]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/writeback.h
UBUNTU: SAUCE: LSM stacking: procfs: add smack subdir to attrs
[mirror_ubuntu-artful-kernel.git] / include / linux / writeback.h
1 /*
2 * include/linux/writeback.h
3 */
4 #ifndef WRITEBACK_H
5 #define WRITEBACK_H
6
7 #include <linux/sched.h>
8 #include <linux/workqueue.h>
9 #include <linux/fs.h>
10 #include <linux/flex_proportions.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/blk_types.h>
13
14 struct bio;
15
16 DECLARE_PER_CPU(int, dirty_throttle_leaks);
17
18 /*
19 * The 1/4 region under the global dirty thresh is for smooth dirty throttling:
20 *
21 * (thresh - thresh/DIRTY_FULL_SCOPE, thresh)
22 *
23 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long
24 * time) for the dirty pages to drop, unless written enough pages.
25 *
26 * The global dirty threshold is normally equal to the global dirty limit,
27 * except when the system suddenly allocates a lot of anonymous memory and
28 * knocks down the global dirty threshold quickly, in which case the global
29 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
30 */
31 #define DIRTY_SCOPE 8
32 #define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2)
33
34 struct backing_dev_info;
35
36 /*
37 * fs/fs-writeback.c
38 */
39 enum writeback_sync_modes {
40 WB_SYNC_NONE, /* Don't wait on anything */
41 WB_SYNC_ALL, /* Wait on every mapping */
42 };
43
44 /*
45 * why some writeback work was initiated
46 */
47 enum wb_reason {
48 WB_REASON_BACKGROUND,
49 WB_REASON_VMSCAN,
50 WB_REASON_SYNC,
51 WB_REASON_PERIODIC,
52 WB_REASON_LAPTOP_TIMER,
53 WB_REASON_FREE_MORE_MEM,
54 WB_REASON_FS_FREE_SPACE,
55 /*
56 * There is no bdi forker thread any more and works are done
57 * by emergency worker, however, this is TPs userland visible
58 * and we'll be exposing exactly the same information,
59 * so it has a mismatch name.
60 */
61 WB_REASON_FORKER_THREAD,
62
63 WB_REASON_MAX,
64 };
65
66 /*
67 * A control structure which tells the writeback code what to do. These are
68 * always on the stack, and hence need no locking. They are always initialised
69 * in a manner such that unspecified fields are set to zero.
70 */
71 struct writeback_control {
72 long nr_to_write; /* Write this many pages, and decrement
73 this for each page written */
74 long pages_skipped; /* Pages which were not written */
75
76 /*
77 * For a_ops->writepages(): if start or end are non-zero then this is
78 * a hint that the filesystem need only write out the pages inside that
79 * byterange. The byte at `end' is included in the writeout request.
80 */
81 loff_t range_start;
82 loff_t range_end;
83
84 enum writeback_sync_modes sync_mode;
85
86 unsigned for_kupdate:1; /* A kupdate writeback */
87 unsigned for_background:1; /* A background writeback */
88 unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */
89 unsigned for_reclaim:1; /* Invoked from the page allocator */
90 unsigned range_cyclic:1; /* range_start is cyclic */
91 unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 struct bdi_writeback *wb; /* wb this writeback is issued under */
94 struct inode *inode; /* inode being written out */
95
96 /* foreign inode detection, see wbc_detach_inode() */
97 int wb_id; /* current wb id */
98 int wb_lcand_id; /* last foreign candidate wb id */
99 int wb_tcand_id; /* this foreign candidate wb id */
100 size_t wb_bytes; /* bytes written by current wb */
101 size_t wb_lcand_bytes; /* bytes written by last candidate */
102 size_t wb_tcand_bytes; /* bytes written by this candidate */
103 #endif
104 };
105
106 static inline int wbc_to_write_flags(struct writeback_control *wbc)
107 {
108 if (wbc->sync_mode == WB_SYNC_ALL)
109 return REQ_SYNC;
110 else if (wbc->for_kupdate || wbc->for_background)
111 return REQ_BACKGROUND;
112
113 return 0;
114 }
115
116 /*
117 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to
118 * and are measured against each other in. There always is one global
119 * domain, global_wb_domain, that every wb in the system is a member of.
120 * This allows measuring the relative bandwidth of each wb to distribute
121 * dirtyable memory accordingly.
122 */
123 struct wb_domain {
124 spinlock_t lock;
125
126 /*
127 * Scale the writeback cache size proportional to the relative
128 * writeout speed.
129 *
130 * We do this by keeping a floating proportion between BDIs, based
131 * on page writeback completions [end_page_writeback()]. Those
132 * devices that write out pages fastest will get the larger share,
133 * while the slower will get a smaller share.
134 *
135 * We use page writeout completions because we are interested in
136 * getting rid of dirty pages. Having them written out is the
137 * primary goal.
138 *
139 * We introduce a concept of time, a period over which we measure
140 * these events, because demand can/will vary over time. The length
141 * of this period itself is measured in page writeback completions.
142 */
143 struct fprop_global completions;
144 struct timer_list period_timer; /* timer for aging of completions */
145 unsigned long period_time;
146
147 /*
148 * The dirtyable memory and dirty threshold could be suddenly
149 * knocked down by a large amount (eg. on the startup of KVM in a
150 * swapless system). This may throw the system into deep dirty
151 * exceeded state and throttle heavy/light dirtiers alike. To
152 * retain good responsiveness, maintain global_dirty_limit for
153 * tracking slowly down to the knocked down dirty threshold.
154 *
155 * Both fields are protected by ->lock.
156 */
157 unsigned long dirty_limit_tstamp;
158 unsigned long dirty_limit;
159 };
160
161 /**
162 * wb_domain_size_changed - memory available to a wb_domain has changed
163 * @dom: wb_domain of interest
164 *
165 * This function should be called when the amount of memory available to
166 * @dom has changed. It resets @dom's dirty limit parameters to prevent
167 * the past values which don't match the current configuration from skewing
168 * dirty throttling. Without this, when memory size of a wb_domain is
169 * greatly reduced, the dirty throttling logic may allow too many pages to
170 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in
171 * that situation.
172 */
173 static inline void wb_domain_size_changed(struct wb_domain *dom)
174 {
175 spin_lock(&dom->lock);
176 dom->dirty_limit_tstamp = jiffies;
177 dom->dirty_limit = 0;
178 spin_unlock(&dom->lock);
179 }
180
181 /*
182 * fs/fs-writeback.c
183 */
184 struct bdi_writeback;
185 void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
186 void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
187 enum wb_reason reason);
188 bool try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason);
189 bool try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
190 enum wb_reason reason);
191 void sync_inodes_sb(struct super_block *);
192 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason);
193 void inode_wait_for_writeback(struct inode *inode);
194
195 /* writeback.h requires fs.h; it, too, is not included from here. */
196 static inline void wait_on_inode(struct inode *inode)
197 {
198 might_sleep();
199 wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE);
200 }
201
202 #ifdef CONFIG_CGROUP_WRITEBACK
203
204 #include <linux/cgroup.h>
205 #include <linux/bio.h>
206
207 void __inode_attach_wb(struct inode *inode, struct page *page);
208 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
209 struct inode *inode)
210 __releases(&inode->i_lock);
211 void wbc_detach_inode(struct writeback_control *wbc);
212 void wbc_account_io(struct writeback_control *wbc, struct page *page,
213 size_t bytes);
214 void cgroup_writeback_umount(void);
215
216 /**
217 * inode_attach_wb - associate an inode with its wb
218 * @inode: inode of interest
219 * @page: page being dirtied (may be NULL)
220 *
221 * If @inode doesn't have its wb, associate it with the wb matching the
222 * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o
223 * @inode->i_lock.
224 */
225 static inline void inode_attach_wb(struct inode *inode, struct page *page)
226 {
227 if (!inode->i_wb)
228 __inode_attach_wb(inode, page);
229 }
230
231 /**
232 * inode_detach_wb - disassociate an inode from its wb
233 * @inode: inode of interest
234 *
235 * @inode is being freed. Detach from its wb.
236 */
237 static inline void inode_detach_wb(struct inode *inode)
238 {
239 if (inode->i_wb) {
240 WARN_ON_ONCE(!(inode->i_state & I_CLEAR));
241 wb_put(inode->i_wb);
242 inode->i_wb = NULL;
243 }
244 }
245
246 /**
247 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
248 * @wbc: writeback_control of interest
249 * @inode: target inode
250 *
251 * This function is to be used by __filemap_fdatawrite_range(), which is an
252 * alternative entry point into writeback code, and first ensures @inode is
253 * associated with a bdi_writeback and attaches it to @wbc.
254 */
255 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
256 struct inode *inode)
257 {
258 spin_lock(&inode->i_lock);
259 inode_attach_wb(inode, NULL);
260 wbc_attach_and_unlock_inode(wbc, inode);
261 }
262
263 /**
264 * wbc_init_bio - writeback specific initializtion of bio
265 * @wbc: writeback_control for the writeback in progress
266 * @bio: bio to be initialized
267 *
268 * @bio is a part of the writeback in progress controlled by @wbc. Perform
269 * writeback specific initialization. This is used to apply the cgroup
270 * writeback context.
271 */
272 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
273 {
274 /*
275 * pageout() path doesn't attach @wbc to the inode being written
276 * out. This is intentional as we don't want the function to block
277 * behind a slow cgroup. Ultimately, we want pageout() to kick off
278 * regular writeback instead of writing things out itself.
279 */
280 if (wbc->wb)
281 bio_associate_blkcg(bio, wbc->wb->blkcg_css);
282 }
283
284 #else /* CONFIG_CGROUP_WRITEBACK */
285
286 static inline void inode_attach_wb(struct inode *inode, struct page *page)
287 {
288 }
289
290 static inline void inode_detach_wb(struct inode *inode)
291 {
292 }
293
294 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
295 struct inode *inode)
296 __releases(&inode->i_lock)
297 {
298 spin_unlock(&inode->i_lock);
299 }
300
301 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
302 struct inode *inode)
303 {
304 }
305
306 static inline void wbc_detach_inode(struct writeback_control *wbc)
307 {
308 }
309
310 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
311 {
312 }
313
314 static inline void wbc_account_io(struct writeback_control *wbc,
315 struct page *page, size_t bytes)
316 {
317 }
318
319 static inline void cgroup_writeback_umount(void)
320 {
321 }
322
323 #endif /* CONFIG_CGROUP_WRITEBACK */
324
325 /*
326 * mm/page-writeback.c
327 */
328 #ifdef CONFIG_BLOCK
329 void laptop_io_completion(struct backing_dev_info *info);
330 void laptop_sync_completion(void);
331 void laptop_mode_sync(struct work_struct *work);
332 void laptop_mode_timer_fn(unsigned long data);
333 #else
334 static inline void laptop_sync_completion(void) { }
335 #endif
336 bool node_dirty_ok(struct pglist_data *pgdat);
337 int wb_domain_init(struct wb_domain *dom, gfp_t gfp);
338 #ifdef CONFIG_CGROUP_WRITEBACK
339 void wb_domain_exit(struct wb_domain *dom);
340 #endif
341
342 extern struct wb_domain global_wb_domain;
343
344 /* These are exported to sysctl. */
345 extern int dirty_background_ratio;
346 extern unsigned long dirty_background_bytes;
347 extern int vm_dirty_ratio;
348 extern unsigned long vm_dirty_bytes;
349 extern unsigned int dirty_writeback_interval;
350 extern unsigned int dirty_expire_interval;
351 extern unsigned int dirtytime_expire_interval;
352 extern int vm_highmem_is_dirtyable;
353 extern int block_dump;
354 extern int laptop_mode;
355
356 extern int dirty_background_ratio_handler(struct ctl_table *table, int write,
357 void __user *buffer, size_t *lenp,
358 loff_t *ppos);
359 extern int dirty_background_bytes_handler(struct ctl_table *table, int write,
360 void __user *buffer, size_t *lenp,
361 loff_t *ppos);
362 extern int dirty_ratio_handler(struct ctl_table *table, int write,
363 void __user *buffer, size_t *lenp,
364 loff_t *ppos);
365 extern int dirty_bytes_handler(struct ctl_table *table, int write,
366 void __user *buffer, size_t *lenp,
367 loff_t *ppos);
368 int dirtytime_interval_handler(struct ctl_table *table, int write,
369 void __user *buffer, size_t *lenp, loff_t *ppos);
370
371 struct ctl_table;
372 int dirty_writeback_centisecs_handler(struct ctl_table *, int,
373 void __user *, size_t *, loff_t *);
374
375 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
376 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh);
377
378 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time);
379 void balance_dirty_pages_ratelimited(struct address_space *mapping);
380 bool wb_over_bg_thresh(struct bdi_writeback *wb);
381
382 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
383 void *data);
384
385 int generic_writepages(struct address_space *mapping,
386 struct writeback_control *wbc);
387 void tag_pages_for_writeback(struct address_space *mapping,
388 pgoff_t start, pgoff_t end);
389 int write_cache_pages(struct address_space *mapping,
390 struct writeback_control *wbc, writepage_t writepage,
391 void *data);
392 int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
393 void writeback_set_ratelimit(void);
394 void tag_pages_for_writeback(struct address_space *mapping,
395 pgoff_t start, pgoff_t end);
396
397 void account_page_redirty(struct page *page);
398
399 void sb_mark_inode_writeback(struct inode *inode);
400 void sb_clear_inode_writeback(struct inode *inode);
401
402 #endif /* WRITEBACK_H */