]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/bluetooth/hci_core.h
Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[mirror_ubuntu-bionic-kernel.git] / include / net / bluetooth / hci_core.h
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <linux/leds.h>
29 #include <net/bluetooth/hci.h>
30 #include <net/bluetooth/hci_sock.h>
31
32 /* HCI priority */
33 #define HCI_PRIO_MAX 7
34
35 /* HCI Core structures */
36 struct inquiry_data {
37 bdaddr_t bdaddr;
38 __u8 pscan_rep_mode;
39 __u8 pscan_period_mode;
40 __u8 pscan_mode;
41 __u8 dev_class[3];
42 __le16 clock_offset;
43 __s8 rssi;
44 __u8 ssp_mode;
45 };
46
47 struct inquiry_entry {
48 struct list_head all; /* inq_cache.all */
49 struct list_head list; /* unknown or resolve */
50 enum {
51 NAME_NOT_KNOWN,
52 NAME_NEEDED,
53 NAME_PENDING,
54 NAME_KNOWN,
55 } name_state;
56 __u32 timestamp;
57 struct inquiry_data data;
58 };
59
60 struct discovery_state {
61 int type;
62 enum {
63 DISCOVERY_STOPPED,
64 DISCOVERY_STARTING,
65 DISCOVERY_FINDING,
66 DISCOVERY_RESOLVING,
67 DISCOVERY_STOPPING,
68 } state;
69 struct list_head all; /* All devices found during inquiry */
70 struct list_head unknown; /* Name state not known */
71 struct list_head resolve; /* Name needs to be resolved */
72 __u32 timestamp;
73 bdaddr_t last_adv_addr;
74 u8 last_adv_addr_type;
75 s8 last_adv_rssi;
76 u32 last_adv_flags;
77 u8 last_adv_data[HCI_MAX_AD_LENGTH];
78 u8 last_adv_data_len;
79 bool report_invalid_rssi;
80 bool result_filtering;
81 bool limited;
82 s8 rssi;
83 u16 uuid_count;
84 u8 (*uuids)[16];
85 unsigned long scan_start;
86 unsigned long scan_duration;
87 };
88
89 struct hci_conn_hash {
90 struct list_head list;
91 unsigned int acl_num;
92 unsigned int amp_num;
93 unsigned int sco_num;
94 unsigned int le_num;
95 unsigned int le_num_slave;
96 };
97
98 struct bdaddr_list {
99 struct list_head list;
100 bdaddr_t bdaddr;
101 u8 bdaddr_type;
102 };
103
104 struct bt_uuid {
105 struct list_head list;
106 u8 uuid[16];
107 u8 size;
108 u8 svc_hint;
109 };
110
111 struct smp_csrk {
112 bdaddr_t bdaddr;
113 u8 bdaddr_type;
114 u8 type;
115 u8 val[16];
116 };
117
118 struct smp_ltk {
119 struct list_head list;
120 struct rcu_head rcu;
121 bdaddr_t bdaddr;
122 u8 bdaddr_type;
123 u8 authenticated;
124 u8 type;
125 u8 enc_size;
126 __le16 ediv;
127 __le64 rand;
128 u8 val[16];
129 };
130
131 struct smp_irk {
132 struct list_head list;
133 struct rcu_head rcu;
134 bdaddr_t rpa;
135 bdaddr_t bdaddr;
136 u8 addr_type;
137 u8 val[16];
138 };
139
140 struct link_key {
141 struct list_head list;
142 struct rcu_head rcu;
143 bdaddr_t bdaddr;
144 u8 type;
145 u8 val[HCI_LINK_KEY_SIZE];
146 u8 pin_len;
147 };
148
149 struct oob_data {
150 struct list_head list;
151 bdaddr_t bdaddr;
152 u8 bdaddr_type;
153 u8 present;
154 u8 hash192[16];
155 u8 rand192[16];
156 u8 hash256[16];
157 u8 rand256[16];
158 };
159
160 struct adv_info {
161 struct list_head list;
162 bool pending;
163 __u8 instance;
164 __u32 flags;
165 __u16 timeout;
166 __u16 remaining_time;
167 __u16 duration;
168 __u16 adv_data_len;
169 __u8 adv_data[HCI_MAX_AD_LENGTH];
170 __u16 scan_rsp_len;
171 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
172 };
173
174 #define HCI_MAX_ADV_INSTANCES 5
175 #define HCI_DEFAULT_ADV_DURATION 2
176
177 #define HCI_MAX_SHORT_NAME_LENGTH 10
178
179 /* Default LE RPA expiry time, 15 minutes */
180 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60)
181
182 /* Default min/max age of connection information (1s/3s) */
183 #define DEFAULT_CONN_INFO_MIN_AGE 1000
184 #define DEFAULT_CONN_INFO_MAX_AGE 3000
185
186 struct amp_assoc {
187 __u16 len;
188 __u16 offset;
189 __u16 rem_len;
190 __u16 len_so_far;
191 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
192 };
193
194 #define HCI_MAX_PAGES 3
195
196 struct hci_dev {
197 struct list_head list;
198 struct mutex lock;
199
200 char name[8];
201 unsigned long flags;
202 __u16 id;
203 __u8 bus;
204 __u8 dev_type;
205 bdaddr_t bdaddr;
206 bdaddr_t setup_addr;
207 bdaddr_t public_addr;
208 bdaddr_t random_addr;
209 bdaddr_t static_addr;
210 __u8 adv_addr_type;
211 __u8 dev_name[HCI_MAX_NAME_LENGTH];
212 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
213 __u8 eir[HCI_MAX_EIR_LENGTH];
214 __u8 dev_class[3];
215 __u8 major_class;
216 __u8 minor_class;
217 __u8 max_page;
218 __u8 features[HCI_MAX_PAGES][8];
219 __u8 le_features[8];
220 __u8 le_white_list_size;
221 __u8 le_states[8];
222 __u8 commands[64];
223 __u8 hci_ver;
224 __u16 hci_rev;
225 __u8 lmp_ver;
226 __u16 manufacturer;
227 __u16 lmp_subver;
228 __u16 voice_setting;
229 __u8 num_iac;
230 __u8 stored_max_keys;
231 __u8 stored_num_keys;
232 __u8 io_capability;
233 __s8 inq_tx_power;
234 __u16 page_scan_interval;
235 __u16 page_scan_window;
236 __u8 page_scan_type;
237 __u8 le_adv_channel_map;
238 __u16 le_adv_min_interval;
239 __u16 le_adv_max_interval;
240 __u8 le_scan_type;
241 __u16 le_scan_interval;
242 __u16 le_scan_window;
243 __u16 le_conn_min_interval;
244 __u16 le_conn_max_interval;
245 __u16 le_conn_latency;
246 __u16 le_supv_timeout;
247 __u16 le_def_tx_len;
248 __u16 le_def_tx_time;
249 __u16 le_max_tx_len;
250 __u16 le_max_tx_time;
251 __u16 le_max_rx_len;
252 __u16 le_max_rx_time;
253 __u16 discov_interleaved_timeout;
254 __u16 conn_info_min_age;
255 __u16 conn_info_max_age;
256 __u8 ssp_debug_mode;
257 __u8 hw_error_code;
258 __u32 clock;
259
260 __u16 devid_source;
261 __u16 devid_vendor;
262 __u16 devid_product;
263 __u16 devid_version;
264
265 __u16 pkt_type;
266 __u16 esco_type;
267 __u16 link_policy;
268 __u16 link_mode;
269
270 __u32 idle_timeout;
271 __u16 sniff_min_interval;
272 __u16 sniff_max_interval;
273
274 __u8 amp_status;
275 __u32 amp_total_bw;
276 __u32 amp_max_bw;
277 __u32 amp_min_latency;
278 __u32 amp_max_pdu;
279 __u8 amp_type;
280 __u16 amp_pal_cap;
281 __u16 amp_assoc_size;
282 __u32 amp_max_flush_to;
283 __u32 amp_be_flush_to;
284
285 struct amp_assoc loc_assoc;
286
287 __u8 flow_ctl_mode;
288
289 unsigned int auto_accept_delay;
290
291 unsigned long quirks;
292
293 atomic_t cmd_cnt;
294 unsigned int acl_cnt;
295 unsigned int sco_cnt;
296 unsigned int le_cnt;
297
298 unsigned int acl_mtu;
299 unsigned int sco_mtu;
300 unsigned int le_mtu;
301 unsigned int acl_pkts;
302 unsigned int sco_pkts;
303 unsigned int le_pkts;
304
305 __u16 block_len;
306 __u16 block_mtu;
307 __u16 num_blocks;
308 __u16 block_cnt;
309
310 unsigned long acl_last_tx;
311 unsigned long sco_last_tx;
312 unsigned long le_last_tx;
313
314 struct workqueue_struct *workqueue;
315 struct workqueue_struct *req_workqueue;
316
317 struct work_struct power_on;
318 struct delayed_work power_off;
319 struct work_struct error_reset;
320
321 __u16 discov_timeout;
322 struct delayed_work discov_off;
323
324 struct delayed_work service_cache;
325
326 struct delayed_work cmd_timer;
327
328 struct work_struct rx_work;
329 struct work_struct cmd_work;
330 struct work_struct tx_work;
331
332 struct work_struct discov_update;
333 struct work_struct bg_scan_update;
334 struct work_struct scan_update;
335 struct work_struct connectable_update;
336 struct work_struct discoverable_update;
337 struct delayed_work le_scan_disable;
338 struct delayed_work le_scan_restart;
339
340 struct sk_buff_head rx_q;
341 struct sk_buff_head raw_q;
342 struct sk_buff_head cmd_q;
343
344 struct sk_buff *sent_cmd;
345
346 struct mutex req_lock;
347 wait_queue_head_t req_wait_q;
348 __u32 req_status;
349 __u32 req_result;
350 struct sk_buff *req_skb;
351
352 void *smp_data;
353 void *smp_bredr_data;
354
355 struct discovery_state discovery;
356 struct hci_conn_hash conn_hash;
357
358 struct list_head mgmt_pending;
359 struct list_head blacklist;
360 struct list_head whitelist;
361 struct list_head uuids;
362 struct list_head link_keys;
363 struct list_head long_term_keys;
364 struct list_head identity_resolving_keys;
365 struct list_head remote_oob_data;
366 struct list_head le_white_list;
367 struct list_head le_conn_params;
368 struct list_head pend_le_conns;
369 struct list_head pend_le_reports;
370
371 struct hci_dev_stats stat;
372
373 atomic_t promisc;
374
375 struct dentry *debugfs;
376
377 struct device dev;
378
379 struct rfkill *rfkill;
380
381 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS);
382
383 __s8 adv_tx_power;
384 __u8 adv_data[HCI_MAX_AD_LENGTH];
385 __u8 adv_data_len;
386 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
387 __u8 scan_rsp_data_len;
388
389 struct list_head adv_instances;
390 unsigned int adv_instance_cnt;
391 __u8 cur_adv_instance;
392 __u16 adv_instance_timeout;
393 struct delayed_work adv_instance_expire;
394
395 __u8 irk[16];
396 __u32 rpa_timeout;
397 struct delayed_work rpa_expired;
398 bdaddr_t rpa;
399
400 struct led_trigger *power_led;
401
402 int (*open)(struct hci_dev *hdev);
403 int (*close)(struct hci_dev *hdev);
404 int (*flush)(struct hci_dev *hdev);
405 int (*setup)(struct hci_dev *hdev);
406 int (*shutdown)(struct hci_dev *hdev);
407 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
408 void (*notify)(struct hci_dev *hdev, unsigned int evt);
409 void (*hw_error)(struct hci_dev *hdev, u8 code);
410 int (*post_init)(struct hci_dev *hdev);
411 int (*set_diag)(struct hci_dev *hdev, bool enable);
412 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
413 };
414
415 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
416
417 struct hci_conn {
418 struct list_head list;
419
420 atomic_t refcnt;
421
422 bdaddr_t dst;
423 __u8 dst_type;
424 bdaddr_t src;
425 __u8 src_type;
426 bdaddr_t init_addr;
427 __u8 init_addr_type;
428 bdaddr_t resp_addr;
429 __u8 resp_addr_type;
430 __u16 handle;
431 __u16 state;
432 __u8 mode;
433 __u8 type;
434 __u8 role;
435 bool out;
436 __u8 attempt;
437 __u8 dev_class[3];
438 __u8 features[HCI_MAX_PAGES][8];
439 __u16 pkt_type;
440 __u16 link_policy;
441 __u8 key_type;
442 __u8 auth_type;
443 __u8 sec_level;
444 __u8 pending_sec_level;
445 __u8 pin_length;
446 __u8 enc_key_size;
447 __u8 io_capability;
448 __u32 passkey_notify;
449 __u8 passkey_entered;
450 __u16 disc_timeout;
451 __u16 conn_timeout;
452 __u16 setting;
453 __u16 le_conn_min_interval;
454 __u16 le_conn_max_interval;
455 __u16 le_conn_interval;
456 __u16 le_conn_latency;
457 __u16 le_supv_timeout;
458 __u8 le_adv_data[HCI_MAX_AD_LENGTH];
459 __u8 le_adv_data_len;
460 __s8 rssi;
461 __s8 tx_power;
462 __s8 max_tx_power;
463 unsigned long flags;
464
465 __u32 clock;
466 __u16 clock_accuracy;
467
468 unsigned long conn_info_timestamp;
469
470 __u8 remote_cap;
471 __u8 remote_auth;
472 __u8 remote_id;
473
474 unsigned int sent;
475
476 struct sk_buff_head data_q;
477 struct list_head chan_list;
478
479 struct delayed_work disc_work;
480 struct delayed_work auto_accept_work;
481 struct delayed_work idle_work;
482 struct delayed_work le_conn_timeout;
483 struct work_struct le_scan_cleanup;
484
485 struct device dev;
486 struct dentry *debugfs;
487
488 struct hci_dev *hdev;
489 void *l2cap_data;
490 void *sco_data;
491 struct amp_mgr *amp_mgr;
492
493 struct hci_conn *link;
494
495 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
496 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
497 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
498 };
499
500 struct hci_chan {
501 struct list_head list;
502 __u16 handle;
503 struct hci_conn *conn;
504 struct sk_buff_head data_q;
505 unsigned int sent;
506 __u8 state;
507 };
508
509 struct hci_conn_params {
510 struct list_head list;
511 struct list_head action;
512
513 bdaddr_t addr;
514 u8 addr_type;
515
516 u16 conn_min_interval;
517 u16 conn_max_interval;
518 u16 conn_latency;
519 u16 supervision_timeout;
520
521 enum {
522 HCI_AUTO_CONN_DISABLED,
523 HCI_AUTO_CONN_REPORT,
524 HCI_AUTO_CONN_DIRECT,
525 HCI_AUTO_CONN_ALWAYS,
526 HCI_AUTO_CONN_LINK_LOSS,
527 HCI_AUTO_CONN_EXPLICIT,
528 } auto_connect;
529
530 struct hci_conn *conn;
531 bool explicit_connect;
532 };
533
534 extern struct list_head hci_dev_list;
535 extern struct list_head hci_cb_list;
536 extern rwlock_t hci_dev_list_lock;
537 extern struct mutex hci_cb_list_lock;
538
539 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags)
540 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags)
541 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags)
542 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags)
543 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags)
544 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags)
545 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags)
546
547 #define hci_dev_clear_volatile_flags(hdev) \
548 do { \
549 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \
550 hci_dev_clear_flag(hdev, HCI_LE_ADV); \
551 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \
552 } while (0)
553
554 /* ----- HCI interface to upper protocols ----- */
555 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
556 int l2cap_disconn_ind(struct hci_conn *hcon);
557 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
558
559 #if IS_ENABLED(CONFIG_BT_BREDR)
560 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
561 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
562 #else
563 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
564 __u8 *flags)
565 {
566 return 0;
567 }
568
569 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb)
570 {
571 }
572 #endif
573
574 /* ----- Inquiry cache ----- */
575 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
576 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
577
578 static inline void discovery_init(struct hci_dev *hdev)
579 {
580 hdev->discovery.state = DISCOVERY_STOPPED;
581 INIT_LIST_HEAD(&hdev->discovery.all);
582 INIT_LIST_HEAD(&hdev->discovery.unknown);
583 INIT_LIST_HEAD(&hdev->discovery.resolve);
584 hdev->discovery.report_invalid_rssi = true;
585 hdev->discovery.rssi = HCI_RSSI_INVALID;
586 }
587
588 static inline void hci_discovery_filter_clear(struct hci_dev *hdev)
589 {
590 hdev->discovery.result_filtering = false;
591 hdev->discovery.report_invalid_rssi = true;
592 hdev->discovery.rssi = HCI_RSSI_INVALID;
593 hdev->discovery.uuid_count = 0;
594 kfree(hdev->discovery.uuids);
595 hdev->discovery.uuids = NULL;
596 hdev->discovery.scan_start = 0;
597 hdev->discovery.scan_duration = 0;
598 }
599
600 bool hci_discovery_active(struct hci_dev *hdev);
601
602 void hci_discovery_set_state(struct hci_dev *hdev, int state);
603
604 static inline int inquiry_cache_empty(struct hci_dev *hdev)
605 {
606 return list_empty(&hdev->discovery.all);
607 }
608
609 static inline long inquiry_cache_age(struct hci_dev *hdev)
610 {
611 struct discovery_state *c = &hdev->discovery;
612 return jiffies - c->timestamp;
613 }
614
615 static inline long inquiry_entry_age(struct inquiry_entry *e)
616 {
617 return jiffies - e->timestamp;
618 }
619
620 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
621 bdaddr_t *bdaddr);
622 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
623 bdaddr_t *bdaddr);
624 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
625 bdaddr_t *bdaddr,
626 int state);
627 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
628 struct inquiry_entry *ie);
629 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
630 bool name_known);
631 void hci_inquiry_cache_flush(struct hci_dev *hdev);
632
633 /* ----- HCI Connections ----- */
634 enum {
635 HCI_CONN_AUTH_PEND,
636 HCI_CONN_REAUTH_PEND,
637 HCI_CONN_ENCRYPT_PEND,
638 HCI_CONN_RSWITCH_PEND,
639 HCI_CONN_MODE_CHANGE_PEND,
640 HCI_CONN_SCO_SETUP_PEND,
641 HCI_CONN_MGMT_CONNECTED,
642 HCI_CONN_SSP_ENABLED,
643 HCI_CONN_SC_ENABLED,
644 HCI_CONN_AES_CCM,
645 HCI_CONN_POWER_SAVE,
646 HCI_CONN_FLUSH_KEY,
647 HCI_CONN_ENCRYPT,
648 HCI_CONN_AUTH,
649 HCI_CONN_SECURE,
650 HCI_CONN_FIPS,
651 HCI_CONN_STK_ENCRYPT,
652 HCI_CONN_AUTH_INITIATOR,
653 HCI_CONN_DROP,
654 HCI_CONN_PARAM_REMOVAL_PEND,
655 HCI_CONN_NEW_LINK_KEY,
656 HCI_CONN_SCANNING,
657 HCI_CONN_AUTH_FAILURE,
658 };
659
660 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
661 {
662 struct hci_dev *hdev = conn->hdev;
663 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
664 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
665 }
666
667 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
668 {
669 struct hci_dev *hdev = conn->hdev;
670 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) &&
671 test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
672 }
673
674 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
675 {
676 struct hci_conn_hash *h = &hdev->conn_hash;
677 list_add_rcu(&c->list, &h->list);
678 switch (c->type) {
679 case ACL_LINK:
680 h->acl_num++;
681 break;
682 case AMP_LINK:
683 h->amp_num++;
684 break;
685 case LE_LINK:
686 h->le_num++;
687 if (c->role == HCI_ROLE_SLAVE)
688 h->le_num_slave++;
689 break;
690 case SCO_LINK:
691 case ESCO_LINK:
692 h->sco_num++;
693 break;
694 }
695 }
696
697 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
698 {
699 struct hci_conn_hash *h = &hdev->conn_hash;
700
701 list_del_rcu(&c->list);
702 synchronize_rcu();
703
704 switch (c->type) {
705 case ACL_LINK:
706 h->acl_num--;
707 break;
708 case AMP_LINK:
709 h->amp_num--;
710 break;
711 case LE_LINK:
712 h->le_num--;
713 if (c->role == HCI_ROLE_SLAVE)
714 h->le_num_slave--;
715 break;
716 case SCO_LINK:
717 case ESCO_LINK:
718 h->sco_num--;
719 break;
720 }
721 }
722
723 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
724 {
725 struct hci_conn_hash *h = &hdev->conn_hash;
726 switch (type) {
727 case ACL_LINK:
728 return h->acl_num;
729 case AMP_LINK:
730 return h->amp_num;
731 case LE_LINK:
732 return h->le_num;
733 case SCO_LINK:
734 case ESCO_LINK:
735 return h->sco_num;
736 default:
737 return 0;
738 }
739 }
740
741 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
742 {
743 struct hci_conn_hash *c = &hdev->conn_hash;
744
745 return c->acl_num + c->amp_num + c->sco_num + c->le_num;
746 }
747
748 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle)
749 {
750 struct hci_conn_hash *h = &hdev->conn_hash;
751 struct hci_conn *c;
752 __u8 type = INVALID_LINK;
753
754 rcu_read_lock();
755
756 list_for_each_entry_rcu(c, &h->list, list) {
757 if (c->handle == handle) {
758 type = c->type;
759 break;
760 }
761 }
762
763 rcu_read_unlock();
764
765 return type;
766 }
767
768 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
769 __u16 handle)
770 {
771 struct hci_conn_hash *h = &hdev->conn_hash;
772 struct hci_conn *c;
773
774 rcu_read_lock();
775
776 list_for_each_entry_rcu(c, &h->list, list) {
777 if (c->handle == handle) {
778 rcu_read_unlock();
779 return c;
780 }
781 }
782 rcu_read_unlock();
783
784 return NULL;
785 }
786
787 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
788 __u8 type, bdaddr_t *ba)
789 {
790 struct hci_conn_hash *h = &hdev->conn_hash;
791 struct hci_conn *c;
792
793 rcu_read_lock();
794
795 list_for_each_entry_rcu(c, &h->list, list) {
796 if (c->type == type && !bacmp(&c->dst, ba)) {
797 rcu_read_unlock();
798 return c;
799 }
800 }
801
802 rcu_read_unlock();
803
804 return NULL;
805 }
806
807 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev,
808 bdaddr_t *ba,
809 __u8 ba_type)
810 {
811 struct hci_conn_hash *h = &hdev->conn_hash;
812 struct hci_conn *c;
813
814 rcu_read_lock();
815
816 list_for_each_entry_rcu(c, &h->list, list) {
817 if (c->type != LE_LINK)
818 continue;
819
820 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) {
821 rcu_read_unlock();
822 return c;
823 }
824 }
825
826 rcu_read_unlock();
827
828 return NULL;
829 }
830
831 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
832 __u8 type, __u16 state)
833 {
834 struct hci_conn_hash *h = &hdev->conn_hash;
835 struct hci_conn *c;
836
837 rcu_read_lock();
838
839 list_for_each_entry_rcu(c, &h->list, list) {
840 if (c->type == type && c->state == state) {
841 rcu_read_unlock();
842 return c;
843 }
844 }
845
846 rcu_read_unlock();
847
848 return NULL;
849 }
850
851 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev)
852 {
853 struct hci_conn_hash *h = &hdev->conn_hash;
854 struct hci_conn *c;
855
856 rcu_read_lock();
857
858 list_for_each_entry_rcu(c, &h->list, list) {
859 if (c->type == LE_LINK && c->state == BT_CONNECT &&
860 !test_bit(HCI_CONN_SCANNING, &c->flags)) {
861 rcu_read_unlock();
862 return c;
863 }
864 }
865
866 rcu_read_unlock();
867
868 return NULL;
869 }
870
871 int hci_disconnect(struct hci_conn *conn, __u8 reason);
872 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
873 void hci_sco_setup(struct hci_conn *conn, __u8 status);
874
875 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
876 u8 role);
877 int hci_conn_del(struct hci_conn *conn);
878 void hci_conn_hash_flush(struct hci_dev *hdev);
879 void hci_conn_check_pending(struct hci_dev *hdev);
880
881 struct hci_chan *hci_chan_create(struct hci_conn *conn);
882 void hci_chan_del(struct hci_chan *chan);
883 void hci_chan_list_flush(struct hci_conn *conn);
884 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
885
886 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
887 u8 dst_type, u8 sec_level,
888 u16 conn_timeout);
889 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
890 u8 dst_type, u8 sec_level, u16 conn_timeout,
891 u8 role);
892 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
893 u8 sec_level, u8 auth_type);
894 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
895 __u16 setting);
896 int hci_conn_check_link_mode(struct hci_conn *conn);
897 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
898 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
899 bool initiator);
900 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
901
902 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
903
904 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
905
906 /*
907 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
908 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
909 * working or anything else. They just guarantee that the object is available
910 * and can be dereferenced. So you can use its locks, local variables and any
911 * other constant data.
912 * Before accessing runtime data, you _must_ lock the object and then check that
913 * it is still running. As soon as you release the locks, the connection might
914 * get dropped, though.
915 *
916 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
917 * how long the underlying connection is held. So every channel that runs on the
918 * hci_conn object calls this to prevent the connection from disappearing. As
919 * long as you hold a device, you must also guarantee that you have a valid
920 * reference to the device via hci_conn_get() (or the initial reference from
921 * hci_conn_add()).
922 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
923 * break because nobody cares for that. But this means, we cannot use
924 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
925 */
926
927 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
928 {
929 get_device(&conn->dev);
930 return conn;
931 }
932
933 static inline void hci_conn_put(struct hci_conn *conn)
934 {
935 put_device(&conn->dev);
936 }
937
938 static inline void hci_conn_hold(struct hci_conn *conn)
939 {
940 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
941
942 atomic_inc(&conn->refcnt);
943 cancel_delayed_work(&conn->disc_work);
944 }
945
946 static inline void hci_conn_drop(struct hci_conn *conn)
947 {
948 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
949
950 if (atomic_dec_and_test(&conn->refcnt)) {
951 unsigned long timeo;
952
953 switch (conn->type) {
954 case ACL_LINK:
955 case LE_LINK:
956 cancel_delayed_work(&conn->idle_work);
957 if (conn->state == BT_CONNECTED) {
958 timeo = conn->disc_timeout;
959 if (!conn->out)
960 timeo *= 2;
961 } else {
962 timeo = 0;
963 }
964 break;
965
966 case AMP_LINK:
967 timeo = conn->disc_timeout;
968 break;
969
970 default:
971 timeo = 0;
972 break;
973 }
974
975 cancel_delayed_work(&conn->disc_work);
976 queue_delayed_work(conn->hdev->workqueue,
977 &conn->disc_work, timeo);
978 }
979 }
980
981 /* ----- HCI Devices ----- */
982 static inline void hci_dev_put(struct hci_dev *d)
983 {
984 BT_DBG("%s orig refcnt %d", d->name,
985 atomic_read(&d->dev.kobj.kref.refcount));
986
987 put_device(&d->dev);
988 }
989
990 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
991 {
992 BT_DBG("%s orig refcnt %d", d->name,
993 atomic_read(&d->dev.kobj.kref.refcount));
994
995 get_device(&d->dev);
996 return d;
997 }
998
999 #define hci_dev_lock(d) mutex_lock(&d->lock)
1000 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
1001
1002 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
1003 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
1004
1005 static inline void *hci_get_drvdata(struct hci_dev *hdev)
1006 {
1007 return dev_get_drvdata(&hdev->dev);
1008 }
1009
1010 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
1011 {
1012 dev_set_drvdata(&hdev->dev, data);
1013 }
1014
1015 struct hci_dev *hci_dev_get(int index);
1016 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
1017
1018 struct hci_dev *hci_alloc_dev(void);
1019 void hci_free_dev(struct hci_dev *hdev);
1020 int hci_register_dev(struct hci_dev *hdev);
1021 void hci_unregister_dev(struct hci_dev *hdev);
1022 int hci_suspend_dev(struct hci_dev *hdev);
1023 int hci_resume_dev(struct hci_dev *hdev);
1024 int hci_reset_dev(struct hci_dev *hdev);
1025 int hci_dev_open(__u16 dev);
1026 int hci_dev_close(__u16 dev);
1027 int hci_dev_do_close(struct hci_dev *hdev);
1028 int hci_dev_reset(__u16 dev);
1029 int hci_dev_reset_stat(__u16 dev);
1030 int hci_dev_cmd(unsigned int cmd, void __user *arg);
1031 int hci_get_dev_list(void __user *arg);
1032 int hci_get_dev_info(void __user *arg);
1033 int hci_get_conn_list(void __user *arg);
1034 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
1035 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
1036 int hci_inquiry(void __user *arg);
1037
1038 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
1039 bdaddr_t *bdaddr, u8 type);
1040 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1041 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1042 void hci_bdaddr_list_clear(struct list_head *list);
1043
1044 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
1045 bdaddr_t *addr, u8 addr_type);
1046 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
1047 bdaddr_t *addr, u8 addr_type);
1048 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
1049 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
1050
1051 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
1052 bdaddr_t *addr,
1053 u8 addr_type);
1054
1055 void hci_uuids_clear(struct hci_dev *hdev);
1056
1057 void hci_link_keys_clear(struct hci_dev *hdev);
1058 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1059 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1060 bdaddr_t *bdaddr, u8 *val, u8 type,
1061 u8 pin_len, bool *persistent);
1062 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1063 u8 addr_type, u8 type, u8 authenticated,
1064 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
1065 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1066 u8 addr_type, u8 role);
1067 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
1068 void hci_smp_ltks_clear(struct hci_dev *hdev);
1069 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1070
1071 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
1072 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1073 u8 addr_type);
1074 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1075 u8 addr_type, u8 val[16], bdaddr_t *rpa);
1076 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
1077 void hci_smp_irks_clear(struct hci_dev *hdev);
1078
1079 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1080
1081 void hci_remote_oob_data_clear(struct hci_dev *hdev);
1082 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1083 bdaddr_t *bdaddr, u8 bdaddr_type);
1084 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1085 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1086 u8 *hash256, u8 *rand256);
1087 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1088 u8 bdaddr_type);
1089
1090 void hci_adv_instances_clear(struct hci_dev *hdev);
1091 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance);
1092 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance);
1093 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
1094 u16 adv_data_len, u8 *adv_data,
1095 u16 scan_rsp_len, u8 *scan_rsp_data,
1096 u16 timeout, u16 duration);
1097 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance);
1098
1099 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
1100
1101 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
1102 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb);
1103
1104 void hci_init_sysfs(struct hci_dev *hdev);
1105 void hci_conn_init_sysfs(struct hci_conn *conn);
1106 void hci_conn_add_sysfs(struct hci_conn *conn);
1107 void hci_conn_del_sysfs(struct hci_conn *conn);
1108
1109 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
1110
1111 /* ----- LMP capabilities ----- */
1112 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
1113 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
1114 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
1115 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
1116 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
1117 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
1118 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
1119 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
1120 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
1121 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
1122 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
1123 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
1124 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
1125 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
1126 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
1127 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
1128 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
1129 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
1130 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
1131
1132 /* ----- Extended LMP capabilities ----- */
1133 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
1134 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE)
1135 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
1136 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN)
1137 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC)
1138 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING)
1139
1140 /* ----- Host capabilities ----- */
1141 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
1142 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC)
1143 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
1144 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
1145
1146 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \
1147 !hci_dev_test_flag(dev, HCI_AUTO_OFF))
1148 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \
1149 hci_dev_test_flag(dev, HCI_SC_ENABLED))
1150
1151 /* ----- HCI protocols ----- */
1152 #define HCI_PROTO_DEFER 0x01
1153
1154 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
1155 __u8 type, __u8 *flags)
1156 {
1157 switch (type) {
1158 case ACL_LINK:
1159 return l2cap_connect_ind(hdev, bdaddr);
1160
1161 case SCO_LINK:
1162 case ESCO_LINK:
1163 return sco_connect_ind(hdev, bdaddr, flags);
1164
1165 default:
1166 BT_ERR("unknown link type %d", type);
1167 return -EINVAL;
1168 }
1169 }
1170
1171 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1172 {
1173 if (conn->type != ACL_LINK && conn->type != LE_LINK)
1174 return HCI_ERROR_REMOTE_USER_TERM;
1175
1176 return l2cap_disconn_ind(conn);
1177 }
1178
1179 /* ----- HCI callbacks ----- */
1180 struct hci_cb {
1181 struct list_head list;
1182
1183 char *name;
1184
1185 void (*connect_cfm) (struct hci_conn *conn, __u8 status);
1186 void (*disconn_cfm) (struct hci_conn *conn, __u8 status);
1187 void (*security_cfm) (struct hci_conn *conn, __u8 status,
1188 __u8 encrypt);
1189 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
1190 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
1191 };
1192
1193 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status)
1194 {
1195 struct hci_cb *cb;
1196
1197 mutex_lock(&hci_cb_list_lock);
1198 list_for_each_entry(cb, &hci_cb_list, list) {
1199 if (cb->connect_cfm)
1200 cb->connect_cfm(conn, status);
1201 }
1202 mutex_unlock(&hci_cb_list_lock);
1203
1204 if (conn->connect_cfm_cb)
1205 conn->connect_cfm_cb(conn, status);
1206 }
1207
1208 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason)
1209 {
1210 struct hci_cb *cb;
1211
1212 mutex_lock(&hci_cb_list_lock);
1213 list_for_each_entry(cb, &hci_cb_list, list) {
1214 if (cb->disconn_cfm)
1215 cb->disconn_cfm(conn, reason);
1216 }
1217 mutex_unlock(&hci_cb_list_lock);
1218
1219 if (conn->disconn_cfm_cb)
1220 conn->disconn_cfm_cb(conn, reason);
1221 }
1222
1223 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1224 {
1225 struct hci_cb *cb;
1226 __u8 encrypt;
1227
1228 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1229 return;
1230
1231 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1232
1233 mutex_lock(&hci_cb_list_lock);
1234 list_for_each_entry(cb, &hci_cb_list, list) {
1235 if (cb->security_cfm)
1236 cb->security_cfm(conn, status, encrypt);
1237 }
1238 mutex_unlock(&hci_cb_list_lock);
1239
1240 if (conn->security_cfm_cb)
1241 conn->security_cfm_cb(conn, status);
1242 }
1243
1244 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1245 __u8 encrypt)
1246 {
1247 struct hci_cb *cb;
1248
1249 if (conn->sec_level == BT_SECURITY_SDP)
1250 conn->sec_level = BT_SECURITY_LOW;
1251
1252 if (conn->pending_sec_level > conn->sec_level)
1253 conn->sec_level = conn->pending_sec_level;
1254
1255 mutex_lock(&hci_cb_list_lock);
1256 list_for_each_entry(cb, &hci_cb_list, list) {
1257 if (cb->security_cfm)
1258 cb->security_cfm(conn, status, encrypt);
1259 }
1260 mutex_unlock(&hci_cb_list_lock);
1261
1262 if (conn->security_cfm_cb)
1263 conn->security_cfm_cb(conn, status);
1264 }
1265
1266 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1267 {
1268 struct hci_cb *cb;
1269
1270 mutex_lock(&hci_cb_list_lock);
1271 list_for_each_entry(cb, &hci_cb_list, list) {
1272 if (cb->key_change_cfm)
1273 cb->key_change_cfm(conn, status);
1274 }
1275 mutex_unlock(&hci_cb_list_lock);
1276 }
1277
1278 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1279 __u8 role)
1280 {
1281 struct hci_cb *cb;
1282
1283 mutex_lock(&hci_cb_list_lock);
1284 list_for_each_entry(cb, &hci_cb_list, list) {
1285 if (cb->role_switch_cfm)
1286 cb->role_switch_cfm(conn, status, role);
1287 }
1288 mutex_unlock(&hci_cb_list_lock);
1289 }
1290
1291 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type,
1292 size_t *data_len)
1293 {
1294 size_t parsed = 0;
1295
1296 if (eir_len < 2)
1297 return NULL;
1298
1299 while (parsed < eir_len - 1) {
1300 u8 field_len = eir[0];
1301
1302 if (field_len == 0)
1303 break;
1304
1305 parsed += field_len + 1;
1306
1307 if (parsed > eir_len)
1308 break;
1309
1310 if (eir[1] != type) {
1311 eir += field_len + 1;
1312 continue;
1313 }
1314
1315 /* Zero length data */
1316 if (field_len == 1)
1317 return NULL;
1318
1319 if (data_len)
1320 *data_len = field_len - 1;
1321
1322 return &eir[2];
1323 }
1324
1325 return NULL;
1326 }
1327
1328 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1329 {
1330 if (addr_type != ADDR_LE_DEV_RANDOM)
1331 return false;
1332
1333 if ((bdaddr->b[5] & 0xc0) == 0x40)
1334 return true;
1335
1336 return false;
1337 }
1338
1339 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1340 {
1341 if (addr_type == ADDR_LE_DEV_PUBLIC)
1342 return true;
1343
1344 /* Check for Random Static address type */
1345 if ((addr->b[5] & 0xc0) == 0xc0)
1346 return true;
1347
1348 return false;
1349 }
1350
1351 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1352 bdaddr_t *bdaddr, u8 addr_type)
1353 {
1354 if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1355 return NULL;
1356
1357 return hci_find_irk_by_rpa(hdev, bdaddr);
1358 }
1359
1360 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1361 u16 to_multiplier)
1362 {
1363 u16 max_latency;
1364
1365 if (min > max || min < 6 || max > 3200)
1366 return -EINVAL;
1367
1368 if (to_multiplier < 10 || to_multiplier > 3200)
1369 return -EINVAL;
1370
1371 if (max >= to_multiplier * 8)
1372 return -EINVAL;
1373
1374 max_latency = (to_multiplier * 4 / max) - 1;
1375 if (latency > 499 || latency > max_latency)
1376 return -EINVAL;
1377
1378 return 0;
1379 }
1380
1381 int hci_register_cb(struct hci_cb *hcb);
1382 int hci_unregister_cb(struct hci_cb *hcb);
1383
1384 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1385 const void *param, u32 timeout);
1386 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1387 const void *param, u8 event, u32 timeout);
1388
1389 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1390 const void *param);
1391 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1392 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1393
1394 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1395
1396 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1397 const void *param, u32 timeout);
1398
1399 /* ----- HCI Sockets ----- */
1400 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1401 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
1402 int flag, struct sock *skip_sk);
1403 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1404
1405 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1406
1407 #define HCI_MGMT_VAR_LEN BIT(0)
1408 #define HCI_MGMT_NO_HDEV BIT(1)
1409 #define HCI_MGMT_UNTRUSTED BIT(2)
1410 #define HCI_MGMT_UNCONFIGURED BIT(3)
1411
1412 struct hci_mgmt_handler {
1413 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data,
1414 u16 data_len);
1415 size_t data_len;
1416 unsigned long flags;
1417 };
1418
1419 struct hci_mgmt_chan {
1420 struct list_head list;
1421 unsigned short channel;
1422 size_t handler_count;
1423 const struct hci_mgmt_handler *handlers;
1424 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev);
1425 };
1426
1427 int hci_mgmt_chan_register(struct hci_mgmt_chan *c);
1428 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c);
1429
1430 /* Management interface */
1431 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1432 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1433 BIT(BDADDR_LE_RANDOM))
1434 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1435 BIT(BDADDR_LE_PUBLIC) | \
1436 BIT(BDADDR_LE_RANDOM))
1437
1438 /* These LE scan and inquiry parameters were chosen according to LE General
1439 * Discovery Procedure specification.
1440 */
1441 #define DISCOV_LE_SCAN_WIN 0x12
1442 #define DISCOV_LE_SCAN_INT 0x12
1443 #define DISCOV_LE_TIMEOUT 10240 /* msec */
1444 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */
1445 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1446 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1447 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */
1448
1449 int mgmt_new_settings(struct hci_dev *hdev);
1450 void mgmt_index_added(struct hci_dev *hdev);
1451 void mgmt_index_removed(struct hci_dev *hdev);
1452 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1453 void mgmt_power_on(struct hci_dev *hdev, int err);
1454 void __mgmt_power_off(struct hci_dev *hdev);
1455 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1456 bool persistent);
1457 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn,
1458 u32 flags, u8 *name, u8 name_len);
1459 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1460 u8 link_type, u8 addr_type, u8 reason,
1461 bool mgmt_connected);
1462 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1463 u8 link_type, u8 addr_type, u8 status);
1464 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1465 u8 addr_type, u8 status);
1466 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1467 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1468 u8 status);
1469 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1470 u8 status);
1471 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1472 u8 link_type, u8 addr_type, u32 value,
1473 u8 confirm_hint);
1474 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1475 u8 link_type, u8 addr_type, u8 status);
1476 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1477 u8 link_type, u8 addr_type, u8 status);
1478 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1479 u8 link_type, u8 addr_type);
1480 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1481 u8 link_type, u8 addr_type, u8 status);
1482 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1483 u8 link_type, u8 addr_type, u8 status);
1484 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1485 u8 link_type, u8 addr_type, u32 passkey,
1486 u8 entered);
1487 void mgmt_auth_failed(struct hci_conn *conn, u8 status);
1488 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1489 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1490 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1491 u8 status);
1492 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1493 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status);
1494 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status);
1495 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1496 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1497 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1498 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1499 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1500 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1501 bool mgmt_powering_down(struct hci_dev *hdev);
1502 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1503 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent);
1504 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1505 bool persistent);
1506 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1507 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1508 u16 max_interval, u16 latency, u16 timeout);
1509 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1510 bool mgmt_get_connectable(struct hci_dev *hdev);
1511 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status);
1512 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status);
1513 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev);
1514 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev,
1515 u8 instance);
1516 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev,
1517 u8 instance);
1518
1519 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1520 u16 to_multiplier);
1521 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1522 __u8 ltk[16], __u8 key_size);
1523
1524 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1525 u8 *bdaddr_type);
1526
1527 #define SCO_AIRMODE_MASK 0x0003
1528 #define SCO_AIRMODE_CVSD 0x0000
1529 #define SCO_AIRMODE_TRANSP 0x0003
1530
1531 #endif /* __HCI_CORE_H */