
80 /* host-side wrapper for one interface setting's parsed descriptors */
81 struct usb_host_interface {
82 struct usb_interface_descriptor desc;
83
84 int extralen;
85 unsigned char *extra; /* Extra descriptors */
86
87 /* array of desc.bNumEndpoints endpoints associated with this
88 * interface setting. these will be in no particular order.
89 */
90 struct usb_host_endpoint *endpoint;
91
92 char *string; /* iInterface string, if present */
93 };
94
95 enum usb_interface_condition {
96 USB_INTERFACE_UNBOUND = 0,
97 USB_INTERFACE_BINDING,
98 USB_INTERFACE_BOUND,
99 USB_INTERFACE_UNBINDING,
100 };
101
102 /**
103 * struct usb_interface - what usb device drivers talk to
104 * @altsetting: array of interface structures, one for each alternate
105 * setting that may be selected. Each one includes a set of
106 * endpoint configurations. They will be in no particular order.
107 * @cur_altsetting: the current altsetting.
108 * @num_altsetting: number of altsettings defined.
109 * @intf_assoc: interface association descriptor
110 * @minor: the minor number assigned to this interface, if this
111 * interface is bound to a driver that uses the USB major number.
112 * If this interface does not use the USB major, this field should
113 * be unused. The driver should set this value in the probe()
114 * function of the driver, after it has been assigned a minor
115 * number from the USB core by calling usb_register_dev().
116 * @condition: binding state of the interface: not bound, binding
117 * (in probe()), bound to a driver, or unbinding (in disconnect())
118 * @sysfs_files_created: sysfs attributes exist
119 * @ep_devs_created: endpoint child pseudo-devices exist
120 * @unregistering: flag set when the interface is being unregistered
121 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
122 * capability during autosuspend.
123 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
124 * has been deferred.
125 * @needs_binding: flag set when the driver should be re-probed or unbound
126 * following a reset or suspend operation it doesn't support.
127 * @authorized: This allows to (de)authorize individual interfaces instead
128 * a whole device in contrast to the device authorization.
129 * @dev: driver model's view of this device
130 * @usb_dev: if an interface is bound to the USB major, this will point
131 * to the sysfs representation for that device.
132 * @pm_usage_cnt: PM usage counter for this interface
133 * @reset_ws: Used for scheduling resets from atomic context.
134 * @resetting_device: USB core reset the device, so use alt setting 0 as
135 * current; needs bandwidth alloc after reset.
136 *
137 * USB device drivers attach to interfaces on a physical device. Each
138 * interface encapsulates a single high level function, such as feeding
139 * an audio stream to a speaker or reporting a change in a volume control.
140 * Many USB devices only have one interface. The protocol used to talk to
141 * an interface's endpoints can be defined in a usb "class" specification,
142 * or by a product's vendor. The (default) control endpoint is part of
143 * every interface, but is never listed among the interface's descriptors.
144 *
145 * The driver that is bound to the interface can use standard driver model
146 * calls such as dev_get_drvdata() on the dev member of this structure.
147 *
148 * Each interface may have alternate settings. The initial configuration
149 * of a device sets altsetting 0, but the device driver can change
150 * that setting using usb_set_interface(). Alternate settings are often
151 * used to control the use of periodic endpoints, such as by having
152 * different endpoints use different amounts of reserved USB bandwidth.
153 * All standards-conformant USB devices that use isochronous endpoints
154 * will use them in non-default settings.
155 *
156 * The USB specification says that alternate setting numbers must run from
157 * 0 to one less than the total number of alternate settings. But some
158 * devices manage to mess this up, and the structures aren't necessarily
159 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
160 * look up an alternate setting in the altsetting array based on its number.
161 */
162 struct usb_interface {
163 /* array of alternate settings for this interface,
164 * stored in no particular order */
165 struct usb_host_interface *altsetting;
166
167 struct usb_host_interface *cur_altsetting; /* the currently
168 * active alternate setting */
169 unsigned num_altsetting; /* number of alternate settings */
170
171 /* If there is an interface association descriptor then it will list
172 * the associated interfaces */
173 struct usb_interface_assoc_descriptor *intf_assoc;
174
175 int minor; /* minor number this interface is
176 * bound to */
177 enum usb_interface_condition condition; /* state of binding */
178 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
179 unsigned ep_devs_created:1; /* endpoint "devices" exist */
180 unsigned unregistering:1; /* unregistration is in progress */
181 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
182 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
183 unsigned needs_binding:1; /* needs delayed unbind/rebind */
184 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
185 unsigned authorized:1; /* used for interface authorization */
186
187 struct device dev; /* interface specific device info */
188 struct device *usb_dev;
189 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
190 struct work_struct reset_ws; /* for resets in atomic context */
191 };
192 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
193
194 static inline void *usb_get_intfdata(struct usb_interface *intf)
195 {
196 return dev_get_drvdata(&intf->dev);
197 }
198
199 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
200 {
201 dev_set_drvdata(&intf->dev, data);
202 }
203
204 struct usb_interface *usb_get_intf(struct usb_interface *intf);
205 void usb_put_intf(struct usb_interface *intf);
206
207 /* Hard limit */
208 #define USB_MAXENDPOINTS 30
209 /* this maximum is arbitrary */
210 #define USB_MAXINTERFACES 32
211 #define USB_MAXIADS (USB_MAXINTERFACES/2)
212
213 /*
214 * USB Resume Timer: Every Host controller driver should drive the resume
215 * signalling on the bus for the amount of time defined by this macro.
216 *
217 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
218 *
219 * Note that the USB Specification states we should drive resume for *at least*
220 * 20 ms, but it doesn't give an upper bound. This creates two possible
221 * situations which we want to avoid:
222 *
223 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
224 * us to fail USB Electrical Tests, thus failing Certification
225 *
226 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
227 * and while we can argue that's against the USB Specification, we don't have
228 * control over which devices a certification laboratory will be using for
229 * certification. If CertLab uses a device which was tested against Windows and
230 * that happens to have relaxed resume signalling rules, we might fall into
231 * situations where we fail interoperability and electrical tests.
232 *
233 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
234 * should cope with both LPJ calibration errors and devices not following every
235 * detail of the USB Specification.
236 */
237 #define USB_RESUME_TIMEOUT 40 /* ms */
238
239 /**
240 * struct usb_interface_cache - long-term representation of a device interface
241 * @num_altsetting: number of altsettings defined.
242 * @ref: reference counter.
243 * @altsetting: variable-length array of interface structures, one for
244 * each alternate setting that may be selected. Each one includes a
245 * set of endpoint configurations. They will be in no particular order.
246 *
247 * These structures persist for the lifetime of a usb_device, unlike
248 * struct usb_interface (which persists only as long as its configuration
249 * is installed). The altsetting arrays can be accessed through these
250 * structures at any time, permitting comparison of configurations and
251 * providing support for the /proc/bus/usb/devices pseudo-file.
252 */
253 struct usb_interface_cache {
254 unsigned num_altsetting; /* number of alternate settings */
255 struct kref ref; /* reference counter */
256
257 /* variable-length array of alternate settings for this interface,
258 * stored in no particular order */
259 struct usb_host_interface altsetting[0];
260 };
261 #define ref_to_usb_interface_cache(r) \
262 container_of(r, struct usb_interface_cache, ref)
263 #define altsetting_to_usb_interface_cache(a) \
264 container_of(a, struct usb_interface_cache, altsetting[0])
265
266 /**
267 * struct usb_host_config - representation of a device's configuration
268 * @desc: the device's configuration descriptor.
269 * @string: pointer to the cached version of the iConfiguration string, if
270 * present for this configuration.
271 * @intf_assoc: list of any interface association descriptors in this config
272 * @interface: array of pointers to usb_interface structures, one for each
273 * interface in the configuration. The number of interfaces is stored
274 * in desc.bNumInterfaces. These pointers are valid only while the
275 * the configuration is active.
276 * @intf_cache: array of pointers to usb_interface_cache structures, one
277 * for each interface in the configuration. These structures exist
278 * for the entire life of the device.
279 * @extra: pointer to buffer containing all extra descriptors associated
280 * with this configuration (those preceding the first interface
281 * descriptor).
282 * @extralen: length of the extra descriptors buffer.
283 *
284 * USB devices may have multiple configurations, but only one can be active
285 * at any time. Each encapsulates a different operational environment;
286 * for example, a dual-speed device would have separate configurations for
287 * full-speed and high-speed operation. The number of configurations
288 * available is stored in the device descriptor as bNumConfigurations.
289 *
290 * A configuration can contain multiple interfaces. Each corresponds to
291 * a different function of the USB device, and all are available whenever
292 * the configuration is active. The USB standard says that interfaces
293 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
294 * of devices get this wrong. In addition, the interface array is not
295 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
296 * look up an interface entry based on its number.
297 *
298 * Device drivers should not attempt to activate configurations. The choice
299 * of which configuration to install is a policy decision based on such
300 * considerations as available power, functionality provided, and the user's
301 * desires (expressed through userspace tools). However, drivers can call
302 * usb_reset_configuration() to reinitialize the current configuration and
303 * all its interfaces.
304 */
305 struct usb_host_config {
306 struct usb_config_descriptor desc;
307
308 char *string; /* iConfiguration string, if present */
309
310 /* List of any Interface Association Descriptors in this
311 * configuration. */
312 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
313
314 /* the interfaces associated with this configuration,
315 * stored in no particular order */
316 struct usb_interface *interface[USB_MAXINTERFACES];
317
318 /* Interface information available even when this is not the
319 * active configuration */
320 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
321
322 unsigned char *extra; /* Extra descriptors */
323 int extralen;
324 };
325
326 /* USB2.0 and USB3.0 device BOS descriptor set */
327 struct usb_host_bos {
328 struct usb_bos_descriptor *desc;
329
330 /* wireless cap descriptor is handled by wusb */
331 struct usb_ext_cap_descriptor *ext_cap;
332 struct usb_ss_cap_descriptor *ss_cap;
333 struct usb_ssp_cap_descriptor *ssp_cap;
334 struct usb_ss_container_id_descriptor *ss_id;
335 struct usb_ptm_cap_descriptor *ptm_cap;
336 };
337
338 int __usb_get_extra_descriptor(char *buffer, unsigned size,
339 unsigned char type, void **ptr);
340 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
341 __usb_get_extra_descriptor((ifpoint)->extra, \
342 (ifpoint)->extralen, \
343 type, (void **)ptr)
344
345 /* ----------------------------------------------------------------------- */
346
347 /* USB device number allocation bitmap */
348 struct usb_devmap {
349 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
350 };
351
352 /*
353 * Allocated per bus (tree of devices) we have:
354 */
355 struct usb_bus {
356 struct device *controller; /* host/master side hardware */
357 int busnum; /* Bus number (in order of reg) */
358 const char *bus_name; /* stable id (PCI slot_name etc) */
359 u8 uses_dma; /* Does the host controller use DMA? */
360 u8 uses_pio_for_control; /*
361 * Does the host controller use PIO
362 * for control transfers?
363 */
364 u8 otg_port; /* 0, or number of OTG/HNP port */
365 unsigned is_b_host:1; /* true during some HNP roleswitches */
366 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
367 unsigned no_stop_on_short:1; /*
368 * Quirk: some controllers don't stop
369 * the ep queue on a short transfer
370 * with the URB_SHORT_NOT_OK flag set.
371 */
372 unsigned no_sg_constraint:1; /* no sg constraint */
373 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
374
375 int devnum_next; /* Next open device number in
376 * round-robin allocation */
377
378 struct usb_devmap devmap; /* device address allocation map */
379 struct usb_device *root_hub; /* Root hub */
380 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
381
382 struct mutex usb_address0_mutex; /* unaddressed device mutex */
383
384 int bandwidth_allocated; /* on this bus: how much of the time
385 * reserved for periodic (intr/iso)
386 * requests is used, on average?
387 * Units: microseconds/frame.
388 * Limits: Full/low speed reserve 90%,
389 * while high speed reserves 80%.
390 */
391 int bandwidth_int_reqs; /* number of Interrupt requests */
392 int bandwidth_isoc_reqs; /* number of Isoc. requests */
393
394 unsigned resuming_ports; /* bit array: resuming root-hub ports */
395
396 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
397 struct mon_bus *mon_bus; /* non-null when associated */
398 int monitored; /* non-zero when monitored */
399 #endif
400 };
401
402 struct usb_dev_state;
403
404 /* ----------------------------------------------------------------------- */
405
406 struct usb_tt;
407
408 enum usb_device_removable {
409 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
410 USB_DEVICE_REMOVABLE,
411 USB_DEVICE_FIXED,
412 };
413
414 enum usb_port_connect_type {
415 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
416 USB_PORT_CONNECT_TYPE_HOT_PLUG,
417 USB_PORT_CONNECT_TYPE_HARD_WIRED,
418 USB_PORT_NOT_USED,
419 };
420
421 /*
422 * USB 2.0 Link Power Management (LPM) parameters.
423 */
424 struct usb2_lpm_parameters {
425 /* Best effort service latency indicate how long the host will drive
426 * resume on an exit from L1.
427 */
428 unsigned int besl;
429
430 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
431 * When the timer counts to zero, the parent hub will initiate a LPM
432 * transition to L1.
433 */
434 int timeout;
435 };
436
437 /*
438 * USB 3.0 Link Power Management (LPM) parameters.
439 *
440 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
441 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
442 * All three are stored in nanoseconds.
443 */
444 struct usb3_lpm_parameters {
445 /*
446 * Maximum exit latency (MEL) for the host to send a packet to the
447 * device (either a Ping for isoc endpoints, or a data packet for
448 * interrupt endpoints), the hubs to decode the packet, and for all hubs
449 * in the path to transition the links to U0.
450 */
451 unsigned int mel;
452 /*
453 * Maximum exit latency for a device-initiated LPM transition to bring
454 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
455 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
456 */
457 unsigned int pel;
458
459 /*
460 * The System Exit Latency (SEL) includes PEL, and three other
461 * latencies. After a device initiates a U0 transition, it will take
462 * some time from when the device sends the ERDY to when it will finally
463 * receive the data packet. Basically, SEL should be the worse-case
464 * latency from when a device starts initiating a U0 transition to when
465 * it will get data.
466 */
467 unsigned int sel;
468 /*
469 * The idle timeout value that is currently programmed into the parent
470 * hub for this device. When the timer counts to zero, the parent hub
471 * will initiate an LPM transition to either U1 or U2.
472 */
473 int timeout;
474 };
475
476 /**
477 * struct usb_device - kernel's representation of a USB device
478 * @devnum: device number; address on a USB bus
479 * @devpath: device ID string for use in messages (e.g., /port/...)
480 * @route: tree topology hex string for use with xHCI
481 * @state: device state: configured, not attached, etc.
482 * @speed: device speed: high/full/low (or error)
483 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
484 * @ttport: device port on that tt hub
485 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
486 * @parent: our hub, unless we're the root
487 * @bus: bus we're part of
488 * @ep0: endpoint 0 data (default control pipe)
489 * @dev: generic device interface
490 * @descriptor: USB device descriptor
491 * @bos: USB device BOS descriptor set
492 * @config: all of the device's configs
493 * @actconfig: the active configuration
494 * @ep_in: array of IN endpoints
495 * @ep_out: array of OUT endpoints
496 * @rawdescriptors: raw descriptors for each config
497 * @bus_mA: Current available from the bus
498 * @portnum: parent port number (origin 1)
499 * @level: number of USB hub ancestors
500 * @can_submit: URBs may be submitted
501 * @persist_enabled: USB_PERSIST enabled for this device
502 * @have_langid: whether string_langid is valid
503 * @authorized: policy has said we can use it;
504 * (user space) policy determines if we authorize this device to be
505 * used or not. By default, wired USB devices are authorized.
506 * WUSB devices are not, until we authorize them from user space.
507 * FIXME -- complete doc
508 * @authenticated: Crypto authentication passed
509 * @wusb: device is Wireless USB
510 * @lpm_capable: device supports LPM
511 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
512 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
513 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
514 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
515 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
516 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
517 * @string_langid: language ID for strings
518 * @product: iProduct string, if present (static)
519 * @manufacturer: iManufacturer string, if present (static)
520 * @serial: iSerialNumber string, if present (static)
521 * @filelist: usbfs files that are open to this device
522 * @maxchild: number of ports if hub
523 * @quirks: quirks of the whole device
524 * @urbnum: number of URBs submitted for the whole device
525 * @active_duration: total time device is not suspended
526 * @connect_time: time device was first connected
527 * @do_remote_wakeup: remote wakeup should be enabled
528 * @reset_resume: needs reset instead of resume
529 * @port_is_suspended: the upstream port is suspended (L2 or U3)
530 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
531 * specific data for the device.
532 * @slot_id: Slot ID assigned by xHCI
533 * @removable: Device can be physically removed from this port
534 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
535 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
536 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
537 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
538 * to keep track of the number of functions that require USB 3.0 Link Power
539 * Management to be disabled for this usb_device. This count should only
540 * be manipulated by those functions, with the bandwidth_mutex is held.
541 *
542 * Notes:
543 * Usbcore drivers should not set usbdev->state directly. Instead use
544 * usb_set_device_state().
545 */
546 struct usb_device {
547 int devnum;
548 char devpath[16];
549 u32 route;
550 enum usb_device_state state;
551 enum usb_device_speed speed;
552
553 struct usb_tt *tt;
554 int ttport;
555
556 unsigned int toggle[2];
557
558 struct usb_device *parent;
559 struct usb_bus *bus;
560 struct usb_host_endpoint ep0;
561
562 struct device dev;
563
564 struct usb_device_descriptor descriptor;
565 struct usb_host_bos *bos;
566 struct usb_host_config *config;
567
568 struct usb_host_config *actconfig;
569 struct usb_host_endpoint *ep_in[16];
570 struct usb_host_endpoint *ep_out[16];
571
572 char **rawdescriptors;
573
574 unsigned short bus_mA;
575 u8 portnum;
576 u8 level;
577
578 unsigned can_submit:1;
579 unsigned persist_enabled:1;
580 unsigned have_langid:1;
581 unsigned authorized:1;
582 unsigned authenticated:1;
583 unsigned wusb:1;
584 unsigned lpm_capable:1;
585 unsigned usb2_hw_lpm_capable:1;
586 unsigned usb2_hw_lpm_besl_capable:1;
587 unsigned usb2_hw_lpm_enabled:1;
588 unsigned usb2_hw_lpm_allowed:1;
589 unsigned usb3_lpm_u1_enabled:1;
590 unsigned usb3_lpm_u2_enabled:1;
591 int string_langid;
592
593 /* static strings from the device */
594 char *product;
595 char *manufacturer;
596 char *serial;
597
598 struct list_head filelist;
599
600 int maxchild;
601
602 u32 quirks;
603 atomic_t urbnum;
604
605 unsigned long active_duration;
606
607 #ifdef CONFIG_PM
608 unsigned long connect_time;
609
610 unsigned do_remote_wakeup:1;
611 unsigned reset_resume:1;
612 unsigned port_is_suspended:1;
613 #endif
614 struct wusb_dev *wusb_dev;
615 int slot_id;
616 enum usb_device_removable removable;
617 struct usb2_lpm_parameters l1_params;
618 struct usb3_lpm_parameters u1_params;
619 struct usb3_lpm_parameters u2_params;
620 unsigned lpm_disable_count;
621 };
622 #define to_usb_device(d) container_of(d, struct usb_device, dev)
623
624 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
625 {
626 return to_usb_device(intf->dev.parent);
627 }
628
629 extern struct usb_device *usb_get_dev(struct usb_device *dev);
630 extern void usb_put_dev(struct usb_device *dev);
631 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
632 int port1);
633
634 /**
635 * usb_hub_for_each_child - iterate over all child devices on the hub
636 * @hdev: USB device belonging to the usb hub
637 * @port1: portnum associated with child device
638 * @child: child device pointer
639 */
640 #define usb_hub_for_each_child(hdev, port1, child) \
641 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
642 port1 <= hdev->maxchild; \
643 child = usb_hub_find_child(hdev, ++port1)) \
644 if (!child) continue; else
645
646 /* USB device locking */
647 #define usb_lock_device(udev) device_lock(&(udev)->dev)
648 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
649 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
650 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
651 extern int usb_lock_device_for_reset(struct usb_device *udev,
652 const struct usb_interface *iface);
653
654 /* USB port reset for device reinitialization */
655 extern int usb_reset_device(struct usb_device *dev);
656 extern void usb_queue_reset_device(struct usb_interface *dev);
657
658 #ifdef CONFIG_ACPI
659 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
660 bool enable);
661 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
662 #else
663 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
664 bool enable) { return 0; }
665 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
666 { return true; }
667 #endif
668
669 /* USB autosuspend and autoresume */
670 #ifdef CONFIG_PM
671 extern void usb_enable_autosuspend(struct usb_device *udev);
672 extern void usb_disable_autosuspend(struct usb_device *udev);
673
674 extern int usb_autopm_get_interface(struct usb_interface *intf);
675 extern void usb_autopm_put_interface(struct usb_interface *intf);
676 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
677 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
678 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
679 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
680
681 static inline void usb_mark_last_busy(struct usb_device *udev)
682 {
683 pm_runtime_mark_last_busy(&udev->dev);
684 }
685
686 #else
687
688 static inline int usb_enable_autosuspend(struct usb_device *udev)
689 { return 0; }
690 static inline int usb_disable_autosuspend(struct usb_device *udev)
691 { return 0; }
692
693 static inline int usb_autopm_get_interface(struct usb_interface *intf)
694 { return 0; }
695 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
696 { return 0; }
697
698 static inline void usb_autopm_put_interface(struct usb_interface *intf)
699 { }
700 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
701 { }
702 static inline void usb_autopm_get_interface_no_resume(
703 struct usb_interface *intf)
704 { }
705 static inline void usb_autopm_put_interface_no_suspend(
706 struct usb_interface *intf)
707 { }
708 static inline void usb_mark_last_busy(struct usb_device *udev)
709 { }
710 #endif
711
712 extern int usb_disable_lpm(struct usb_device *udev);
713 extern void usb_enable_lpm(struct usb_device *udev);
714 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
715 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
716 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
717
718 extern int usb_disable_ltm(struct usb_device *udev);
719 extern void usb_enable_ltm(struct usb_device *udev);
720
721 static inline bool usb_device_supports_ltm(struct usb_device *udev)
722 {
723 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
724 return false;
725 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
726 }
727
728 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
729 {
730 return udev && udev->bus && udev->bus->no_sg_constraint;
731 }
732
733
734 /*-------------------------------------------------------------------------*/
735
736 /* for drivers using iso endpoints */
737 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
738
739 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
740 extern int usb_alloc_streams(struct usb_interface *interface,
741 struct usb_host_endpoint **eps, unsigned int num_eps,
742 unsigned int num_streams, gfp_t mem_flags);
743
744 /* Reverts a group of bulk endpoints back to not using stream IDs. */
745 extern int usb_free_streams(struct usb_interface *interface,
746 struct usb_host_endpoint **eps, unsigned int num_eps,
747 gfp_t mem_flags);
748
749 /* used these for multi-interface device registration */
750 extern int usb_driver_claim_interface(struct usb_driver *driver,
751 struct usb_interface *iface, void *priv);
752
753 /**
754 * usb_interface_claimed - returns true iff an interface is claimed
755 * @iface: the interface being checked
756 *
757 * Return: %true (nonzero) iff the interface is claimed, else %false
758 * (zero).
759 *
760 * Note:
761 * Callers must own the driver model's usb bus readlock. So driver
762 * probe() entries don't need extra locking, but other call contexts
763 * may need to explicitly claim that lock.
764 *
765 */
766 static inline int usb_interface_claimed(struct usb_interface *iface)
767 {
768 return (iface->dev.driver != NULL);
769 }
770
771 extern void usb_driver_release_interface(struct usb_driver *driver,
772 struct usb_interface *iface);
773 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
774 const struct usb_device_id *id);
775 extern int usb_match_one_id(struct usb_interface *interface,
776 const struct usb_device_id *id);
777
778 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
779 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
780 int minor);
781 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
782 unsigned ifnum);
783 extern struct usb_host_interface *usb_altnum_to_altsetting(
784 const struct usb_interface *intf, unsigned int altnum);
785 extern struct usb_host_interface *usb_find_alt_setting(
786 struct usb_host_config *config,
787 unsigned int iface_num,
788 unsigned int alt_num);
789
790 /* port claiming functions */
791 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
792 struct usb_dev_state *owner);
793 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
794 struct usb_dev_state *owner);
795
796 /**
797 * usb_make_path - returns stable device path in the usb tree
798 * @dev: the device whose path is being constructed
799 * @buf: where to put the string
800 * @size: how big is "buf"?
801 *
802 * Return: Length of the string (> 0) or negative if size was too small.
803 *
804 * Note:
805 * This identifier is intended to be "stable", reflecting physical paths in
806 * hardware such as physical bus addresses for host controllers or ports on
807 * USB hubs. That makes it stay the same until systems are physically
808 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
809 * controllers. Adding and removing devices, including virtual root hubs
810 * in host controller driver modules, does not change these path identifiers;
811 * neither does rebooting or re-enumerating. These are more useful identifiers
812 * than changeable ("unstable") ones like bus numbers or device addresses.
813 *
814 * With a partial exception for devices connected to USB 2.0 root hubs, these
815 * identifiers are also predictable. So long as the device tree isn't changed,
816 * plugging any USB device into a given hub port always gives it the same path.
817 * Because of the use of "companion" controllers, devices connected to ports on
818 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
819 * high speed, and a different one if they are full or low speed.
820 */
821 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
822 {
823 int actual;
824 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
825 dev->devpath);
826 return (actual >= (int)size) ? -1 : actual;
827 }
828
829 /*-------------------------------------------------------------------------*/
830
831 #define USB_DEVICE_ID_MATCH_DEVICE \
832 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
833 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
834 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
835 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
836 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
837 #define USB_DEVICE_ID_MATCH_DEV_INFO \
838 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
839 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
840 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
841 #define USB_DEVICE_ID_MATCH_INT_INFO \
842 (USB_DEVICE_ID_MATCH_INT_CLASS | \
843 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
844 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
845
846 /**
847 * USB_DEVICE - macro used to describe a specific usb device
848 * @vend: the 16 bit USB Vendor ID
849 * @prod: the 16 bit USB Product ID
850 *
851 * This macro is used to create a struct usb_device_id that matches a
852 * specific device.
853 */
854 #define USB_DEVICE(vend, prod) \
855 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
856 .idVendor = (vend), \
857 .idProduct = (prod)
858 /**
859 * USB_DEVICE_VER - describe a specific usb device with a version range
860 * @vend: the 16 bit USB Vendor ID
861 * @prod: the 16 bit USB Product ID
862 * @lo: the bcdDevice_lo value
863 * @hi: the bcdDevice_hi value
864 *
865 * This macro is used to create a struct usb_device_id that matches a
866 * specific device, with a version range.
867 */
868 #define USB_DEVICE_VER(vend, prod, lo, hi) \
869 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
870 .idVendor = (vend), \
871 .idProduct = (prod), \
872 .bcdDevice_lo = (lo), \
873 .bcdDevice_hi = (hi)
874
875 /**
876 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
877 * @vend: the 16 bit USB Vendor ID
878 * @prod: the 16 bit USB Product ID
879 * @cl: bInterfaceClass value
880 *
881 * This macro is used to create a struct usb_device_id that matches a
882 * specific interface class of devices.
883 */
884 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
885 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
886 USB_DEVICE_ID_MATCH_INT_CLASS, \
887 .idVendor = (vend), \
888 .idProduct = (prod), \
889 .bInterfaceClass = (cl)
890
891 /**
892 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
893 * @vend: the 16 bit USB Vendor ID
894 * @prod: the 16 bit USB Product ID
895 * @pr: bInterfaceProtocol value
896 *
897 * This macro is used to create a struct usb_device_id that matches a
898 * specific interface protocol of devices.
899 */
900 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
901 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
902 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
903 .idVendor = (vend), \
904 .idProduct = (prod), \
905 .bInterfaceProtocol = (pr)
906
907 /**
908 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
909 * @vend: the 16 bit USB Vendor ID
910 * @prod: the 16 bit USB Product ID
911 * @num: bInterfaceNumber value
912 *
913 * This macro is used to create a struct usb_device_id that matches a
914 * specific interface number of devices.
915 */
916 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
917 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
918 USB_DEVICE_ID_MATCH_INT_NUMBER, \
919 .idVendor = (vend), \
920 .idProduct = (prod), \
921 .bInterfaceNumber = (num)
922
923 /**
924 * USB_DEVICE_INFO - macro used to describe a class of usb devices
925 * @cl: bDeviceClass value
926 * @sc: bDeviceSubClass value
927 * @pr: bDeviceProtocol value
928 *
929 * This macro is used to create a struct usb_device_id that matches a
930 * specific class of devices.
931 */
932 #define USB_DEVICE_INFO(cl, sc, pr) \
933 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
934 .bDeviceClass = (cl), \
935 .bDeviceSubClass = (sc), \
936 .bDeviceProtocol = (pr)
937
938 /**
939 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
940 * @cl: bInterfaceClass value
941 * @sc: bInterfaceSubClass value
942 * @pr: bInterfaceProtocol value
943 *
944 * This macro is used to create a struct usb_device_id that matches a
945 * specific class of interfaces.
946 */
947 #define USB_INTERFACE_INFO(cl, sc, pr) \
948 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
949 .bInterfaceClass = (cl), \
950 .bInterfaceSubClass = (sc), \
951 .bInterfaceProtocol = (pr)
952
953 /**
954 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
955 * @vend: the 16 bit USB Vendor ID
956 * @prod: the 16 bit USB Product ID
957 * @cl: bInterfaceClass value
958 * @sc: bInterfaceSubClass value
959 * @pr: bInterfaceProtocol value
960 *
961 * This macro is used to create a struct usb_device_id that matches a
962 * specific device with a specific class of interfaces.
963 *
964 * This is especially useful when explicitly matching devices that have
965 * vendor specific bDeviceClass values, but standards-compliant interfaces.
966 */
967 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
968 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
969 | USB_DEVICE_ID_MATCH_DEVICE, \
970 .idVendor = (vend), \
971 .idProduct = (prod), \
972 .bInterfaceClass = (cl), \
973 .bInterfaceSubClass = (sc), \
974 .bInterfaceProtocol = (pr)
975
976 /**
977 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
978 * @vend: the 16 bit USB Vendor ID
979 * @cl: bInterfaceClass value
980 * @sc: bInterfaceSubClass value
981 * @pr: bInterfaceProtocol value
982 *
983 * This macro is used to create a struct usb_device_id that matches a
984 * specific vendor with a specific class of interfaces.
985 *
986 * This is especially useful when explicitly matching devices that have
987 * vendor specific bDeviceClass values, but standards-compliant interfaces.
988 */
989 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
990 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
991 | USB_DEVICE_ID_MATCH_VENDOR, \
992 .idVendor = (vend), \
993 .bInterfaceClass = (cl), \
994 .bInterfaceSubClass = (sc), \
995 .bInterfaceProtocol = (pr)
996
997 /* ----------------------------------------------------------------------- */
998
999 /* Stuff for dynamic usb ids */
1000 struct usb_dynids {
1001 spinlock_t lock;
1002 struct list_head list;
1003 };
1004
1005 struct usb_dynid {
1006 struct list_head node;
1007 struct usb_device_id id;
1008 };
1009
1010 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1011 const struct usb_device_id *id_table,
1012 struct device_driver *driver,
1013 const char *buf, size_t count);
1014
1015 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1016
1017 /**
1018 * struct usbdrv_wrap - wrapper for driver-model structure
1019 * @driver: The driver-model core driver structure.
1020 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1021 */
1022 struct usbdrv_wrap {
1023 struct device_driver driver;
1024 int for_devices;
1025 };
1026
1027 /**
1028 * struct usb_driver - identifies USB interface driver to usbcore
1029 * @name: The driver name should be unique among USB drivers,
1030 * and should normally be the same as the module name.
1031 * @probe: Called to see if the driver is willing to manage a particular
1032 * interface on a device. If it is, probe returns zero and uses
1033 * usb_set_intfdata() to associate driver-specific data with the
1034 * interface. It may also use usb_set_interface() to specify the
1035 * appropriate altsetting. If unwilling to manage the interface,
1036 * return -ENODEV, if genuine IO errors occurred, an appropriate
1037 * negative errno value.
1038 * @disconnect: Called when the interface is no longer accessible, usually
1039 * because its device has been (or is being) disconnected or the
1040 * driver module is being unloaded.
1041 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1042 * the "usbfs" filesystem. This lets devices provide ways to
1043 * expose information to user space regardless of where they
1044 * do (or don't) show up otherwise in the filesystem.
1045 * @suspend: Called when the device is going to be suspended by the
1046 * system either from system sleep or runtime suspend context. The
1047 * return value will be ignored in system sleep context, so do NOT
1048 * try to continue using the device if suspend fails in this case.
1049 * Instead, let the resume or reset-resume routine recover from
1050 * the failure.
1051 * @resume: Called when the device is being resumed by the system.
1052 * @reset_resume: Called when the suspended device has been reset instead
1053 * of being resumed.
1054 * @pre_reset: Called by usb_reset_device() when the device is about to be
1055 * reset. This routine must not return until the driver has no active
1056 * URBs for the device, and no more URBs may be submitted until the
1057 * post_reset method is called.
1058 * @post_reset: Called by usb_reset_device() after the device
1059 * has been reset
1060 * @id_table: USB drivers use ID table to support hotplugging.
1061 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1062 * or your driver's probe function will never get called.
1063 * @dynids: used internally to hold the list of dynamically added device
1064 * ids for this driver.
1065 * @drvwrap: Driver-model core structure wrapper.
1066 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1067 * added to this driver by preventing the sysfs file from being created.
1068 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1069 * for interfaces bound to this driver.
1070 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1071 * endpoints before calling the driver's disconnect method.
1072 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1073 * to initiate lower power link state transitions when an idle timeout
1074 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1075 *
1076 * USB interface drivers must provide a name, probe() and disconnect()
1077 * methods, and an id_table. Other driver fields are optional.
1078 *
1079 * The id_table is used in hotplugging. It holds a set of descriptors,
1080 * and specialized data may be associated with each entry. That table
1081 * is used by both user and kernel mode hotplugging support.
1082 *
1083 * The probe() and disconnect() methods are called in a context where
1084 * they can sleep, but they should avoid abusing the privilege. Most
1085 * work to connect to a device should be done when the device is opened,
1086 * and undone at the last close. The disconnect code needs to address
1087 * concurrency issues with respect to open() and close() methods, as
1088 * well as forcing all pending I/O requests to complete (by unlinking
1089 * them as necessary, and blocking until the unlinks complete).
1090 */
1091 struct usb_driver {
1092 const char *name;
1093
1094 int (*probe) (struct usb_interface *intf,
1095 const struct usb_device_id *id);
1096
1097 void (*disconnect) (struct usb_interface *intf);
1098
1099 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1100 void *buf);
1101
1102 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1103 int (*resume) (struct usb_interface *intf);
1104 int (*reset_resume)(struct usb_interface *intf);
1105
1106 int (*pre_reset)(struct usb_interface *intf);
1107 int (*post_reset)(struct usb_interface *intf);
1108
1109 const struct usb_device_id *id_table;
1110
1111 struct usb_dynids dynids;
1112 struct usbdrv_wrap drvwrap;
1113 unsigned int no_dynamic_id:1;
1114 unsigned int supports_autosuspend:1;
1115 unsigned int disable_hub_initiated_lpm:1;
1116 unsigned int soft_unbind:1;
1117 };
1118 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1119
1120 /**
1121 * struct usb_device_driver - identifies USB device driver to usbcore
1122 * @name: The driver name should be unique among USB drivers,
1123 * and should normally be the same as the module name.
1124 * @probe: Called to see if the driver is willing to manage a particular
1125 * device. If it is, probe returns zero and uses dev_set_drvdata()
1126 * to associate driver-specific data with the device. If unwilling
1127 * to manage the device, return a negative errno value.
1128 * @disconnect: Called when the device is no longer accessible, usually
1129 * because it has been (or is being) disconnected or the driver's
1130 * module is being unloaded.
1131 * @suspend: Called when the device is going to be suspended by the system.
1132 * @resume: Called when the device is being resumed by the system.
1133 * @drvwrap: Driver-model core structure wrapper.
1134 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1135 * for devices bound to this driver.
1136 *
1137 * USB drivers must provide all the fields listed above except drvwrap.
1138 */
1139 struct usb_device_driver {
1140 const char *name;
1141
1142 int (*probe) (struct usb_device *udev);
1143 void (*disconnect) (struct usb_device *udev);
1144
1145 int (*suspend) (struct usb_device *udev, pm_message_t message);
1146 int (*resume) (struct usb_device *udev, pm_message_t message);
1147 struct usbdrv_wrap drvwrap;
1148 unsigned int supports_autosuspend:1;
1149 };
1150 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1151 drvwrap.driver)
1152
1153 extern struct bus_type usb_bus_type;
1154
1155 /**
1156 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1157 * @name: the usb class device name for this driver. Will show up in sysfs.
1158 * @devnode: Callback to provide a naming hint for a possible
1159 * device node to create.
1160 * @fops: pointer to the struct file_operations of this driver.
1161 * @minor_base: the start of the minor range for this driver.
1162 *
1163 * This structure is used for the usb_register_dev() and
1164 * usb_unregister_dev() functions, to consolidate a number of the
1165 * parameters used for them.
1166 */
1167 struct usb_class_driver {
1168 char *name;
1169 char *(*devnode)(struct device *dev, umode_t *mode);
1170 const struct file_operations *fops;
1171 int minor_base;
1172 };
1173
1174 /*
1175 * use these in module_init()/module_exit()
1176 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1177 */
1178 extern int usb_register_driver(struct usb_driver *, struct module *,
1179 const char *);
1180
1181 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1182 #define usb_register(driver) \
1183 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1184
1185 extern void usb_deregister(struct usb_driver *);
1186
1187 /**
1188 * module_usb_driver() - Helper macro for registering a USB driver
1189 * @__usb_driver: usb_driver struct
1190 *
1191 * Helper macro for USB drivers which do not do anything special in module
1192 * init/exit. This eliminates a lot of boilerplate. Each module may only
1193 * use this macro once, and calling it replaces module_init() and module_exit()
1194 */
1195 #define module_usb_driver(__usb_driver) \
1196 module_driver(__usb_driver, usb_register, \
1197 usb_deregister)
1198
1199 extern int usb_register_device_driver(struct usb_device_driver *,
1200 struct module *);
1201 extern void usb_deregister_device_driver(struct usb_device_driver *);
1202
1203 extern int usb_register_dev(struct usb_interface *intf,
1204 struct usb_class_driver *class_driver);
1205 extern void usb_deregister_dev(struct usb_interface *intf,
1206 struct usb_class_driver *class_driver);
1207
1208 extern int usb_disabled(void);
1209
1210 /* ----------------------------------------------------------------------- */
1211
1212 /*
1213 * URB support, for asynchronous request completions
1214 */
1215
1216 /*
1217 * urb->transfer_flags:
1218 *
1219 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1220 */
1221 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1222 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1223 * slot in the schedule */
1224 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1225 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1226 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1227 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1228 * needed */
1229 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1230
1231 /* The following flags are used internally by usbcore and HCDs */
1232 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1233 #define URB_DIR_OUT 0
1234 #define URB_DIR_MASK URB_DIR_IN
1235
1236 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1237 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1238 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1239 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1240 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1241 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1242 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1243 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1244
1245 struct usb_iso_packet_descriptor {
1246 unsigned int offset;
1247 unsigned int length; /* expected length */
1248 unsigned int actual_length;
1249 int status;
1250 };
1251
1252 struct urb;
1253
1254 struct usb_anchor {
1255 struct list_head urb_list;
1256 wait_queue_head_t wait;
1257 spinlock_t lock;
1258 atomic_t suspend_wakeups;
1259 unsigned int poisoned:1;
1260 };
1261
1262 static inline void init_usb_anchor(struct usb_anchor *anchor)
1263 {
1264 memset(anchor, 0, sizeof(*anchor));
1265 INIT_LIST_HEAD(&anchor->urb_list);
1266 init_waitqueue_head(&anchor->wait);
1267 spin_lock_init(&anchor->lock);
1268 }
1269
1270 typedef void (*usb_complete_t)(struct urb *);
1271
1272 /**
1273 * struct urb - USB Request Block
1274 * @urb_list: For use by current owner of the URB.
1275 * @anchor_list: membership in the list of an anchor
1276 * @anchor: to anchor URBs to a common mooring
1277 * @ep: Points to the endpoint's data structure. Will eventually
1278 * replace @pipe.
1279 * @pipe: Holds endpoint number, direction, type, and more.
1280 * Create these values with the eight macros available;
1281 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1282 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1283 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1284 * numbers range from zero to fifteen. Note that "in" endpoint two
1285 * is a different endpoint (and pipe) from "out" endpoint two.
1286 * The current configuration controls the existence, type, and
1287 * maximum packet size of any given endpoint.
1288 * @stream_id: the endpoint's stream ID for bulk streams
1289 * @dev: Identifies the USB device to perform the request.
1290 * @status: This is read in non-iso completion functions to get the
1291 * status of the particular request. ISO requests only use it
1292 * to tell whether the URB was unlinked; detailed status for
1293 * each frame is in the fields of the iso_frame-desc.
1294 * @transfer_flags: A variety of flags may be used to affect how URB
1295 * submission, unlinking, or operation are handled. Different
1296 * kinds of URB can use different flags.
1297 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1298 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1299 * (however, do not leave garbage in transfer_buffer even then).
1300 * This buffer must be suitable for DMA; allocate it with
1301 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1302 * of this buffer will be modified. This buffer is used for the data
1303 * stage of control transfers.
1304 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1305 * the device driver is saying that it provided this DMA address,
1306 * which the host controller driver should use in preference to the
1307 * transfer_buffer.
1308 * @sg: scatter gather buffer list, the buffer size of each element in
1309 * the list (except the last) must be divisible by the endpoint's
1310 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1311 * @num_mapped_sgs: (internal) number of mapped sg entries
1312 * @num_sgs: number of entries in the sg list
1313 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1314 * be broken up into chunks according to the current maximum packet
1315 * size for the endpoint, which is a function of the configuration
1316 * and is encoded in the pipe. When the length is zero, neither
1317 * transfer_buffer nor transfer_dma is used.
1318 * @actual_length: This is read in non-iso completion functions, and
1319 * it tells how many bytes (out of transfer_buffer_length) were
1320 * transferred. It will normally be the same as requested, unless
1321 * either an error was reported or a short read was performed.
1322 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1323 * short reads be reported as errors.
1324 * @setup_packet: Only used for control transfers, this points to eight bytes
1325 * of setup data. Control transfers always start by sending this data
1326 * to the device. Then transfer_buffer is read or written, if needed.
1327 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1328 * this field; setup_packet must point to a valid buffer.
1329 * @start_frame: Returns the initial frame for isochronous transfers.
1330 * @number_of_packets: Lists the number of ISO transfer buffers.
1331 * @interval: Specifies the polling interval for interrupt or isochronous
1332 * transfers. The units are frames (milliseconds) for full and low
1333 * speed devices, and microframes (1/8 millisecond) for highspeed
1334 * and SuperSpeed devices.
1335 * @error_count: Returns the number of ISO transfers that reported errors.
1336 * @context: For use in completion functions. This normally points to
1337 * request-specific driver context.
1338 * @complete: Completion handler. This URB is passed as the parameter to the
1339 * completion function. The completion function may then do what
1340 * it likes with the URB, including resubmitting or freeing it.
1341 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1342 * collect the transfer status for each buffer.
1343 *
1344 * This structure identifies USB transfer requests. URBs must be allocated by
1345 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1346 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1347 * are submitted using usb_submit_urb(), and pending requests may be canceled
1348 * using usb_unlink_urb() or usb_kill_urb().
1349 *
1350 * Data Transfer Buffers:
1351 *
1352 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1353 * taken from the general page pool. That is provided by transfer_buffer
1354 * (control requests also use setup_packet), and host controller drivers
1355 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1356 * mapping operations can be expensive on some platforms (perhaps using a dma
1357 * bounce buffer or talking to an IOMMU),
1358 * although they're cheap on commodity x86 and ppc hardware.
1359 *
1360 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1361 * which tells the host controller driver that no such mapping is needed for
1362 * the transfer_buffer since
1363 * the device driver is DMA-aware. For example, a device driver might
1364 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1365 * When this transfer flag is provided, host controller drivers will
1366 * attempt to use the dma address found in the transfer_dma
1367 * field rather than determining a dma address themselves.
1368 *
1369 * Note that transfer_buffer must still be set if the controller
1370 * does not support DMA (as indicated by bus.uses_dma) and when talking
1371 * to root hub. If you have to trasfer between highmem zone and the device
1372 * on such controller, create a bounce buffer or bail out with an error.
1373 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1374 * capable, assign NULL to it, so that usbmon knows not to use the value.
1375 * The setup_packet must always be set, so it cannot be located in highmem.
1376 *
1377 * Initialization:
1378 *
1379 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1380 * zero), and complete fields. All URBs must also initialize
1381 * transfer_buffer and transfer_buffer_length. They may provide the
1382 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1383 * to be treated as errors; that flag is invalid for write requests.
1384 *
1385 * Bulk URBs may
1386 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1387 * should always terminate with a short packet, even if it means adding an
1388 * extra zero length packet.
1389 *
1390 * Control URBs must provide a valid pointer in the setup_packet field.
1391 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1392 * beforehand.
1393 *
1394 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1395 * or, for highspeed devices, 125 microsecond units)
1396 * to poll for transfers. After the URB has been submitted, the interval
1397 * field reflects how the transfer was actually scheduled.
1398 * The polling interval may be more frequent than requested.
1399 * For example, some controllers have a maximum interval of 32 milliseconds,
1400 * while others support intervals of up to 1024 milliseconds.
1401 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1402 * endpoints, as well as high speed interrupt endpoints, the encoding of
1403 * the transfer interval in the endpoint descriptor is logarithmic.
1404 * Device drivers must convert that value to linear units themselves.)
1405 *
1406 * If an isochronous endpoint queue isn't already running, the host
1407 * controller will schedule a new URB to start as soon as bandwidth
1408 * utilization allows. If the queue is running then a new URB will be
1409 * scheduled to start in the first transfer slot following the end of the
1410 * preceding URB, if that slot has not already expired. If the slot has
1411 * expired (which can happen when IRQ delivery is delayed for a long time),
1412 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1413 * is clear then the URB will be scheduled to start in the expired slot,
1414 * implying that some of its packets will not be transferred; if the flag
1415 * is set then the URB will be scheduled in the first unexpired slot,
1416 * breaking the queue's synchronization. Upon URB completion, the
1417 * start_frame field will be set to the (micro)frame number in which the
1418 * transfer was scheduled. Ranges for frame counter values are HC-specific
1419 * and can go from as low as 256 to as high as 65536 frames.
1420 *
1421 * Isochronous URBs have a different data transfer model, in part because
1422 * the quality of service is only "best effort". Callers provide specially
1423 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1424 * at the end. Each such packet is an individual ISO transfer. Isochronous
1425 * URBs are normally queued, submitted by drivers to arrange that
1426 * transfers are at least double buffered, and then explicitly resubmitted
1427 * in completion handlers, so
1428 * that data (such as audio or video) streams at as constant a rate as the
1429 * host controller scheduler can support.
1430 *
1431 * Completion Callbacks:
1432 *
1433 * The completion callback is made in_interrupt(), and one of the first
1434 * things that a completion handler should do is check the status field.
1435 * The status field is provided for all URBs. It is used to report
1436 * unlinked URBs, and status for all non-ISO transfers. It should not
1437 * be examined before the URB is returned to the completion handler.
1438 *
1439 * The context field is normally used to link URBs back to the relevant
1440 * driver or request state.
1441 *
1442 * When the completion callback is invoked for non-isochronous URBs, the
1443 * actual_length field tells how many bytes were transferred. This field
1444 * is updated even when the URB terminated with an error or was unlinked.
1445 *
1446 * ISO transfer status is reported in the status and actual_length fields
1447 * of the iso_frame_desc array, and the number of errors is reported in
1448 * error_count. Completion callbacks for ISO transfers will normally
1449 * (re)submit URBs to ensure a constant transfer rate.
1450 *
1451 * Note that even fields marked "public" should not be touched by the driver
1452 * when the urb is owned by the hcd, that is, since the call to
1453 * usb_submit_urb() till the entry into the completion routine.
1454 */
1455 struct urb {
1456 /* private: usb core and host controller only fields in the urb */
1457 struct kref kref; /* reference count of the URB */
1458 void *hcpriv; /* private data for host controller */
1459 atomic_t use_count; /* concurrent submissions counter */
1460 atomic_t reject; /* submissions will fail */
1461 int unlinked; /* unlink error code */
1462
1463 /* public: documented fields in the urb that can be used by drivers */
1464 struct list_head urb_list; /* list head for use by the urb's
1465 * current owner */
1466 struct list_head anchor_list; /* the URB may be anchored */
1467 struct usb_anchor *anchor;
1468 struct usb_device *dev; /* (in) pointer to associated device */
1469 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1470 unsigned int pipe; /* (in) pipe information */
1471 unsigned int stream_id; /* (in) stream ID */
1472 int status; /* (return) non-ISO status */
1473 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1474 void *transfer_buffer; /* (in) associated data buffer */
1475 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1476 struct scatterlist *sg; /* (in) scatter gather buffer list */
1477 int num_mapped_sgs; /* (internal) mapped sg entries */
1478 int num_sgs; /* (in) number of entries in the sg list */
1479 u32 transfer_buffer_length; /* (in) data buffer length */
1480 u32 actual_length; /* (return) actual transfer length */
1481 unsigned char *setup_packet; /* (in) setup packet (control only) */
1482 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1483 int start_frame; /* (modify) start frame (ISO) */
1484 int number_of_packets; /* (in) number of ISO packets */
1485 int interval; /* (modify) transfer interval
1486 * (INT/ISO) */
1487 int error_count; /* (return) number of ISO errors */
1488 void *context; /* (in) context for completion */
1489 usb_complete_t complete; /* (in) completion routine */
1490 struct usb_iso_packet_descriptor iso_frame_desc[0];
1491 /* (in) ISO ONLY */
1492 };
1493
1494 /* ----------------------------------------------------------------------- */
1495
1496 /**
1497 * usb_fill_control_urb - initializes a control urb
1498 * @urb: pointer to the urb to initialize.
1499 * @dev: pointer to the struct usb_device for this urb.
1500 * @pipe: the endpoint pipe
1501 * @setup_packet: pointer to the setup_packet buffer
1502 * @transfer_buffer: pointer to the transfer buffer
1503 * @buffer_length: length of the transfer buffer
1504 * @complete_fn: pointer to the usb_complete_t function
1505 * @context: what to set the urb context to.
1506 *
1507 * Initializes a control urb with the proper information needed to submit
1508 * it to a device.
1509 */
1510 static inline void usb_fill_control_urb(struct urb *urb,
1511 struct usb_device *dev,
1512 unsigned int pipe,
1513 unsigned char *setup_packet,
1514 void *transfer_buffer,
1515 int buffer_length,
1516 usb_complete_t complete_fn,
1517 void *context)
1518 {
1519 urb->dev = dev;
1520 urb->pipe = pipe;
1521 urb->setup_packet = setup_packet;
1522 urb->transfer_buffer = transfer_buffer;
1523 urb->transfer_buffer_length = buffer_length;
1524 urb->complete = complete_fn;
1525 urb->context = context;
1526 }
1527
1528 /**
1529 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1530 * @urb: pointer to the urb to initialize.
1531 * @dev: pointer to the struct usb_device for this urb.
1532 * @pipe: the endpoint pipe
1533 * @transfer_buffer: pointer to the transfer buffer
1534 * @buffer_length: length of the transfer buffer
1535 * @complete_fn: pointer to the usb_complete_t function
1536 * @context: what to set the urb context to.
1537 *
1538 * Initializes a bulk urb with the proper information needed to submit it
1539 * to a device.
1540 */
1541 static inline void usb_fill_bulk_urb(struct urb *urb,
1542 struct usb_device *dev,
1543 unsigned int pipe,
1544 void *transfer_buffer,
1545 int buffer_length,
1546 usb_complete_t complete_fn,
1547 void *context)
1548 {
1549 urb->dev = dev;
1550 urb->pipe = pipe;
1551 urb->transfer_buffer = transfer_buffer;
1552 urb->transfer_buffer_length = buffer_length;
1553 urb->complete = complete_fn;
1554 urb->context = context;
1555 }
1556
1557 /**
1558 * usb_fill_int_urb - macro to help initialize a interrupt urb
1559 * @urb: pointer to the urb to initialize.
1560 * @dev: pointer to the struct usb_device for this urb.
1561 * @pipe: the endpoint pipe
1562 * @transfer_buffer: pointer to the transfer buffer
1563 * @buffer_length: length of the transfer buffer
1564 * @complete_fn: pointer to the usb_complete_t function
1565 * @context: what to set the urb context to.
1566 * @interval: what to set the urb interval to, encoded like
1567 * the endpoint descriptor's bInterval value.
1568 *
1569 * Initializes a interrupt urb with the proper information needed to submit
1570 * it to a device.
1571 *
1572 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1573 * encoding of the endpoint interval, and express polling intervals in
1574 * microframes (eight per millisecond) rather than in frames (one per
1575 * millisecond).
1576 *
1577 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1578 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1579 * through to the host controller, rather than being translated into microframe
1580 * units.
1581 */
1582 static inline void usb_fill_int_urb(struct urb *urb,
1583 struct usb_device *dev,
1584 unsigned int pipe,
1585 void *transfer_buffer,
1586 int buffer_length,
1587 usb_complete_t complete_fn,
1588 void *context,
1589 int interval)
1590 {
1591 urb->dev = dev;
1592 urb->pipe = pipe;
1593 urb->transfer_buffer = transfer_buffer;
1594 urb->transfer_buffer_length = buffer_length;
1595 urb->complete = complete_fn;
1596 urb->context = context;
1597
1598 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1599 /* make sure interval is within allowed range */
1600 interval = clamp(interval, 1, 16);
1601
1602 urb->interval = 1 << (interval - 1);
1603 } else {
1604 urb->interval = interval;
1605 }
1606
1607 urb->start_frame = -1;
1608 }
1609
1610 extern void usb_init_urb(struct urb *urb);
1611 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1612 extern void usb_free_urb(struct urb *urb);
1613 #define usb_put_urb usb_free_urb
1614 extern struct urb *usb_get_urb(struct urb *urb);
1615 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1616 extern int usb_unlink_urb(struct urb *urb);
1617 extern void usb_kill_urb(struct urb *urb);
1618 extern void usb_poison_urb(struct urb *urb);
1619 extern void usb_unpoison_urb(struct urb *urb);
1620 extern void usb_block_urb(struct urb *urb);
1621 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1622 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1623 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1624 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1625 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1626 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1627 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1628 extern void usb_unanchor_urb(struct urb *urb);
1629 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1630 unsigned int timeout);
1631 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1632 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1633 extern int usb_anchor_empty(struct usb_anchor *anchor);
1634
1635 #define usb_unblock_urb usb_unpoison_urb
1636
1637 /**
1638 * usb_urb_dir_in - check if an URB describes an IN transfer
1639 * @urb: URB to be checked
1640 *
1641 * Return: 1 if @urb describes an IN transfer (device-to-host),
1642 * otherwise 0.
1643 */
1644 static inline int usb_urb_dir_in(struct urb *urb)
1645 {
1646 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1647 }
1648
1649 /**
1650 * usb_urb_dir_out - check if an URB describes an OUT transfer
1651 * @urb: URB to be checked
1652 *
1653 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1654 * otherwise 0.
1655 */
1656 static inline int usb_urb_dir_out(struct urb *urb)
1657 {
1658 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1659 }
1660
1661 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1662 gfp_t mem_flags, dma_addr_t *dma);
1663 void usb_free_coherent(struct usb_device *dev, size_t size,
1664 void *addr, dma_addr_t dma);
1665
1666 #if 0
1667 struct urb *usb_buffer_map(struct urb *urb);
1668 void usb_buffer_dmasync(struct urb *urb);
1669 void usb_buffer_unmap(struct urb *urb);
1670 #endif
1671
1672 struct scatterlist;
1673 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1674 struct scatterlist *sg, int nents);
1675 #if 0
1676 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1677 struct scatterlist *sg, int n_hw_ents);
1678 #endif
1679 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1680 struct scatterlist *sg, int n_hw_ents);
1681
1682 /*-------------------------------------------------------------------*
1683 * SYNCHRONOUS CALL SUPPORT *
1684 *-------------------------------------------------------------------*/
1685
1686 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1687 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1688 void *data, __u16 size, int timeout);
1689 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1690 void *data, int len, int *actual_length, int timeout);
1691 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1692 void *data, int len, int *actual_length,
1693 int timeout);
1694
1695 /* wrappers around usb_control_msg() for the most common standard requests */
1696 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1697 unsigned char descindex, void *buf, int size);
1698 extern int usb_get_status(struct usb_device *dev,
1699 int type, int target, void *data);
1700 extern int usb_string(struct usb_device *dev, int index,
1701 char *buf, size_t size);
1702
1703 /* wrappers that also update important state inside usbcore */
1704 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1705 extern int usb_reset_configuration(struct usb_device *dev);
1706 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1707 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1708
1709 /* this request isn't really synchronous, but it belongs with the others */
1710 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1711
1712 /* choose and set configuration for device */
1713 extern int usb_choose_configuration(struct usb_device *udev);
1714 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1715
1716 /*
1717 * timeouts, in milliseconds, used for sending/receiving control messages
1718 * they typically complete within a few frames (msec) after they're issued
1719 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1720 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1721 */
1722 #define USB_CTRL_GET_TIMEOUT 5000
1723 #define USB_CTRL_SET_TIMEOUT 5000
1724
1725
1726 /**
1727 * struct usb_sg_request - support for scatter/gather I/O
1728 * @status: zero indicates success, else negative errno
1729 * @bytes: counts bytes transferred.
1730 *
1731 * These requests are initialized using usb_sg_init(), and then are used
1732 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1733 * members of the request object aren't for driver access.
1734 *
1735 * The status and bytecount values are valid only after usb_sg_wait()
1736 * returns. If the status is zero, then the bytecount matches the total
1737 * from the request.
1738 *
1739 * After an error completion, drivers may need to clear a halt condition
1740 * on the endpoint.
1741 */
1742 struct usb_sg_request {
1743 int status;
1744 size_t bytes;
1745
1746 /* private:
1747 * members below are private to usbcore,
1748 * and are not provided for driver access!
1749 */
1750 spinlock_t lock;
1751
1752 struct usb_device *dev;
1753 int pipe;
1754
1755 int entries;
1756 struct urb **urbs;
1757
1758 int count;
1759 struct completion complete;
1760 };
1761
1762 int usb_sg_init(
1763 struct usb_sg_request *io,
1764 struct usb_device *dev,
1765 unsigned pipe,
1766 unsigned period,
1767 struct scatterlist *sg,
1768 int nents,
1769 size_t length,
1770 gfp_t mem_flags
1771 );
1772 void usb_sg_cancel(struct usb_sg_request *io);
1773 void usb_sg_wait(struct usb_sg_request *io);
1774
1775
1776 /* ----------------------------------------------------------------------- */
1777
1778 /*
1779 * For various legacy reasons, Linux has a small cookie that's paired with
1780 * a struct usb_device to identify an endpoint queue. Queue characteristics
1781 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1782 * an unsigned int encoded as:
1783 *
1784 * - direction: bit 7 (0 = Host-to-Device [Out],
1785 * 1 = Device-to-Host [In] ...
1786 * like endpoint bEndpointAddress)
1787 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1788 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1789 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1790 * 10 = control, 11 = bulk)
1791 *
1792 * Given the device address and endpoint descriptor, pipes are redundant.
1793 */
1794
1795 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1796 /* (yet ... they're the values used by usbfs) */
1797 #define PIPE_ISOCHRONOUS 0
1798 #define PIPE_INTERRUPT 1
1799 #define PIPE_CONTROL 2
1800 #define PIPE_BULK 3
1801
1802 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1803 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1804
1805 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1806 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1807
1808 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1809 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1810 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1811 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1812 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1813
1814 static inline unsigned int __create_pipe(struct usb_device *dev,
1815 unsigned int endpoint)
1816 {
1817 return (dev->devnum << 8) | (endpoint << 15);
1818 }
1819
1820 /* Create various pipes... */
1821 #define usb_sndctrlpipe(dev, endpoint) \
1822 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1823 #define usb_rcvctrlpipe(dev, endpoint) \
1824 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1825 #define usb_sndisocpipe(dev, endpoint) \
1826 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1827 #define usb_rcvisocpipe(dev, endpoint) \
1828 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1829 #define usb_sndbulkpipe(dev, endpoint) \
1830 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1831 #define usb_rcvbulkpipe(dev, endpoint) \
1832 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1833 #define usb_sndintpipe(dev, endpoint) \
1834 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1835 #define usb_rcvintpipe(dev, endpoint) \
1836 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1837
1838 static inline struct usb_host_endpoint *
1839 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1840 {
1841 struct usb_host_endpoint **eps;
1842 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1843 return eps[usb_pipeendpoint(pipe)];
1844 }
1845
1846 /*-------------------------------------------------------------------------*/
1847
1848 static inline __u16
1849 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1850 {
1851 struct usb_host_endpoint *ep;
1852 unsigned epnum = usb_pipeendpoint(pipe);
1853
1854 if (is_out) {
1855 WARN_ON(usb_pipein(pipe));
1856 ep = udev->ep_out[epnum];
1857 } else {
1858 WARN_ON(usb_pipeout(pipe));
1859 ep = udev->ep_in[epnum];
1860 }
1861 if (!ep)
1862 return 0;
1863
1864 /* NOTE: only 0x07ff bits are for packet size... */
1865 return usb_endpoint_maxp(&ep->desc);
1866 }
1867
1868 /* ----------------------------------------------------------------------- */
1869
1870 /* translate USB error codes to codes user space understands */
1871 static inline int usb_translate_errors(int error_code)
1872 {
1873 switch (error_code) {
1874 case 0:
1875 case -ENOMEM:
1876 case -ENODEV:
1877 case -EOPNOTSUPP:
1878 return error_code;
1879 default:
1880 return -EIO;
1881 }
1882 }
1883
1884 /* Events from the usb core */
1885 #define USB_DEVICE_ADD 0x0001
1886 #define USB_DEVICE_REMOVE 0x0002
1887 #define USB_BUS_ADD 0x0003
1888 #define USB_BUS_REMOVE 0x0004
1889 extern void usb_register_notify(struct notifier_block *nb);
1890 extern void usb_unregister_notify(struct notifier_block *nb);
1891
1892 /* debugfs stuff */
1893 extern struct dentry *usb_debug_root;
1894
1895 /* LED triggers */
1896 enum usb_led_event {
1897 USB_LED_EVENT_HOST = 0,
1898 USB_LED_EVENT_GADGET = 1,
1899 };
1900
1901 #ifdef CONFIG_USB_LED_TRIG
1902 extern void usb_led_activity(enum usb_led_event ev);
1903 #else
1904 static inline void usb_led_activity(enum usb_led_event ev) {}
1905 #endif
1906
1907 #endif /* __KERNEL__ */
1908
1909 #endif