]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/xarray.h
iommu/amd: Remove PD_DMA_OPS_MASK
[mirror_ubuntu-jammy-kernel.git] / include / linux / xarray.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_XARRAY_H
3 #define _LINUX_XARRAY_H
4 /*
5 * eXtensible Arrays
6 * Copyright (c) 2017 Microsoft Corporation
7 * Author: Matthew Wilcox <willy@infradead.org>
8 *
9 * See Documentation/core-api/xarray.rst for how to use the XArray.
10 */
11
12 #include <linux/bug.h>
13 #include <linux/compiler.h>
14 #include <linux/gfp.h>
15 #include <linux/kconfig.h>
16 #include <linux/kernel.h>
17 #include <linux/rcupdate.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20
21 /*
22 * The bottom two bits of the entry determine how the XArray interprets
23 * the contents:
24 *
25 * 00: Pointer entry
26 * 10: Internal entry
27 * x1: Value entry or tagged pointer
28 *
29 * Attempting to store internal entries in the XArray is a bug.
30 *
31 * Most internal entries are pointers to the next node in the tree.
32 * The following internal entries have a special meaning:
33 *
34 * 0-62: Sibling entries
35 * 256: Retry entry
36 * 257: Zero entry
37 *
38 * Errors are also represented as internal entries, but use the negative
39 * space (-4094 to -2). They're never stored in the slots array; only
40 * returned by the normal API.
41 */
42
43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1)
44
45 /**
46 * xa_mk_value() - Create an XArray entry from an integer.
47 * @v: Value to store in XArray.
48 *
49 * Context: Any context.
50 * Return: An entry suitable for storing in the XArray.
51 */
52 static inline void *xa_mk_value(unsigned long v)
53 {
54 WARN_ON((long)v < 0);
55 return (void *)((v << 1) | 1);
56 }
57
58 /**
59 * xa_to_value() - Get value stored in an XArray entry.
60 * @entry: XArray entry.
61 *
62 * Context: Any context.
63 * Return: The value stored in the XArray entry.
64 */
65 static inline unsigned long xa_to_value(const void *entry)
66 {
67 return (unsigned long)entry >> 1;
68 }
69
70 /**
71 * xa_is_value() - Determine if an entry is a value.
72 * @entry: XArray entry.
73 *
74 * Context: Any context.
75 * Return: True if the entry is a value, false if it is a pointer.
76 */
77 static inline bool xa_is_value(const void *entry)
78 {
79 return (unsigned long)entry & 1;
80 }
81
82 /**
83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
84 * @p: Plain pointer.
85 * @tag: Tag value (0, 1 or 3).
86 *
87 * If the user of the XArray prefers, they can tag their pointers instead
88 * of storing value entries. Three tags are available (0, 1 and 3).
89 * These are distinct from the xa_mark_t as they are not replicated up
90 * through the array and cannot be searched for.
91 *
92 * Context: Any context.
93 * Return: An XArray entry.
94 */
95 static inline void *xa_tag_pointer(void *p, unsigned long tag)
96 {
97 return (void *)((unsigned long)p | tag);
98 }
99
100 /**
101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
102 * @entry: XArray entry.
103 *
104 * If you have stored a tagged pointer in the XArray, call this function
105 * to get the untagged version of the pointer.
106 *
107 * Context: Any context.
108 * Return: A pointer.
109 */
110 static inline void *xa_untag_pointer(void *entry)
111 {
112 return (void *)((unsigned long)entry & ~3UL);
113 }
114
115 /**
116 * xa_pointer_tag() - Get the tag stored in an XArray entry.
117 * @entry: XArray entry.
118 *
119 * If you have stored a tagged pointer in the XArray, call this function
120 * to get the tag of that pointer.
121 *
122 * Context: Any context.
123 * Return: A tag.
124 */
125 static inline unsigned int xa_pointer_tag(void *entry)
126 {
127 return (unsigned long)entry & 3UL;
128 }
129
130 /*
131 * xa_mk_internal() - Create an internal entry.
132 * @v: Value to turn into an internal entry.
133 *
134 * Internal entries are used for a number of purposes. Entries 0-255 are
135 * used for sibling entries (only 0-62 are used by the current code). 256
136 * is used for the retry entry. 257 is used for the reserved / zero entry.
137 * Negative internal entries are used to represent errnos. Node pointers
138 * are also tagged as internal entries in some situations.
139 *
140 * Context: Any context.
141 * Return: An XArray internal entry corresponding to this value.
142 */
143 static inline void *xa_mk_internal(unsigned long v)
144 {
145 return (void *)((v << 2) | 2);
146 }
147
148 /*
149 * xa_to_internal() - Extract the value from an internal entry.
150 * @entry: XArray entry.
151 *
152 * Context: Any context.
153 * Return: The value which was stored in the internal entry.
154 */
155 static inline unsigned long xa_to_internal(const void *entry)
156 {
157 return (unsigned long)entry >> 2;
158 }
159
160 /*
161 * xa_is_internal() - Is the entry an internal entry?
162 * @entry: XArray entry.
163 *
164 * Context: Any context.
165 * Return: %true if the entry is an internal entry.
166 */
167 static inline bool xa_is_internal(const void *entry)
168 {
169 return ((unsigned long)entry & 3) == 2;
170 }
171
172 #define XA_ZERO_ENTRY xa_mk_internal(257)
173
174 /**
175 * xa_is_zero() - Is the entry a zero entry?
176 * @entry: Entry retrieved from the XArray
177 *
178 * The normal API will return NULL as the contents of a slot containing
179 * a zero entry. You can only see zero entries by using the advanced API.
180 *
181 * Return: %true if the entry is a zero entry.
182 */
183 static inline bool xa_is_zero(const void *entry)
184 {
185 return unlikely(entry == XA_ZERO_ENTRY);
186 }
187
188 /**
189 * xa_is_err() - Report whether an XArray operation returned an error
190 * @entry: Result from calling an XArray function
191 *
192 * If an XArray operation cannot complete an operation, it will return
193 * a special value indicating an error. This function tells you
194 * whether an error occurred; xa_err() tells you which error occurred.
195 *
196 * Context: Any context.
197 * Return: %true if the entry indicates an error.
198 */
199 static inline bool xa_is_err(const void *entry)
200 {
201 return unlikely(xa_is_internal(entry) &&
202 entry >= xa_mk_internal(-MAX_ERRNO));
203 }
204
205 /**
206 * xa_err() - Turn an XArray result into an errno.
207 * @entry: Result from calling an XArray function.
208 *
209 * If an XArray operation cannot complete an operation, it will return
210 * a special pointer value which encodes an errno. This function extracts
211 * the errno from the pointer value, or returns 0 if the pointer does not
212 * represent an errno.
213 *
214 * Context: Any context.
215 * Return: A negative errno or 0.
216 */
217 static inline int xa_err(void *entry)
218 {
219 /* xa_to_internal() would not do sign extension. */
220 if (xa_is_err(entry))
221 return (long)entry >> 2;
222 return 0;
223 }
224
225 /**
226 * struct xa_limit - Represents a range of IDs.
227 * @min: The lowest ID to allocate (inclusive).
228 * @max: The maximum ID to allocate (inclusive).
229 *
230 * This structure is used either directly or via the XA_LIMIT() macro
231 * to communicate the range of IDs that are valid for allocation.
232 * Two common ranges are predefined for you:
233 * * xa_limit_32b - [0 - UINT_MAX]
234 * * xa_limit_31b - [0 - INT_MAX]
235 */
236 struct xa_limit {
237 u32 max;
238 u32 min;
239 };
240
241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
242
243 #define xa_limit_32b XA_LIMIT(0, UINT_MAX)
244 #define xa_limit_31b XA_LIMIT(0, INT_MAX)
245
246 typedef unsigned __bitwise xa_mark_t;
247 #define XA_MARK_0 ((__force xa_mark_t)0U)
248 #define XA_MARK_1 ((__force xa_mark_t)1U)
249 #define XA_MARK_2 ((__force xa_mark_t)2U)
250 #define XA_PRESENT ((__force xa_mark_t)8U)
251 #define XA_MARK_MAX XA_MARK_2
252 #define XA_FREE_MARK XA_MARK_0
253
254 enum xa_lock_type {
255 XA_LOCK_IRQ = 1,
256 XA_LOCK_BH = 2,
257 };
258
259 /*
260 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags,
261 * and we remain compatible with that.
262 */
263 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ)
264 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH)
265 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U)
266 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U)
267 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U)
268 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U)
269 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
270 (__force unsigned)(mark)))
271
272 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */
273 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
274 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
275
276 /**
277 * struct xarray - The anchor of the XArray.
278 * @xa_lock: Lock that protects the contents of the XArray.
279 *
280 * To use the xarray, define it statically or embed it in your data structure.
281 * It is a very small data structure, so it does not usually make sense to
282 * allocate it separately and keep a pointer to it in your data structure.
283 *
284 * You may use the xa_lock to protect your own data structures as well.
285 */
286 /*
287 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
288 * If the only non-NULL entry in the array is at index 0, @xa_head is that
289 * entry. If any other entry in the array is non-NULL, @xa_head points
290 * to an @xa_node.
291 */
292 struct xarray {
293 spinlock_t xa_lock;
294 /* private: The rest of the data structure is not to be used directly. */
295 gfp_t xa_flags;
296 void __rcu * xa_head;
297 };
298
299 #define XARRAY_INIT(name, flags) { \
300 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \
301 .xa_flags = flags, \
302 .xa_head = NULL, \
303 }
304
305 /**
306 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
307 * @name: A string that names your XArray.
308 * @flags: XA_FLAG values.
309 *
310 * This is intended for file scope definitions of XArrays. It declares
311 * and initialises an empty XArray with the chosen name and flags. It is
312 * equivalent to calling xa_init_flags() on the array, but it does the
313 * initialisation at compiletime instead of runtime.
314 */
315 #define DEFINE_XARRAY_FLAGS(name, flags) \
316 struct xarray name = XARRAY_INIT(name, flags)
317
318 /**
319 * DEFINE_XARRAY() - Define an XArray.
320 * @name: A string that names your XArray.
321 *
322 * This is intended for file scope definitions of XArrays. It declares
323 * and initialises an empty XArray with the chosen name. It is equivalent
324 * to calling xa_init() on the array, but it does the initialisation at
325 * compiletime instead of runtime.
326 */
327 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
328
329 /**
330 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
331 * @name: A string that names your XArray.
332 *
333 * This is intended for file scope definitions of allocating XArrays.
334 * See also DEFINE_XARRAY().
335 */
336 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
337
338 /**
339 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
340 * @name: A string that names your XArray.
341 *
342 * This is intended for file scope definitions of allocating XArrays.
343 * See also DEFINE_XARRAY().
344 */
345 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
346
347 void *xa_load(struct xarray *, unsigned long index);
348 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
349 void *xa_erase(struct xarray *, unsigned long index);
350 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
351 void *entry, gfp_t);
352 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
353 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
354 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
355 void *xa_find(struct xarray *xa, unsigned long *index,
356 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
357 void *xa_find_after(struct xarray *xa, unsigned long *index,
358 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
359 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
360 unsigned long max, unsigned int n, xa_mark_t);
361 void xa_destroy(struct xarray *);
362
363 /**
364 * xa_init_flags() - Initialise an empty XArray with flags.
365 * @xa: XArray.
366 * @flags: XA_FLAG values.
367 *
368 * If you need to initialise an XArray with special flags (eg you need
369 * to take the lock from interrupt context), use this function instead
370 * of xa_init().
371 *
372 * Context: Any context.
373 */
374 static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
375 {
376 spin_lock_init(&xa->xa_lock);
377 xa->xa_flags = flags;
378 xa->xa_head = NULL;
379 }
380
381 /**
382 * xa_init() - Initialise an empty XArray.
383 * @xa: XArray.
384 *
385 * An empty XArray is full of NULL entries.
386 *
387 * Context: Any context.
388 */
389 static inline void xa_init(struct xarray *xa)
390 {
391 xa_init_flags(xa, 0);
392 }
393
394 /**
395 * xa_empty() - Determine if an array has any present entries.
396 * @xa: XArray.
397 *
398 * Context: Any context.
399 * Return: %true if the array contains only NULL pointers.
400 */
401 static inline bool xa_empty(const struct xarray *xa)
402 {
403 return xa->xa_head == NULL;
404 }
405
406 /**
407 * xa_marked() - Inquire whether any entry in this array has a mark set
408 * @xa: Array
409 * @mark: Mark value
410 *
411 * Context: Any context.
412 * Return: %true if any entry has this mark set.
413 */
414 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
415 {
416 return xa->xa_flags & XA_FLAGS_MARK(mark);
417 }
418
419 /**
420 * xa_for_each_range() - Iterate over a portion of an XArray.
421 * @xa: XArray.
422 * @index: Index of @entry.
423 * @entry: Entry retrieved from array.
424 * @start: First index to retrieve from array.
425 * @last: Last index to retrieve from array.
426 *
427 * During the iteration, @entry will have the value of the entry stored
428 * in @xa at @index. You may modify @index during the iteration if you
429 * want to skip or reprocess indices. It is safe to modify the array
430 * during the iteration. At the end of the iteration, @entry will be set
431 * to NULL and @index will have a value less than or equal to max.
432 *
433 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have
434 * to handle your own locking with xas_for_each(), and if you have to unlock
435 * after each iteration, it will also end up being O(n.log(n)).
436 * xa_for_each_range() will spin if it hits a retry entry; if you intend to
437 * see retry entries, you should use the xas_for_each() iterator instead.
438 * The xas_for_each() iterator will expand into more inline code than
439 * xa_for_each_range().
440 *
441 * Context: Any context. Takes and releases the RCU lock.
442 */
443 #define xa_for_each_range(xa, index, entry, start, last) \
444 for (index = start, \
445 entry = xa_find(xa, &index, last, XA_PRESENT); \
446 entry; \
447 entry = xa_find_after(xa, &index, last, XA_PRESENT))
448
449 /**
450 * xa_for_each_start() - Iterate over a portion of an XArray.
451 * @xa: XArray.
452 * @index: Index of @entry.
453 * @entry: Entry retrieved from array.
454 * @start: First index to retrieve from array.
455 *
456 * During the iteration, @entry will have the value of the entry stored
457 * in @xa at @index. You may modify @index during the iteration if you
458 * want to skip or reprocess indices. It is safe to modify the array
459 * during the iteration. At the end of the iteration, @entry will be set
460 * to NULL and @index will have a value less than or equal to max.
461 *
462 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have
463 * to handle your own locking with xas_for_each(), and if you have to unlock
464 * after each iteration, it will also end up being O(n.log(n)).
465 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
466 * see retry entries, you should use the xas_for_each() iterator instead.
467 * The xas_for_each() iterator will expand into more inline code than
468 * xa_for_each_start().
469 *
470 * Context: Any context. Takes and releases the RCU lock.
471 */
472 #define xa_for_each_start(xa, index, entry, start) \
473 xa_for_each_range(xa, index, entry, start, ULONG_MAX)
474
475 /**
476 * xa_for_each() - Iterate over present entries in an XArray.
477 * @xa: XArray.
478 * @index: Index of @entry.
479 * @entry: Entry retrieved from array.
480 *
481 * During the iteration, @entry will have the value of the entry stored
482 * in @xa at @index. You may modify @index during the iteration if you want
483 * to skip or reprocess indices. It is safe to modify the array during the
484 * iteration. At the end of the iteration, @entry will be set to NULL and
485 * @index will have a value less than or equal to max.
486 *
487 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have
488 * to handle your own locking with xas_for_each(), and if you have to unlock
489 * after each iteration, it will also end up being O(n.log(n)). xa_for_each()
490 * will spin if it hits a retry entry; if you intend to see retry entries,
491 * you should use the xas_for_each() iterator instead. The xas_for_each()
492 * iterator will expand into more inline code than xa_for_each().
493 *
494 * Context: Any context. Takes and releases the RCU lock.
495 */
496 #define xa_for_each(xa, index, entry) \
497 xa_for_each_start(xa, index, entry, 0)
498
499 /**
500 * xa_for_each_marked() - Iterate over marked entries in an XArray.
501 * @xa: XArray.
502 * @index: Index of @entry.
503 * @entry: Entry retrieved from array.
504 * @filter: Selection criterion.
505 *
506 * During the iteration, @entry will have the value of the entry stored
507 * in @xa at @index. The iteration will skip all entries in the array
508 * which do not match @filter. You may modify @index during the iteration
509 * if you want to skip or reprocess indices. It is safe to modify the array
510 * during the iteration. At the end of the iteration, @entry will be set to
511 * NULL and @index will have a value less than or equal to max.
512 *
513 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
514 * You have to handle your own locking with xas_for_each(), and if you have
515 * to unlock after each iteration, it will also end up being O(n.log(n)).
516 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
517 * see retry entries, you should use the xas_for_each_marked() iterator
518 * instead. The xas_for_each_marked() iterator will expand into more inline
519 * code than xa_for_each_marked().
520 *
521 * Context: Any context. Takes and releases the RCU lock.
522 */
523 #define xa_for_each_marked(xa, index, entry, filter) \
524 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
525 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
526
527 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock)
528 #define xa_lock(xa) spin_lock(&(xa)->xa_lock)
529 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock)
530 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock)
531 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock)
532 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock)
533 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock)
534 #define xa_lock_irqsave(xa, flags) \
535 spin_lock_irqsave(&(xa)->xa_lock, flags)
536 #define xa_unlock_irqrestore(xa, flags) \
537 spin_unlock_irqrestore(&(xa)->xa_lock, flags)
538 #define xa_lock_nested(xa, subclass) \
539 spin_lock_nested(&(xa)->xa_lock, subclass)
540 #define xa_lock_bh_nested(xa, subclass) \
541 spin_lock_bh_nested(&(xa)->xa_lock, subclass)
542 #define xa_lock_irq_nested(xa, subclass) \
543 spin_lock_irq_nested(&(xa)->xa_lock, subclass)
544 #define xa_lock_irqsave_nested(xa, flags, subclass) \
545 spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass)
546
547 /*
548 * Versions of the normal API which require the caller to hold the
549 * xa_lock. If the GFP flags allow it, they will drop the lock to
550 * allocate memory, then reacquire it afterwards. These functions
551 * may also re-enable interrupts if the XArray flags indicate the
552 * locking should be interrupt safe.
553 */
554 void *__xa_erase(struct xarray *, unsigned long index);
555 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
556 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
557 void *entry, gfp_t);
558 int __must_check __xa_insert(struct xarray *, unsigned long index,
559 void *entry, gfp_t);
560 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
561 struct xa_limit, gfp_t);
562 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
563 struct xa_limit, u32 *next, gfp_t);
564 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
565 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
566
567 /**
568 * xa_store_bh() - Store this entry in the XArray.
569 * @xa: XArray.
570 * @index: Index into array.
571 * @entry: New entry.
572 * @gfp: Memory allocation flags.
573 *
574 * This function is like calling xa_store() except it disables softirqs
575 * while holding the array lock.
576 *
577 * Context: Any context. Takes and releases the xa_lock while
578 * disabling softirqs.
579 * Return: The entry which used to be at this index.
580 */
581 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
582 void *entry, gfp_t gfp)
583 {
584 void *curr;
585
586 xa_lock_bh(xa);
587 curr = __xa_store(xa, index, entry, gfp);
588 xa_unlock_bh(xa);
589
590 return curr;
591 }
592
593 /**
594 * xa_store_irq() - Store this entry in the XArray.
595 * @xa: XArray.
596 * @index: Index into array.
597 * @entry: New entry.
598 * @gfp: Memory allocation flags.
599 *
600 * This function is like calling xa_store() except it disables interrupts
601 * while holding the array lock.
602 *
603 * Context: Process context. Takes and releases the xa_lock while
604 * disabling interrupts.
605 * Return: The entry which used to be at this index.
606 */
607 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
608 void *entry, gfp_t gfp)
609 {
610 void *curr;
611
612 xa_lock_irq(xa);
613 curr = __xa_store(xa, index, entry, gfp);
614 xa_unlock_irq(xa);
615
616 return curr;
617 }
618
619 /**
620 * xa_erase_bh() - Erase this entry from the XArray.
621 * @xa: XArray.
622 * @index: Index of entry.
623 *
624 * After this function returns, loading from @index will return %NULL.
625 * If the index is part of a multi-index entry, all indices will be erased
626 * and none of the entries will be part of a multi-index entry.
627 *
628 * Context: Any context. Takes and releases the xa_lock while
629 * disabling softirqs.
630 * Return: The entry which used to be at this index.
631 */
632 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
633 {
634 void *entry;
635
636 xa_lock_bh(xa);
637 entry = __xa_erase(xa, index);
638 xa_unlock_bh(xa);
639
640 return entry;
641 }
642
643 /**
644 * xa_erase_irq() - Erase this entry from the XArray.
645 * @xa: XArray.
646 * @index: Index of entry.
647 *
648 * After this function returns, loading from @index will return %NULL.
649 * If the index is part of a multi-index entry, all indices will be erased
650 * and none of the entries will be part of a multi-index entry.
651 *
652 * Context: Process context. Takes and releases the xa_lock while
653 * disabling interrupts.
654 * Return: The entry which used to be at this index.
655 */
656 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
657 {
658 void *entry;
659
660 xa_lock_irq(xa);
661 entry = __xa_erase(xa, index);
662 xa_unlock_irq(xa);
663
664 return entry;
665 }
666
667 /**
668 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
669 * @xa: XArray.
670 * @index: Index into array.
671 * @old: Old value to test against.
672 * @entry: New value to place in array.
673 * @gfp: Memory allocation flags.
674 *
675 * If the entry at @index is the same as @old, replace it with @entry.
676 * If the return value is equal to @old, then the exchange was successful.
677 *
678 * Context: Any context. Takes and releases the xa_lock. May sleep
679 * if the @gfp flags permit.
680 * Return: The old value at this index or xa_err() if an error happened.
681 */
682 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
683 void *old, void *entry, gfp_t gfp)
684 {
685 void *curr;
686
687 xa_lock(xa);
688 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
689 xa_unlock(xa);
690
691 return curr;
692 }
693
694 /**
695 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
696 * @xa: XArray.
697 * @index: Index into array.
698 * @old: Old value to test against.
699 * @entry: New value to place in array.
700 * @gfp: Memory allocation flags.
701 *
702 * This function is like calling xa_cmpxchg() except it disables softirqs
703 * while holding the array lock.
704 *
705 * Context: Any context. Takes and releases the xa_lock while
706 * disabling softirqs. May sleep if the @gfp flags permit.
707 * Return: The old value at this index or xa_err() if an error happened.
708 */
709 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
710 void *old, void *entry, gfp_t gfp)
711 {
712 void *curr;
713
714 xa_lock_bh(xa);
715 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
716 xa_unlock_bh(xa);
717
718 return curr;
719 }
720
721 /**
722 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
723 * @xa: XArray.
724 * @index: Index into array.
725 * @old: Old value to test against.
726 * @entry: New value to place in array.
727 * @gfp: Memory allocation flags.
728 *
729 * This function is like calling xa_cmpxchg() except it disables interrupts
730 * while holding the array lock.
731 *
732 * Context: Process context. Takes and releases the xa_lock while
733 * disabling interrupts. May sleep if the @gfp flags permit.
734 * Return: The old value at this index or xa_err() if an error happened.
735 */
736 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
737 void *old, void *entry, gfp_t gfp)
738 {
739 void *curr;
740
741 xa_lock_irq(xa);
742 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
743 xa_unlock_irq(xa);
744
745 return curr;
746 }
747
748 /**
749 * xa_insert() - Store this entry in the XArray unless another entry is
750 * already present.
751 * @xa: XArray.
752 * @index: Index into array.
753 * @entry: New entry.
754 * @gfp: Memory allocation flags.
755 *
756 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
757 * if no entry is present. Inserting will fail if a reserved entry is
758 * present, even though loading from this index will return NULL.
759 *
760 * Context: Any context. Takes and releases the xa_lock. May sleep if
761 * the @gfp flags permit.
762 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
763 * -ENOMEM if memory could not be allocated.
764 */
765 static inline int __must_check xa_insert(struct xarray *xa,
766 unsigned long index, void *entry, gfp_t gfp)
767 {
768 int err;
769
770 xa_lock(xa);
771 err = __xa_insert(xa, index, entry, gfp);
772 xa_unlock(xa);
773
774 return err;
775 }
776
777 /**
778 * xa_insert_bh() - Store this entry in the XArray unless another entry is
779 * already present.
780 * @xa: XArray.
781 * @index: Index into array.
782 * @entry: New entry.
783 * @gfp: Memory allocation flags.
784 *
785 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
786 * if no entry is present. Inserting will fail if a reserved entry is
787 * present, even though loading from this index will return NULL.
788 *
789 * Context: Any context. Takes and releases the xa_lock while
790 * disabling softirqs. May sleep if the @gfp flags permit.
791 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
792 * -ENOMEM if memory could not be allocated.
793 */
794 static inline int __must_check xa_insert_bh(struct xarray *xa,
795 unsigned long index, void *entry, gfp_t gfp)
796 {
797 int err;
798
799 xa_lock_bh(xa);
800 err = __xa_insert(xa, index, entry, gfp);
801 xa_unlock_bh(xa);
802
803 return err;
804 }
805
806 /**
807 * xa_insert_irq() - Store this entry in the XArray unless another entry is
808 * already present.
809 * @xa: XArray.
810 * @index: Index into array.
811 * @entry: New entry.
812 * @gfp: Memory allocation flags.
813 *
814 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
815 * if no entry is present. Inserting will fail if a reserved entry is
816 * present, even though loading from this index will return NULL.
817 *
818 * Context: Process context. Takes and releases the xa_lock while
819 * disabling interrupts. May sleep if the @gfp flags permit.
820 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
821 * -ENOMEM if memory could not be allocated.
822 */
823 static inline int __must_check xa_insert_irq(struct xarray *xa,
824 unsigned long index, void *entry, gfp_t gfp)
825 {
826 int err;
827
828 xa_lock_irq(xa);
829 err = __xa_insert(xa, index, entry, gfp);
830 xa_unlock_irq(xa);
831
832 return err;
833 }
834
835 /**
836 * xa_alloc() - Find somewhere to store this entry in the XArray.
837 * @xa: XArray.
838 * @id: Pointer to ID.
839 * @entry: New entry.
840 * @limit: Range of ID to allocate.
841 * @gfp: Memory allocation flags.
842 *
843 * Finds an empty entry in @xa between @limit.min and @limit.max,
844 * stores the index into the @id pointer, then stores the entry at
845 * that index. A concurrent lookup will not see an uninitialised @id.
846 *
847 * Context: Any context. Takes and releases the xa_lock. May sleep if
848 * the @gfp flags permit.
849 * Return: 0 on success, -ENOMEM if memory could not be allocated or
850 * -EBUSY if there are no free entries in @limit.
851 */
852 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
853 void *entry, struct xa_limit limit, gfp_t gfp)
854 {
855 int err;
856
857 xa_lock(xa);
858 err = __xa_alloc(xa, id, entry, limit, gfp);
859 xa_unlock(xa);
860
861 return err;
862 }
863
864 /**
865 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
866 * @xa: XArray.
867 * @id: Pointer to ID.
868 * @entry: New entry.
869 * @limit: Range of ID to allocate.
870 * @gfp: Memory allocation flags.
871 *
872 * Finds an empty entry in @xa between @limit.min and @limit.max,
873 * stores the index into the @id pointer, then stores the entry at
874 * that index. A concurrent lookup will not see an uninitialised @id.
875 *
876 * Context: Any context. Takes and releases the xa_lock while
877 * disabling softirqs. May sleep if the @gfp flags permit.
878 * Return: 0 on success, -ENOMEM if memory could not be allocated or
879 * -EBUSY if there are no free entries in @limit.
880 */
881 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
882 void *entry, struct xa_limit limit, gfp_t gfp)
883 {
884 int err;
885
886 xa_lock_bh(xa);
887 err = __xa_alloc(xa, id, entry, limit, gfp);
888 xa_unlock_bh(xa);
889
890 return err;
891 }
892
893 /**
894 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
895 * @xa: XArray.
896 * @id: Pointer to ID.
897 * @entry: New entry.
898 * @limit: Range of ID to allocate.
899 * @gfp: Memory allocation flags.
900 *
901 * Finds an empty entry in @xa between @limit.min and @limit.max,
902 * stores the index into the @id pointer, then stores the entry at
903 * that index. A concurrent lookup will not see an uninitialised @id.
904 *
905 * Context: Process context. Takes and releases the xa_lock while
906 * disabling interrupts. May sleep if the @gfp flags permit.
907 * Return: 0 on success, -ENOMEM if memory could not be allocated or
908 * -EBUSY if there are no free entries in @limit.
909 */
910 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
911 void *entry, struct xa_limit limit, gfp_t gfp)
912 {
913 int err;
914
915 xa_lock_irq(xa);
916 err = __xa_alloc(xa, id, entry, limit, gfp);
917 xa_unlock_irq(xa);
918
919 return err;
920 }
921
922 /**
923 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
924 * @xa: XArray.
925 * @id: Pointer to ID.
926 * @entry: New entry.
927 * @limit: Range of allocated ID.
928 * @next: Pointer to next ID to allocate.
929 * @gfp: Memory allocation flags.
930 *
931 * Finds an empty entry in @xa between @limit.min and @limit.max,
932 * stores the index into the @id pointer, then stores the entry at
933 * that index. A concurrent lookup will not see an uninitialised @id.
934 * The search for an empty entry will start at @next and will wrap
935 * around if necessary.
936 *
937 * Context: Any context. Takes and releases the xa_lock. May sleep if
938 * the @gfp flags permit.
939 * Return: 0 if the allocation succeeded without wrapping. 1 if the
940 * allocation succeeded after wrapping, -ENOMEM if memory could not be
941 * allocated or -EBUSY if there are no free entries in @limit.
942 */
943 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
944 struct xa_limit limit, u32 *next, gfp_t gfp)
945 {
946 int err;
947
948 xa_lock(xa);
949 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
950 xa_unlock(xa);
951
952 return err;
953 }
954
955 /**
956 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
957 * @xa: XArray.
958 * @id: Pointer to ID.
959 * @entry: New entry.
960 * @limit: Range of allocated ID.
961 * @next: Pointer to next ID to allocate.
962 * @gfp: Memory allocation flags.
963 *
964 * Finds an empty entry in @xa between @limit.min and @limit.max,
965 * stores the index into the @id pointer, then stores the entry at
966 * that index. A concurrent lookup will not see an uninitialised @id.
967 * The search for an empty entry will start at @next and will wrap
968 * around if necessary.
969 *
970 * Context: Any context. Takes and releases the xa_lock while
971 * disabling softirqs. May sleep if the @gfp flags permit.
972 * Return: 0 if the allocation succeeded without wrapping. 1 if the
973 * allocation succeeded after wrapping, -ENOMEM if memory could not be
974 * allocated or -EBUSY if there are no free entries in @limit.
975 */
976 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
977 struct xa_limit limit, u32 *next, gfp_t gfp)
978 {
979 int err;
980
981 xa_lock_bh(xa);
982 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
983 xa_unlock_bh(xa);
984
985 return err;
986 }
987
988 /**
989 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
990 * @xa: XArray.
991 * @id: Pointer to ID.
992 * @entry: New entry.
993 * @limit: Range of allocated ID.
994 * @next: Pointer to next ID to allocate.
995 * @gfp: Memory allocation flags.
996 *
997 * Finds an empty entry in @xa between @limit.min and @limit.max,
998 * stores the index into the @id pointer, then stores the entry at
999 * that index. A concurrent lookup will not see an uninitialised @id.
1000 * The search for an empty entry will start at @next and will wrap
1001 * around if necessary.
1002 *
1003 * Context: Process context. Takes and releases the xa_lock while
1004 * disabling interrupts. May sleep if the @gfp flags permit.
1005 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1006 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1007 * allocated or -EBUSY if there are no free entries in @limit.
1008 */
1009 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
1010 struct xa_limit limit, u32 *next, gfp_t gfp)
1011 {
1012 int err;
1013
1014 xa_lock_irq(xa);
1015 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1016 xa_unlock_irq(xa);
1017
1018 return err;
1019 }
1020
1021 /**
1022 * xa_reserve() - Reserve this index in the XArray.
1023 * @xa: XArray.
1024 * @index: Index into array.
1025 * @gfp: Memory allocation flags.
1026 *
1027 * Ensures there is somewhere to store an entry at @index in the array.
1028 * If there is already something stored at @index, this function does
1029 * nothing. If there was nothing there, the entry is marked as reserved.
1030 * Loading from a reserved entry returns a %NULL pointer.
1031 *
1032 * If you do not use the entry that you have reserved, call xa_release()
1033 * or xa_erase() to free any unnecessary memory.
1034 *
1035 * Context: Any context. Takes and releases the xa_lock.
1036 * May sleep if the @gfp flags permit.
1037 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1038 */
1039 static inline __must_check
1040 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1041 {
1042 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1043 }
1044
1045 /**
1046 * xa_reserve_bh() - Reserve this index in the XArray.
1047 * @xa: XArray.
1048 * @index: Index into array.
1049 * @gfp: Memory allocation flags.
1050 *
1051 * A softirq-disabling version of xa_reserve().
1052 *
1053 * Context: Any context. Takes and releases the xa_lock while
1054 * disabling softirqs.
1055 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1056 */
1057 static inline __must_check
1058 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1059 {
1060 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1061 }
1062
1063 /**
1064 * xa_reserve_irq() - Reserve this index in the XArray.
1065 * @xa: XArray.
1066 * @index: Index into array.
1067 * @gfp: Memory allocation flags.
1068 *
1069 * An interrupt-disabling version of xa_reserve().
1070 *
1071 * Context: Process context. Takes and releases the xa_lock while
1072 * disabling interrupts.
1073 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1074 */
1075 static inline __must_check
1076 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1077 {
1078 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1079 }
1080
1081 /**
1082 * xa_release() - Release a reserved entry.
1083 * @xa: XArray.
1084 * @index: Index of entry.
1085 *
1086 * After calling xa_reserve(), you can call this function to release the
1087 * reservation. If the entry at @index has been stored to, this function
1088 * will do nothing.
1089 */
1090 static inline void xa_release(struct xarray *xa, unsigned long index)
1091 {
1092 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1093 }
1094
1095 /* Everything below here is the Advanced API. Proceed with caution. */
1096
1097 /*
1098 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing
1099 * the best chunk size requires some tradeoffs. A power of two recommends
1100 * itself so that we can walk the tree based purely on shifts and masks.
1101 * Generally, the larger the better; as the number of slots per level of the
1102 * tree increases, the less tall the tree needs to be. But that needs to be
1103 * balanced against the memory consumption of each node. On a 64-bit system,
1104 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we
1105 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1106 */
1107 #ifndef XA_CHUNK_SHIFT
1108 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
1109 #endif
1110 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT)
1111 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1)
1112 #define XA_MAX_MARKS 3
1113 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1114
1115 /*
1116 * @count is the count of every non-NULL element in the ->slots array
1117 * whether that is a value entry, a retry entry, a user pointer,
1118 * a sibling entry or a pointer to the next level of the tree.
1119 * @nr_values is the count of every element in ->slots which is
1120 * either a value entry or a sibling of a value entry.
1121 */
1122 struct xa_node {
1123 unsigned char shift; /* Bits remaining in each slot */
1124 unsigned char offset; /* Slot offset in parent */
1125 unsigned char count; /* Total entry count */
1126 unsigned char nr_values; /* Value entry count */
1127 struct xa_node __rcu *parent; /* NULL at top of tree */
1128 struct xarray *array; /* The array we belong to */
1129 union {
1130 struct list_head private_list; /* For tree user */
1131 struct rcu_head rcu_head; /* Used when freeing node */
1132 };
1133 void __rcu *slots[XA_CHUNK_SIZE];
1134 union {
1135 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS];
1136 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS];
1137 };
1138 };
1139
1140 void xa_dump(const struct xarray *);
1141 void xa_dump_node(const struct xa_node *);
1142
1143 #ifdef XA_DEBUG
1144 #define XA_BUG_ON(xa, x) do { \
1145 if (x) { \
1146 xa_dump(xa); \
1147 BUG(); \
1148 } \
1149 } while (0)
1150 #define XA_NODE_BUG_ON(node, x) do { \
1151 if (x) { \
1152 if (node) xa_dump_node(node); \
1153 BUG(); \
1154 } \
1155 } while (0)
1156 #else
1157 #define XA_BUG_ON(xa, x) do { } while (0)
1158 #define XA_NODE_BUG_ON(node, x) do { } while (0)
1159 #endif
1160
1161 /* Private */
1162 static inline void *xa_head(const struct xarray *xa)
1163 {
1164 return rcu_dereference_check(xa->xa_head,
1165 lockdep_is_held(&xa->xa_lock));
1166 }
1167
1168 /* Private */
1169 static inline void *xa_head_locked(const struct xarray *xa)
1170 {
1171 return rcu_dereference_protected(xa->xa_head,
1172 lockdep_is_held(&xa->xa_lock));
1173 }
1174
1175 /* Private */
1176 static inline void *xa_entry(const struct xarray *xa,
1177 const struct xa_node *node, unsigned int offset)
1178 {
1179 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1180 return rcu_dereference_check(node->slots[offset],
1181 lockdep_is_held(&xa->xa_lock));
1182 }
1183
1184 /* Private */
1185 static inline void *xa_entry_locked(const struct xarray *xa,
1186 const struct xa_node *node, unsigned int offset)
1187 {
1188 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1189 return rcu_dereference_protected(node->slots[offset],
1190 lockdep_is_held(&xa->xa_lock));
1191 }
1192
1193 /* Private */
1194 static inline struct xa_node *xa_parent(const struct xarray *xa,
1195 const struct xa_node *node)
1196 {
1197 return rcu_dereference_check(node->parent,
1198 lockdep_is_held(&xa->xa_lock));
1199 }
1200
1201 /* Private */
1202 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1203 const struct xa_node *node)
1204 {
1205 return rcu_dereference_protected(node->parent,
1206 lockdep_is_held(&xa->xa_lock));
1207 }
1208
1209 /* Private */
1210 static inline void *xa_mk_node(const struct xa_node *node)
1211 {
1212 return (void *)((unsigned long)node | 2);
1213 }
1214
1215 /* Private */
1216 static inline struct xa_node *xa_to_node(const void *entry)
1217 {
1218 return (struct xa_node *)((unsigned long)entry - 2);
1219 }
1220
1221 /* Private */
1222 static inline bool xa_is_node(const void *entry)
1223 {
1224 return xa_is_internal(entry) && (unsigned long)entry > 4096;
1225 }
1226
1227 /* Private */
1228 static inline void *xa_mk_sibling(unsigned int offset)
1229 {
1230 return xa_mk_internal(offset);
1231 }
1232
1233 /* Private */
1234 static inline unsigned long xa_to_sibling(const void *entry)
1235 {
1236 return xa_to_internal(entry);
1237 }
1238
1239 /**
1240 * xa_is_sibling() - Is the entry a sibling entry?
1241 * @entry: Entry retrieved from the XArray
1242 *
1243 * Return: %true if the entry is a sibling entry.
1244 */
1245 static inline bool xa_is_sibling(const void *entry)
1246 {
1247 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1248 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1249 }
1250
1251 #define XA_RETRY_ENTRY xa_mk_internal(256)
1252
1253 /**
1254 * xa_is_retry() - Is the entry a retry entry?
1255 * @entry: Entry retrieved from the XArray
1256 *
1257 * Return: %true if the entry is a retry entry.
1258 */
1259 static inline bool xa_is_retry(const void *entry)
1260 {
1261 return unlikely(entry == XA_RETRY_ENTRY);
1262 }
1263
1264 /**
1265 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1266 * @entry: Entry to be stored in the XArray.
1267 *
1268 * Return: %true if the entry cannot be stored by the normal API.
1269 */
1270 static inline bool xa_is_advanced(const void *entry)
1271 {
1272 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1273 }
1274
1275 /**
1276 * typedef xa_update_node_t - A callback function from the XArray.
1277 * @node: The node which is being processed
1278 *
1279 * This function is called every time the XArray updates the count of
1280 * present and value entries in a node. It allows advanced users to
1281 * maintain the private_list in the node.
1282 *
1283 * Context: The xa_lock is held and interrupts may be disabled.
1284 * Implementations should not drop the xa_lock, nor re-enable
1285 * interrupts.
1286 */
1287 typedef void (*xa_update_node_t)(struct xa_node *node);
1288
1289 /*
1290 * The xa_state is opaque to its users. It contains various different pieces
1291 * of state involved in the current operation on the XArray. It should be
1292 * declared on the stack and passed between the various internal routines.
1293 * The various elements in it should not be accessed directly, but only
1294 * through the provided accessor functions. The below documentation is for
1295 * the benefit of those working on the code, not for users of the XArray.
1296 *
1297 * @xa_node usually points to the xa_node containing the slot we're operating
1298 * on (and @xa_offset is the offset in the slots array). If there is a
1299 * single entry in the array at index 0, there are no allocated xa_nodes to
1300 * point to, and so we store %NULL in @xa_node. @xa_node is set to
1301 * the value %XAS_RESTART if the xa_state is not walked to the correct
1302 * position in the tree of nodes for this operation. If an error occurs
1303 * during an operation, it is set to an %XAS_ERROR value. If we run off the
1304 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1305 */
1306 struct xa_state {
1307 struct xarray *xa;
1308 unsigned long xa_index;
1309 unsigned char xa_shift;
1310 unsigned char xa_sibs;
1311 unsigned char xa_offset;
1312 unsigned char xa_pad; /* Helps gcc generate better code */
1313 struct xa_node *xa_node;
1314 struct xa_node *xa_alloc;
1315 xa_update_node_t xa_update;
1316 };
1317
1318 /*
1319 * We encode errnos in the xas->xa_node. If an error has happened, we need to
1320 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1321 */
1322 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1323 #define XAS_BOUNDS ((struct xa_node *)1UL)
1324 #define XAS_RESTART ((struct xa_node *)3UL)
1325
1326 #define __XA_STATE(array, index, shift, sibs) { \
1327 .xa = array, \
1328 .xa_index = index, \
1329 .xa_shift = shift, \
1330 .xa_sibs = sibs, \
1331 .xa_offset = 0, \
1332 .xa_pad = 0, \
1333 .xa_node = XAS_RESTART, \
1334 .xa_alloc = NULL, \
1335 .xa_update = NULL \
1336 }
1337
1338 /**
1339 * XA_STATE() - Declare an XArray operation state.
1340 * @name: Name of this operation state (usually xas).
1341 * @array: Array to operate on.
1342 * @index: Initial index of interest.
1343 *
1344 * Declare and initialise an xa_state on the stack.
1345 */
1346 #define XA_STATE(name, array, index) \
1347 struct xa_state name = __XA_STATE(array, index, 0, 0)
1348
1349 /**
1350 * XA_STATE_ORDER() - Declare an XArray operation state.
1351 * @name: Name of this operation state (usually xas).
1352 * @array: Array to operate on.
1353 * @index: Initial index of interest.
1354 * @order: Order of entry.
1355 *
1356 * Declare and initialise an xa_state on the stack. This variant of
1357 * XA_STATE() allows you to specify the 'order' of the element you
1358 * want to operate on.`
1359 */
1360 #define XA_STATE_ORDER(name, array, index, order) \
1361 struct xa_state name = __XA_STATE(array, \
1362 (index >> order) << order, \
1363 order - (order % XA_CHUNK_SHIFT), \
1364 (1U << (order % XA_CHUNK_SHIFT)) - 1)
1365
1366 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark))
1367 #define xas_trylock(xas) xa_trylock((xas)->xa)
1368 #define xas_lock(xas) xa_lock((xas)->xa)
1369 #define xas_unlock(xas) xa_unlock((xas)->xa)
1370 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa)
1371 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa)
1372 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa)
1373 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa)
1374 #define xas_lock_irqsave(xas, flags) \
1375 xa_lock_irqsave((xas)->xa, flags)
1376 #define xas_unlock_irqrestore(xas, flags) \
1377 xa_unlock_irqrestore((xas)->xa, flags)
1378
1379 /**
1380 * xas_error() - Return an errno stored in the xa_state.
1381 * @xas: XArray operation state.
1382 *
1383 * Return: 0 if no error has been noted. A negative errno if one has.
1384 */
1385 static inline int xas_error(const struct xa_state *xas)
1386 {
1387 return xa_err(xas->xa_node);
1388 }
1389
1390 /**
1391 * xas_set_err() - Note an error in the xa_state.
1392 * @xas: XArray operation state.
1393 * @err: Negative error number.
1394 *
1395 * Only call this function with a negative @err; zero or positive errors
1396 * will probably not behave the way you think they should. If you want
1397 * to clear the error from an xa_state, use xas_reset().
1398 */
1399 static inline void xas_set_err(struct xa_state *xas, long err)
1400 {
1401 xas->xa_node = XA_ERROR(err);
1402 }
1403
1404 /**
1405 * xas_invalid() - Is the xas in a retry or error state?
1406 * @xas: XArray operation state.
1407 *
1408 * Return: %true if the xas cannot be used for operations.
1409 */
1410 static inline bool xas_invalid(const struct xa_state *xas)
1411 {
1412 return (unsigned long)xas->xa_node & 3;
1413 }
1414
1415 /**
1416 * xas_valid() - Is the xas a valid cursor into the array?
1417 * @xas: XArray operation state.
1418 *
1419 * Return: %true if the xas can be used for operations.
1420 */
1421 static inline bool xas_valid(const struct xa_state *xas)
1422 {
1423 return !xas_invalid(xas);
1424 }
1425
1426 /**
1427 * xas_is_node() - Does the xas point to a node?
1428 * @xas: XArray operation state.
1429 *
1430 * Return: %true if the xas currently references a node.
1431 */
1432 static inline bool xas_is_node(const struct xa_state *xas)
1433 {
1434 return xas_valid(xas) && xas->xa_node;
1435 }
1436
1437 /* True if the pointer is something other than a node */
1438 static inline bool xas_not_node(struct xa_node *node)
1439 {
1440 return ((unsigned long)node & 3) || !node;
1441 }
1442
1443 /* True if the node represents RESTART or an error */
1444 static inline bool xas_frozen(struct xa_node *node)
1445 {
1446 return (unsigned long)node & 2;
1447 }
1448
1449 /* True if the node represents head-of-tree, RESTART or BOUNDS */
1450 static inline bool xas_top(struct xa_node *node)
1451 {
1452 return node <= XAS_RESTART;
1453 }
1454
1455 /**
1456 * xas_reset() - Reset an XArray operation state.
1457 * @xas: XArray operation state.
1458 *
1459 * Resets the error or walk state of the @xas so future walks of the
1460 * array will start from the root. Use this if you have dropped the
1461 * xarray lock and want to reuse the xa_state.
1462 *
1463 * Context: Any context.
1464 */
1465 static inline void xas_reset(struct xa_state *xas)
1466 {
1467 xas->xa_node = XAS_RESTART;
1468 }
1469
1470 /**
1471 * xas_retry() - Retry the operation if appropriate.
1472 * @xas: XArray operation state.
1473 * @entry: Entry from xarray.
1474 *
1475 * The advanced functions may sometimes return an internal entry, such as
1476 * a retry entry or a zero entry. This function sets up the @xas to restart
1477 * the walk from the head of the array if needed.
1478 *
1479 * Context: Any context.
1480 * Return: true if the operation needs to be retried.
1481 */
1482 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1483 {
1484 if (xa_is_zero(entry))
1485 return true;
1486 if (!xa_is_retry(entry))
1487 return false;
1488 xas_reset(xas);
1489 return true;
1490 }
1491
1492 void *xas_load(struct xa_state *);
1493 void *xas_store(struct xa_state *, void *entry);
1494 void *xas_find(struct xa_state *, unsigned long max);
1495 void *xas_find_conflict(struct xa_state *);
1496
1497 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1498 void xas_set_mark(const struct xa_state *, xa_mark_t);
1499 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1500 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1501 void xas_init_marks(const struct xa_state *);
1502
1503 bool xas_nomem(struct xa_state *, gfp_t);
1504 void xas_pause(struct xa_state *);
1505
1506 void xas_create_range(struct xa_state *);
1507
1508 /**
1509 * xas_reload() - Refetch an entry from the xarray.
1510 * @xas: XArray operation state.
1511 *
1512 * Use this function to check that a previously loaded entry still has
1513 * the same value. This is useful for the lockless pagecache lookup where
1514 * we walk the array with only the RCU lock to protect us, lock the page,
1515 * then check that the page hasn't moved since we looked it up.
1516 *
1517 * The caller guarantees that @xas is still valid. If it may be in an
1518 * error or restart state, call xas_load() instead.
1519 *
1520 * Return: The entry at this location in the xarray.
1521 */
1522 static inline void *xas_reload(struct xa_state *xas)
1523 {
1524 struct xa_node *node = xas->xa_node;
1525
1526 if (node)
1527 return xa_entry(xas->xa, node, xas->xa_offset);
1528 return xa_head(xas->xa);
1529 }
1530
1531 /**
1532 * xas_set() - Set up XArray operation state for a different index.
1533 * @xas: XArray operation state.
1534 * @index: New index into the XArray.
1535 *
1536 * Move the operation state to refer to a different index. This will
1537 * have the effect of starting a walk from the top; see xas_next()
1538 * to move to an adjacent index.
1539 */
1540 static inline void xas_set(struct xa_state *xas, unsigned long index)
1541 {
1542 xas->xa_index = index;
1543 xas->xa_node = XAS_RESTART;
1544 }
1545
1546 /**
1547 * xas_set_order() - Set up XArray operation state for a multislot entry.
1548 * @xas: XArray operation state.
1549 * @index: Target of the operation.
1550 * @order: Entry occupies 2^@order indices.
1551 */
1552 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1553 unsigned int order)
1554 {
1555 #ifdef CONFIG_XARRAY_MULTI
1556 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1557 xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1558 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1559 xas->xa_node = XAS_RESTART;
1560 #else
1561 BUG_ON(order > 0);
1562 xas_set(xas, index);
1563 #endif
1564 }
1565
1566 /**
1567 * xas_set_update() - Set up XArray operation state for a callback.
1568 * @xas: XArray operation state.
1569 * @update: Function to call when updating a node.
1570 *
1571 * The XArray can notify a caller after it has updated an xa_node.
1572 * This is advanced functionality and is only needed by the page cache.
1573 */
1574 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1575 {
1576 xas->xa_update = update;
1577 }
1578
1579 /**
1580 * xas_next_entry() - Advance iterator to next present entry.
1581 * @xas: XArray operation state.
1582 * @max: Highest index to return.
1583 *
1584 * xas_next_entry() is an inline function to optimise xarray traversal for
1585 * speed. It is equivalent to calling xas_find(), and will call xas_find()
1586 * for all the hard cases.
1587 *
1588 * Return: The next present entry after the one currently referred to by @xas.
1589 */
1590 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1591 {
1592 struct xa_node *node = xas->xa_node;
1593 void *entry;
1594
1595 if (unlikely(xas_not_node(node) || node->shift ||
1596 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1597 return xas_find(xas, max);
1598
1599 do {
1600 if (unlikely(xas->xa_index >= max))
1601 return xas_find(xas, max);
1602 if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1603 return xas_find(xas, max);
1604 entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1605 if (unlikely(xa_is_internal(entry)))
1606 return xas_find(xas, max);
1607 xas->xa_offset++;
1608 xas->xa_index++;
1609 } while (!entry);
1610
1611 return entry;
1612 }
1613
1614 /* Private */
1615 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1616 xa_mark_t mark)
1617 {
1618 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1619 unsigned int offset = xas->xa_offset;
1620
1621 if (advance)
1622 offset++;
1623 if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1624 if (offset < XA_CHUNK_SIZE) {
1625 unsigned long data = *addr & (~0UL << offset);
1626 if (data)
1627 return __ffs(data);
1628 }
1629 return XA_CHUNK_SIZE;
1630 }
1631
1632 return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1633 }
1634
1635 /**
1636 * xas_next_marked() - Advance iterator to next marked entry.
1637 * @xas: XArray operation state.
1638 * @max: Highest index to return.
1639 * @mark: Mark to search for.
1640 *
1641 * xas_next_marked() is an inline function to optimise xarray traversal for
1642 * speed. It is equivalent to calling xas_find_marked(), and will call
1643 * xas_find_marked() for all the hard cases.
1644 *
1645 * Return: The next marked entry after the one currently referred to by @xas.
1646 */
1647 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1648 xa_mark_t mark)
1649 {
1650 struct xa_node *node = xas->xa_node;
1651 void *entry;
1652 unsigned int offset;
1653
1654 if (unlikely(xas_not_node(node) || node->shift))
1655 return xas_find_marked(xas, max, mark);
1656 offset = xas_find_chunk(xas, true, mark);
1657 xas->xa_offset = offset;
1658 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1659 if (xas->xa_index > max)
1660 return NULL;
1661 if (offset == XA_CHUNK_SIZE)
1662 return xas_find_marked(xas, max, mark);
1663 entry = xa_entry(xas->xa, node, offset);
1664 if (!entry)
1665 return xas_find_marked(xas, max, mark);
1666 return entry;
1667 }
1668
1669 /*
1670 * If iterating while holding a lock, drop the lock and reschedule
1671 * every %XA_CHECK_SCHED loops.
1672 */
1673 enum {
1674 XA_CHECK_SCHED = 4096,
1675 };
1676
1677 /**
1678 * xas_for_each() - Iterate over a range of an XArray.
1679 * @xas: XArray operation state.
1680 * @entry: Entry retrieved from the array.
1681 * @max: Maximum index to retrieve from array.
1682 *
1683 * The loop body will be executed for each entry present in the xarray
1684 * between the current xas position and @max. @entry will be set to
1685 * the entry retrieved from the xarray. It is safe to delete entries
1686 * from the array in the loop body. You should hold either the RCU lock
1687 * or the xa_lock while iterating. If you need to drop the lock, call
1688 * xas_pause() first.
1689 */
1690 #define xas_for_each(xas, entry, max) \
1691 for (entry = xas_find(xas, max); entry; \
1692 entry = xas_next_entry(xas, max))
1693
1694 /**
1695 * xas_for_each_marked() - Iterate over a range of an XArray.
1696 * @xas: XArray operation state.
1697 * @entry: Entry retrieved from the array.
1698 * @max: Maximum index to retrieve from array.
1699 * @mark: Mark to search for.
1700 *
1701 * The loop body will be executed for each marked entry in the xarray
1702 * between the current xas position and @max. @entry will be set to
1703 * the entry retrieved from the xarray. It is safe to delete entries
1704 * from the array in the loop body. You should hold either the RCU lock
1705 * or the xa_lock while iterating. If you need to drop the lock, call
1706 * xas_pause() first.
1707 */
1708 #define xas_for_each_marked(xas, entry, max, mark) \
1709 for (entry = xas_find_marked(xas, max, mark); entry; \
1710 entry = xas_next_marked(xas, max, mark))
1711
1712 /**
1713 * xas_for_each_conflict() - Iterate over a range of an XArray.
1714 * @xas: XArray operation state.
1715 * @entry: Entry retrieved from the array.
1716 *
1717 * The loop body will be executed for each entry in the XArray that lies
1718 * within the range specified by @xas. If the loop completes successfully,
1719 * any entries that lie in this range will be replaced by @entry. The caller
1720 * may break out of the loop; if they do so, the contents of the XArray will
1721 * be unchanged. The operation may fail due to an out of memory condition.
1722 * The caller may also call xa_set_err() to exit the loop while setting an
1723 * error to record the reason.
1724 */
1725 #define xas_for_each_conflict(xas, entry) \
1726 while ((entry = xas_find_conflict(xas)))
1727
1728 void *__xas_next(struct xa_state *);
1729 void *__xas_prev(struct xa_state *);
1730
1731 /**
1732 * xas_prev() - Move iterator to previous index.
1733 * @xas: XArray operation state.
1734 *
1735 * If the @xas was in an error state, it will remain in an error state
1736 * and this function will return %NULL. If the @xas has never been walked,
1737 * it will have the effect of calling xas_load(). Otherwise one will be
1738 * subtracted from the index and the state will be walked to the correct
1739 * location in the array for the next operation.
1740 *
1741 * If the iterator was referencing index 0, this function wraps
1742 * around to %ULONG_MAX.
1743 *
1744 * Return: The entry at the new index. This may be %NULL or an internal
1745 * entry.
1746 */
1747 static inline void *xas_prev(struct xa_state *xas)
1748 {
1749 struct xa_node *node = xas->xa_node;
1750
1751 if (unlikely(xas_not_node(node) || node->shift ||
1752 xas->xa_offset == 0))
1753 return __xas_prev(xas);
1754
1755 xas->xa_index--;
1756 xas->xa_offset--;
1757 return xa_entry(xas->xa, node, xas->xa_offset);
1758 }
1759
1760 /**
1761 * xas_next() - Move state to next index.
1762 * @xas: XArray operation state.
1763 *
1764 * If the @xas was in an error state, it will remain in an error state
1765 * and this function will return %NULL. If the @xas has never been walked,
1766 * it will have the effect of calling xas_load(). Otherwise one will be
1767 * added to the index and the state will be walked to the correct
1768 * location in the array for the next operation.
1769 *
1770 * If the iterator was referencing index %ULONG_MAX, this function wraps
1771 * around to 0.
1772 *
1773 * Return: The entry at the new index. This may be %NULL or an internal
1774 * entry.
1775 */
1776 static inline void *xas_next(struct xa_state *xas)
1777 {
1778 struct xa_node *node = xas->xa_node;
1779
1780 if (unlikely(xas_not_node(node) || node->shift ||
1781 xas->xa_offset == XA_CHUNK_MASK))
1782 return __xas_next(xas);
1783
1784 xas->xa_index++;
1785 xas->xa_offset++;
1786 return xa_entry(xas->xa, node, xas->xa_offset);
1787 }
1788
1789 #endif /* _LINUX_XARRAY_H */