]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/net/bluetooth/hci_core.h
Merge branch 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-bionic-kernel.git] / include / net / bluetooth / hci_core.h
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <net/bluetooth/hci.h>
29
30 /* HCI priority */
31 #define HCI_PRIO_MAX 7
32
33 /* HCI Core structures */
34 struct inquiry_data {
35 bdaddr_t bdaddr;
36 __u8 pscan_rep_mode;
37 __u8 pscan_period_mode;
38 __u8 pscan_mode;
39 __u8 dev_class[3];
40 __le16 clock_offset;
41 __s8 rssi;
42 __u8 ssp_mode;
43 };
44
45 struct inquiry_entry {
46 struct list_head all; /* inq_cache.all */
47 struct list_head list; /* unknown or resolve */
48 enum {
49 NAME_NOT_KNOWN,
50 NAME_NEEDED,
51 NAME_PENDING,
52 NAME_KNOWN,
53 } name_state;
54 __u32 timestamp;
55 struct inquiry_data data;
56 };
57
58 struct discovery_state {
59 int type;
60 enum {
61 DISCOVERY_STOPPED,
62 DISCOVERY_STARTING,
63 DISCOVERY_FINDING,
64 DISCOVERY_RESOLVING,
65 DISCOVERY_STOPPING,
66 } state;
67 struct list_head all; /* All devices found during inquiry */
68 struct list_head unknown; /* Name state not known */
69 struct list_head resolve; /* Name needs to be resolved */
70 __u32 timestamp;
71 };
72
73 struct hci_conn_hash {
74 struct list_head list;
75 unsigned int acl_num;
76 unsigned int amp_num;
77 unsigned int sco_num;
78 unsigned int le_num;
79 };
80
81 struct bdaddr_list {
82 struct list_head list;
83 bdaddr_t bdaddr;
84 u8 bdaddr_type;
85 };
86
87 struct bt_uuid {
88 struct list_head list;
89 u8 uuid[16];
90 u8 size;
91 u8 svc_hint;
92 };
93
94 struct smp_ltk {
95 struct list_head list;
96 bdaddr_t bdaddr;
97 u8 bdaddr_type;
98 u8 authenticated;
99 u8 type;
100 u8 enc_size;
101 __le16 ediv;
102 u8 rand[8];
103 u8 val[16];
104 } __packed;
105
106 struct link_key {
107 struct list_head list;
108 bdaddr_t bdaddr;
109 u8 type;
110 u8 val[HCI_LINK_KEY_SIZE];
111 u8 pin_len;
112 };
113
114 struct oob_data {
115 struct list_head list;
116 bdaddr_t bdaddr;
117 u8 hash[16];
118 u8 randomizer[16];
119 };
120
121 #define HCI_MAX_SHORT_NAME_LENGTH 10
122
123 struct amp_assoc {
124 __u16 len;
125 __u16 offset;
126 __u16 rem_len;
127 __u16 len_so_far;
128 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
129 };
130
131 #define HCI_MAX_PAGES 3
132
133 #define NUM_REASSEMBLY 4
134 struct hci_dev {
135 struct list_head list;
136 struct mutex lock;
137
138 char name[8];
139 unsigned long flags;
140 __u16 id;
141 __u8 bus;
142 __u8 dev_type;
143 bdaddr_t bdaddr;
144 bdaddr_t static_addr;
145 __u8 own_addr_type;
146 __u8 dev_name[HCI_MAX_NAME_LENGTH];
147 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
148 __u8 eir[HCI_MAX_EIR_LENGTH];
149 __u8 dev_class[3];
150 __u8 major_class;
151 __u8 minor_class;
152 __u8 max_page;
153 __u8 features[HCI_MAX_PAGES][8];
154 __u8 le_features[8];
155 __u8 le_white_list_size;
156 __u8 le_states[8];
157 __u8 commands[64];
158 __u8 hci_ver;
159 __u16 hci_rev;
160 __u8 lmp_ver;
161 __u16 manufacturer;
162 __u16 lmp_subver;
163 __u16 voice_setting;
164 __u8 num_iac;
165 __u8 io_capability;
166 __s8 inq_tx_power;
167 __u16 page_scan_interval;
168 __u16 page_scan_window;
169 __u8 page_scan_type;
170 __u16 le_scan_interval;
171 __u16 le_scan_window;
172 __u16 le_conn_min_interval;
173 __u16 le_conn_max_interval;
174 __u8 ssp_debug_mode;
175
176 __u16 devid_source;
177 __u16 devid_vendor;
178 __u16 devid_product;
179 __u16 devid_version;
180
181 __u16 pkt_type;
182 __u16 esco_type;
183 __u16 link_policy;
184 __u16 link_mode;
185
186 __u32 idle_timeout;
187 __u16 sniff_min_interval;
188 __u16 sniff_max_interval;
189
190 __u8 amp_status;
191 __u32 amp_total_bw;
192 __u32 amp_max_bw;
193 __u32 amp_min_latency;
194 __u32 amp_max_pdu;
195 __u8 amp_type;
196 __u16 amp_pal_cap;
197 __u16 amp_assoc_size;
198 __u32 amp_max_flush_to;
199 __u32 amp_be_flush_to;
200
201 struct amp_assoc loc_assoc;
202
203 __u8 flow_ctl_mode;
204
205 unsigned int auto_accept_delay;
206
207 unsigned long quirks;
208
209 atomic_t cmd_cnt;
210 unsigned int acl_cnt;
211 unsigned int sco_cnt;
212 unsigned int le_cnt;
213
214 unsigned int acl_mtu;
215 unsigned int sco_mtu;
216 unsigned int le_mtu;
217 unsigned int acl_pkts;
218 unsigned int sco_pkts;
219 unsigned int le_pkts;
220
221 __u16 block_len;
222 __u16 block_mtu;
223 __u16 num_blocks;
224 __u16 block_cnt;
225
226 unsigned long acl_last_tx;
227 unsigned long sco_last_tx;
228 unsigned long le_last_tx;
229
230 struct workqueue_struct *workqueue;
231 struct workqueue_struct *req_workqueue;
232
233 struct work_struct power_on;
234 struct delayed_work power_off;
235
236 __u16 discov_timeout;
237 struct delayed_work discov_off;
238
239 struct delayed_work service_cache;
240
241 struct timer_list cmd_timer;
242
243 struct work_struct rx_work;
244 struct work_struct cmd_work;
245 struct work_struct tx_work;
246
247 struct sk_buff_head rx_q;
248 struct sk_buff_head raw_q;
249 struct sk_buff_head cmd_q;
250
251 struct sk_buff *recv_evt;
252 struct sk_buff *sent_cmd;
253 struct sk_buff *reassembly[NUM_REASSEMBLY];
254
255 struct mutex req_lock;
256 wait_queue_head_t req_wait_q;
257 __u32 req_status;
258 __u32 req_result;
259
260 struct list_head mgmt_pending;
261
262 struct discovery_state discovery;
263 struct hci_conn_hash conn_hash;
264 struct list_head blacklist;
265
266 struct list_head uuids;
267
268 struct list_head link_keys;
269
270 struct list_head long_term_keys;
271
272 struct list_head remote_oob_data;
273
274 struct hci_dev_stats stat;
275
276 atomic_t promisc;
277
278 struct dentry *debugfs;
279
280 struct device dev;
281
282 struct rfkill *rfkill;
283
284 unsigned long dev_flags;
285
286 struct delayed_work le_scan_disable;
287
288 __s8 adv_tx_power;
289 __u8 adv_data[HCI_MAX_AD_LENGTH];
290 __u8 adv_data_len;
291 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
292 __u8 scan_rsp_data_len;
293
294 int (*open)(struct hci_dev *hdev);
295 int (*close)(struct hci_dev *hdev);
296 int (*flush)(struct hci_dev *hdev);
297 int (*setup)(struct hci_dev *hdev);
298 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
299 void (*notify)(struct hci_dev *hdev, unsigned int evt);
300 };
301
302 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
303
304 struct hci_conn {
305 struct list_head list;
306
307 atomic_t refcnt;
308
309 bdaddr_t dst;
310 __u8 dst_type;
311 bdaddr_t src;
312 __u8 src_type;
313 __u16 handle;
314 __u16 state;
315 __u8 mode;
316 __u8 type;
317 bool out;
318 __u8 attempt;
319 __u8 dev_class[3];
320 __u8 features[HCI_MAX_PAGES][8];
321 __u16 pkt_type;
322 __u16 link_policy;
323 __u32 link_mode;
324 __u8 key_type;
325 __u8 auth_type;
326 __u8 sec_level;
327 __u8 pending_sec_level;
328 __u8 pin_length;
329 __u8 enc_key_size;
330 __u8 io_capability;
331 __u32 passkey_notify;
332 __u8 passkey_entered;
333 __u16 disc_timeout;
334 __u16 setting;
335 unsigned long flags;
336
337 __u8 remote_cap;
338 __u8 remote_auth;
339 __u8 remote_id;
340 bool flush_key;
341
342 unsigned int sent;
343
344 struct sk_buff_head data_q;
345 struct list_head chan_list;
346
347 struct delayed_work disc_work;
348 struct delayed_work auto_accept_work;
349 struct delayed_work idle_work;
350
351 struct device dev;
352
353 struct hci_dev *hdev;
354 void *l2cap_data;
355 void *sco_data;
356 void *smp_conn;
357 struct amp_mgr *amp_mgr;
358
359 struct hci_conn *link;
360
361 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
362 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
363 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
364 };
365
366 struct hci_chan {
367 struct list_head list;
368 __u16 handle;
369 struct hci_conn *conn;
370 struct sk_buff_head data_q;
371 unsigned int sent;
372 __u8 state;
373 };
374
375 extern struct list_head hci_dev_list;
376 extern struct list_head hci_cb_list;
377 extern rwlock_t hci_dev_list_lock;
378 extern rwlock_t hci_cb_list_lock;
379
380 /* ----- HCI interface to upper protocols ----- */
381 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
382 void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
383 int l2cap_disconn_ind(struct hci_conn *hcon);
384 void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
385 int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
386 int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
387
388 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
389 void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
390 void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
391 int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
392
393 /* ----- Inquiry cache ----- */
394 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
395 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
396
397 static inline void discovery_init(struct hci_dev *hdev)
398 {
399 hdev->discovery.state = DISCOVERY_STOPPED;
400 INIT_LIST_HEAD(&hdev->discovery.all);
401 INIT_LIST_HEAD(&hdev->discovery.unknown);
402 INIT_LIST_HEAD(&hdev->discovery.resolve);
403 }
404
405 bool hci_discovery_active(struct hci_dev *hdev);
406
407 void hci_discovery_set_state(struct hci_dev *hdev, int state);
408
409 static inline int inquiry_cache_empty(struct hci_dev *hdev)
410 {
411 return list_empty(&hdev->discovery.all);
412 }
413
414 static inline long inquiry_cache_age(struct hci_dev *hdev)
415 {
416 struct discovery_state *c = &hdev->discovery;
417 return jiffies - c->timestamp;
418 }
419
420 static inline long inquiry_entry_age(struct inquiry_entry *e)
421 {
422 return jiffies - e->timestamp;
423 }
424
425 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
426 bdaddr_t *bdaddr);
427 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
428 bdaddr_t *bdaddr);
429 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
430 bdaddr_t *bdaddr,
431 int state);
432 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
433 struct inquiry_entry *ie);
434 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
435 bool name_known, bool *ssp);
436 void hci_inquiry_cache_flush(struct hci_dev *hdev);
437
438 /* ----- HCI Connections ----- */
439 enum {
440 HCI_CONN_AUTH_PEND,
441 HCI_CONN_REAUTH_PEND,
442 HCI_CONN_ENCRYPT_PEND,
443 HCI_CONN_RSWITCH_PEND,
444 HCI_CONN_MODE_CHANGE_PEND,
445 HCI_CONN_SCO_SETUP_PEND,
446 HCI_CONN_LE_SMP_PEND,
447 HCI_CONN_MGMT_CONNECTED,
448 HCI_CONN_SSP_ENABLED,
449 HCI_CONN_POWER_SAVE,
450 HCI_CONN_REMOTE_OOB,
451 };
452
453 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
454 {
455 struct hci_dev *hdev = conn->hdev;
456 return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
457 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
458 }
459
460 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
461 {
462 struct hci_conn_hash *h = &hdev->conn_hash;
463 list_add_rcu(&c->list, &h->list);
464 switch (c->type) {
465 case ACL_LINK:
466 h->acl_num++;
467 break;
468 case AMP_LINK:
469 h->amp_num++;
470 break;
471 case LE_LINK:
472 h->le_num++;
473 break;
474 case SCO_LINK:
475 case ESCO_LINK:
476 h->sco_num++;
477 break;
478 }
479 }
480
481 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
482 {
483 struct hci_conn_hash *h = &hdev->conn_hash;
484
485 list_del_rcu(&c->list);
486 synchronize_rcu();
487
488 switch (c->type) {
489 case ACL_LINK:
490 h->acl_num--;
491 break;
492 case AMP_LINK:
493 h->amp_num--;
494 break;
495 case LE_LINK:
496 h->le_num--;
497 break;
498 case SCO_LINK:
499 case ESCO_LINK:
500 h->sco_num--;
501 break;
502 }
503 }
504
505 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
506 {
507 struct hci_conn_hash *h = &hdev->conn_hash;
508 switch (type) {
509 case ACL_LINK:
510 return h->acl_num;
511 case AMP_LINK:
512 return h->amp_num;
513 case LE_LINK:
514 return h->le_num;
515 case SCO_LINK:
516 case ESCO_LINK:
517 return h->sco_num;
518 default:
519 return 0;
520 }
521 }
522
523 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
524 __u16 handle)
525 {
526 struct hci_conn_hash *h = &hdev->conn_hash;
527 struct hci_conn *c;
528
529 rcu_read_lock();
530
531 list_for_each_entry_rcu(c, &h->list, list) {
532 if (c->handle == handle) {
533 rcu_read_unlock();
534 return c;
535 }
536 }
537 rcu_read_unlock();
538
539 return NULL;
540 }
541
542 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
543 __u8 type, bdaddr_t *ba)
544 {
545 struct hci_conn_hash *h = &hdev->conn_hash;
546 struct hci_conn *c;
547
548 rcu_read_lock();
549
550 list_for_each_entry_rcu(c, &h->list, list) {
551 if (c->type == type && !bacmp(&c->dst, ba)) {
552 rcu_read_unlock();
553 return c;
554 }
555 }
556
557 rcu_read_unlock();
558
559 return NULL;
560 }
561
562 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
563 __u8 type, __u16 state)
564 {
565 struct hci_conn_hash *h = &hdev->conn_hash;
566 struct hci_conn *c;
567
568 rcu_read_lock();
569
570 list_for_each_entry_rcu(c, &h->list, list) {
571 if (c->type == type && c->state == state) {
572 rcu_read_unlock();
573 return c;
574 }
575 }
576
577 rcu_read_unlock();
578
579 return NULL;
580 }
581
582 void hci_disconnect(struct hci_conn *conn, __u8 reason);
583 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
584 void hci_sco_setup(struct hci_conn *conn, __u8 status);
585
586 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst);
587 int hci_conn_del(struct hci_conn *conn);
588 void hci_conn_hash_flush(struct hci_dev *hdev);
589 void hci_conn_check_pending(struct hci_dev *hdev);
590
591 struct hci_chan *hci_chan_create(struct hci_conn *conn);
592 void hci_chan_del(struct hci_chan *chan);
593 void hci_chan_list_flush(struct hci_conn *conn);
594 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
595
596 struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst,
597 __u8 dst_type, __u8 sec_level, __u8 auth_type);
598 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
599 __u16 setting);
600 int hci_conn_check_link_mode(struct hci_conn *conn);
601 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
602 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type);
603 int hci_conn_change_link_key(struct hci_conn *conn);
604 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
605
606 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
607
608 /*
609 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
610 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
611 * working or anything else. They just guarantee that the object is available
612 * and can be dereferenced. So you can use its locks, local variables and any
613 * other constant data.
614 * Before accessing runtime data, you _must_ lock the object and then check that
615 * it is still running. As soon as you release the locks, the connection might
616 * get dropped, though.
617 *
618 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
619 * how long the underlying connection is held. So every channel that runs on the
620 * hci_conn object calls this to prevent the connection from disappearing. As
621 * long as you hold a device, you must also guarantee that you have a valid
622 * reference to the device via hci_conn_get() (or the initial reference from
623 * hci_conn_add()).
624 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
625 * break because nobody cares for that. But this means, we cannot use
626 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
627 */
628
629 static inline void hci_conn_get(struct hci_conn *conn)
630 {
631 get_device(&conn->dev);
632 }
633
634 static inline void hci_conn_put(struct hci_conn *conn)
635 {
636 put_device(&conn->dev);
637 }
638
639 static inline void hci_conn_hold(struct hci_conn *conn)
640 {
641 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
642
643 atomic_inc(&conn->refcnt);
644 cancel_delayed_work(&conn->disc_work);
645 }
646
647 static inline void hci_conn_drop(struct hci_conn *conn)
648 {
649 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
650
651 if (atomic_dec_and_test(&conn->refcnt)) {
652 unsigned long timeo;
653
654 switch (conn->type) {
655 case ACL_LINK:
656 case LE_LINK:
657 cancel_delayed_work(&conn->idle_work);
658 if (conn->state == BT_CONNECTED) {
659 timeo = conn->disc_timeout;
660 if (!conn->out)
661 timeo *= 2;
662 } else {
663 timeo = msecs_to_jiffies(10);
664 }
665 break;
666
667 case AMP_LINK:
668 timeo = conn->disc_timeout;
669 break;
670
671 default:
672 timeo = msecs_to_jiffies(10);
673 break;
674 }
675
676 cancel_delayed_work(&conn->disc_work);
677 queue_delayed_work(conn->hdev->workqueue,
678 &conn->disc_work, timeo);
679 }
680 }
681
682 /* ----- HCI Devices ----- */
683 static inline void hci_dev_put(struct hci_dev *d)
684 {
685 BT_DBG("%s orig refcnt %d", d->name,
686 atomic_read(&d->dev.kobj.kref.refcount));
687
688 put_device(&d->dev);
689 }
690
691 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
692 {
693 BT_DBG("%s orig refcnt %d", d->name,
694 atomic_read(&d->dev.kobj.kref.refcount));
695
696 get_device(&d->dev);
697 return d;
698 }
699
700 #define hci_dev_lock(d) mutex_lock(&d->lock)
701 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
702
703 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
704 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
705
706 static inline void *hci_get_drvdata(struct hci_dev *hdev)
707 {
708 return dev_get_drvdata(&hdev->dev);
709 }
710
711 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
712 {
713 dev_set_drvdata(&hdev->dev, data);
714 }
715
716 struct hci_dev *hci_dev_get(int index);
717 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
718
719 struct hci_dev *hci_alloc_dev(void);
720 void hci_free_dev(struct hci_dev *hdev);
721 int hci_register_dev(struct hci_dev *hdev);
722 void hci_unregister_dev(struct hci_dev *hdev);
723 int hci_suspend_dev(struct hci_dev *hdev);
724 int hci_resume_dev(struct hci_dev *hdev);
725 int hci_dev_open(__u16 dev);
726 int hci_dev_close(__u16 dev);
727 int hci_dev_reset(__u16 dev);
728 int hci_dev_reset_stat(__u16 dev);
729 int hci_dev_cmd(unsigned int cmd, void __user *arg);
730 int hci_get_dev_list(void __user *arg);
731 int hci_get_dev_info(void __user *arg);
732 int hci_get_conn_list(void __user *arg);
733 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
734 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
735 int hci_inquiry(void __user *arg);
736
737 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
738 bdaddr_t *bdaddr, u8 type);
739 int hci_blacklist_clear(struct hci_dev *hdev);
740 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
741 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
742
743 int hci_uuids_clear(struct hci_dev *hdev);
744
745 int hci_link_keys_clear(struct hci_dev *hdev);
746 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
747 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
748 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len);
749 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]);
750 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
751 int new_key, u8 authenticated, u8 tk[16], u8 enc_size,
752 __le16 ediv, u8 rand[8]);
753 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
754 u8 addr_type);
755 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr);
756 int hci_smp_ltks_clear(struct hci_dev *hdev);
757 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
758
759 int hci_remote_oob_data_clear(struct hci_dev *hdev);
760 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
761 bdaddr_t *bdaddr);
762 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
763 u8 *randomizer);
764 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
765
766 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
767
768 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
769 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
770 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
771
772 void hci_init_sysfs(struct hci_dev *hdev);
773 void hci_conn_init_sysfs(struct hci_conn *conn);
774 void hci_conn_add_sysfs(struct hci_conn *conn);
775 void hci_conn_del_sysfs(struct hci_conn *conn);
776
777 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
778
779 /* ----- LMP capabilities ----- */
780 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
781 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
782 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
783 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
784 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
785 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
786 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
787 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
788 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
789 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
790 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
791 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
792 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
793 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
794 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
795 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
796 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
797 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
798 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
799
800 /* ----- Extended LMP capabilities ----- */
801 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
802 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
803 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
804
805 /* ----- HCI protocols ----- */
806 #define HCI_PROTO_DEFER 0x01
807
808 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
809 __u8 type, __u8 *flags)
810 {
811 switch (type) {
812 case ACL_LINK:
813 return l2cap_connect_ind(hdev, bdaddr);
814
815 case SCO_LINK:
816 case ESCO_LINK:
817 return sco_connect_ind(hdev, bdaddr, flags);
818
819 default:
820 BT_ERR("unknown link type %d", type);
821 return -EINVAL;
822 }
823 }
824
825 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
826 {
827 switch (conn->type) {
828 case ACL_LINK:
829 case LE_LINK:
830 l2cap_connect_cfm(conn, status);
831 break;
832
833 case SCO_LINK:
834 case ESCO_LINK:
835 sco_connect_cfm(conn, status);
836 break;
837
838 default:
839 BT_ERR("unknown link type %d", conn->type);
840 break;
841 }
842
843 if (conn->connect_cfm_cb)
844 conn->connect_cfm_cb(conn, status);
845 }
846
847 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
848 {
849 if (conn->type != ACL_LINK && conn->type != LE_LINK)
850 return HCI_ERROR_REMOTE_USER_TERM;
851
852 return l2cap_disconn_ind(conn);
853 }
854
855 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
856 {
857 switch (conn->type) {
858 case ACL_LINK:
859 case LE_LINK:
860 l2cap_disconn_cfm(conn, reason);
861 break;
862
863 case SCO_LINK:
864 case ESCO_LINK:
865 sco_disconn_cfm(conn, reason);
866 break;
867
868 /* L2CAP would be handled for BREDR chan */
869 case AMP_LINK:
870 break;
871
872 default:
873 BT_ERR("unknown link type %d", conn->type);
874 break;
875 }
876
877 if (conn->disconn_cfm_cb)
878 conn->disconn_cfm_cb(conn, reason);
879 }
880
881 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
882 {
883 __u8 encrypt;
884
885 if (conn->type != ACL_LINK && conn->type != LE_LINK)
886 return;
887
888 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
889 return;
890
891 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
892 l2cap_security_cfm(conn, status, encrypt);
893
894 if (conn->security_cfm_cb)
895 conn->security_cfm_cb(conn, status);
896 }
897
898 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
899 __u8 encrypt)
900 {
901 if (conn->type != ACL_LINK && conn->type != LE_LINK)
902 return;
903
904 l2cap_security_cfm(conn, status, encrypt);
905
906 if (conn->security_cfm_cb)
907 conn->security_cfm_cb(conn, status);
908 }
909
910 /* ----- HCI callbacks ----- */
911 struct hci_cb {
912 struct list_head list;
913
914 char *name;
915
916 void (*security_cfm) (struct hci_conn *conn, __u8 status,
917 __u8 encrypt);
918 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
919 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
920 };
921
922 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
923 {
924 struct hci_cb *cb;
925 __u8 encrypt;
926
927 hci_proto_auth_cfm(conn, status);
928
929 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
930 return;
931
932 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
933
934 read_lock(&hci_cb_list_lock);
935 list_for_each_entry(cb, &hci_cb_list, list) {
936 if (cb->security_cfm)
937 cb->security_cfm(conn, status, encrypt);
938 }
939 read_unlock(&hci_cb_list_lock);
940 }
941
942 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
943 __u8 encrypt)
944 {
945 struct hci_cb *cb;
946
947 if (conn->sec_level == BT_SECURITY_SDP)
948 conn->sec_level = BT_SECURITY_LOW;
949
950 if (conn->pending_sec_level > conn->sec_level)
951 conn->sec_level = conn->pending_sec_level;
952
953 hci_proto_encrypt_cfm(conn, status, encrypt);
954
955 read_lock(&hci_cb_list_lock);
956 list_for_each_entry(cb, &hci_cb_list, list) {
957 if (cb->security_cfm)
958 cb->security_cfm(conn, status, encrypt);
959 }
960 read_unlock(&hci_cb_list_lock);
961 }
962
963 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
964 {
965 struct hci_cb *cb;
966
967 read_lock(&hci_cb_list_lock);
968 list_for_each_entry(cb, &hci_cb_list, list) {
969 if (cb->key_change_cfm)
970 cb->key_change_cfm(conn, status);
971 }
972 read_unlock(&hci_cb_list_lock);
973 }
974
975 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
976 __u8 role)
977 {
978 struct hci_cb *cb;
979
980 read_lock(&hci_cb_list_lock);
981 list_for_each_entry(cb, &hci_cb_list, list) {
982 if (cb->role_switch_cfm)
983 cb->role_switch_cfm(conn, status, role);
984 }
985 read_unlock(&hci_cb_list_lock);
986 }
987
988 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
989 {
990 size_t parsed = 0;
991
992 if (data_len < 2)
993 return false;
994
995 while (parsed < data_len - 1) {
996 u8 field_len = data[0];
997
998 if (field_len == 0)
999 break;
1000
1001 parsed += field_len + 1;
1002
1003 if (parsed > data_len)
1004 break;
1005
1006 if (data[1] == type)
1007 return true;
1008
1009 data += field_len + 1;
1010 }
1011
1012 return false;
1013 }
1014
1015 int hci_register_cb(struct hci_cb *hcb);
1016 int hci_unregister_cb(struct hci_cb *hcb);
1017
1018 struct hci_request {
1019 struct hci_dev *hdev;
1020 struct sk_buff_head cmd_q;
1021
1022 /* If something goes wrong when building the HCI request, the error
1023 * value is stored in this field.
1024 */
1025 int err;
1026 };
1027
1028 void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
1029 int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
1030 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
1031 const void *param);
1032 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
1033 const void *param, u8 event);
1034 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
1035
1036 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1037 const void *param, u32 timeout);
1038 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1039 const void *param, u8 event, u32 timeout);
1040
1041 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1042 const void *param);
1043 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1044 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1045
1046 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1047
1048 /* ----- HCI Sockets ----- */
1049 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1050 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
1051 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1052
1053 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1054
1055 /* Management interface */
1056 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1057 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1058 BIT(BDADDR_LE_RANDOM))
1059 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1060 BIT(BDADDR_LE_PUBLIC) | \
1061 BIT(BDADDR_LE_RANDOM))
1062
1063 /* These LE scan and inquiry parameters were chosen according to LE General
1064 * Discovery Procedure specification.
1065 */
1066 #define DISCOV_LE_SCAN_WIN 0x12
1067 #define DISCOV_LE_SCAN_INT 0x12
1068 #define DISCOV_LE_TIMEOUT msecs_to_jiffies(10240)
1069 #define DISCOV_INTERLEAVED_TIMEOUT msecs_to_jiffies(5120)
1070 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1071 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1072
1073 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
1074 void mgmt_index_added(struct hci_dev *hdev);
1075 void mgmt_index_removed(struct hci_dev *hdev);
1076 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1077 int mgmt_powered(struct hci_dev *hdev, u8 powered);
1078 void mgmt_discoverable_timeout(struct hci_dev *hdev);
1079 void mgmt_discoverable(struct hci_dev *hdev, u8 discoverable);
1080 void mgmt_connectable(struct hci_dev *hdev, u8 connectable);
1081 void mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status);
1082 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1083 bool persistent);
1084 void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1085 u8 addr_type, u32 flags, u8 *name, u8 name_len,
1086 u8 *dev_class);
1087 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1088 u8 link_type, u8 addr_type, u8 reason);
1089 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1090 u8 link_type, u8 addr_type, u8 status);
1091 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1092 u8 addr_type, u8 status);
1093 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1094 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1095 u8 status);
1096 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1097 u8 status);
1098 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1099 u8 link_type, u8 addr_type, __le32 value,
1100 u8 confirm_hint);
1101 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1102 u8 link_type, u8 addr_type, u8 status);
1103 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1104 u8 link_type, u8 addr_type, u8 status);
1105 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1106 u8 link_type, u8 addr_type);
1107 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1108 u8 link_type, u8 addr_type, u8 status);
1109 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1110 u8 link_type, u8 addr_type, u8 status);
1111 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1112 u8 link_type, u8 addr_type, u32 passkey,
1113 u8 entered);
1114 void mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1115 u8 addr_type, u8 status);
1116 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1117 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1118 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1119 u8 status);
1120 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1121 void mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash,
1122 u8 *randomizer, u8 status);
1123 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1124 u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name,
1125 u8 ssp, u8 *eir, u16 eir_len);
1126 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1127 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1128 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1129 int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1130 int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1131 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, u8 persistent);
1132 void mgmt_reenable_advertising(struct hci_dev *hdev);
1133
1134 /* HCI info for socket */
1135 #define hci_pi(sk) ((struct hci_pinfo *) sk)
1136
1137 struct hci_pinfo {
1138 struct bt_sock bt;
1139 struct hci_dev *hdev;
1140 struct hci_filter filter;
1141 __u32 cmsg_mask;
1142 unsigned short channel;
1143 };
1144
1145 /* HCI security filter */
1146 #define HCI_SFLT_MAX_OGF 5
1147
1148 struct hci_sec_filter {
1149 __u32 type_mask;
1150 __u32 event_mask[2];
1151 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
1152 };
1153
1154 /* ----- HCI requests ----- */
1155 #define HCI_REQ_DONE 0
1156 #define HCI_REQ_PEND 1
1157 #define HCI_REQ_CANCELED 2
1158
1159 #define hci_req_lock(d) mutex_lock(&d->req_lock)
1160 #define hci_req_unlock(d) mutex_unlock(&d->req_lock)
1161
1162 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max,
1163 u16 latency, u16 to_multiplier);
1164 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8],
1165 __u8 ltk[16]);
1166
1167 #define SCO_AIRMODE_MASK 0x0003
1168 #define SCO_AIRMODE_CVSD 0x0000
1169 #define SCO_AIRMODE_TRANSP 0x0003
1170
1171 #endif /* __HCI_CORE_H */